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Abstract In this paper we define and study a finite volume scheme for a
concrete carbonation model proposed by Aiki and Muntean in [1]. The model
consists in a system of two weakly coupled parabolic equations in a varying
domain whose length is governed by an ordinary differential equation. The
numerical sheme is obtained by a Euler discretisation in time and a Scharfetter-
Gummel discretisation in space. We establish the convergence of the scheme.
As a by-product, we obtain existence of a solution to the model. Finally, some
numerical experiments show the efficiency of the scheme.
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1 Introduction

1.1 Modeling of concrete carbonation

The carbonation phenomenon in reinforced concrete (a material widely used
in civil engineering for the construction of buildings, factories, bridges, roads,
etc) is a physico-chemical reaction which is the main cause of concrete structure
degradation. There exists a wide literature on the modeling of this reaction,
see [14, 15, 16, 17] and all references therein.
From a physical point of view the carbonation process can be explained as
follows: CO2 from the atmosphere enters in the concrete via the unsaturated
porous media matrix where it is quickly transformed in CO2 in the aqueous
phase. This reaction can be described by

CO2(g)←→ CO2(aq).

Then, the CO2(aq) is transported in the concrete and the carbonation reaction
writes

CO2(aq) + Ca(OH)2(aq) −→ H2O + CaCO3(aq).

This reaction facilitates a drop of the pH inside the material and allows the
corrosion process to damage the metallic reinforcement bars. These damages
deteriorate the concrete and reduce the durability of the structure.
From a mathematical point a view, one of the main source of interest for this
problem is the existence of a moving domain (like for instance in the corrosion
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theory, see [5]). Indeed, the carbonation process produces a moving interface
(front position in one dimension) which splits the concrete in two regions: the
carbonated one, which grows in time, and the uncarbonated one. In this paper
we consider a free-boundary system proposed by Aiki and Muntean in [1] where
the varying space domain represents the carbonated zone. The unknowns u and
v represent the mass concentration of CO2 respectively in gaseous and aqueous
phase and s represents the penetration depth which measures the size of the
carbonated zone. We denote the carbonated domain Qs(T ) defined by

Qs(T ) = {(t, y) : 0 < t < T < +∞, 0 < y < s(t) }.

Then, the system considered by Aiki and Muntean writes:

∂tu− ∂y(κu∂yu) = f(u, v) in Qs(T ), (1a)

∂tv − ∂y(κv∂yv) = −f(u, v) in Qs(T ), (1b)

s′(t) = ψ(u(s(t), t)) for 0 < t < T, (1c)

u(0, t) = g(t) for 0 < t < T, (1d)

v(0, t) = r(t) for 0 < t < T, (1e)

−κu∂yu(s(t), t)− s′(t)u(s(t), t) = ψ(u(s(t), t)) for 0 < t < T, (1f)

−κv∂yv(s(t), t)− s′(t)v(s(t), t) = 0 for 0 < t < T, (1g)

u(y, 0) = u0(y) for 0 < y < s(0), (1h)

v(y, 0) = v0(y) for 0 < y < s(0), (1i)

s(0) = s0. (1j)

Existence and uniqueness of a global solution to (1) are established in [1]. As in
the theoretical analysis, we consider that the following assumptions are satisfied:

(A1) ψ : R −→ R is defined by ψ(x) = αx with α > 0 and ψ represents the
kinetics of the reaction and drives the carbonation reaction rate,
(A2) f : R2 −→ R is defined by f(p, q) = β(γq − p) with β and γ two real
constants and f is given by the Henry’s law and
(A3) g and r belong to L2(0, T ),
(A4) u0 and v0 belong to L∞([0, s0]),
(A5) the diffusive coefficients κu and κv are two positive constants,
(A6) s0 > 0,
(A7) there exist two positive constants g∗ and r∗ with g∗ = γr∗ such that

0 ≤ g ≤ g∗, 0 ≤ r ≤ r∗ on [0,+∞),

and
0 ≤ u0 ≤ g∗, 0 ≤ v0 ≤ r∗ on [0, s0].

We notice that in [1, 2, 3] the authors consider ψ(x) = α(x+)p where x+ =
max(x, 0) and p ≥ 1. But, as mentioned in [14], many authors consider the case
p = 1 and the positive part is in fact not useful because we are able to prove
positivity porperties for the solutions (see Theorem 1.1).
Finally, we remark that Aiki and Muntean have shown in [2, 3] that the pene-
tration depth s satisfies

c
√
t ≤ s(t) ≤ C

√
1 + t,

with c and C two positive constants. These estimates support the idea that s
follows a

√
T -law of propagation, which fits experimental observations [2, 3].
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1.2 The drift-diffusion system on a fixed domain

For numerical reasons, it is convenient to rewrite (1) on a fixed space domain.
In this aim, we follow the ideas of [5] and we consider the change of variables

∪0≤t≤T [0, s(t)]× {t} → [0, 1]× [0, T ],

(y, t) 7−→
(
x(y, t) =

y

s(t)
, t

)
.

We associate to every function w defined on ∪0≤t≤T [0, s(t)]× {t} a function w̄
defined on Q(T ) = [0, 1]× [0, T ] by the relation

w(y, t) = w̄(x(y, t), t).

Let us consider
Ju = −κu∂yu and Jū = −κu∂xū.

The diffusion-reaction equation ∂tu+ ∂yJu = f(u, v) becomes

1

s(t)
∂t(s(t)ū)− s′(t)

s(t)
∂x(xū) +

1

s2(t)
∂xJū = f(ū, v̄). (2)

Multiplying (2) by s2(t), we obtain the following convection-diffusion-reaction
equation

s(t)∂t(s(t)ū) + ∂xJ̄ū = s2(t)f(ū, v̄),

with J̄ū = −κu∂xū − s(t)s′(t)xū. We use the same technique for the equa-
tion (1b). If we drop the bars, the system (1) rewrites as

s(t)∂t(s(t)u) + ∂xJu = s2(t)f(u, v) in Q(T ), (3a)

s(t)∂t(s(t)v) + ∂xJv = −s2(t)f(u, v) in Q(T ), (3b)

s′(t) = ψ(u(1, t)) for 0 < t < T, (3c)

u(0, t) = g(t) for 0 < t < T, (3d)

v(0, t) = r(t) for 0 < t < T, (3e)

Ju(1, t) = s(t)ψ(u(1, t)) for 0 < t < T, (3f)

Jv(1, t) = 0 for 0 < t < T, (3g)

u(x, 0) = u0(s0x) for 0 < x < 1, (3h)

v(x, 0) = v0(s0x) for 0 < x < 1, (3i)

s(0) = s0. (3j)

The general convection-diffusion fluxes write

Jw = −κw∂xw − s(t)s′(t)xw,

where w refers to either u or v. We also use this notation w = u or v without
further mention in the sequel. Let us now define the notion of weak solution
of (3). We consider the functional space H = {z ∈ H1(0, 1) : z(0) = 0}, endowed
with the H1(0, 1) norm. Assuming (A1)− (A7), we say that (s, u, v) is a weak
solution of (3) if the following conditions (S1)-(S5) are satisfied, with
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(S1) (u, v) ∈ (L2(0, T ;H1(0, 1)) ∩ L∞(Q(T )))2,
(S2) u− g, v − r ∈ L2(0, T ;H),
(S3) s ∈W 1,∞(0, T ), s(0) = s0 and s′(t) = ψ(u(1, t)) for almost every t in
[0, T ],
(S4) for all φ ∈ C∞c ([0, T )× (0, 1])

−
∫ T

0

∫ 1

0

u(x, t)s(t) ∂t(s(t)φ(x, t)) dx dt−
∫ 1

0

u0(s0x) s2
0 φ(x, 0) dx

+

∫ T

0

∫ 1

0

κu∂xu(x, t) ∂xφ(x, t)dxdt+

∫ T

0

∫ 1

0

s(t)s′(t)xu(x, t)∂xφ(x, t)dxdt

+

∫ T

0

s(t)ψ(u(1, t))φ(1, t) dt =

∫ T

0

∫ 1

0

s2(t)f(u(x, t), v(x, t))φ(x, t) dx dt,

(S5) for all φ ∈ C∞c ([0, T )× (0, 1])

−
∫ T

0

∫ 1

0

v(x, t)s(t) ∂t(s(t)φ(x, t)) dx dt−
∫ 1

0

v0(s0x) s2
0 φ(x, 0) dx

+

∫ T

0

∫ 1

0

κv∂xv(x, t) ∂xφ(x, t)dxdt+

∫ T

0

∫ 1

0

s(t)s′(t)x v(x, t)∂xφ(x, t)dxdt

= −
∫ T

0

∫ 1

0

s2(t)f(u(x, t), v(x, t))φ(x, t) dx dt.

As already mentioned the existence and uniqueness of a weak solution to (3)
has been proved in [1]. But, in this paper, Aiki and Muntean considered a
different functional space for (S1). Indeed, they add the condition that ∂tu
and ∂tv ∈ L2(0, T ;H∗) with H∗ the dual space to H. Nevertheless, with the
assumptions (A1)−(A7) and the conditions (S1)-(S5) we can prove that ∂tu and
∂tv are actually in L2(0, T ;H∗). As a consequence, we deduce the equivalence
of the two definitions of a weak solution to (3).

1.3 Definition of the numerical scheme

In order to write the finite volume scheme we introduce some notation related
to the discretization of [0, 1]. A mesh T , consists in a finite sequence of cells
denoted by (xi− 1

2
, xi+ 1

2
), for 1 ≤ i ≤ l, with

0 = x 1
2
< x 3

2
< ... < xl− 1

2
< xl+ 1

2
= 1.

We note hi = xi+ 1
2
− xi− 1

2
, for 1 ≤ i ≤ l, the length of the i-est cell. The mesh

size is defined as h = max{hi, 1 ≤ i ≤ l}. Moreover, for 1 ≤ i ≤ l, we define xi
as the center of the cell (xi− 1

2
, xi+ 1

2
), x0 = x 1

2
and xl+1 = xl+ 1

2
. We set

hi+ 1
2

= xi+1 − xi, for 0 ≤ i ≤ l.

We define a time step ∆t and we assume that there exists an integer NT such
that NT ∆t = T (we can define NT as the integer part of T/NT ). We consider
the sequence (tn)0≤n≤NT

with tn = n∆t.
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Then, for 1 ≤ i ≤ l and 0 ≤ n ≤ NT − 1, the scheme writes

sn+1 = sn + ∆tψ(unl+1), (4a)

sn+1hi
sn+1vn+1

i − snvni
∆t

+
(
Gn+1
v,i+ 1

2

−Gn+1
v,i− 1

2

)
= −(sn+1)2 hi β(γ vn+1

i − uni ),

(4b)

sn+1hi
sn+1un+1

i − snuni
∆t

+
(
Gn+1
u,i+ 1

2

−Gn+1
u,i− 1

2

)
= (sn+1)2 hi β(γ vn+1

i − un+1
i ),

(4c)

where Gn+1
w,i+ 1

2

is the numerical approximation of Jw(xi+ 1
2
, tn+1). We choose to

discretize simultaneously the diffusive part and the convective part of the fluxes
Jw. For such choice of discretisation we consider the Scharfetter-Gummel fluxes
intoduced by Il’in in [12] and Scharfetter and Gummel in [18]. We set

Cn+1 = sn+1 s
n+1 − sn

∆t
, (5a)

Gn+1
w,i+ 1

2

= κw
B
(
hi+ 1

2

Cn+1

κw
xi+ 1

2

)
wn+1
i −B

(
−hi+ 1

2

Cn+1

κw
xi+ 1

2

)
wn+1
i+1

hi+ 1
2

. (5b)

Where B is the Bernoulli function defined by

B(x) =
x

ex − 1
for x 6= 0, B(0) = 1.

This choice of numerical fluxes is motivated by the fact that it has been shown
that the Scharfetter-Gummel scheme exhibits a second order convergence rate in
space, see [9, 13]. We supplement the numerical scheme with the discretization
of the boundary conditions, for 0 ≤ n ≤ NT − 1,

vn0 = rn =
1

∆t

∫ tn+1

tn

r(t) dt, un0 = gn =
1

∆t

∫ tn+1

tn

g(t) dt, (6a)

Gn+1
v,l+ 1

2

= 0, (6b)

Gn+1
u,l+ 1

2

= sn+1ψ(un+1
l+1 ), (6c)

and, for 1 ≤ i ≤ l, of the initial conditions

s0 = s0, (7a)

u0
i =

1

hi

∫ x
i+1

2

x
i− 1

2

u0(s0x)dx, v0
i =

1

hi

∫ x
i+1

2

x
i− 1

2

v0(s0x)dx, (7b)

u0
l+1 = u0(s0) and v0

l+1 = v0(s0). (7c)

We denote by (S) the scheme (4)-(7). The approximation in time of the right
hand side of (4) provides an efficient method of computation. Indeed, if we
know the vectors sn, vn and un we compute sn+1 by (4a), then vn+1 and finally
un+1 thanks to the equations (4b) and (4c).
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1.4 Main results and outline of the paper

We first state the existence and uniqueness result of a solution to (S). Moreover,
as in the continuous case, we prove that the solutions of (S) fulfill lower and
upper bounds.

Theorem 1.1. Let the hypotheses (A1)-(A6) hold. Then, there exists a unique
solution to the numerical scheme (S). Furthermore, under the assumptions
(A1)-(A7), we have for every n ≥ 0 and i ∈ {0, · · · , l + 1}

0 ≤ vni ≤ r∗, 0 ≤ uni ≤ g∗, (8)

and

0 ≤ sn+1 − sn

∆t
≤ α g∗. (9)

For 0 ≤ n ≤ NT , we deduce

0 < sn+1 ≤ s0 + n∆t α g∗ ≤ s0 + T α g∗. (10)

As it is usual for finite volume method (see [10]), we define some piecewise
constant functions in space and time. For a given mesh T and a given time step
∆t, we define

wkh =

l∑
i=1

wki 1(x
i− 1

2
,x

i+1
2

) + wk01{x=0} + wkl+11{x=1}, for 0 ≤ k ≤ NT , (11)

wh,∆t =

NT−1∑
k=0

wk+1
h 1[tk,tk+1). (12)

For these functions we define a discrete derivative operator in space as

∂x,T wh,∆t(x, t) = ∂ix,T wh,∆t =
wk+1
i+1 − w

k+1
i

hi+ 1
2

, for (x, t) ∈ (xi, xi+1)× (tk, tk+1).

We can also reconstruct a piecewise affine function s∆t, for a given time step
∆t, we set

s∆t =

NT−1∑
k=0

(
sk+1 + (t− tk+1)

sk+1 − sk

∆t

)
1[tk,tk+1). (13)

Then, we consider a sequence of meshes and time steps (Tm,∆tm)m such that
hm → 0 and ∆tm → 0 as m→ +∞. As a consequence of Theorem 1.1, we can
define a sequence of solutions to (S), denoted (sm, um, vm)m with sm = s∆tm

and wm = whm,∆tm . We establish the convergence of this sequence, as stated
in the following theorem.

Theorem 1.2. Let us assume the hypotheses (A1)-(A7) satisfied. Then, the
sequence (sm, um, vm)m converges to some (s, u, v) with s ∈ W 1,∞(0, T ) and u
or v ∈ L2(0, T ;H1(0, 1)), with

wm → w in L2(0, T ;L2(0, 1)),

∂x,Tmwm ⇀ ∂xw in L2(0, T ;L2(0, 1)),

sm → s in C([0, T ]),

s′m
∗
⇀ s′ in L∞(0, T ),

and (s, u, v) is the weak solution to (3).
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We prove Theorem 1.1 in Section 2. The proof is based on some monotonicity
properties of the numerical scheme. In Section 3, we establish L2(0, T ;H1(0, 1))
and L2(0, T ;H∗) discrete estimates for the approximate solutions. These esti-
mates allow us to apply a discrete version of Aubin-Simon lemma, see [11], and
we deduce some compactness properties of the sequence (sm, um, vm)m. In Sec-
tion 4, we pass to the limit in the scheme and we prove Theorem 1.2. The proof
is based on some arguments developed in [6, 7]. Eventually, in Section 5, we
present some numerical experiments. We draw profiles of u, v and s. Moreover,
we investigate the question of the L2-convergence rate in space of the numerical
scheme.

2 Proof of Theorem 1.1

To prove Theorem 1.1 we proceed by induction on n. We follow some ideas
developed in [5]. Let us note that (s0, u0, v0) is well defined and satisfies (8)-
(10). We now assume that (8)-(10) is verified for (sn, un, vn), for some n ≥ 0.
The inequalities (9) and (10) are straightforward consequences of the definition
of sn+1. Furthermore, as a by-product of the lower bound of (9), we observe
that Cn+1 ≥ 0. We first notice, thanks to (6b) and the definition of B, that we
can express vn+1

l+1 as

vn+1
l+1 = exp

(
−hl+ 1

2

Cn+1

κv

)
vn+1
l .

As already mentioned, the equations (4) are decoupled. We rewrite (4b) and
(4c) as two independent linear systems

Mn
v v

n+1 = bnv and Mn
u u

n+1 = bnu,

where we consider that un+1 = (un+1
1 , · · · , un+1

l+1 )t and vn+1 = (vn+1
1 , · · · , vn+1

l )t

and bnu ∈ Ml+1,1(R), bnv ∈ Ml,1(R), Mn
u ∈ Ml+1(R) and Mn

v ∈ Ml(R). The
matrices Mn

u and Mn
v are tridiagonal and defined by

(Mn
v )i,i = hi

(sn+1)2

∆t
+ hi (sn+1)2βγ + κv

B(hi+ 1
2

Cn+1

κv
xi+ 1

2
)

hi+ 1
2

+ κv
B(−hi− 1

2

Cn+1

κv
xi− 1

2
)

hi− 1
2

, for 1 ≤ i ≤ l − 1,

(Mn
v )i,i+1 = −κv

B(−hi+ 1
2

Cn+1

κv
xi+ 1

2
)

hi+ 1
2

, for 1 ≤ i ≤ l − 1,

(Mn
v )i,i−1 = −κv

B(hi− 1
2

Cn+1

κv
xi− 1

2
)

hi− 1
2

, for 2 ≤ i ≤ l,

(Mn
v )l,l = hl

(sn+1)2

∆t
+ hl(s

n+1)2βγ + κv
B(−hl− 1

2

Cn+1

κv
xl− 1

2
)

hl− 1
2

,
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(Mn
u)i,i = hi

(sn+1)2

∆t
+ hi(s

n+1)2β + κu
B(hi+ 1

2

Cn+1

κu
xi+ 1

2
)

hi+ 1
2

+ κu
B(−hi− 1

2

Cn+1

κu
xi− 1

2
)

hi− 1
2

, for 1 ≤ i ≤ l,

(Mn
u)i,i+1 = −κu

B(−hi+ 1
2

Cn+1

κu
xi+ 1

2
)

hi+ 1
2

, for 1 ≤ i ≤ l,

(Mn
u)i,i−1 = −κu

B(hi− 1
2

Cn+1

κu
xi− 1

2
)

hi− 1
2

, for 2 ≤ i ≤ l + 1,

(Mn
u)l+1,l+1 = κu

B(−hl+ 1
2

Cn+1

κu
xl+ 1

2
)

hl+ 1
2

+ sn+1 α.

The vectors bnu and bnv are defined by

(bnv )i = hi
sn+1 sn

∆t
vni + hi (sn+1)2 β uni , ∀2 ≤ i ≤ l,

(bnv )1 = h1
sn+1 sn

∆t
vn1 + h1 (sn+1)2 β un1 + κv

rn+1

h 1
2

,

(bnu)i = hi
sn+1 sn

∆t
uni + hi (sn+1)2 β γ vn+1

i , ∀2 ≤ i ≤ l,

(bnu)1 = h1
sn+1 sn

∆t
un1 + h1 (sn+1)2 β γ vn+1

1 + κu
gn+1

h 1
2

,

(bnu)l+1 = 0.

The matrices Mn
u and Mn

v have positive diagonal terms and non-positive off-
diagonal terms and are strictly diagonally dominant with respect to their columns.
Therefore, Mn

u and Mn
v are M-matrices and thus invertible and monotone. We

first deduce the existence and uniqueness of a solution to (S). Moreover, as
bnu ≥ 0 and bnv ≥ 0, we deduce, thanks to the induction hypothesis, that
un+1 ≥ 0, vn+1 ≥ 0 and by definition of vn+1

l+1 , we conclude that vn+1
l+1 ≥ 0.

Let us prove now the upper bounds (8). We notice that the inequalities are true
for i = 0 by construction of the scheme (S). Now let R∗ ∈Ml,1(R) be the vector
with all its components equal to r∗. Using the equality B(x) − B(−x) = −x,
we obtain that

(Mn
vR
∗)i = r∗hi

(sn+1)2

∆t
+ r∗hi(s

n+1)2βγ − r∗hi Cn+1, ∀2 ≤ i ≤ l − 1.

It yields

(Mn
v (vn+1 −R∗))i ≤ −r∗hi Cn+1 + r∗hi C

n+1 = 0, ∀2 ≤ i ≤ l − 1.

Then, for i = l, we have

(Mn
vR
∗)l = r∗hl

(sn+1)2

∆t
+ r∗hl(s

n+1)2βγ + r∗xl− 1
2
Cn+1.

Hence

(Mn
v (vn+1 −R∗))l ≤ −r∗hl Cn+1 − r∗xl− 1

2
Cn+1 = −r∗ xl+ 1

2
Cn+1 ≤ 0.
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For i = 1

(Mn
vR
∗)1 = r∗h1

(sn+1)2

∆t
+ r∗h1(sn+1)2βγ − r∗ x 3

2
Cn+1 + κv

r∗

h 1
2

,

thus, using the induction hypothesis and the fact that x 3
2

= h1, we obtain

(Mn
v (vn+1 −R∗))1 ≤ −r∗h1 C

n+1 + r∗h1C
n+1 +

κv
h 1

2

(
rn+1 − r∗

)
≤ 0.

As Mn
v is an M-matrix we deduce that

vn+1 ≤ r∗,

and vn+1
l+1 ≤ r∗ follows from the definition of vn+1

l+1 .
Similarly, let G∗ ∈Ml+1,1(R) a constant vector of component g∗, we show that
for i ∈ {1, · · · , l}

(Mn
u(un+1 −G∗))i ≤ 0.

Moreover
(Mn

uG
∗)l+1 = g∗sn+1 + g∗ xl+ 1

2
Cn+1 ≥ 0,

and
(Mn

uu
n+1)l+1 = 0.

Eventually, (Mn
u(un+1 −G∗))l+1 ≤ 0 and as Mn

u is an M-matrix we deduce the
upper bounds of (8). This concludes the proof of Theorem 1.1.

3 Estimates on the approximate solutions

3.1 Functional spaces and discrete norms

For the proof of Theorem 1.2, we introduce some discrete functional spaces and
norms.

Definition 3.1. Let T a mesh of size h and ∆t a time step. We define the set
of piecewise constant functions in space by

XT = {zh : [0, 1] −→ R : ∃(zi)0≤i≤l+1 ∈ Rl+2 and

zh(x) =

l∑
i=1

zi1(x
i− 1

2
,x

i+1
2

)(x) + z01{x=0}(x) + zl+11{x=1}(x)}.

We also define the set of piecewise constant functions in space and time by

XT ,∆t = {zh,∆t : [0, 1]× [0, T ] −→ R : ∃(zk+1
h )0≤k≤NT−1 ∈ (XT )NT and

zh,∆t(x, t) =

NT−1∑
k=0

zk+1
h (x)1[tk,tk+1)(t)}.

For zh ∈ XT , we notice that if || · ||0 denote the L2(0, 1) norm, then

||zh||0 =

(
l∑
i=1

hi|zi|2
) 1

2

.
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On XT and XT ,∆t we define some norms which are the discrete version of the
H1(0, 1), H∗, L2(0, T ;L2(0, 1)), L2(0, T ;H1(0, 1)) and L2(0, T ;H∗) norms.

||zh||1,2,T =

(
l∑
i=0

(zi+1 − zi)2

hi+ 1
2

+ z2
0 + z2

l+1

) 1
2

, ∀zh ∈ XT ,

||zh||−1,2,T = sup

{∫ 1

0

zhηh : ηh ∈ XT , ηh(0) = 0, ||ηh||1,2,T ≤ 1

}
, ∀zh ∈ XT ,

||zh,∆t||0;0,T =

(
NT−1∑
k=0

∆t ||zk+1
h ||20

) 1
2

, ∀zh,∆t ∈ XT ,∆t,

||zh,∆t||0;1,2,T =

(
NT−1∑
k=0

∆t ||zk+1
h ||21,2,T

) 1
2

, ∀zh,∆t ∈ XT ,∆t,

||zh,∆t||0;−1,2,T =

(
NT−1∑
k=0

∆t ||zk+1
h ||2−1,2,T

) 1
2

, ∀zh,∆t ∈ XT ,∆t.

In [5] the authors have shown that, for all zh ∈ XT ,

(zi)
2 ≤ 2 ||zh||21,2,T , for 1 ≤ i ≤ l.

As a by-product, we obtain the discrete Poincaré inequality, for all zh ∈ XT

||zh||0 ≤
√

2 ||zh||1,2,T . (14)

3.2 Discrete L2(0, T ;H1(0, 1)) estimates

In this section we prove L2(0, T ;H1(0, 1)) discrete estimates for the solutions
of (S). Let ∆t be a time step. Then, we introduce a piecewise constant recon-
struction of the boundary condition

g∆t(t) =

NT−1∑
n=0

gn+1 1[tn,tn+1)(t) and r∆t(t) =

NT−1∑
n=0

rn+1 1[tn,tn+1)(t),

where, for 0 ≤ n ≤ NT −1, the elements gn+1 and rn+1 are defined by (6a). For
these functions we define a discrete seminorm, denoted || · ||1,2,∆t, defined by

||q∆t||1,2,∆t =

(
NT−1∑
n=0

(qn+1 − qn)2

∆t

) 1
2

,

for q∆t = g∆t or r∆t. As g and r ∈ W 1,2(0, T ), there exist G,R < +∞, not
depending on ∆t, such that

||g∆t||1,2,∆t < G and ||r∆t||1,2,∆t < R.

Proposition 3.1. For a given ∆t, a given mesh T and under the assumptions
(A1)− (A7), there exists a positive constant C depending on s0, g∗, r∗, κw, β,
γ and T and independent of h and ∆t such that

||wh,∆t||0;1,2,T ≤ C.
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Proof. Let us show the result for vh,∆t. We multiply (4b) by
∆t

sn+1sn
(vn+1
i −

rn+1) and we sum over n and i, we obtain E + F +G = 0, with

E =

NT−1∑
n=0

∆t

sn

l∑
i=1

hi
(sn+1vn+1

i − snvni )

∆t
(vn+1
i − rn+1),

F =

NT−1∑
n=0

∆t

sn+1sn

l∑
i=1

(
Gn+1
v,i+ 1

2

−Gn+1
v,i− 1

2

)
(vn+1
i − rn+1),

G =

NT−1∑
n=0

∆t sn+1

sn

l∑
i=1

hi β(γ vn+1
i − uni )(vn+1

i − rn+1).

We notice that we can rewrite E as E = E1 + E2 + E3, with

E1 =

NT−1∑
n=0

∆t

l∑
i=1

hi
(vn+1
i − rn+1 − (vni − rn))

∆t
(vn+1
i − rn+1),

E2 =

NT−1∑
n=0

∆t

l∑
i=1

hi
(rn+1 − rn)

∆t
(vn+1
i − rn+1),

E3 =

NT−1∑
n=0

∆t

sn

l∑
i=1

hi
sn+1 − sn

∆t
vn+1
i (vn+1

i − rn+1).

For E1, we apply the formula (a − b) a ≥ (a2 − b2)/2, to get a telescopic sum.
Then, we obtain

E1 ≥
l∑
i=1

hi
2

(vNT
i − rNT )2 −

l∑
i=1

hi
2

(v0
i − r0)2 ≥ −1

2
||v0
h − r0||20.

For E2, using the Young inequalities, we deduce

E2 ≥ −
1

2
||r∆t||21,2,∆t −

1

2
||vh,∆t − r∆t||20;0,T .

Finally, applying the Cauchy-Schwarz inequality, we have for E3

E3 ≥ −
NT−1∑
n=0

∆t

sn
sn+1 − sn

∆t

(
l∑
i=1

hi
(
vn+1
i

)2) 1
2
(

l∑
i=1

hi (vn+1
i − rn+1)2

) 1
2

.

Thus, from Theorem 1.1 and the Young inequality, we deduce that

E3 ≥ −
g∗

2 s0

(
||vh,∆t||20;0,T + ||vh,∆t − r∆t||20;0,T

)
.

Hence, we obtain

E ≥ −1

2
||v0
h − r0||20 −

1

2
||r∆t||21,2,∆t −

(s0 + g∗)

2 s0
||vh,∆t − r∆t||20;0,T

− g∗

s0
||vh,∆t||20;0,T , (15)

11



For the term F , we use a discrete integration by parts

F = −
NT−1∑
n=0

∆t

sn+1 sn

l∑
i=0

Gn+1
v,i+ 1

2

(vn+1
i+1 − v

n+1
i ).

Following the ideas of [6], we recall the standard decomposition of the numerical
fluxes:

Gn+1
w,i+ 1

2

= −κw
Bc
(
hi+ 1

2

Cn+1

κw
xi+ 1

2

)
hi+ 1

2

(wn+1
i+1 − w

n+1
i )

− Cn+1 xi+ 1
2

(wn+1
i + wn+1

i+1 )

2
, (16)

with

Bc(x) =
B(x) +B(−x)

2
=
x

2
coth(

x

2
).

Then, applying (16) to F , we have

F =

NT−1∑
n=0

∆t

sn+1sn

 l∑
i=0

κv

Bc(hi+ 1
2

Cn+1

κv
xi+ 1

2
)

hi+ 1
2

(vn+1
i+1 − v

n+1
i )2

+

l∑
i=0

Cn+1

2
xi+ 1

2
((vn+1

i+1 )2 − (vn+1
i )2)

]
.

Using Bc(x) ≥ 1 for all x ∈ R and reordering the terms, we obtain

F ≥
NT−1∑
n=0

∆t

sn+1sn

l∑
i=0

κv
(vn+1
i+1 − v

n+1
i )2

hi+ 1
2

+

NT−1∑
n=0

∆t

sn+1 sn
Cn+1

2

(
vn+1
l+1

)2
−
NT−1∑
n=0

∆t Cn+1

2 sn+1 sn

l∑
i=1

hi (vn+1
i )2.

Thus, it yields that

F ≥ κv
(sNT )2

NT−1∑
n=0

∆t

l∑
i=0

(vn+1
i+1 − v

n+1
i )2

hi+ 1
2

− g∗

2 s0
||vh,∆t||20;0,T . (17)

Eventually, using the Cauchy-Schwarz and Young inequalities, we conclude that

G ≥ −1

2

NT−1∑
n=0

∆t sn+1

sn
||vn+1
h − rn+1||20 −

1

2

NT−1∑
n=0

∆t sn+1

sn
||f(unh, v

n+1
h )||20.

Moreover, the Minkowski inequality and the L∞-bounds yield to

||f(unh, v
n+1
h )||0 ≤ β (γ r∗ + g∗) .

12



We deduce, thanks to Theorem 1.1, that

G ≥ −s
NT

2 s0
||vh,∆t − r∆t||20;0,T −

sNT

2 s0
β2 (γ r∗ + g∗)2 T. (18)

Furthermore, as E+F+G = 0, we deduce from (15), (17) and (18) the existence
of a constant C only depending on s0, g∗, r∗, κv, β, γ and T such that

||vh,∆t||0;1,2,T ≤ C.

Let us prove now the result for uh,∆t. As previously, we multiply (4c) by
∆t

sn+1sn
(un+1
i − gn+1) and we sum over n and i, so that we obtain similarly

E + F + G = 0. The only difference with the previous case concerns the term
F . Indeed, due to the boundary conditions, the discrete integration by parts
yields to

F =

NT−1∑
n=0

∆t

sn+1sn

[
l∑
i=0

Gn+1
u,i+ 1

2

(un+1
i − un+1

i+1 ) +Gn+1
u,l+ 1

2

(un+1
l+1 − g

n+1)

]
.

Thus, we define

F1 =

NT−1∑
n=0

∆t

sn+1sn
Gn+1
u,l+ 1

2

(un+1
l+1 − g

n+1).

Using the boundary condition (6c) and Theorem 1.1, we deduce that

F1 =

NT−1∑
n=0

∆t

sn
αun+1

l+1 (un+1
l+1 − g

n+1) ≥ −αT (g∗)2

s0
.

Then, applying the same techniques as before we conclude that there exists a
positive constant C only depending on s0, g∗, r∗, κu, β, γ and T such that

||uh,∆t||0;1,2,T ≤ C.

3.3 Discrete H1(0, T ;H∗) estimates

In order to show some compactness properties for the sequence of approxi-
mate solutions (sm, um, vm), we want to apply a discrete version of Aubin-
Simon lemma obtained in [11]. In this purpose, we need to establish discrete
L2(0, T ;H∗)-estimates for ∂t,∆tum and ∂t,∆tvm, where ∂t,∆t denotes the discrete
derivative operator in time defined, for all zh,∆t ∈ XT ,∆t, by

∂t,∆tzh,∆t(x, t) = ∂kt,∆tzh,∆t =
(zk+1
h − zkh)

∆t
, for t ∈ [tk, tk+1).

Proposition 3.2. For a given ∆t, a given mesh T and under the assumptions
(A1)-(A7), there exists a positive constant C depending only on s0, g∗, r∗, κw,
β, γ and T and independent of h and ∆t such that

NT−1∑
n=0

∆t ||∂nt,T (wh,∆t)||2−1,2,T ≤ C.
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Proof. As in the previous proof, we first show the result for vh,∆t. Let ηh ∈ XT
such that ηh(0) = 0 and ||ηh||1,2,T ≤ 1. We first notice that

E =

∫ 1

0

∂nt,T (vh,∆t)ηhdx =

l∑
i=1

hi
(vn+1
i − vni )

∆t
ηi.

For a given n we multiply (4b) by
1

sn+1sn
ηi and we sum over i, we obtain

E = F +G+H, with

F = − 1

sn
(sn+1 − sn)

∆t

l∑
i=1

hi v
n+1
i ηi,

G = − 1

sn+1sn

l∑
i=1

(
Gn+1
v,i+ 1

2

−Gn+1
v,i− 1

2

)
ηi,

H = −s
n+1

sn

l∑
i=1

hi β
(
γvn+1
i − uni

)
ηi.

Using the Cauchy-Schwarz inequality, Theorem 1.1 and (14), we obtain

|F | ≤ g∗

s0
||vn+1
h ||0 ||ηh||0 ≤

2 g∗

s0
||vn+1
h ||1,2,T ||ηh||1,2,T . (19)

For G, we use a discrete integration by parts and apply (16), so that G =
G1 +G2, with

G1 = − κv
sn+1 sn

l∑
i=0

Bc
(
hi+ 1

2

Cn+1

κv
xi+ 1

2

)
(vn+1
i+1 − v

n+1
i ) (ηi+1 − ηi)
hi+ 1

2

,

G2 = − 1

2 sn
sn+1 − sn

∆t

l∑
i=0

xi+ 1
2

2
(vn+1
i+1 − v

n+1
i ) (ηi+1 − ηi).

Thanks to Theorem 1.1, the term Cn+1 is bounded. Then, we observe that
Bc(hi+ 1

2
Cn+1xi+ 1

2
/κv) is also bounded for 0 ≤ i ≤ l. We conclude, from

Theorem 1.1 and the Cauchy-Schwarz inequality that

|G1| ≤
C κv
(s0)2

||vn+1
h ||1,2,T ||ηh||1,2,T .

Applying Theorem 1.1, we obtain that

|G2| ≤
(g∗)2

s0

l∑
i=0

|ηi+1 − ηi| .

Thus, the Cauchy-Schwarz inequality yields to

|G2| ≤
(g∗)2

s0
||ηh||1,2,T .

Hence, we conclude that

|G| ≤ C κv
(s0)2

||vn+1
h ||1,2,T ||ηh||1,2,T +

(g∗)2

s0
||ηh||1,2,T . (20)
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Using the Cauchy-Schwarz inequality, we have

|H| ≤ sn+1

sn
||f(unh, v

n+1
h )||0 ||ηh||0.

Eventually, the L∞-estimates and (14) provide

|H| ≤
√

2
sNT

s0
β (γ r∗ + g∗) ||ηh||1,2,T . (21)

Then, from (19), (20) and (21), we deduce:

|E| ≤
(

2 s0 g∗ + C κv
(s0)2

||vn+1
h ||1,2,T +

(g∗)2

s0
+
√

2
sNT

s0
β (γ r∗ + g∗)

)
||ηh||1,2,T .

There exists a constant C depending on s0, g∗, r∗, κv, β, γ and T such that

||∂nt,T (vh,∆t)||−1,2,T ≤ C
(
||vn+1
h ||1,2,T + 1

)
.

Finally, we multiply by ∆t, we sum over n and we get

NT−1∑
n=0

∆t ||∂nt,T (vh,∆t)||2−1,2,T ≤ C
(
||vh,∆t||20;1,2,T + T

)
.

Proposition 3.1 provides the existence of a positive constant C independent of
h and ∆t such that

NT−1∑
n=0

∆t ||∂nt,T (vh,∆t)||2−1,2,T ≤ C.

Let us prove now the result for uh,∆t. Let ηh ∈ XT such that ηh(0) = 0 and

||ηh||1,2,T ≤ 1. For a given n we multiply (4c) by
1

sn+1sn
ηi and we sum over i,

we obtain E = F+G+H. As in the proof of Proposition 3.1, the only difference
concerns the term G. Then, after a discrete integration by parts to G, we have
G = G1 +G2, with

G1 =
1

sn+1sn

l∑
i=0

Gn+1
u,i+ 1

2

(ηi+1 − ηi),

G2 =
1

sn+1 sn
Gn+1
u,l+ 1

2

ηl+1.

Thanks to (6c) and Theorem 1.1, we deduce that

|G2| ≤
α

(s0)2
|un+1
l+1 ηl+1| ≤

α

(s0)2
||un+1

h ||1,2,T ||ηh||1,2,T .

Then, applying the same techniques as before we conclude that there exists a
positive constant C depending only on s0, g∗, r∗, κu, β, γ and T and independent
of h and ∆t such that

NT−1∑
n=0

∆t ||∂nt,T (uh,∆t)||2−1,2,T ≤ C.
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4 Proof of Theorem 1.2

4.1 Compactness

We now consider a sequence of meshes and time steps (Tm,∆tm)m, such that
hm → 0 and ∆tm → 0 as m→ +∞, and the associated sequence (XTm)m. Let
us notice that (XTm)m is a sequence of finite-dimensional subspaces of L2(0, 1).
Furthermore, we can endow each XTm with the || · ||1,2,Tm norm or with the
||·||−1,2,Tm norm. These norms achieve the hypotheses of Gallouët-Latché lemma
(lemma 3.1 in [11]). For a rigorous proof of this fact one can read Lemmas 2.1
and 2.2 in [8]. Eventually, for each m, we define (sm, um, vm) a sequence of
solution to (S) with sm = s∆tm and wm = whm,∆tm .

Proposition 4.1. Under the assumptions (A1) − (A7), there exist u and v ∈
L2(0, T ;H1(0, 1)) and s ∈W 1,∞(0, T ) such that, up to a subsequence, we have

wm −→ w in L2(0, T ;L2(0, 1)),

∂x,Tmwm ⇀ ∂xw in L2(0, T ;L2(0, 1)),

sm −→ s in C([0, T ]),

s′m
∗
⇀ s′ in L∞(0, T ).

Proof. Thanks to Proposition 3.1 and Proposition 3.2, we apply a discrete ver-
sion of Aubin-Simon lemma for the sequence (wm)m (see Theorem 3.4 in [11]).
We deduce the existence of a function w ∈ L2(0, T ;L2(0, 1)) such that, up to a
subsequence,

wm −→ w in L2(0, T ;L2(0, 1)).

Furthermore, Proposition 3.1 provides the existence of a function z which be-
longs to L2(0, T ;L2(0, 1)) with, up to a subsequence,

∂x,Tmwm ⇀ z in L2(0, T ;L2(0, 1)).

As a straightforward consequence, we have ∂xw = z and w ∈ L2(0, T ;H1(0, 1)).
For the sequence (sm)m, Theorem 1.1 and Ascoli theorem give the existence of
a function s ∈ C([0, T ]) such that, up to a subsequence,

sm −→ s in C([0, T ]).

Finally, using (9) of Theorem 1.1, we obtain the existence of q ∈ L∞(0, T ) with,
up to a subsequence,

s′m
∗
⇀ q in L∞(0, T ).

Moreover, in the sense of distribution, s′ = q.

4.2 Convergence of the traces

In the next section we pass to the limit h → 0 and ∆t → 0 in the scheme.
Let us first consider the boundary terms. Let us define the trace δzh,∆t, of
zh,∆t ∈ XT ,∆t, by

δzh,∆t(0, t) = zn+1
0 and δzh,∆t(1, t) = zn+1

l+1 , for t ∈ [tn, tn+1).

Proposition 4.2. The traces δwm(0, .) and δwm(1, .) converge, up to a subse-
quence, to w(0, .) and w(1, .) in L1(0, T ) and in L2(0, T ).

Proof. See the proof of Proposition 3.4 and the proof of Corollary 3.1 in [8].

16



4.3 Passage to the limit

In order to conclude the proof of Theorem 1.2, it remains to show that (s, u, v),
obtained in Proposition 4.1 is a weak solution to (3). In order to prove that
(s, u, v) satisfies (S3), (S4) and (S5), we follow some ideas developed in [6, 8].
For sake of simplicity, for a given mesh T and a given time step ∆t, we define:

š∆t =

NT−1∑
k=0

sk 1[tk,tk+1) + sNT 1{t=T},

s̄∆t =

NT−1∑
k=0

sk+1 1(tk,tk+1] + s0 1{t=0},

w̌h,∆t =

NT−1∑
k=0

wkh 1[tk,tk+1),

where, for 0 ≤ k ≤ NT , the term wkh is defined by (11). For a sequence of meshes
and time steps (Tm,∆tm) such that hm → 0 and ∆tm → 0 as m → +∞, we
notice that

w̌m −→ w in L2(0, T ;L2(0, 1)),

∂x,Tmw̌m ⇀ ∂xw in L2(0, T ;L2(0, 1)),

šm −→ s in L∞(0, T ),

s̄m −→ s in L∞(0, T ),

where w̌m = w̌hm,∆tm , šm = š∆tm and s̄m = s̄∆tm . Let φ ∈ D([0, T ) × (0, 1]),
we define

Au,1(m) =−
∫ T

0

∫ 1

0

ǔm(x, t) šm(t) s′m(t)φ(x, t) dx dt

−
∫ T

0

∫ 1

0

um(x, t) s̄2
m(t) ∂t(φ(x, t)) dx dt

−
∫ 1

0

ǔm(x, 0) s2
m(0)φ(x, 0) dx,

Au,2(m) =

∫ T

0

∫ 1

0

κu ∂x,Tm um(x, t) ∂xφ(x, t) dx dt

+

∫ T

0

∫ 1

0

sm(t) ∂tsm(t)xum(x, t) ∂xφ(x, t) dx dt,

+

∫ T

0

sm(t)ψ(um(1, t))φ(1, t) dt,

Au,3(m) =−
∫ T

0

∫ 1

0

s2
m(t)f(um(x, t), vm(x, t))φ(x, t) dx dt.

We set
εm = Au,1(m) +Au,2(m) +Au,3(m).

17



Then, thanks to Proposition 4.1 and Proposition 4.2, we deduce

εm −→
m→+∞

−
∫ T

0

∫ 1

0

u(x, t)s(t) (s′(t)φ(x, t) + s(t)∂tφ(x, t)) dx dt

−
∫ 1

0

u0(x) s2(0)φ(x, 0) dx+

∫ T

0

∫ 1

0

κu∂xu(x, t)∂xφ(x, t) dxdt

+

∫ T

0

∫ 1

0

s(t) s′(t)xu(x, t)∂xφ(x, t)dxdt+

∫ T

0

s(t)ψ(u(1, t))φ(1, t)dt

−
∫ T

0

∫ 1

0

s2(t)f(u(x, t), v(x, t))φ(x, t) dx dt.

In order to prove (S4), it remains to prove that εm → 0 as m→ +∞. For this,
we multiply (4c) by ∆tmφ

n
i , where φni = φ(xi, tn), and we sum over i and n.

We get
A′u,1(m) +A′u,2(m) +A′u,3(m) = 0,

with

A′u,1(m) =

NT−1∑
n=0

∆tm

l∑
i=1

hi s
n+1 (sn+1un+1

i − snuni )

∆tm
φni ,

A′u,2(m) =

NT−1∑
n=0

∆tm

l∑
i=0

(
Gn+1
u,i+ 1

2

−Gn+1
u,i− 1

2

)
φni ,

A′u,3(m) = −
NT−1∑
n=0

∆tm

l∑
i=1

hi (sn+1)2 f(un+1
i , vn+1

i )φni .

Applying the standard method used in [6, 8], we must show that for i ∈ {1, 2, 3}
we have

|A′u,i(m)−Au,i(m)| −→
m→+∞

0.

In the sequel we only prove that |A′u,1(m)−Au,1(m)| → 0 as m→ +∞. Indeed,
due to the change of variables in space, we only focus on the terms related to
the time derivative, namely Au,1(m) and A′u,1(m). For the other terms we refer
to [6, 8]. By definition of Au,1(m), we have

Au,1(m) =−
NT−1∑
n=0

l∑
i=1

∫ tn+1

tn

∫ x
i+1

2

x
i− 1

2

uni s
n (sn+1 − sn)

∆tm
φ(x, t)dxdt

−
NT−1∑
n=0

l∑
i=1

∫ tn+1

tn

∫ x
i+1

2

x
i− 1

2

un+1
i (sn+1)2 ∂tφ(x, t) dxdt

−
l∑
i=1

∫ x
i+1

2

x
i− 1

2

u0
i (s0)2 φ(x, 0) dx.
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For A′u,1(m), using a discrete integration by parts, the fact that φNi = 0 and
inserting the term (−sn φni + sn φni ). We get

A′u,1(m) =−
NT−1∑
n=0

∆tm

l∑
i=1

his
nuni

(sn+1 − sn)

∆tm
φni + ∆tm

l∑
i=1

his
0u0
i

(s1 − s0)

∆tm
φ0
i

−
NT−1∑
n=0

∆tm

l∑
i=1

hi (sn+1)2 un+1
i

(φn+1
i − φni )

∆tm
−

l∑
i=1

hi s
1 s0 u0

i φ
0
i .

Thus, we obtain |A′u,1(m)−Au,1(m)| ≤ E + F +G+H, with

E =

NT−1∑
n=0

l∑
i=1

∫ tn+1

tn

∫ x
i+1

2

x
i− 1

2

uni s
n s

n+1 − sn

∆tm
|φ(x, t)− φni | dxdt,

F =

NT−1∑
n=0

l∑
i=1

∫ tn+1

tn

∫ x
i+1

2

x
i− 1

2

(sn+1)2 un+1
i

∣∣∣∣∂tφ(x, t)− φn+1
i − φni

∆tm

∣∣∣∣ dx dt,
G = ∆tm

l∑
i=1

∫ x
i+1

2

x
i− 1

2

u0
i s

0 s
1 − s0

∆tm
|φ0
i | dx,

H =

l∑
i=1

∫ x
i+1

2

x
i− 1

2

u0
i s

0
∣∣s0φ(x, 0)− s1φ0

i

∣∣ dx.
Therefore, thanks to the regularity of φ, the inequalities (8), (9) and (10) and
the Cauchy-Schwarz inequality, we conclude that there exists a constant C only
depending on s0, g∗, α and T such that

|A′u,1(m)−Au,1(m)| ≤ C ||φ||C2([0,T ]×[0,1]) (∆tm + hm) −→
m→+∞

0.

Then, we obtain that εm → 0 as m→ +∞ and (S4) is satisfied. Using the same
method we may show that (s, u, v) verifies (S5).
For (S3), we consider ϕ ∈ D([0, T ]). Then, for all m, we have∫ T

0

s′m(t)ϕ(t) dt =

∫ T

0

ψ(um(1, t))ϕ(t) dt.

Thus, we deduce, from Theorem 1.2 and Proposition 4.2, that for all ϕ ∈
D([0, T ]) ∫ T

0

s′(t)ϕ(t) dt =

∫ T

0

ψ(u(1, t))ϕ(t) dt.

Eventually, for almost every t ∈ [0, T ] we obtain s′(t) = ψ(u(1, t)). Moreover,
from Theorem 1.2, we deduce that s(0) = s0.
Finally for (S2) we show, for instance, that u−g ∈ L2(0, T ;H). In this purpose,
we prove that for almost every t ∈ [0, T ] we have u(0, t) = g(t). Thanks to
Proposition 4.2, we get

gm(t) = um(0, t) −→ u(0, t).

Let ε > 0 and t ∈ [tn, tn+1). We have

|gm(t)− g(t)| =
∣∣∣∣ 1

∆tm

∫ tn+1

tn

(g(s)− g(t)) ds

∣∣∣∣ .
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As g ∈W 1,2(0, T ) ⊂ C([0, T ]), g is uniformly continuous. Therefore, for |s−t| ≤
η(ε) ≤ ∆tm, we obtain

|gm(t)− g(t)| ≤ ε.

We deduce from this inequality that u−g ∈ L2(0, T ;H) and the same arguments
show that v − r ∈ L2(0, T ;H).
As already mentioned, we can show that u and v belong also to H1(0, T ;H∗).
Then, thanks to [1], we deduce the uniqueness of the weak solution (s, u, v).
We also deduce that the whole sequence (sm, um, vm)m converges to the weak
solution of (3).

5 Numerical experiments

For the numerical experiments we consider the values given in Table 1.

κu κv g r s0 u0 v0 α γ β
1 0.1 15 2.25 0.5 1 1 1 6.5 7.5

Table 1: Definition of the test case

Figure 1 shows the different profiles of v and u as a function of x where x ∈
[0, s(t)] for t ∈ {20, 40, 60, 80, 100}. We obtain profiles similar to those given
in [3, 14].
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Figure 1: Profiles of v (on the left) and u at different times. The solutions are
plotted on [0, s(t)].

In Figure 2, we illustrate the behaviour of s in linear scale, for T = 100, and
in logarithmic scale, for T = 1000. We observe that the penetration depth s
follows a

√
T -law of propagation (see [3, 14]).

Since the exact solutions u and v of (3) are not explicitly known, we compute
two reference solutions on a uniform mesh composed of 2560 cells and with ∆t =
(1/2560)2, in order to investigate the question of the L∞ and L2-convergence
rate in space for (S). Then, we compute approximate solutions on a uniform
mesh made of respectivly 10, 20, 40, 80, 160, 320, 640 and 1280 cells. In
each case, ∆t is equal to the square of the size of the mesh in space. Finally,
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Figure 2: Behavior of s in linear scale for T = 100 (on the left) and in logarithmic
scale for T = 1000.

we compute the L∞ and L2-norm of the difference between the approximate
solution and the average of the reference solution over 10, 20, 40, 80, 160, 320,
640 and 1280 cells. For T = 0.1, we represent in Table 2 the L∞ and L2-
convergence rate in space for the scheme (S). We compare the results with the
results obtained with a classical upwind scheme. To get the upwind scheme, it
suffices to choose B(x) = 1 + x− with x− = max(−x, 0) (see [9]). As expected
(see [13]), the Scharfetter-Gummel scheme converges with an order around 2,
while the upwind scheme converges with and order around one.

6 Conclusion

In this paper, we have proven the convergence of an efficient finite volume
scheme for the carbonation model introduced by Aiki and Muntean in [1]. As a
by-product, we obtain a new proof of existence for this free-boundary system.
Moreover, this scheme gives profiles of u and v similar to those given in the
literature [3, 14] and the simulations support the idea that s follows a

√
T -law

of propagation as showed in [2, 3]. Nevertheless, a rigorous justification that
the approximate depth s∆t behaves like

√
T is still an open problem.
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cells
SG scheme

u v

error
L2

order
L2

error
L∞

order
L∞

error
L2

order
L2

error
L∞

order
L∞

10 3.5e-01 - 4.8e-01 - 1.1e-01 - 1.6e-01 -

20 6.9e-02 2.34 9.5e-02 2.34 2.1e-02 2.40 3.0e-02 2.43

40 1.6e-02 2.09 2.2e-02 2.08 4.9e-03 2.10 7.0e-03 2.10

80 4.0e-03 2.02 5.5e-03 2.02 1.2e-03 2.03 1.7e-03 2.03

160 9.9e-04 2.01 1.4e-03 2.01 3.0e-04 2.01 4.3e-04 2.01

320 2.5e-04 2.02 3.4e-04 2.02 7.4e-05 2.02 1.1e-04 2.02

640 5.8e-05 2.07 8.1e-05 2.07 1.8e-05 2.07 2.5e-05 2.07

1280 1.2e-05 2.32 1.6e-05 2.32 3.5e-06 2.32 5.0e-06 2.32

cells
Upwind scheme

u v

error
L2

order
L2

error
L∞

order
L∞

error
L2

order
L2

error
L∞

order
L∞

10 3.5e-01 - 4.8e-01 - 1.1e-01 - 1.7e-01 -

20 7.7e-02 2.20 1.1e-01 2.15 2.4e-02 2.26 3.4e-02 2.28

40 2.2e-02 1.80 3.3e-02 1.75 6.8e-03 1.81 1.2e-02 1.55

80 7.6e-03 1.54 1.2e-02 1.53 2.4e-03 1.52 6.5e-03 0.85

160 3.0e-03 1.33 4.5e-03 1.37 9.6e-04 1.31 3.3e-03 0.97

320 1.3e-03 1.24 2.0e-03 1.17 4.1e-04 1.22 1.6e-03 1.06

640 5.3e-04 1.28 8.7e-04 1.20 1.7e-04 1.28 6.9e-04 1.20

1280 1.7e-04 1.61 2.9e-04 1.57 5.5e-05 1.61 2.3e-04 1.58

Table 2: L∞ and L2-norm of the error for u and v in space with the Scharfetter-
Gummel fluxes and the upwind fluxes
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