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Abstract. In this work, we develop a new method to design energy minimum low-thrust missions
(L2-minimization). In the Circular Restricted Three Body Problem, the knowledge of invariant mani-
folds helps us initialize an indirect method solving a transfer mission between periodic Lyapunov orbits.
Indeed, using the PMP, the optimal control problem is solved using Newton-like algorithms finding the
zero of a shooting function. To compute a Lyapunov to Lyapunov mission, we first compute an admis-
sible trajectory using a heteroclinic orbit between the two periodic orbits. It is then used to initialize
a multiple shooting method in order to release the constraint. We finally optimize the terminal points
on the periodic orbits. Moreover, we use continuation methods on position and on thrust, in order to
gain robustness. A more general Halo to Halo mission, with different energies, is computed in the last
section without heteroclinic orbits but using invariant manifolds to initialize shooting methods with a
similar approach.
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1. Introduction

Since the late 70’s, study of libration point orbits has been of great interest. Indeed, several missions such as
ISEE-3 (NASA) in 1978, SOHO (ESA-NASA) in 1996, GENESIS (NASA) in 2001, PLANK (ESA) in 2007, etc.
have put this design knowledge into practice. A more profound understanding of the available mission options
has also emerged due to the theoretical, analytical, and numerical advances in many aspects of libration point
mission design.

There exist a huge number of references on the problem of determining low-cost trajectories by using the
properties of Lagrange equilibrium points. For instance, the authors in [13,15,22,40] have developed very efficient
methods to find “zero cost” trajectories between libration point orbits. Dynamical system methods are used to
construct heteroclinic orbits from invariant manifolds between libration point orbits and it allows to get infinite
time uncontrolled transfers. These orbits have been used with impulse engines of spacecrafts to construct finite

Keywords and phrases. Three body problem, optimal control, low-Thrust transfer, Lyapunov orbit, Halo orbit, continuation
method.
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time transfers. In this work, we want to perform the transfer with a low-thrust propulsion, so impulses to reach
heteroclinic orbits (or trajectories on invariant manifolds) are prohibited.

Invariant manifolds have been used in a low-thrust mission in [27,28]. The low-thrust propulsion is introduced
by means of special attainable sets that are used in conjunction with invariant manifolds to define a first-guess
solution. Then, the solution is optimized using an optimal control formalism. One can note that [26] is the first
work that combines invariant manifolds and low-thrust in the Earth-Moon system.

Much efforts have been dedicated to the design of efficient methods to reach periodic orbits, Halo orbits,
around equilibrium points in the three body problem. For example, in [29, 32], authors use indirect methods
and direct multiple shooting methods to reach an insertion point on a manifold to reach asymptotically a Halo
orbit in the Earth-Moon system. Moreover, using transversality conditions, the position of the insertion point on
the manifold is optimized on the manifold. Low-thrust, stable-manifold transfers to Halo orbits are also shown
in [33].

On the same topic, in [26], authors use direct methods to reach a point on a stable manifold of a Halo orbit
from a GTO orbit. A transfer from the Halo orbit to a Lunar-Orbit is established as well. The L2-norm of the
control is minimized by a direct transcription and non linear programming. In [24], the position of insertion
point on the manifold is optimized.

We can notice that in the interesting work [9], indirect method combined with continuation methods have
been used to design missions from an Earth Geostationary Orbit to a Lunar Orbit. Indeed, continuations are
used from the two body problem to the three body problem, the minimum time problem is studied and solved,
and continuations between energy minimization and fuel consumption minimization are computed.

Moreover, in [41], the developed methods involve the minimum-time problem, the minimum energy problem
and the minimum fuel problem to reach a fixed point on a Halo orbit starting from a periodic orbit around
Earth. Continuations on the thrust are used as well as Newton and bisection methods (indirect methods). In
these last two contributions, manifolds are not used to help solve the formulated problem.

In [10], the author recently developed an efficient method to compute an optimal low-thrust transfer trajectory
in finite time without using invariant manifolds of the three body problem. It is based on a three-step solution
method using indirect methods and continuations methods and it gives good results.

The philosophy of the method developed in this work is to use the natural dynamics as invariant manifolds,
providing free parts for transfer, and to initialize a global multiple shooting method freeing the constraints to
stay on the manifold. The invariant manifolds are just there to help obtain convergence for a shooting method.
For references on techniques used in our work such as continuation on cost, smoothing techniques, optimization
techniques one may read [3, 18, 19].

To compute the required transfer with a low thrust and minimizing the energy (L2-minimization), we will
use indirect methods coming from the Pontryagin Maximum Principle [30]. Initialization of indirect methods
with dynamics properties is a real challenge in order to improve the efficiency of indirect methods (see [37] and
references therein). Indeed, the main difficulty of such methods is to initialize the Newton-like algorithm, and
the understanding of the dynamics can be very useful to construct an admissible trajectory for the initialization.
Moreover, continuation methods as used in [14] or [8], are crucial to give robustness to these indirect methods.
The aim of this paper is to combine all these mathematical aspects of dynamics, optimal control and continuation
methods to design low-thrust transfers between libration point orbits. Principle, we only get necessary conditions
of optimality. It would be interesting to check the second order sufficient conditions, with focal point tests for
example.

The outline for the article is as follows. First, in Section 2, we introduce the mission we want to perform and
compute, introduce the paradigm of the Circular Restricted Three Body Problem and state our optimal control
problem.

Then, in Section 3, we recall dynamical properties of the circular restricted three body problem, such as
equilibrium points, Lyapunov periodic orbits, and invariant manifolds. We present the mathematical tools used
to numerically compute the periodic orbits and the manifolds. In particular, we introduce in this part the
continuation method that we will use throughout this article.
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Then, in Section 4, we develop our method with an example mission. We first compute a heteroclinic orbit
between the two Lyapunov periodic orbits. Then, fixing the departure point near L1 and the arrival point near
L2 and with a not to small thrust (60 N), we perform two small transfers from the Lyapunov orbit around L1

to the heteroclinic one, and from the heteroclinic orbit to the Lyapunov orbit around L2. Then, thanks to a
multiple shooting method we release the constraint on the position of the matching points on the heteroclinic
orbit and decrease the thrust to the targeted one (0.3 N). Finally, we optimize the departure and arrival points
on the periodic orbits to satisfy the necessary transversality conditions given by the Pontryagin Maximum
Principle. In Section 5.1, we present another mission with a heteroclinic orbit with two revolutions around the
Moon.

Finally, in Section 5.2, we apply the method to a more general mission: a Halo to Halo mission for two
periodic orbits with different energies. In this case, there is no heteroclinic orbit, so we construct an admissible
trajectory with 5 parts. Two of them are trajectories on invariant manifolds, and the three others are local
transfers: (1) from one of the Halo orbits to a free trajectory, (2) between both free trajectories and (3) from
the second free trajectory to the second Halo orbit. Thanks to this five part admissible trajectory, we are able
to initialize a multiple shooting method that computes an optimal trajectory (which is not constrained to reach
any invariant manifolds). As previously, we optimize the terminal points on Halo orbits.

2. The mission

2.1. Circular Restricted Three Body Problem (CRTBP)

We use the paradigm of the circular restricted three body problem. In this section we will follow the description
by [21].

Let us consider a spacecraft in the field of attraction of Earth and Moon. We consider an inertial frame I in
which the vector differential equation for the spacecraft’s motion is written as:

m
dR
dt

= −GM1m
R13

R3
13

−GM2m
R23

R3
23

, (2.1)

where M1, M2 and m are the masses respectively of Earth, the Moon and the spacecraft, R is the spacecraft
vector position, R13 is the vector Earth-spacecraft and R23 is the vector Moon-spacecraft. G is the gravitational
constant. Let us describe the simplified general framework we will use.

Problem description

To simplify the problem, and use a general framework, we consider the motion of the spacecraft P of negligible
mass moving under the gravitational influence of the two masses M1 and M2, referred to as the primary masses,
or simply the primaries (here Earth and Moon). We denote these primaries by P1 and P2. We assume that the
primaries have circular orbits around their common center of mass. The particle P is free to move all around
the primaries but cannot affect their motion.

The system is made adimensional by the following choice of units: the unit of mass is taken to be M1 +M2;
the unit of length is chosen to be the constant distance between P1 and P2; the unit of time is chosen such that
the orbital period of P1 and P2 about their center of mass is 2π. The universal constant of gravitation then
becomes G = 1. Conversions from units of distance, velocity and time in the unprimed, normalized system to
the primed, dimensionalized system are

distance d′ = l∗d, velocity s′ = v∗s, time t′ =
t∗
2π
t, (2.2)

where we denote by l∗ the distance between P1 and P2, v∗ the orbital velocity of P1 and t∗ the orbital period
of P1 and P2.
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Table 1. Table of the parameter values for the Earth-Moon system.

System µ l∗ v∗ t∗

Earth-Moon 1.215 × 10−2 384 402 × 103 km 1.025 kms−1 2.361 × 106 s

We define the only parameter of this system as

μ =
M2

M1 +M2
,

and call it the mass parameter, assuming that M1 > M2.
In Table 1, we summarize the values of all the constants for the Earth-Moon CR3PB for numerical

computations.

Equations of motion

If we write the equations of motion in a rotating frame R in which the two primaries are fixed (the angular
velocity is the angular velocity of their rotation around their center of mass, see [9]), we obtain that the
coordinates of P1 and P2 are respectively χP1 = (−μ, 0, 0, 0, 0), and χP2 = (1−μ, 0, 0, 0, 0). Let us call x0

1 = −μ
and x0

2 = 1 − μ, and by writing the state χ = (x, y, ẋ, ẏ)T = (x1, x2, x3, x4)
T
, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x3

ẋ2 = x4

ẋ4 = x1 + 2x4 − (1 − μ)
x1 − x0

1

r31
− μ

x1 − x0
2

r32

ẋ5 = x2 − 2x3 − (1 − μ)
x2

r31
− μ

x2

r32

(2.3)

where r1 =
√

(x1 − x0
1)

2 + x2
2 and r2 =

√
(x1 − x0

2)
2 + x2

2 are respectively the distances between P and pri-
maries P1 and P2.

We can define the potential U(x1, x2) = − 1
2

(
x2

1 + x2
2

)− 1−μ
r1

− μ
r2

− 1
2μ (1 − μ) . We denote by F0 the vector

field of the system and we define the energy of a state point as

E(χ) =
1
2
(ẋ2 + ẏ2) + U(x, y). (2.4)

Note that the energy is constant as the system evolves over time (conservation law).
In the first part of this work, we will consider a planar motion, hence, we only have a R

4-state in the orbital
plane of the primaries, but this can be easily extended to the spatial case.

2.2. Design of the transfer

We want to design a mission going from a periodic Lyapunov orbit around L1 to a periodic Lyapunov orbit
around L2 using a low-thrust engine in the Earth-Moon system (see Fig. 5). A full description of these periodic
orbits is given in Section 3.1. In order to perform such a mission, we will use the properties introduced in
Section 3.3: the invariant manifolds. Indeed, if we are able to find an intersection between an “L1 unstable
manifold” and an “L2 stable manifold”, we get an asymptotic trajectory that performs the mission with a zero
thrust, called a heteroclinic orbit (see Sect. 4.1).

In the classical literature, such a mission is usually designed by using impulse to reach the heteroclinic orbit
from the Lyapunov orbit around L1 and then another impulse to reach the Lyapunov orbit from the heteroclinic
one. Since we design a low-thrust transfer, following this method is unrealistic. In [10], the author developed
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a three-step method to perform a low thrust low energy trajectory between Lyapunov orbits of the same energy
without using invariant manifolds. At his first step, he uses a feasible quadratic-zero-quadratic control structure
to initialize his method. In this work we will use the knowledge of a zero cost trajectory, the heteroclinic orbit, to
initialize an indirect shooting method (Newton-like method for optimal control problem) provided by applying
the Pontryagin Maximum Principle.

2.3. Controlled dynamics

We first describe the model for the evolution of our spacecraft in the CRTBP. In non normalized coordinates

(see (2.1)), the controlled dynamics is the m
dR
dt

= −GM1m
R13

R3
13

−GM2m
R23

R3
23

+T (t), where T is the spacecraft

driving force, and m is the time dependant mass of the spacecraft. The equation for the evolution of the mass is

ṁ(t) = −β ‖T (t)‖ ,

where β is computed with the two parameters Isp and g0. Specific impulse (Isp) is a measure of the efficiency
of rocket and jet engines. g0 is the acceleration at Earth’s surface. The inverse of the average exhaust speed, β,
is equal to 1

Ispg0
. Moreover, the thrust is constrained by ‖T (t)‖ � Tmax for all t.

Using the normalization parameters (2.2), denoting by β∗ the normalized parameter β initially in m−1 s, the
mass evolution is

ṁ(t) = −β∗ t2∗
4π2l∗

Tmax ‖u(t)‖

Moreover, we introduce the control u such that |u(t)| � 1 and denote the normalized coefficient t2∗
4π2l∗

Tmax by ε.
In short, we write the system as: ⎧⎪⎨

⎪⎩ ẋ = F0(x) +
ε

m

2∑
i=1

uiFi(x),

ṁ = −β∗ε ‖u‖ ,

where F0 is the natural vector field defined by (2.3). Here we have F1(x) =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠, and F2(x) =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠. This can

be easily extended to the spatial case.

Controllability

In [6], it is proved that the CRTBP with a non evolving mass is controllable for a suitable subregion of the
phase-space, denoted by X1

μ, where the energy is greater than the energy of L1.

Theorem 2.1. For any μ ∈ (0, 1), for any positive ε, the circular restricted three-body problem is controllable
on X1

μ.

Using Proposition 2.2 in [5], one can extend this result to the system with an evolving mass.

2.4. Optimal Control Problem (OCP)

Our main goal in this work is to solve an optimal control problem. We want to go from the Lyapunov
orbit around L1 to the Lyapunov orbit around L2 with minimal energy. Mathematically we write this problem
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as follows

Pg

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cg = min
∫ tf

0

‖u‖2 dt,

ẋ = F0(x) +
ε

m

2∑
i=1

uiFi(x),

ṁ = −β∗ε ‖u‖ ,
‖u‖ � 1,
x(0) ∈ Lya1, and x(tf ) ∈ Lya2.

(2.5)

Let us summarize the steps in the method we developed to solve this problem:

(1) First, we find a heteroclinic orbit from the Lyapunov orbit around L1 to the Lyapunov orbit around L2.
(2) Then, we realize a short transfer from a fixed point on the Lyapunov orbit around L1 to the heteroclinic

orbit.
(3) Similarly, we realize a transfer from the heteroclinic orbit to a fixed point on the Lyapunov orbit around

L2.
(4) Then we release the constraint on the position of the matching connections on the heteroclinic orbit using

a multiple shooting method and we decrease the maximal thrust.
(5) Finally, we optimize the position of the two fixed points on Lya1 and Lya2 to satisfy the transversality

condition for problem (2.5).

We note that in steps 2 to 4 (where we are solving optimal control problems), we have fixed the departure
and arrival points to simplify the problem. The last step consists in releasing these constraints.

Remark 2.2. The real problem that we want to solve is the minimization of the consumption of fuel (the
maximization of the final mass). This is done by considering the minimization of the L1-norm of u

CL1
g = min

∫ tf

0

‖u‖ dt.

Unfortunately, this implies numerical difficulties and for simplicity, we only consider here the L2-minimization
problem. One can see [9], or [41] where the authors attempt to consider the L1-minimization. This is one of the
perspective of this work using for example another continuation on the cost.

3. Properties of CRTBP

In this Section, we recall some properties of the CRTBP. In particular, we introduce equilibrium points,
Lyapunov orbits and invariant manifolds. We explain how to numerically compute these orbits (see Sect. 3.2).
We have improved the method used in [2] using the energy as continuation parameter. Finally, we introduce
the invariant manifolds and how we can get a numerical approximation.

3.1. Lyapunov orbits

Equilibrium points

The Lagrange points are the equilibrium points of the circular restricted three-body problem. Euler [11] and
Lagrange [23] proved the existence of five equilibrium points: three collinear points on the axis joining the center
of the two primaries, generally denoted by L1, L2 and L3, and two equilateral points denoted by L4 and L5 (see
Fig. 1).

Computing equilateral points L4 and L5 is not very complicated, but it is not possible to find exact solutions
for collinear equilibria L1, L2 and L3. We refer to [34], for series expressions. We recall that the collinear points
are shown to be unstable (in every system), whereas L4 and L5 are proved to be stable under some conditions
(see [25]).
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x

y

L2L3 L1

L4

L5

P2P1

Figure 1. Localization of Lagrange’s points.

Periodic orbits

The Lyapunov center theorem ensures the existence of periodic orbits around equilibrium points (see [4,25] and
references therein). To use this theorem, one has to linearize the system and compute the eigenvalues of the
linearized system.

In the planar case, applying this theorem to the collinear points L1, L2 and L3 we get a one-parameter family
of periodic orbits around each one. These periodic orbits are called Lyapunov orbits and are homeomorphic to a
circle. In this work, we denote by Lyai a Lyapunov orbit around the equilibrium point Li. For the spatial case,
periodic orbits are called Halo orbits or Lissajous orbits (see e.g. [17]).

Numerical computation

We will describe the method to compute Lyapunov orbits around collinear Lagrange points. For the spatial case
we follow the same method. To find these periodic orbits, we use a Newton-like method. Since equations in the
coordinate system centered on Li are symmetric, if we consider a periodic solution χ(t) = (x(t), y(t), ẋ(t), ẏ(t))
of period tχ, then there exists t0 such that⎧⎪⎨

⎪⎩
x(t0) = x0,
y(t0) = 0,
ẋ(t0) = 0,
ẏ(t0) = ẏ0,

and

⎧⎪⎨
⎪⎩
x(t0 + tχ/2) = x1,
y(t0 + tχ/2) = 0,
ẋ(t0 + tχ/2) = 0,
ẏ(t0 + tχ/2) = ẏ1.

Since t0 could be chosen to be equal to zero and fixing x0, we just have to find (ẏ0, tχ) such that, denoting
by φ the flow of the dynamical system, and χ0 = (x0, 0, 0, ẏ0), the function SL satisfies:

SL(tχ, ẏ0) =
(
φ2(tχ/2, χ0)
φ3(tχ/2, χ0)

)
=
(

0
0

)
. (3.1)

In practice, we fix for example the value of x0 (respectively of z0 in the spatial case) in order to be left with
finding a zero of a function of two variables (ẏ0, tχ) in R

2. Obviously, we can extend this to a periodic orbit
in R

6.
The main difficulty is to initialize the Newton-like algorithm. The idea is to find an analytical approximation

of the orbit to a certain order, and then inject this into the Newton-like algorithm. In this work, and because
the Lyapunov orbit is not very difficult to compute, we follow [31]. For various orbits in R

6, see [2, 12, 20] and
references therein.
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3.2. Computing the family

In order to use these orbits to construct the targeted mission, it is very useful to be able to compute the
family of periodic orbits, providing us with different orbits that have different energies.

3.2.1. Continuation methods

To explain how we get the family of periodic orbits, let us introduce continuation methods, for a more complete
introduction, see [1]. The main idea is to construct a family of problems denoted by (Pλ)λ∈[0,1] indexed by a
parameter λ ∈ [0, 1]. The initial problem P0 is supposed to be easy to solve, and the final problem P1 is the one
we want to solve.

Let us assume that we have solved numerically P0, and consider a subdivision 0 = λ0 < λ1 < · · · < λp = 1
of the interval [0, 1]. The solution of P0 can be used to initialize the Newton-like method applied to Pλ1 . And
so on, step by step, we use the solution of Pλi−1 to initialize Pλi . Of course, the sequence (λi) has to be well
chosen and eventually should be refined.

Mathematically, for this method to converge, we need that the family of problems to depend continuously on
the parameter λ (see [4], Chap. 9) for some justification of the method.

From the numerical point of view, there exist many methods and strategies for implementing continuation
or homotopy methods. We can distinguish between differential pathfollowing, simplicial methods, predictor-
corrector methods, etc. In this work, we implement a predictor-corrector method because it is suitable for
our problem. Here, we use a “constant” prediction: the solution of problem Pλi−1 is used to initialized the
resolution of problem Pλi . We can note that there exist many codes which can be found on the web, such as
the well-known Hompack90 [39] or Hampath [8]. For a survey about different results, challenges and issues on
continuation methods, see [37].

3.2.2. Application to the family of orbits

Since we had to choose a parameter x0 to write the zero function SL in (3.1), it is natural to use this parameter
to perform the continuation that computes the family of orbits. Indeed, we can choose to reach a certain xobj

0

(respectively a so called excursion zobj
0 in the spatial case). So we can define our continuation as:

Pλ :

⎧⎨
⎩

for xλ
0 = (1 − λ)x0 + λxobj

0

Sλ
L(tχ, ẏ0) =

(
φ2(tχ/2, χλ

0)
φ3(tχ/2, χλ

0)

)
=
(

0
0

)

where χλ
0 = (xλ

0 , 0, 0, ẏ0). Thanks to the analytical approximation provided by [31] or [20], we can solve the
initial problem P0. We can note that such analytical approximation does not work for every x0. Using the
continuation method described previously, we can get a family of periodic orbit.

However, for some periodic orbits (Halo family), we can observe that the continuation fails when we converge
to the equilibrium point (xobj

0 → 0). A much better continuation parameter is energy. It releases the constraint
on the parameter x0, and allows us to reach any periodic orbit, in particular the algorithm converges to the
energy of Li, i ∈ {1, . . . , 3}. Moreover, it is a significantly more natural parameter, keeping in mind the fact
that we will construct a controlled transfer method. Section 3.3 will provide an extra argument in favor of the
energy parameter. It seems to be the first time that this continuation is done with the energy as the continuation
parameter. This avoids numerical problems when reaching energy close to Li.

Thanks to the analytical approximation, we get a first periodic orbit with energy E0, and we want to reach
a prescribed energy E1 so we define the following family of problems:

PE
λ : Sλ

E (tχ, x0, ẏ0) =

⎛
⎝φ2(tχ/2, χ0)
φ3(tχ/2, χ0)
E(χ0) − Eλ

⎞
⎠ =

⎛
⎝0

0
0

⎞
⎠

where E(χ0) is the energy of the trajectory starting at χ0 and Eλ = (1 − λ)E0 + λE1.
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−0.1−5 · 10−2 0 5 · 10−2 0.1
−0.4

−0.2

0

0.2

0.4

L1

x

y

Figure 2. A family of Lyapunov orbits around L1 in the Earth-Moon system (Richardson
coordinates).

In the continuation, we just use a predictor-corrector continuation with a “constant” prediction as explain
before (see [1]). If necessary, one could improve this by using a linear predictor continuation, but using energy
as a continuation parameter, continuation was very fast and easy, and did not require improvements.

Figure 2 shows an example of a family of Lyapunov orbits around L1 in the Earth-Moon system.

3.3. Invariant manifolds

All the periodic orbits described in the previous section come with their invariant manifolds, that is to say, the
sets of phase points from which the trajectory converges to the periodic orbit, forward for the stable manifold
and backward for the unstable manifold. These manifolds can be very useful to design interplanetary missions
because as separatrix, they are some sort of gravitational currents. We refer to ([21], Chap. 4) for the proof
of existence and a more detailed explanation of these manifolds. For the sake of numerical reproducibility, we
recall some well known properties.

Monodromy matrix

We introduce a tool of dynamical systems: the monodromy matrix. Some properties of this matrix are needed
to numerically compute the invariant manifolds. For more details, see [21, 25].

Let x̄(·) be a periodic solution of the dynamical system with period T and x̄(0) = x̄0. Denoting by φ the flow
of the system, the monodromy matrix M of the periodic orbit for the point x̄0 is defined as

M =
∂φ(T ; x̄0)
∂x0

.

It determines whether initial perturbations δx̄0 of the periodic orbit decay or grow.

Local approximation to compute invariant manifolds

Using the Poincaré map we can show that the eigenvectors corresponding to eigenvalues of the monodromy
matrix are linear approximations of the invariant manifolds of the periodic orbit. For the planar Lyapunov orbits
in the CRTBP, we show that the four eigenvalues of M are λ1 > 1, λ2 = 1

λ1
, λ3 = λ4 = 1. The eigenvector

associated with eigenvalue λ1 is in the unstable direction and the eigenvector associated with eigenvalue λ2 is
in the stable direction.
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Wu−(χ0)

Wu+(χ0)

Figure 3. Illustration of the method to compute invariant manifolds.
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Figure 4. Manifolds of a Lyapunov orbit around L1 of the Earth-Moon system and Richardson
coordinates. The energy of these orbit and manifolds is −1.59208 in normalized coordinates
(centered on the barycenter of the two primaries).

Then, the method to compute invariant manifolds is the following:

(1) First, for χ0 a point on the periodic orbit, we compute the monodromy matrix and its eigenvectors. Let us
denote by Y s(χ0) the normalized stable eigenvector and by Y u(χ0) the normalized unstable eigenvector.

(2) Then, let
χs±(χ0) = χ0 ± αY s(χ0),
χu±(χ0) = χ0 ± αY u(χ0),

(3.2)

be the initial guesses for (respectively) the stable and unstable manifolds. The magnitude of α should be
small enough to be within the validity of the linear estimate but not too small to keep a reasonable time of
escape or convergence (for instance, see [16] for a discussion on the value of α).

(3) Finally, we integrate numerically the unstable vector forward in time, using both α and −α to generate
the two branches of the unstable manifold denoted by Wu±(χ0). We do the same for the stable vector
backwards, and we get the two branches of stable manifold W s±(χ0) (see Fig. 3).

Following this process, we are able to compute the invariant manifolds of any Lyapunov orbit at any energy
(greater than the energy of Li, for an explanation of that, see the section about Hill regions in [21]). We have
represented parts of these manifold for a Lyapunov orbit in the Earth-Moon system at energy −1.59208 in
normalized coordinates in Figure 4. Note that an interesting study of fast numerical approximation of invariant
manifolds can be found in [35].

Remark 3.1. Since we are following invariant manifolds converging in infinite time to the periodic orbits
(backward or forward), and because we are doing it numerically and so with a certain approximation, there exist
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long times for which we cannot obtain convergence. We have to tune the parameter α in (3.2) (we give in Sect. 4.1
the choice of the numerical value). Moreover, the multiple shooting method allows subdividing the time and
keep each part to a reasonable time of integration.

4. Constructing the mission

In this section we explain all the steps of our method for solving the problem (2.5). We first find a heteroclinic
orbit between the two Lyapunov orbits. Then we perform two short transfers from Lya1 to the heteroclinic orbit,
and from the heteroclinic orbit to Lya2. Then, with a multiple shooting method we release the constraint on the
position of the matching connections on the heteroclinic orbit. Finally, we optimize the departure and arrival
points previously fixed to simplify the problem.

4.1. The heteroclinic orbit

Let us first find the heteroclinic orbit between a Lyapunov orbit around L1 and a Lyapunov orbit around L2.
One condition to be able to find such an orbit is to compute an intersection between two manifolds. Hence,
these two manifolds should have the same energy. Since the manifold and the Lyapunov orbit have the same
energy, we must compute two Lyapunov orbits around L1 and L2 with a given energy.

The study of the well-known Hill regions (see [21] and references therein), i.e. the projection of the energy
surface of the uncontrolled dynamics onto the position space gives us an indication of the interval of energy we
can use. Indeed, we have to compute an orbit with an energy greater than the L2 energy. And because we want
to realize a low-thrust transfer, we choose to keep a low energy. Moreover, we have a smaller region of possible
motion, and so, a possibly shorter transfer.

Using the method described in Section 3.2.2, we choose to get two orbits with an energy of −1.592081 in the
normalized system.

Finding the intersection

To find an intersection, we introduce two 2D sections U2 = {(x, y) ∈ R
2, x = 1−μ, y < 0}, and U3 = {(x, y) ∈ R

2,
x = 1 − μ, y > 0}. We represent them in Figure 5.
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MoonL1 L2

x

Figure 5. On the left: Planes U2 and U3 in the Earth-Moon system. On the right: Unstable
(red) and stable (blue) manifolds respectively from L1 and L2 stopping at the plane U2. (Color
online)
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Figure 6. Section in the plane U2 of a unstable manifold from L1 and a stable manifold from
L2. The energy is −1.592081. On the right, a zoom on the interesting area.

Then, we compute the intersection of the unstable manifold from L1 and the stable manifold from L2 with
the space U2 (of course, we can do the symmetric counterpart: stable manifold from L1 and unstable manifold
from L2 with the space U3). Since the x-coordinate is fixed by U2 and because the energies of the two manifolds
are equal, we just have to compute the intersection in the (y, ẏ)-plan (values of ẋ are deduced from the energy
Eq. (2.4)).

We show in Figure 6 the U2-section and the existence of intersections for our particular energy. To find
precisely one intersection point, we have used once more a Newton-like method. We can parametrize the section
of one manifold with U2 with only one parameter, the parameter of the Lyapunov orbit. We denote by φ+

x=1−μ,
the flow propagating forward a state point from Lya1 onto the space U2, and by φ−x=1−μ the flow propagating
backward a state point from Lya2 onto the plan U2. Time of propagation is fixed by the condition x = 1 − μ.

We want to find two points χL1 ∈ Lya1 and χL2 ∈ Lya2 such that

φ+
x=1−μ(χu+(χL1)) − φ−x=1−μ(χs−(χL2)) = 0,

where χu+ and χs− are defined in (3.2). This is an equality in R
2, and because each of the Lyapunov orbits is

parametrized with a one dimensional parameter (the time), our problem is well posed.
To initialize the method we use a discretisation (100 points in this particular example) of the Lyapunov orbits

and we take the two points minimizing the Euclidean norm in the U2 section.
In our case, with a value of energy equal to −1.592081 and α = 1

384 402 from (3.2), we obtain the heteroclinic
trajectory represented in Figure 7. From now on, we will denote this heteroclinic orbit by Het. Note that this
computation only takes few seconds on a standard desktop computer.

4.2. From one orbit to another

Here, we construct two rather simple problems: first we compute an optimal control using the Pontryagin
Maximum Principle reaching the heteroclinic orbit from the Lyapunov orbit around L1, then we compute
an optimal control to reach the Lyapunov orbit around L2 from the heteroclinic orbit. This way, we get an
admissible control that follows the null control heteroclinic orbit during a certain time.
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Figure 7. Heteroclinic orbit between two Lyapunov orbits in the Earth-Moon system. We get
a travel time of 8.9613933501964 (normalized time) or 38.974 days.

4.2.1. Around L1

Problem statement

Consider two points χ∗
0 ∈ Lya1 and χ∗

1 ∈ Het, a time t0 and an initial mass m∗
0 = 1500 kg. We apply the

Pontryagin Maximum Principle to the following problem4:

PL1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∫ t0

0

‖u‖2 dt,

ẋ = F0(x) +
ε

m

2∑
i=1

uiFi(x),

ṁ = −β∗ε ‖u‖ ,
‖u‖ � 1,
x(0) = χ∗

0, m(0) = m∗
0 and x(t0) = χ∗

1.

(4.1)

Here, we have fixed the two points χ∗
0 and χ∗

1 on the Lyapunov orbit and the heteroclinic orbit. We will
see how we choose these points later. We will release the constraint on the position of these two points by an
optimization and satisfy the transversality conditions for problem 2.5 in the last steps of our method.

Since the two points χ∗
0 and χ∗

1 belong to trajectories with an energy greater than E(L2) > E(L1), we know
that an admissible trajectory connecting χ∗

0 to χ∗
1 exists (see [9]).

If t0 is greater than the minimum time, we can show that we are in the normal case for the Pontryagin
Maximum Principle, that is to say p0 can be normalized to −1 (see Prop. 2 in [6]). Although we have not proved
that this assumption holds, we will see that it is a reasonable one because of the construction of our two points.
Moreover, because normality of the trajectories relies on the invariance of the target with respect to the zero
control (see [14] and [7]), the normality property holds for the targeted problem (2.5).

We define the Hamiltonian as H(x,m, p, pm, u) = −‖u‖2 + 〈p, F (x)〉− 〈pm, β∗ε ‖u‖〉, where F (x) = F0(x)+
ε
m

∑2
i=1 uiFi(x), p ∈ R

4 and pm ∈ R.
To simplify the notation, we write:

H(x,m, p, pm, u) = −‖u‖2 +H0 +H1 +H2 − 〈pm, β∗ε ‖u‖〉,
where Hi = 〈p, Fi(x)〉, i = 0, . . . , 2.

4 We assume that the reader is familiar with the principal concepts of the Pontryagin Maximum Principle. For details, see [30,36].
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Let us define ϕ(p) = (p3, p4), thanks to the maximization condition of the Pontryagin Maximum Principle,
we get the optimal control. Denoting by y = (x,m, p, pm), let us introduce the switching function:

ψ(y) =
−β∗εpm − ε/m ‖ϕ(p)‖

2
·

Then, the control is:

• if ‖ϕ(p)‖ �= 0, then ⎧⎪⎨
⎪⎩
u(y) = 0 if ψ(y) � 0,
u(y) = ψ(y) ϕ(p)

‖ϕ(p)‖ if ψ(y) ∈ [0, 1],

u(y) = ϕ(p)
‖ϕ(p)‖ else,

• if |ϕ(p)| = 0, then ⎧⎨
⎩
u(y) = 0 if ψ(y) � 0,
u(y) ∈ S(0, ψ(y)) if ψ(y) ∈ [0, 1],
u(y) ∈ S(0, 1) else,

where S(a, b) is the R
2-sphere centered in a with radius b. We will not take into account the singularity

ϕ(p) = 0. Hence, the control is continuous. This is one of the reasons why the numerical methods are easier
for the minimization of the L2-norm of u than for the minimization of the L1-norm.

In this problem, let us write the transversality conditions from the Pontryagin Maximum Principle for the
first problem (4.1). The free mass at the end of the transfer gives us: pm(t0) = 0. Moreover, because of the final
condition x(t0) = χ∗

1, p(t0) is free. Finally, we are left to find (p(0), pm(0)) such that the final state condition is
satisfied.

We can write this problem as a shooting function. We denote by φext the extremal flow of the extremal
system. Hence, we define the shooting function:

SL1(p(0), pm(0)) =

(
φext

1,...,4(χ
∗
0,m

∗
0, p(0), pm(0)) − χ1

φext
10 (χ∗

0,m
∗
0, p(0), pm(0))

)
=

(
0

0

)
. (4.2)

We compute the solution, that is to say p(0) and pm(0) using a shooting method (Newton-like method applied
to (4.2)). As is well-known, the main difficulty is to initialize the Newton-like algorithm. To do this, we have
used a continuation method. Let us explain the process.

Construction of χ∗
0 and χ∗

1

We want to realize the transfer from Lya1 to Het and we have already computed the heteroclinic orbit. The
method is the following:

(1) If we denote by χL1
Het the first point of the “numerical” heteroclinic orbit near the Lypunov orbit, we find

χLya1
∈ Lya1 by minimizing the euclidean norm: χLya1

= arg minχ∈Lya1

∥∥∥χL1
Het − χ

∥∥∥.
(2) Then, we propagate backward in time χLya1

following the uncontrolled dynamics during a time tLya1
(smaller

than the period of the Lyapunov orbit) to get χ∗
0

(3) We propagate forward in time χL1
Het during a reasonable time tL1

Het to get χ∗
1 (small compared to the traveling

time to reach the other extremity of Het).

We define the transfer time t0 in (4.1) as t0 = tLya1
+ tL1

Het.
Although it seems to be a more simple problem than problem (2.5), the main difficulty is still to initialize

the shooting method. We use a continuation method on the final state, using as a first simpler problem a
natural trajectory corresponding to a null control. Then step by step, we reach the targeted final point on the
heteroclinic orbit, as explained next.
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Figure 8. All relevant points in the construction of the problem.

Final state sontinuation

As explained in Section 3.2.1, we construct a family of problems Pλ depending continuously on one parameter λ
such that P0 is easy to solve and P1 corresponds to the targeted problem, that is to say (4.1).

First, let us define χnat
Lya1

as the forward propagation of χLya1
following the uncontrolled dynamics during

time t0. Then we define the family of problems:

Pλ
L1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∫ t0

0

‖u‖2 dt,

ẋ = F0(x) +
ε

m

2∑
i=1

uiFi(x),

ṁ = −β∗ε ‖u‖ ,
‖u‖ � 1,
x(0) = χ∗

0, m(0) = m∗
0,

x(t0) = (1 − λ)χnat
Lya1

+ λχ∗
1.

Since χnat
Lya1

corresponds to the uncontrolled dynamics, the corresponding initial costate (p(0), pm(0)) is zero.

Then, step by step, we initialize the shooting method of Pλi

L1
using the solution of Pλi−1

L1
to reach problem (4.1).

This is done by a linear prediction, e.i., the solution of the two previous iterations of the continuation are used
to initialize the resolution of the next step by a linear prediction.

Figure 8 shows the different points defined for some parameters described below.

Numerical results

We show here the numerical results for this transfer. We choose a maximal thrust equal to 60 N. We postpone
to Section 4.3 the problem of the maximum thrust which should be very small. In fact, a high thrust implies
that the magnitude of the costate stays very low, and it will be necessary for the multiple shooting to converge.
Indeed, for a non-saturating control, the higher the maximal magnitude of the thrust, the lower the control u
is between [0, 1], and so the lower the magnitude of ψ(y) and thus of the costate. Moreover, we choose the two
times of propagation in the normalized system as tLya1

= 1.0, and tL1
Het = 2.0.

We obtain the optimal trajectory plotted in Figure 8. The optimal command is shown in Figure 9. One can see
that we are far from the saturation of the command, indeed, the maximum value is approximately 6e−06, whereas
we are constrained by one. We postpone the discussion on the real value in Newton to the final trajectory.
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Figure 9. Command to realize the optimal transfer from the Lyapunov orbit to the heteroclinic
orbit. We plot u(·) � 1 as a function of the normalized time.

This continuation gives us an initial adjoint vector (costate) that we will denote by p∗0 and p0∗
m in the remainder

of this work.

4.2.2. Around L2

We design a very similar problem around L2.

Problem statement

Consider two points χ∗
2 ∈ Het and χ∗

3 ∈ Lya2, a time t2 and an initial mass m∗
2
5. The mass m∗

2 is the final
mass obtained after solving for the transfer around L1 (between the two problem we follow a heteroclinic orbit
without any fuel consumption). We apply the Pontryagin maximum principle to the following problem:

PL2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∫ t2

0

‖u‖2 dt,

ẋ = F0(x) +
ε

m

2∑
i=1

uiFi(x),

ṁ = −β∗ε ‖u‖ ,
‖u‖ � 1,
x(0) = χ∗

2, m(0) = m∗
2 and x(t2) = χ∗

3.

(4.3)

As before, we have fixed χ∗
2 and χ∗

3 on the heteroclinic and Lyapunov orbits. The final steps will allow us to
release these constraints.

Since the problem is very similar to the problem around L1, we have the same Hamiltonian and the same
expression of the control u. Hence, we get the following shooting function:

SL2(p(0), pm(0)) =

(
φext

1,...,4(χ
∗
2,m

∗
2, p(0), pm(0)) − χ∗

3

φext
10 (χ∗

2,m
∗
2, p(0), pm(0))

)
=

(
0

0

)
.

Construction of χ∗
2 and χ∗

3

We construct the two points following the same method.

(1) If we denote by χL2
Het the last point of the heteroclinic orbit near the Lyapunov orbit, we find χLya2

∈ Lya2

minimizing the euclidean norm: χLya2
= argminχ∈Lya2

∥∥∥χL2
Het − χ

∥∥∥.
(2) Then, we propagate forward χLya2

following the uncontrolled dynamics during a time tLya2
(smaller than

the period of Lyapunov orbit) to get χ∗
3.

5 We will understand why we use 2 as subscript.
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Figure 10. Command to realize the optimal transfer from the Lyapunov orbit to the hetero-
clinic orbit. We plot u(·) � 1 as a function of the normalized time.

(3) We propagate backward the χL2
Het during a reasonable time tL2

Het to get χ∗
2 (small compared to the traveling

time to reach the other extremity).

We define the transfer time t2 in (4.3) as t2 = tLya2
+ tL2

Het.

Final state continuation

As before, we construct a family of problems Pλ depending continuously on one parameter λ such that P0 is
easy to solve and P1 corresponds to the targeted problem, that is to say (4.1).

First, let us define χnat
Het as the forward propagation of χHet following the uncontrolled dynamics during the

time t2. Then we define the family of problems:

Pλ
L2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∫ t2

0

‖u‖2 dt,

ẋ = F0(x) +
ε

m

2∑
i=1

uiFi(x),

ṁ = −β∗ε ‖u‖ ,
‖u‖ � 1,
x(0) = χ∗

2, m(0) = m∗
2,

x(t2) = (1 − λ)χnat
Het + λχ∗

3.

Numerical results

As before, we set Tmax = 60 N, and we compute the continuation for the two times chosen as tL2
Het = 2.0, and

tLya2
= 1.0.

Figure 10 shows the optimal control to realize the final transfer from the heteroclinic orbit to the Lyapunov
one around L2. We see that, once again, we are far from the saturation of u.

This continuation gives us an initial costate that we will denote by p∗2 and p2∗
m in the remainder of this work.

Table 2 sums up all the parameters for the continuation computation. We observe that, because we are
using indirect shooting methods, the computation is very fast even though it is performed on a simple desktop
computer or on a single-board computer (the Raspberry Pi).

4.3. Multiple shooting

Thanks to the results from previous sections, we have designed an admissible control to perform the transfer
from a Lyapunov orbit around L1 to a Lyapunov orbit around L2. We first reach a point on a heteroclinic
orbit, then we follow the natural dynamics (null control), and finally reach a point on the final Lyapunov orbit
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Figure 11. Admissible trajectory in three parts.

Table 2. Numerical results for the two transfers around L1 and L2. Computations are per-
formed on a simple laptop Core i7, and on a Raspberry Pi A, a credit card-sized single-board
computer.

Isp g0 Earth Mass Moon Mass Distance Period

2000 s 9.8 m3 kg−1 s−2 5.972 × 1024 kg 7.349 × 1022 kg 384402 × 103 m 2.361 × 106 s

Transfer Iterations Cost Tmax

L1 21 6.30967 × 10−11 60 N
L2 19 9.06124 × 10−10 60 N

System Transfer Execution time
Core i7 L1 98% cpu 2,821s total

L2 96% cpu 1,439s total

Raspberry Pi A L1 38% cpu 8,009s total

L2 22% cpu 7,879s total

from a certain point on the heteroclinic orbit. This admissible trajectory is however not energy optimal, since
the stay on the heteroclinic orbit is forced.

These two points on the heteroclinic orbit were arbitrarily chosen. There is no guarantee that they provide
a good choice in terms of optimality. Hence, we want to release the constraints on the position of these two
points. We use a multiple shooting method on top of the first two local transfer to get a better optimum.

Let us describe how we state the multiple shooting problem. As we can see in Figure 11, there are two
points χ∗

1 and χ∗
2 belonging to the heteroclinic orbit that we want to free. Moreover, we have three times:

• t0 which is the time defined for the transfer around L1;
• t2 which is the time defined for the transfer around L2;
• t1 which is the total time of the computed heteroclinic orbit minus the two times tL1

Het and tL2
Het used in the

two previous transfers.
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We define ttot = t0 + t1 + t2 and we write a new optimal control problem with the same structure as the previous
one around L1 and L2.

Ptot

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ctot = min
∫ ttot

0

‖u‖2 dt,

ẋ = F0(x) +
ε

m

2∑
i=1

uiFi(x),

ṁ = −β∗ε ‖u‖ ,
‖u‖ � 1,
x(0) = χ∗

0 ∈ Lya1, m(0) = m∗
0,

x(ttot) = χ∗
3 ∈ Lya2.

(4.4)

As before, we apply the Pontryagin maximum principle to get a necessary condition for the optimal control.
We are able to write the control u with respect to the state (x,m) and the costate (p, pm), we can write a
shooting function, with the same results as the ones obtained in Section 4.2.

Thanks to the following method, we get an admissible trajectory in three parts, and it is quite natural to use
it to construct a multiple shooting function. We define

Z = (p0, p
0
m︸ ︷︷ ︸

P0

, χ1,m1︸ ︷︷ ︸
X1

, p1, p
1
m︸ ︷︷ ︸

P1

, χ2,m2︸ ︷︷ ︸
X2

, p2, p
2
m︸ ︷︷ ︸

P2

) ∈ R
25,

then we write the multiple shooting function with two matching conditions on the state and the costate, the
final state condition, and the free final mass:

Smulti(Z) =

⎛
⎜⎜⎜⎜⎜⎝

φext
1,...,5(χ

∗
0,m

∗
0, P0) −X1

φext
6,...,10(χ

∗
0,m

∗
0, P0) − P1

φext
1,...,5(X1, P1) −X2

φext
6,...,10(X1, P1) − P2

φext
1,...,4(X2, P2) − χ∗

3

φext
10 (X2, P2)

⎞
⎟⎟⎟⎟⎟⎠ . (4.5)

We want to find the vector Z such that Smulti(Z) = 0, and as in previous sections, we use a Newton-like
algorithm. The main difficulty is as usual to initialize the algorithm. This time, it is done by the previous local
transfers, since we chose6: {

p0 = p∗0, χ1 = χ∗
1, p1 = 0, χ2 = χ∗

2, p2 = p∗2,
p0

m = p0∗
m , m1 = m∗

2, p
1
m = 0, m2 = m∗

2, p
2
m = p2∗

m .

The choices m1 = m∗
2, p1 = 0 and p1

m = 0 are made because we initialize the trajectory with a heteroclinic part,
that is to say with a null control and without consumption of mass.

The Newton-like algorithm gives us a complete trajectory which is not constrained to follow the heteroclinic
orbit. In Figures 12 and 13, we can see the trajectory and the associated control.

We keep the maximum thrust equal to 60 N to allow the Newton-like algorithm to converge. But, we want
to be able to give the right specification for the engine of the spacecraft. Let us see how we make this possible.

4.4. Thrust continuation

Using, the continuation method we want to constrain the thrust to a real value for a low-thrust engine, let
us say 0.3 N. To do that, we construct a family of problems as before. Let us denote by ε0 the initial maximal

6 Note that the notation p1 and p2 is not for the first and second components of the costate but for two different costate belonging
to R

4.
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Figure 12. Command to realize the optimal transfer from the Lyapunov orbit around L1 to
the Lyapunov orbit around L2. We plot u(·) � 1 before the last optimization step on the first
row (we chose two points on Lya1 and Lya2) and after the last optimization step consisting in
getting the general transversality conditions (second row). We can observe the good turnpike
property of the second control.
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Figure 13. Optimal trajectory. On the left the optimal trajectory with χ∗
0 and χ∗

3 fixed on
Lya1 and Lya2. On the right, the optimal trajectory with χ∗

0 and χ∗
3 free on Lya1 and Lya2.

The control is represented by arrows.
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thrust in normalized units corresponding to Tmax = 60 N. Similarly, let us denote by ε1 the maximal thrust
that we want to get corresponding to Tmax = 0.3 N. Finally, we define the maximal continuation thrust:

ελ = (1 − λ)ε0 + λε1.

We can now define the family of problems:

Pλ
thrust

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∫ ttot

0

‖u‖2 dt,

ẋ = F0(x) +
ελ
m

2∑
i=1

uiFi(x),

ṁ = −β∗ελ ‖u‖ ,
‖u‖ � 1,
x(0) = χ∗

0 ∈ Lya1, m(0) = m∗
0,

x(ttot) = χ∗
3 ∈ Lya2.

We solve each step of the continuation with the previously defined multiple shooting method (4.5). This
way, we manage to constrain the thrust to the given engine value. Since the control is smaller than 0.3 N, this
continuation is easy, and the command does not change during it. In Section 4.6 we summarize the numerical
results. Let us remark that in our numerical experiment, the continuation is done with 22 iterations.

4.5. Optimization of the terminal points

The last remaining step is to free the initial and final points. The only constraints are that x(0) has to belong
to Lya1 and x(ttot) to Lya2. To simplify the problem, we have fixed by construction two points χ∗

0 on Lya1 and
χ∗

3 on Lya2. Now we want to find the optimal points on these two periodic orbits. So we want to solve the very
general problem (2.5). The Pontryagin maximum principle gives us two transversality conditions that we have
to satisfy:

p1,...,4(0) ⊥ Tx(0)Lya1 and p1,...,4(ttot) ⊥ Tx(ttot)Lya2, (4.6)

where the notation TxM stands for the usual tangent space to M at the point x (these conditions can be written
as soon as the tangent space is well defined).

To perform this optimization we consider the two previously chosen points χ∗
0 ∈ Lya1 and χ∗

3 ∈ Lya2. First
we perturb the point around Lya2 following the decrease of the transversality condition until it changes sign so
to find a good zero for the transversality condition. Since we checked that the evolution of this transversality
condition along the periodic orbit is not monotone, we are just able to reach a local minimum. By doing this we
manage to reach a transversality condition at ttot around 1 × 10−8. Secondly, we realize the same perturbation
along Lya1 and we manage to reach a value around 1×10−8. We have checked that the inverse process beginning
with the point on Lya1 gives the same result.

Although this seems to cause very little change on the transfer (see numerical results in the next section),
the structure of the control is completely changed. We will describe this result in depth in the next section.

Remark 4.1. To perform this optimization, we could use a gradient method on the one-dimensional periodic
orbits initializing it with the solution of problem (4.4).

4.6. Numerical results

Recall that we use the CRTBP parameters given in Table 2. We observe in Figure 12 that the last optimization
step changes the shape of the control. Indeed, by construction, we make the spacecraft go onto the heteroclinic
orbit before we free that constraint. Hence, it can be expected that the mission has turnpike properties (see [38]).
That is to say the optimal solution settled in large time consists approximately of three pieces, the first and the
last of which being transient short-time arcs, and the middle piece being a long-time arc staying exponentially
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Table 3. Numerical results for the final trajectory of the first mission obtained after the
multiple shooting with fixed departure and final points (problem (4.4)) and for the optimized
departure and final points on Lya1 and Lya2 (problem (2.5)).

Initial Mass Transfer time Tmax

1500 kg 10.96139 or 47.67 days 0.3 N

C1
tot C2

tot C3
tot Mass of fuel

Problem (4.4) 1.0650187 × 10−6 5.7479872 × 10−9 1.8527847 × 10−13 0.0186878 kg

Problem (2.5) 2.2305967 × 10−9 1.2038555 × 10−11 3.8804630 × 10−16 3.6709589 × 10−4 kg

System Execution time
Problem (4.4) Core i7 99% cpu 26,912s total

Problem (2.5) Core i7 99% cpu 1min18,64s total

Problem (4.4) Raspberry Pi A 20% cpu 15min3,545s total

Problem (2.5) Raspberry Pi A 23% cpu 56min45,921s total

close to the optimal steady-state solution. In Figure 12, we see that before the transversality conditions are
satisfied following the last optimization step, the command structure does not have the shape of a turnpike
command. Control is spread along the trajectory. After the last optimization step, the control is clearly a
turnpike control and the trajectory consists approximately in three pieces as expected.

We show in Figure 13 the two corresponding trajectories. We observe that, to satisfy to transversality con-
ditions corresponding to x(0) ∈ Lya1 and x(ttot) ∈ Lya2, the two fixed points were note moved very much.

Cost

In this problem we are minimizing the cost
∫ ttot
0

‖u‖2 dt. We consider a mass evolving dynamical system, and a
maximum thrust so to try to compare fairly the cost with other results, we define three different costs:

C1
tot =

∫ ttot

0

‖u(t)‖2 dt, C2
tot =

∫ ttot

0

ε2

m2(t)
‖u(t)‖2 dt, and C3

tot =
∫ ttot

0

T 2
max

m2(t)
‖u(t)‖2 dt. (4.7)

Results are summarized in Table 3. We observe that whereas the two points χ∗
0 and χ∗

3 are not perturbed
very much to satisfy the general transversality conditions, for the costs and the mass consumption, it is really
an improvement.

5. Variant of the mission

In this section, we show two other applications of our method to design two different missions. The first one
is the Lyapunov to Lyapunov mission but with different energies and a heteroclinic orbit with two revolutions
around the Moon.

The second mission is a Halo to Halo mission with two different energies and with no heteroclinic orbit. In
this case, we use two trajectories belonging to two invariant manifolds.

5.1. Heteroclinic orbit with two revolutions

In this section we present another mission going from a Lyapunov orbit around L1 to a Lyapunov orbit
around L2. We follow exactly the same method at the one we presented except that we find the second intersec-
tion of manifolds (instead of the first) and we compute the second crossing through the plane U2 on both sides
with the stable and unstable manifolds. Our final trajectory will perform two revolutions around the Moon.
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Figure 14. Heteroclinic orbit between two Lyapunov orbits in the Earth-Moon system. We
get a travel time of 11.699681461946 (normalized time) or 50.883 days.

Because the Lya2 target is invariant with respect to the zero control, the larger the duration of the heteroclinic
orbit, the smaller (and better) the fuel consumption. Considering that, we expect a better cost for the transfer.

5.1.1. The heteroclinic orbit

To compute the heteroclinic orbit with two revolutions around the Moon, we have to choose a certain energy
allowing the second intersection to exist. We have chosen the energy (we follow [10] to motivate this choice)
ELya1,2

= −1.5890, and computed the heteroclinic orbit plotted in Figure 14. There are indeed two revolutions
around the Moon.

5.1.2. Two local transfers

As before, we compute two local transfers. One from the periodic orbit around L1 to the heteroclinic orbit,
and another from the end of the heteroclinic orbit to the periodic orbit around L2. We choose the maximal
thrust equal to 60 N as before to help the success of the shooting. We do not report the partial results here as
they are comparable to the ones of the previous mission. Thanks to this step, we obtain an admissible trajectory
in three parts, one controlled to reach the heteroclinic orbit (the turnpike), the second part is the uncontrolled
heteroclinic orbit, and the last part is a controlled one from the heteroclinic to the Lyapunov orbit around L2.

5.1.3. Multiple shooting method

As before, to free the two matching connections on the heteroclinic orbit and to decrease the maximum thrust
we use a multiple shooting method associated with a continuation method. Since the transfer time is larger than
for the previous mission, we have to add some grid points along the heteroclinic orbit (which are initialized with
a null adjoint vector). This is due to the very unstable nature of the hamiltonian system. Here we chose 5 grid
points. Thanks to the multiple shooting method and a thrust continuation, we manage to reach the required
maximal thrust: Tmax = 0.3 N and we get an admissible trajectory with two fixed points on Lya1 and Lya2.
The last step consists in finding the optimal departure and arrival points on the two periodic orbits.

5.1.4. Optimization of the terminal points

Once again, because we have simplified the problem by fixing the departure and arrival points on Lya1

and Lya2, we want to free these points on the periodic orbits to satisfy the general transversality conditions (4.6).
As before, we perturb first χ∗

3 ∈ Lya2 following the decrease of the transversality condition and we do the same
with χ∗

0. We manage to satisfy the transversality conditions up to 1 × 10−9.
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Figure 15. Command to realize the optimal transfer from the Lyapunov orbit to the hetero-
clinic orbit. We plot u(·) � 1 before the last optimization step on the first row (we chose two
points on Lya1 and Lya2) and after the last optimization step consisting in getting the general
transversality conditions. We can observe the good turnpike property of the second control.

5.1.5. Results

We plot in Figure 15 the command before and after the last optimization step. We observe the same phe-
nomenon as for the previous mission. Indeed, before we satisfy the transversality conditions, the command does
not have the turnpike structure, that is to say, the three parts, first a short thrust to reach the highway (or
turnpike), then a null controlled part, and finally a controlled part to reach the periodic orbit.

Whereas the perturbations of the two points χ∗
0 and χ∗

3 to satisfy the transversality conditions are very small
(see Fig. 16), the structure of the control is very different and the costs are much smaller after getting the
transversality conditions. We summarize the numerical results in Table 4.

5.2. Halo to Halo mission

In this section, we will adapt the previous method to another mission: a Halo to Halo mission. Halo orbits
are periodic orbits around equilibrium points like Lyapunov orbits but in the spatial dynamics. Because of that,
we consider in this section all the previous concepts and results presented in the Sections 2 and 3 extended to
the spatial configuration.

For the Halo to Halo mission, because we are in the spatial case and for the energies of the periodic orbits that
we have chosen, the intersection between unstable and stable manifolds does not exist. However, our method is
still valid and can be applied.

We will first design an admissible trajectory with 5 parts:

(1) first, we propagate the unstable and stable manifolds from L1 and L2 as described in Section 4.1. We
compute, in the plane U2, the two points (one on each manifolds) that minimize the distance in position
and velocity. This gives us two trajectories.

(2) Then, we compute the optimal transfer from a fixed point on the Halo orbit around L1 to a fixed point on
the trajectory on the associated unstable manifold.



LOW-THRUST LYAPUNOV TO LYAPUNOV AND HALO TO HALO MISSIONS WITH L2-MINIMIZATION 989

0.8 0.9 1 1.1 1.2
−0.1

−5 · 10−2

0

5 · 10−2

0.1

χ∗
0 χ∗

3

MoonL1 L2

x

y

0.8 0.9 1 1.1 1.2

−5 · 10−2

0

5 · 10−2

0.1

χ∗
0 χ∗

3

MoonL1 L2

x

y

Figure 16. Optimal trajectory. On the left the optimal trajectory with χ∗
0 and χ∗

3 fixed on
Lya1 and Lya2. On the right, the optimal trajectory with χ∗

0 and χ∗
3 free on Lya1 and Lya2.

The control is represented by arrows.

Table 4. Numerical results for the final trajectory of the second mission obtained after the
multiple shooting with fixed departure and final points (problem (4.4)) and for the optimized
departure and final points on Lya1 and Lya2 (problem (2.5)).

Initial Mass Transfer time Tmax

1500 kg 13.699681461 or 59.582 days 0.3 N

C1
tot C2

tot C3
tot Mass of fuel

Problem (4.4) 2.4638905 × 10−8 1.3297667 × 10−10 4.2863204 × 10−15 0.0030131 kg

Problem (2.5) 1.9695934 × 10−9 1.0629917 × 10−11 3.4264079 × 10−16 3.3599750 × 10−4 kg

System Execution time
Problem (4.4) Core i7 99% cpu 44,949s total

Problem (2.5) Core i7 99% cpu 2min54,79s total

Problem (4.4) Raspberry Pi A 33% cpu 22min52,8s total

Problem (2.5) Raspberry Pi A 29% cpu 1h32min46s total

(3) We compute a transfer from a fixed point on the trajectory of the unstable manifold from the Halo orbit
around L1 to a fixed point on the trajectory on the stable manifold of the Halo orbit around L2.

(4) We then compute the optimal control to reach a fixed point on the Halo orbit around L2 from a fixed point
on the trajectory of the associated stable manifold.

With this admissible trajectory in 5 parts (with two uncontrolled parts), we initialize a multiple shooting
method to get an optimal trajectory reaching a fixed point on the Halo orbit around L2 from a fixed point on
the Halo orbit around L1. Finally, following the method described for the Lyapunov to Lyapunov mission, we
optimize the position of the end points.

As we can see from this example, the method is quite general, and we can think about applying it for much
more complex missions designed by patching together “manifold” parts.

5.2.1. Free parts on Manifolds

As described in the introduction, we will compute two trajectories on unstable and stable manifolds respec-
tively from the Halo orbit around L1 and from the Halo orbit around L2.
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Figure 17. Halo orbits around L1 and L2 for energies −1.5939 and −1.5805 respectively. This
corresponds to a unique excursion of 16 000 km.

Halo orbits

For the sake of generality, we compute two Halo orbits with different energies. For the Halo orbit around L1

denoted by Halo1, we have chosen E(Halo1) = −1.5939. For the Halo orbit around L2 denoted by Halo2, we
have chosen E(Halo2) = −1.5805. These two energy values correspond to a unique z-excursion of 16 000 km.
The numerical computation of such orbits is done using the method described in Section 3.1 extended to the
spatial case. See Figure 17 for a plot of these two periodic orbits.

5.2.2. Propagation of Manifolds and choice of trajectories

Using the same parameter α as defined in (3.2) for the Lyapunov to Lyapunov mission, i.e. 1
384 402 , we compute

the intersection with the plane U2 (see Sect. 4.1). One can see the result in Figure 18. We denote by M1 and M2

these two manifolds.
We compute the section of each manifold with U2 and find the closest pair of points (one from the manifold

of Halo1 and one from the manifold of Halo2). This is done with a fine discretization of 1000 points per Halo
orbits. In that way, we get two points for x = 1−μ, denoted respectively by χU2

M1
and χU2

M2
. The distance in R

6

is
∥∥∥χU2

M1
− χU2

M2

∥∥∥2

= 0.098644604436. The two corresponding trajectories are plotted in Figure 18. Let tM1 and
tM2 denote the two times of propagation for the two free trajectories themselves denoted by AM1 and AM2

(see Fig. 18).

5.2.3. Three short transfers

Following our method, we compute three short transfers in order to initialize a multiple indirect shooting
method and get the optimal trajectory.

From Halo1 to AM1

Once again, we follow the method described in Section 4.2.1, we construct two fixed points, one on Halo1,
the other on AM1 . To do that, we consider the two closest points on Halo1 and AM1 . We choose two time
parameters: tHalo1 to propagate backward the point on Halo1 and tL1

AM1
to propagate forward on AM1 . Here,

we pick: tHalo1 = tL1
AM1

= 1.0. We are now ready to build the first optimal control problem as defined in (4.1).
Using continuation on the final state solves this problem in an easy and fast (4.1 s) manner. The norm of the
control is plotted in Figure 19. Let us denote by t0 = tHalo1 + tL1

AM1
, the transfer time and by X∗

0 = (χ∗
0,m

∗
0)

and X1 = (χ1,m1) the terminal points of this transfer. The resulting final mass is m1 = 1499.9967439278 kg.
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Figure 18. On the left: the propagation of manifolds from Halo around L1 and Halo around L2.
On the right: the two trajectories of these manifold minimizing the distance on the plane U2.

0 1 2

2

4

6

8

·10−7

t

‖u
(t

)‖
fo

r
L

1
-t

ra
ns

fe
r

0 0.5 1
1

2

3
·10−3

t

‖u
(t

)‖
fo

r
U

2
-t

ra
ns

fe
r

0 1 2

3

4

5

·10−7

t
‖u

(t
)‖

fo
r
L

2
-t

ra
ns

fe
r

Figure 19. Norm of the control for the three controlled parts of the admissible trajectory.

From AM1
to AM2

In this part, we apply our method to compute the transfer from trajectory AM1 to trajectory AM2 . There
is a rather large gap to resorb. We already have the two points that we will perturb backward and forward:
χU2
M1

and χU2
M2

. We choose the two corresponding times tU2
M1

= tU2
M2

= 0.5, and define the transfer time as7

t2 = tU2
M1

+ tU2
M2

. After the first transfer from Halo1 to AM1 , we follow a free trajectory on the manifold, so we
choose the initial mass of the transfer from AM1 to AM2 as the final mass of the previous part, that is to say
m2 = m1 = 1499.9967439278 kg.

Once again, the continuation on the final state allows for a fast convergence to obtain the solution of this
problem. Indeed we obtained the solution in 4.4 s. In this problem, we denote by X2 = (χ2,m2) the initial point
on AM1 and by X3 = (χ3,m3) the final point on AM2 . The final mass we get is m3 = 1493.3184622015 kg and
the norm of the control is plotted in Figure 19.

From AM2
to Halo2

We consider in here the last short transfer from AM2 to Halo2. Like the transfer from Halo1 to AM1 , we pick
the two closest points on AM2 and Halo2 and we perturb them with two time parameters denoted by tL2

M2

7 We keep the index 1 for the remaining time on the free part, i.e., the remaining part of the unstable manifold trajectory.
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Figure 20. Admissible trajectory in five parts. Dashed part are manifold trajectories, i.e. free
parts.

and tHalo2 . We define then the transfer8 time t4 = tL2
M2

+ tHalo2 = (1.0 + 1.0) to go from X4 = (χ4,m4) to the
final points χ∗

5. As before, m4 = m3 = 1493.3184622015 kg because after the transfer around U2, we follow a
free trajectory on the stable manifold.

Once again, the resolution is easy and fast thanks to the continuation method: 4.14 s. The final mass we
obtain is m5 = 1493.3156736966 kg. The norm of the control is plotted in Figure 19.

Admissible trajectory in five parts

To summarize, we have constructed an admissible trajectory going from Halo1 to Halo2 with three controlled
parts and two free parts. This trajectory is plotted in the Figure 20 and the control for the three controlled
parts is in Figure 19. The local transfers are computed with a maximal thrust equal to 180 N, indeed this helps
the convergence of local transfers (but we do not reach the targeted maximal thrust of 0.3 N), and the multiple
shooting for the reason described in Section 4.2.1.

5.2.4. Multiple shooting for the total transfer

We consider here the following problem

PHalo
tot

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ctot = min
∫ ttot

0

‖u‖2 dt,

ẋ = F0(x) +
ε

m

3∑
i=1

uiFi(x),

ṁ = −β∗ε ‖u‖ ,
‖u‖ � 1,
x(0) = χ∗

0 ∈ Halo1, m(0) = m∗
0,

x(ttot) = χ∗
5 ∈ Halo2.

(5.1)

Transfer time ttot is defined as ttot = t0 + t1 + t2 + t3 + t4, where t0, t2 and t4 are the times previously introduced
for the three short transfers. Time t1 is the duration of trajectory AM1 in the unstable manifold from Halo1

from which we remove the two times we used to perturb points for the local transfers around L1 and U2. This
gives us t1 = tM1 − tL1

AM1
− tU2

M1
. And we defined t3 in a similar way as t3 = tM2 − tL2

AM2
− tU2

M2
. As in Section 4.3,

8 Once again we keep the index 3 for the free part between transfer between manifolds and transfer to Halo2.
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Figure 21. Optimal trajectory for the Halo to Halo transfer. On the left, a 3 dimensional
view. On the right, a view in the (x, y)-plane. The control is represented by arrows.

we introduced the shooting function with four nodes (for the Lyapunov to Lyapunov mission, we had two nodes).
Because, we are considering a spatial mission, we get the following shooting function

SHalo
multi(Z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φext
1,...,7(χ

∗
0,m

∗
0, P0) −X1

φext
8,...,14(χ∗

0,m
∗
0, P0) − P1

φext
1,...,7(X1, P1) −X2

φext
8,...,14(X1, P1) − P2

φext
1,...,7(X2, P2) −X3

φext
8,...,14(X2, P2) − P3

φext
1,...,7(X3, P3) −X4

φext
8,...,14(X3, P3) − P4

φext
1,...,6(X4, P4) − χ∗

5

φext
14 (X4, P4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
4×14+7, (5.2)

where the vector Z is defined as

Z = (p0, p
0
m︸ ︷︷ ︸

P0

, χ1,m1︸ ︷︷ ︸
X1

, p1, p
1
m︸ ︷︷ ︸

P1

, χ2,m2︸ ︷︷ ︸
X2

, p2, p
2
m︸ ︷︷ ︸

P2

, χ3,m3︸ ︷︷ ︸
X3

, p3, p
3
m︸ ︷︷ ︸

P3

, χ4,m4︸ ︷︷ ︸
X4

, p4, p
4
m︸ ︷︷ ︸

P4

) ∈ R
63.

We initialize the shooting method with the values that we get from the local transfers and with a zero adjoint
vector for the free parts. The shooting converges easily.

As for the two previous missions, we decrease the maximal authorized thrust by continuation. We then
optimize the terminal points χ∗

0 and χ∗
5 to satisfy the transversality conditions. We manage to get the result in

4.16 min. The final trajectory is plotted in Figure 21 and the corresponding control in Figure 22. The result
cost is summarized in Table 5 as well as the numerical values of the parameters. Because we are not comparing
this mission with other published results, we just write the physical cost C3

tot in the international system of
units (see (4.7)). Note that we do not get the turnpike properties, indeed, in this case, there is no “steady-state”
trajectory asymptotically connecting the two periodic orbits.
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Figure 22. Optimal control for the Halo to Halo Mission T (·) ∈ R
3 in Newton.

Table 5. Numerical results for the final trajectory of the Halo to Halo mission.

Initial Mass Transfer time Tmax

1500 kg 9.5436454462828 or 41.50 days 0.3 N

C3
tot Mass of fuel

Halo to Halo problem 0.00461912647735513 7.41587259099992 kg

6. Conclusion

To design different spacecraft missions between periodic orbits around Lagrange points, we have used natural
(uncontrolled) trajectories computed thanks to the invariant manifolds of the periodic orbits. We have connected
resulting arcs with short transfers using the PMP and indirect methods. Doing that, we have designed admissible
trajectories performing the mission with controlled and uncontrolled parts. The resulting admissible trajectories
have been used to initialize an indirect multiple shooting method in which we released the constraints to join
uncontrolled parts, i.e., to force the spacecraft to follow the natural drift. We have finally obtained a trajectory
satisfying the first order necessary conditions for optimality given by the PMP.

In order to improve the robustness of our indirect approach, we have designed and implemented appropriate
continuations on the final state and on the thrust. Thanks to this, the execution of the overall computation is
run within short time (of order of a few minutes), and results have the excellent accuracy of the underlying
Newton method.

One can note that, when there is an heteroclinic orbit between the two terminal periodic orbits, the optimal
enjoys a turnpike property. Proving the turnpike feature for such control-affine systems with drift is an open
issue, which may deserve consideration because it gives an approach to successfully initialize a variant of the
shooting method in a simple and efficient way (see [38]). Finally, as already mentioned, we have considered
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the L2-minimization of the cost, leaving the computation of the L1-minimization solution with a bang-bang
control as an open issue for farther studies.
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