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UNIFORM ESTIMATES FOR A MODICA–MORTOLA TYPE APPROXIMATION
OF BRANCHED TRANSPORTATION

Antonin Monteil1

Abstract. Models for branched networks are often expressed as the minimization of an energy Mα over
vector measures concentrated on 1-dimensional rectifiable sets with a divergence constraint. We study
a Modica–Mortola type approximation Mα

ε , introduced by Edouard Oudet and Filippo Santambrogio,
which is defined over H1 vector measures. These energies induce some pseudo-distances between L2

functions obtained through the minimization problem min{Mα
ε (u): ∇ · u = f+ − f−}. We prove some

uniform estimates on these pseudo-distances which allow us to establish a Γ -convergence result for
these energies with a divergence constraint.
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1. Introduction

Branched transportation is a classical problem in optimization: it is a variant of the Monge–Kantorovich
optimal transportation theory in which the transport cost for a mass m per unit of length is not linear anymore
but sub-additive. More precisely, the cost to transport a mass m on a length l is considered to be proportional
to mαl for some α ∈]0, 1[. As a result, it is more efficient to transport two masses m1 and m2 together instead
of transporting them separately. For this reason, an optimal pattern for this problem has a “graph structure”
with branching points. Contrary to what happens in the Monge–Kantorovich model, in the setting of branched
transportation, an optimal structure cannot be described only using a transport plan, giving the correspondence
between origins and destinations, but we need a model which encodes all the trajectories of mass particles.

Branched transportation theory is motivated by many structures that can be found in the nature: vessels,
trees, river basins. . . Similarly, as a consequence of the economy of scale, large roads are proportionally cheaper
than large ones and it follows that the road and train networks also present this structure. Surprisingly the
theory has also had theoretical applications: recently, it has been used by Bethuel in [4] so as to study the
density of smooth maps in Sobolev spaces between manifolds.

Branched transportation theory was first introduced in the discrete framework by Gilbert in [14] as a gener-
alization of the Steiner problem. In this case an admissible structure is a weighted graph composed of oriented
edges of length li on which some mass mi is flowing. The cost associated to it is then

∑
i lim

α
i and it has

to be minimized over all graphs which transport some given atomic measure to another one. More recently,
the branched transportation problem was generalized to the continuous framework by Xia in [23] by means
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of a relaxation of the discrete energy (see also [24]). Then, many other models and generalizations have been
introduced (see [15] for a Lagrangian formulation, see also [1–3] for different generalizations and regularity
properties.). In this paper, we will concentrate on the model with a divergence constraint, due to Xia. However,
this is not restrictive since all these models have been proved to be equivalent (see [3, 19]).

In this model, a transport path is represented as a vector measure u on some open set Ω ⊂ Rd such that
∇·u = μ+−μ− for two probability measures μ+ and μ−. Then the energy of u is defined as Mα(u) =

�
M
θαdH1

if u is a vector measure concentrated on a rectifiable 1-dimensional set M on which u has multiplicity θ w.r.t.
the Hausdorff measure (see [3] for more details). In this framework, u must be considered as the momentum
(the mass θ times the velocity) of a particle at some point. Then (∇ · u)(x) represents the difference between
incoming and outcoming mass at each point x.

In this paper, we are interested in some approximation of branched transportation proposed by Oudet and
Santambrogio few years ago in [18] and which has interesting numerical applications. This model was inspired
by the well known scalar phase transition model proposed by Modica and Mortola in [16]. Given u ∈ H1(Ω,Rd)
for some bounded open subset Ω ⊂ Rd, Oudet and Santambrogio introduced the following energy:

Mα
ε (u) = ε−γ1

�
Ω

|u|β + εγ2

�
Ω

|∇u|2,

where β ∈ (0, 1) and γ1, γ2 > 0 are some exponents depending on α (see (2.4)). If u does not belong to the set
H1(Ω), the value of Mα

ε is taken as +∞.
We recall the heuristic which shows why Mα

ε is an approximation of Mα (see [18]): assume that μ− (resp. μ+)
is a point source at S1 (resp. S2) with mass m. Then, it is clear that the optimal path for Mα between these two
measures is the oriented edge S = (S1, S2) of length l with a mass m flowing on it. We would like to approximate
this structure, seen as a vector measure u concentrated on S, by some H1 vector fields v which are more or less
optimal for Mα

ε . What we expect is that v looks like a convolution of u with a kernel ρ depending on ε and m:
v = u ∗ ρR for some R = R(ε,m), where

ρR(x) = R−dρ
(
R−1x

)
(1.1)

for some fixed smooth and compactly supported radial kernel ρ ∈ C∞
c (Rd). Then the support of v is like a strip

of width R around S so that |v| is of the order of m/Rd−1 and |∇v| is of the order of m/Rd. This gives an
estimate of Mα

ε (v) like

Mα
ε (v) � ε−γ1Rd−1

(
m/Rd−1

)β
l+ εγ2Rd−1

(
m/Rd

)2
l. (1.2)

With our choice for the exponents γ1, γ2 and β, the optimal choice for R is

R = εγm
1−γ
d−1 , (1.3)

where
γ =

2
2d− β(d− 1)

=
γ2

d+ 1
· (1.4)

This finally leads to Mα
ε (v) � mα as expected.

It was proved in [18] that, at least in two dimensions, the energy sequence (Mα
ε )ε>0 Γ -converges to the

branched transportation functional c0Mα for some constant c0 and for some suitable topology (see Thm. 2.1,
p. 313). This result has been interestingly applied to produce a numerical method. However, rather than a Γ -
convergence result on Mα

ε we would need to deal with the functionals M
α

ε , obtained by adding a divergence con-
straint: it should be shown that M

α

ε (u) := Mα
ε (u)+I∇·u=fε Γ -converges to c0M

α
(u) := c0M

α
ε (u)+I∇·u=μ+−μ− ,

where fε ∈ L2 is some suitable approximation of μ+ − μ− and IA(u) is the indicator function in the sense of
convex analysis that is 0 whenever the condition is satisfied and +∞ otherwise. Even if this property was not



UNIFORM ESTIMATES FOR A MODICA–MORTOLA TYPE APPROXIMATION OF BRANCHED TRANSPORTATION 311

proved in [18], the effectiveness of the numerical simulations made the authors think that it actually holds true.
Note that an alternative using a penalization term was proposed in [20] to overcome this difficulty.

In Section 2 we recall Xia’s formulation of branched transportation and its approximation Mα
ε introduced by

Oudet and Santambrogio. The longest part of this paper, Section 3, is devoted to a local estimate which gives a
bound on the minimum value dα

ε (f+, f−) := min{Mα
ε (u) : ∇·u = f} depending on ‖f‖L1, ‖f‖L2 and diam(Ω)

(see Thm. 3.2, p. 314). In Section 4, we deduce a comparison between dα
ε and the Wasserstein distance with an

“error term” involving the L2 norm of f+ − f−. As an application of this inequality, in the last section, we will
prove the following Γ -convergence result which was lacking in [18]

Theorem 1.1. Let (fε)ε>0 ⊂ L2(Ω) be a sequence weakly converging to μ as measures when ε → 0. Assume
that the sequence (fε)ε>0 satisfies

�
Ω

fε(x) dx = 0 and εγ2‖fε‖2
L2 −→

ε→0
0.

There exists a constant c0 > 0 such that the functional sequence (M
α

ε )ε>0 Γ -converges to c0M
α

as ε → 0.
Moreover c0 is the minimum value for the minimizing problem (5.2).

This answers the open question 1 in [18, 20] and validates their numerical method.

2. Mathematical setting

2.1. The branched transportation energy

In all what follows, we will use the model proposed by Xia (see [23, 24]):
Let d ≥ 1 be an integer and Ω be some open and bounded subset of Rd. Let us denote by Mdiv(Ω) the set

of finite vector measures on Ω such that their divergence is also a finite measure:

Mdiv(Ω) :=
{
u measure on Ω valued in Rd : ‖u‖Mdiv(Ω) < +∞} ,

where ‖u‖Mdiv(Ω) := |u|(Ω) + |∇ · u|(Ω) with

|u|(Ω) := sup
{�

Ω

ψ · du : ψ ∈ C(Ω, Rd), ‖ψ‖L∞ ≤ 1
}

and, similarly,

|∇ · u|(Ω) := sup
{�

Ω

∇ϕ · du : ϕ ∈ C1(Ω,R), ‖ϕ‖L∞ ≤ 1
}
.

In all what follows, ∇ · u has to be thought in the weak sense, i.e.
�
ϕ∇ · u = − � ∇ϕ · du for all ϕ ∈ C1(Ω).

Since we do not ask ϕ to vanish at the boundary, ∇ · u may contain possible parts on ∂Ω which are equal to
u · n when u is smooth, where n is the external unit normal vector to ∂Ω. In other words, ∇ · u is the weak
divergence of u1Ω in Rd, where 1Ω is the classical indicator function of Ω, equal to 1 on Ω and 0 elsewhere.
From now on, the notation 1X for the classical indicator function of a set X and IX for the indicator function
in the sense of convex analysis (equal to 1 inside and +∞ outside) will be used. Mdiv(Ω) is endowed with the

topology of weak convergence on u and on its divergence: i.e. un
Mdiv(Ω)−→ u if un ⇀ u and ∇·un ⇀ ∇·u weakly

as measures.
Given 0 < α < 1, the energy of branched transportation can be represented as follows for measures u ∈

Mdiv(Ω):

Mα(u) =

{�
M θα dH1 if u can be written as u = U(M, θ, ξ),

+∞ otherwise,
(2.1)
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where U(M, θ, ξ) is the rectifiable vector measure u = θξ ·H1
|M with density θξ with respect to the H1-Hausdorff

measure on the rectifiable set M . The real multiplicity is a measurable function θ : M → R+ and the orientation
ξ : M → Sd−1 ⊂ Rd is such that ξ(x) is tangential to M for H1-a.e. x ∈M .

Given two probability measures μ+ and μ− on Ω, the problem of branched transportation consists in mini-
mizing Mα under the constraint ∇ · u = μ+ − μ−:

inf
{
Mα(u) : u ∈ Mdiv(Ω) and ∇ · u = μ+ − μ−} . (2.2)

Note that, if μ±(∂Ω) = 0, the divergence constraint implies a Neumann condition on u: u · n = 0 on ∂Ω.

2.2. Functionals Mα
ε

For the minimum value in (2.2) to be finite whatever μ+ and μ− in the set of probability measures, we will
require α to be sufficiently close to 1. More precisely, we make the following assumption:

1 − 1
d
< α < 1. (2.3)

Xia has shown in [23] that, under this assumption, there exists at least one vector measure u ∈ Mdiv(Ω) such
that Mα(u) < +∞.

We are interested in the following approximation of Mα which was introduced in [18]: for all u ∈ Mdiv(Ω)
and for all open subset ω ⊂ Ω,

Mα
ε (u, ω) :=

⎧⎨⎩ε−γ1

�
ω

|u(x)|β dx+ εγ2

�
ω

|∇u(x)|2 dx if u ∈ H1(ω)

+∞ otherwise,
(2.4)

where β, γ1 and γ2 are three exponents depending on α and d through:

β =
2 − 2d+ 2αd

3 − d+ α(d− 1)

and
γ1 = (d− 1)(1 − α) and γ2 = 3 − d+ α(d − 1).

Note that inequality 1 − 1/d < α < 1 implies that 0 < β < 1. When ω = Ω, we simply write

Mα
ε (u,Ω) =: Mα

ε (u).

We point out the 2-dimensional case where Mα
ε rewrites as

Mα
ε (u) = εα−1

�
Ω

|u(x)|β dx+ εα+1

�
Ω

|∇u(x)|2 dx, (2.5)

where β = 4α−2
α+1 .

Given two densities f+, f− ∈ L2
+(Ω) := {f ∈ L2(Ω) : f ≥ 0} such that

�
f+ =

�
f−, we are interested in

minimizing Mα
ε (u) under the constraint ∇ · u = f+ − f−:

inf
{
Mα

ε (u) : u ∈ H1(Ω) and ∇ · u = f+ − f−} . (2.6)

The classical theory of calculus of variation shows that this infimum is actually a minimum. A natural question
that arises is then to understand the limit behavior for minimizers of these problems when ε goes to 0. A classical
tool to study this kind of problems is the theory of Γ -convergence which was introduced by De Giorgi in [12]. For
the definition and main properties of Γ -convergence, we refer to [8,11]. In particular, if Mα

ε Γ -converges to some
energy functional Mα

0 and if (uε) is a sequence of minimizers for Mα
ε admitting a subsequence converging to u,

then, u is a minimizer for Mα
0 . By construction of Mα

ε , we expect that, up to a subsequence, Mα
ε Γ -converges

to c0Mα. In the two dimensional case, we have the following Γ -convergence theorem proved in [18].
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Theorem 2.1. Assume that d = 2 and α ∈ (1/2, 1). Then, there exists a constant c > 0 such that (Mα
ε )ε>0

Γ -converges to cMα in Mdiv(Ω) when ε goes to 0.

Nevertheless, this does not imply the Γ -convergence of Mα
ε (u) + I∇·u=f+−f− to Mα

ε (u) + I∇·u=f+−f− . Indeed,
the Γ -convergence is stable under the addition of continuous functionals but not l.s.c. functionals. Consequently,
we cannot deduce, from this theorem, the behavior of minimizers for (2.6). For instance, it is not clear that
there exists a recovery sequence (uε), i.e. uε converges to u in Mdiv(Ω) and Mα

ε (uε) converges to Mα(u) as
ε → 0, with prescribed divergence ∇ · uε = f+ − f−. To this aim, we require some estimates on these energies
and this is the purpose of this paper.

2.3. Distance of branched transportation

We remind our hypothesis 1 − 1/d < α < 1. In [23], Xia has remarked that, as in optimal transportation
theory, Mα induces a distance dα on the space P(Ω) of probability measures on Ω:

dα(μ+, μ−) = inf
{
Mα(u) : u ∈ Mdiv(Ω) such that ∇ · u = μ+ − μ−} ,

for all μ+, μ− ∈ P(Ω). Thanks to our assumption α > 1 − 1/d, dα is finite for all μ± ∈ P(Ω) and it induces
a distance on the set P(Ω) which metrizes the topology of weak convergence of measures. Actually, dα has a
stronger property which is a comparison with the Wasserstein distance.

Proposition 2.2. Let μ+ and μ− be two probability measures on Ω. We denote by Wp the Wasserstein distance
associated to the cost (x, y) → |x− y|p for p ≥ 1. Then, one has

W1/α(μ+, μ−) ≤ dα(μ+, μ−) ≤ C W1(μ+, μ−)1−d(1−α),

for a constant C > 0 only depending on d, α and the diameter of Ω.

We refer to [17] for a proof of this property (see also [3,9] for an alternative proof) and [21,22] for the definition
and main properties of the Wasserstein distance. In the same way, we define dα

ε as follows:

dα
ε (f+, f−) = inf

{
Mα

ε (u) : u ∈ H1(Rd) such that ∇ · u = f+ − f−} , (2.7)

where f+, f− ∈ L2
+(Ω) satisfy

�
Ω
f+ =

�
Ω
f−. Although dα is a distance, it is not the case for dα

ε which does not
satisfy the triangular inequality. Actually, because of the second term involving |∇u|2, Mα

ε is not subadditive.
However, for u1, . . . , un in Mdiv(Ω), the inequality |∇u1 + . . .+ ∇un|2 ≤ n{|∇u1|2 + . . .+ |∇un|2} implies

Mα
ε

(
n∑

i=1

ui

)
≤ n

n∑
i=1

Mα
ε (ui).

In particular, dα
ε is a pseudo-distance in the sense that the three properties in the following proposition are

satisfied.

Proposition 2.3. Let f+, f− and f1,. . . , fn be L2 densities, i.e. L2 non negative functions whose integral is
equal to 1. Then one has

1. dα
ε (f+, f−) = 0 implies f+ = f−,

2. dα
ε (f+, f−) = dα

ε (f−, f+),
3. dα

ε (f0, fn) ≤ n
[
dα

ε (f0, f1) + dα
ε (f1, f2) + · · · + dα

ε (fn−1, fn)
]
.
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3. Local estimate

We remind our assumption (2.3) which insures that dα(μ+, μ−) is always finite. Our goal is to prove that dα
ε

enjoys a property similar to the following one.

Proposition 3.1. Let Q0 = (0, L)d ⊂ Rd be a cube of side length L > 0. There exists some constant C > 0
only depending on d and α such that for all non negative Borel finite measure μ of total mass θ > 0,

dα(μ, θδ0) ≤ C θαL,

where δ0 is the Dirac measure at the point cQ0 , the center of Q0.

Since dα
ε (f+, f−) is only defined on L2 functions f±, to do so, we first have to replace θδ0 by some kernel

which concentrates at the origin when ε goes to 0. Let ρ ∈ C1
c (B,R+) be a radial non negative function such

that
�

Rd ρ = 1, where B ⊂ Rd is the unit ball centered at the origin, and define ρθ,ε := ρR as in (1.1), where

R =: Rθ,ε = εγθ
1−γ
d−1 .

Here, we recall that R and γ = γ2
d+1 were introduced in (1.4). Let Q be a cube in Rd centered at some point

cQ ∈ Rd and f ∈ L2
+(Q) be a density such that

�
Q
f =: θQ. Then, we will denote by ρQ the kernel θρθ,ε

refocused at cQ with a small abuse of notation (indeed, ρQ also depends on f):

ρQ(x) = θQρθQ,ε(x− cQ).

The main result of this section is the following theorem

Theorem 3.2 (Local estimate). Let us set Q0 = (0, L)d for some L > 0. There exists C > 0 only depending
on α, ρ and d such that for all f ∈ L2

+(Q0) with
�

Q0
f = θ, we have

• If supp ρQ0 ⊂ Q0 then, there exists u ∈ H1
0 (Q0) such that ∇ · u = f − ρQ0 and

dα
ε (f, ρQ0) ≤Mα

ε (u) ≤ C
{
θαL+ εγ2‖f‖2

L2

}
and ‖u‖L1 ≤ C Lθ.

• Otherwise, there exists u ∈ H1
0 (Q̃0) such that

dα
ε (f, ρQ0) ≤Mα

ε (u) ≤ Cεγ2‖f‖2
L2 and ‖u‖L1 ≤ C Lθ,

where Q̃0 = 2 supp ρQ0 := B(cQ0 , 2Rθ,ε).

Remark 3.3. The Dirichlet term, εγ2‖f‖2
L2, in the estimates above is easily understandable. Indeed, if ε is

very large so that one can get rid of the first term in the energy Mα
ε , then, one can use a classical Dirichlet type

estimate, that is Theorem 3.4 below. On the contrary, for ε very small, the Γ -limit result on Mα
ε tells us that

these energies are close to Mα so that it is natural to hope a similar estimate as the one for Mα: that is to say
an estimate from above by θαL (see [3]).

The main difficulty to prove Theorem 3.2 is the non subadditivity of the pseudo-distances λα
ε . Indeed, our

proof is based on a dyadic construction used by Xia in [23] to prove Proposition 3.1 (see also [3]). This gives a
singular vector measure u which is concentrated on a graph. Since Mα

ε contains a term involving the L2 norm
of ∇u, we have to regularize u by taking a convolution with the kernel ρθ,ε on each branch of the graph (θ being
the mass traveling on it). Unfortunately in this way, two different branches are no longer disjoints.

It is useful to see that we have a first candidate for the minimization problem (2.7). This candidate is of the
form u = ∇φ, where φ is the solution of the Dirichlet problem{

Δφ = f+ − f− in Q,

φ = 0 on ∂Q.
(3.1)
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Then u = ∇φ satisfies ∇ · u = f+ − f− in Q and u(x) ∈ Rn a.e. on ∂Q where n stands for the external
unit normal vector to ∂Q. Alternatively, one could consider Neumann homogeneous boundary conditions for φ
rather than Dirichlet boundary conditions. Then, one would obtain u(x) ·n = 0 a.e. on ∂Q. Theorem 3.4 below
gives a better result in the sense that the candidate u vanishes at the boundary:

Theorem 3.4. Let Q0 = (0, L)d be a cube of side length L > 0. There exists C > 0 only depending on d such
that for all f ∈ L2

0(Q0), there exists u ∈ H1
0 (Q0,R2) solving ∇ · u = f and satisfying ‖u‖L1(Q0) ≤ CL ‖f‖L1(Q0)

together with

‖u‖H1
0(Q0) :=

(�
Q0

|∇u|2
)1/2

≤ C ‖f‖L2(Q0),

where L2
0(Q0) =

{
f ∈ L2(Q0) :

�
Q0
f(x) dx = 0

}
.

For a proof of this theorem, see, for instance, Theorem 2 in [7]: the only difference with Theorem 3.4 is that
we add the estimate ‖u‖L1(Q0) ≤ CL ‖f‖L1(Q0) which can be easily obtained following the proof of Bourgain
and Brezis. The corresponding property formulated on a Lipschitz bounded connected domain Ω is also true
(see Thm. 2’ in [7]) except that the constant C could depend on Ω in this case.

Of course, this candidate is usually not optimal for (2.7) and this does not allow for a good estimate because
of the first term in the definition of Mα

ε . For this reason, we have to use the dyadic construction of Xia up to a
certain level (“diffusion level”) from which we simply use Theorem 3.4.

3.1. Dyadic decomposition of Q0 and “diffusion level” associated to f

Let us call “dyadic descent” of Q0 = (0, L)d the set Q =
⋃

j≥0 Qj , where Qj is the jth “dyadic generation”:

Qj =
{
(x1, . . . , xd) + 2−jQ0 : xi ∈ {k2−jL : 0 ≤ k ≤ 2j − 1} for i = 1, . . . , d

}
.

Note that Card(Qj) = 2jd. For each Q ∈ Q, let us define

• D(Q): the descent of Q, the family of all dyadic cubes contained in Q.
• A(Q): the ancestry of Q, the family of all dyadic cubes containing Q.
• C(Q): the family of children of Q composed of the 2d biggest dyadic cubes strictly included in Q.
• F (Q): the father of Q, the smallest dyadic cube strictly containing Q.

We now remind the dyadic construction described in [23] which irrigates f from a point source. We first introduce
some notations: fix a function f ∈ L2

+(Q0) with integral θ and let Q ∈ Q be a dyadic cube centered at cQ ∈ Rd.
Then we introduce θQ the mass associated to the cube Q as

θQ =
�

Q

f.

If θQ �= 0, we also define the kernel associated to Q through

ρQ(x) = ρR(x), (3.2)

where ρR is defined in (1.1) for

R = RQ := εγθ
1−γ
d−1
Q , γ =

γ2

d+ 1
·

Here γ was defined in Define also the weighted recentered kernel by

ρQ(x) = θQρQ(x− cQ) (3.3)
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if θQ �= 0 and ρQ(x) = 0 otherwise. Lastly, we introduce the point source associated to the cube Q as

SQ := θQ × Dirac measure at point cQ.

We are now able to construct a vector measure X such that Mα(X) < +∞. First define the measures XQ as
below:

XQ =
∑

Q′∈C(Q)

θQ′ nQ′ H1
|[cQ,cQ′ ], (3.4)

where nQ′ =
cQ′ − cQ
‖cQ′ − cQ‖ . Then, we have

∇ ·XQ =
∑

Q′∈C(Q)

SQ′ − SQ

and the energy estimate
Mα(XQ) ≤ 2d−2θα

Q diam(Q),

where diam(Q) stands for the diameter of Q. Finally, the measure X =
∑

Q∈QXQ solves ∇ ·X = f − SQ0 and
satisfies

Mα(X) ≤ Cθα diam(Q0).

Indeed, it is enough to apply the following lemma with λ = α:

Lemma 3.5. Let Q ∈ Q and λ ∈]1 − 1/d, 1]. There exists a constant C = C(λ, d) such that∑
Q′∈D(Q)

θλ
Q′ diam(Q′) ≤ Cθλ

Q diam(Q).

Proof. Let j0 ≥ 0 be such that Q ∈ Qj0 . The definition of D(Q), the Jensen inequality and the fact that
d− 1 − λd < 0 give ∑

Q′∈D(Q)

θλ
Q′ diam(Q′) =

∑
j≥0

2−j diam(Q)
∑

Q′∈D(Q)∩Qj0+j

θλ
Q′

≤ diam(Q)
∑
j≥0

2−j2jd

⎛⎝2−jd
∑

Q′∈D(Q)∩Qj0+j

θQ′

⎞⎠λ

≤ θλ
Q diam(Q)

∑
j≥0

2j(d−1−λd)

≤ Cθλ
Q diam(Q). �

Now, the idea is to replace each term in (3.4) by its convolution with the kernel ρQ′ . Unfortunately, this will
make appear extra divergence terms around each node. We have to modify X so as to make this extra divergence
vanish using, for instance, Theorem 3.4. Furthermore, we cannot follow the construction for all generations j ≥ 1,
otherwise the “enlarged edges” (convolution of a dyadic edge and the kernel ρθ,ε) may overlap. This is the reason
why we introduce the following definition:

Definition 3.6 (“Diffusion level”). For a cube Q0 and f ∈ L2
+(Q0) we define the set D(Q0, f) or D(f) ⊂ Q as

the maximal element for the inclusion in the set

Λ = {D ⊂ Q : ∀Q ∈ D, A(Q) ∪ C(F (Q)) ⊂ D and supp ρQ ⊂ Q} .
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If Λ = ∅, that is supp ρQ0 � Q0, we take the convention D(f) = ∅. For all x ∈ Q0, define also the “generation
index” of x associated to f as

j(f, x) = max {j : ∃Q ∈ D(f) ∩ Qj , x ∈ Q} ∈ N ∪ {±∞},
where the convention max(∅) = −∞ has been used.

In this way, each cube in D(f) contains the support of its associated kernel. Moreover, if Q is an element of
D(f), then all its ancestry and its brothers (i.e. elements of the set C(F (Q))) are elements of D(f). D(f) can
be constructed by induction as follows: first take j = 0 and D(f) = ∅. If supp ρQ0 ⊂ Q0 then add Q0 to the set
D(f) and j is replaced by j + 1. For all cubes Q in Λ ∩ Qj−1: if all cubes Q′ ∈ C(Q) ⊂ Qj are such that their
associated kernels are supported on Q′ then D(f) is replaced by D(f)∪C(Q). If D(f) has been changed at this
stage j is replaced by j + 1 and the preceding step is reiterated. This process is repeated for j ≥ 1 until it fails.

Let Dmin(f) be the set of all cubes in D(f) which are minimal for the inclusion. If Dmin(f) �= ∅, we also
define

D(f) =
⋃

Q∈Dmin(f)

Q.

Note that this is actually a disjoint union: two distinct cubes in Dmin(f) are disjoint. Indeed, for Q, Q′ ∈
Dmin(f) ⊂ Q, either Q ∩Q′ = ∅ or Q and Q′ are comparable: Q ⊂ Q′ or Q′ ⊂ Q. In the last case, since Q and
Q′ are minimal, we deduce that Q = Q′.

Moreover, it is not difficult to see that, if Dmin(f) �= ∅, then D(f) = {x ∈ Q0 : j(f, x) is finite} and also
that f(x) = 0 whenever j(f, x) = +∞, where f is the precise representative of f (i.e. the limit of the mean
values of f on small cubes). Indeed, assume that Q ∈ D(f) is a cube of side length LQ. Then, by definition,
supp ρQ ⊂ Q and for some constant C depending on ρ and for ν = 1−γ

d−1 , one has εγθν
Q ≤ CLQ and so

�
Q

f := L−d
Q θQ ≤ ε−γ/νL

1/ν−d
Q .

Since 1/ν − d = (d−1)(αd−d+1)
d+1 is positive, we deduce that LQ cannot be arbitrarily small if there exists x ∈ Q

such that f(x) > 0. Moreover, if f(x) ≥ η a.e. for some η > 0, then there exists some constant Cη > 0 depending
on η, ε, d and α such that

∀Q ∈ D(f), LQ ≥ Cη. (3.5)

In particular, one can deduce that Dmin(f) = ∅ if and only if D(f) = ∅ or f(x) = 0 a.e. Indeed, if D(f) = ∅,
then it is clear that Dmin(f) = ∅. Conversely, assume that Dmin(f) �= ∅ (i.e. Q0 ∈ D(f)) and that there exists
x ∈ Q0 such that f(x) > 0. Since

⋃
Q∈D(f) ∂Q is negligible for the Lebesgue measure, one can assume that

x ∈ ⋃Q∈D(f)Q. Then 0 ≤ j(f, x) < +∞ and so there exists a minimal cube Q ∈ D(f) containing x. Then
Q ∈ Dmin(f). Indeed, if Q′ ∈ D(f) and Q′ � Q, then A(Q) ⊂ D(f) and there exists Q′′ ∈ A(Q) such that
Q′′ � Q and x ∈ Q′′ which is a contradiction.

We are now able to define two approximations of f which are useful for our problem. The first is a dyadic
approximation of f by an atomic measure,

Λεf =

{∑
Q∈Dmin(f) SQ if Dmin(f) �= ∅,

SQ0 otherwise,

where we recall the definition of SQ := θQδcQ . We also define an approximation in H1(Q0),

λεf =

⎧⎨⎩
∑

Q∈Dmin(f)

ρQ if Dmin(f) �= ∅,

ρQ0 otherwise,
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where ρQ is defined in (3.3). The following result shows in which sense λεf is an approximation of f and
justifies the term “diffusion level”. Indeed, this proposition indicates that we get a good estimate by using a
local diffusion from λεf to f , i.e. minimizing

�
Q
|∇u|2 over the constraint ∇ · u = λεf − f for all Q ∈ Dmin(f)

(see Thm. 3.4).

Proposition 3.7. There exists a constant C > 0 depending on d and ρ such that for all f ∈ L2
+(Q0),

dα
ε (λεf, f) + dα(Λεf, f) ≤ C εγ2‖f‖2

L2(Q0).

More precisely, if supp ρQ0 ⊂ Q0, there exists u ∈ H1
0 (Q0) such that ∇ · u = f − λεf as well as

Mα
ε (u) ≤ C εγ2‖f‖2

L2 and ‖u‖L1 ≤ C diam(Q0)‖f‖L1.

If supp ρQ0 � Q0 the same estimates hold but the condition u ∈ H1
0 (Q0) has to be replaced by u ∈ H1

0 (Q̃0),
where Q̃0 is a cube containing Q0 and supp ρQ0 .

Proof. First assume that supp ρQ0 ⊂ Q0 i.e. Q0 ∈ D(f). If Dmin(f) = ∅, then f(x) = 0 a.e. and the proposition
is trivial. Hence, one can assume that Dmin(f) �= ∅. Then f is supported on D(f) and Dmin(f) =: {Qi}i∈I is a
finite or countable partition of D(f). Denote for simplicity Di := diam(Qi), fi := f1Qi (restriction of f to Qi),
θi := θQi and ρi := ρQi = θi ρRi for i ∈ I, where

Ri := RQi = εγθ
1−γ
d−1
i .

Since Qi is minimal in D(f), we deduce that, for some constants C,C′ > 0,

C′Ri ≤ Di ≤ CRi. (3.6)

Indeed, the first inequality follows from the fact that suppρi ⊂ Qi and diam(supp ρi) = cRi for some constant
c depending on ρ. For the second inequality observe that, since Qi is minimal, there exists Q ∈ C(Qi) such
that supp ρQ � Q and hence RQ ≥ c′ diam(Q) = c′/2Di for some constant c′ > 0 depending on ρ. Since
θQ ≤ θQi = θi, one has RQ ≤ Ri and the second inequality follows.

Now, Theorem 3.4 allows us to find ui ∈ H1
0 (Qi) such that ∇ · ui = gi, ‖ui‖H1(Qi) ≤ C ‖gi‖L2(Qi) and

‖ui‖L1(Qi) ≤ C Di‖gi‖L1(Qi), where gi := fi − ρi. Since ui vanishes at ∂Qi, one can extend ui by 0 out of Qi to
get a function in H1(Rd): for the sake of simplicity, this function is still denoted by ui. Consequently, u =

∑
i ui

belongs to H1
0 (Q0) and ∇ · u = f − λεf . It remains to estimate Mα

ε (u) and ‖u‖L1(Q0). First of all,

‖u‖L1(Q0) ≤
∑

i

‖ui‖L1(Qi) ≤ C diam(Q0)
∑

i

‖gi‖L1(Qi)

and the inequality ‖gi‖L1(Qi) ≤ 2θi leads to ‖u‖L1 ≤ 2C diam(Q0)‖f‖L1 as required.
Let us compute the L2-norm of ρi:

‖ρi‖2
L2(Qi)

= θ2i ‖ρRi‖2
L2(Qi)

= θ2iR
−d
i ‖ρ‖2

L2(Qi)
= Cθ2iR

−d
i .

By a Cauchy–Schwarz inequality,

θ2i =
(�

Qi

fi

)2

≤ |Qi|‖fi‖2
L2(Qi)

= Dd
i ‖fi‖2

L2(Qi)
(3.7)

which, together with (3.6), gives

‖ρi‖2
L2(Qi)

≤ C Rd
i ‖fi‖2

L2(Qi)
R−d

i = C ‖fi‖2
L2(Qi)

.
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Since ‖ui‖H1(Qi) ≤ C‖fi − ρi‖L2(Qi), we get ‖ui‖H1(Qi) ≤ C‖fi‖L2(Qi). Now, because the energy Mα
ε is local

and since each ui is supported on Qi, one has

Mα
ε (u) =

n∑
i=1

Mα
ε (ui) =

n∑
i=1

(
ε−γ1

�
Qi

|ui|β + εγ2

�
Qi

|∇ui|2
)

By construction of ui, one has
�

Qi

|∇ui|2 ≤ ‖ui‖2
H1(Qi)

≤ C‖gi‖2
L2(Qi)

≤ 2C
(
‖ρi‖2

L2(Qi)
+ ‖fi‖2

L2(Qi)

)
≤ C′‖fi‖2

L2(Qi)
.

It remains to estimate the first term. First of all, we use the Hölder and Poincaré inequalities as follows:
�

Qi

|ui|β ≤ |Qi|1−β/2

(�
Qi

|ui|2
)β/2

≤ D
d−dβ/2
i

(
D2

i

�
Qi

|∇ui|2
)β/2

≤ Dν
i ‖fi‖β

L2(Qi)
,

where ν = β + d− dβ
2 . In view of (3.7) and (3.6), we have

Di ≤ CRi = Cεγθ
1−γ
d−1
i ≤ Cεγ(D

d
2
i ‖fi‖L2(Qi))

1−γ
d−1

and, introducing δ := 1 − d(1−γ)
2(d−1) ,

Dδ
i ≤ Cεγ‖fi‖

1−γ
d−1

L2 . (3.8)

Finally, since −γ1 + γν
δ = γ2 and β + ν(1−γ)

δ(d−1) = 2, we get

ε−γ1

�
Qi

|ui|β ≤ Cε−γ1+γν
δ ‖fi‖β+ ν(1−γ)

δ(d−1)

L2(Qi)
= Cεγ2‖fi‖2

L2(Qi)
.

The proof of the second inequality is quite similar but easier:

dα(Λεf, f) ≤
n∑

i=1

dα(SQi , fi) ≤
n∑

i=1

θα
i Di.

Once again, applying (3.7) and then (3.8), we get

dα(Λεf, f) ≤ C εγ2‖f‖2
L2.

In the case where supp ρQ0 � Q0, i.e. RQ0 := εγθ
1−γ
d−1
Q ≥ CL (L being the side length of Q0 and C a constant

depending on ρ), the proof is the same. Indeed, we just apply Theorem 3.4 to g = f − ρQ0 and the same
computations as above lead to the same result. �

3.2. Proof of Theorem 3.2

Let Q0 = (0, L)d, L > 0 and f ∈ L2
+(Q0) with

�
Q0
f = θ. In the case where supp ρQ0 � Q0, Theorem 3.2 is

a particular case of Proposition 3.7. Consequently, one can assume that supp ρQ0 ⊂ Q0 i.e. Q0 ∈ D(f). In the
case where D(f) = {Q0}, one has λεf = ρQ0 and Theorem 3.2 is a consequence of Proposition 3.7 as well. For
this reason, one can assume that C(Q0) ⊂ D(f). Moreover, up to replacing f by f + η for some small constant
η > 0 and passing to the limit when η → 0, one can assume that D(f) is finite. Indeed, in view of (3.5), D(f+η)
is finite since for all Q ∈ D(f + η), diam(Q) ≥ Cη > 0.

Our aim is to prove that there exists C > 0 only depending on α, d and ρ such that

dα
ε (f, ρQ0) ≤ C

{
θαL+ εγ2‖f‖2

L2(Q0)

}
.
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Q1 Q2

Q3 Q4

Q

ZQ1

ZQ2

ZQ3 ZQ4

ρQ1

ρQ2

ρQ3 ρQ4

Figure 1. A square Q and its 4 dyadic children Qi with the associated vector field ZQ.

The idea of the proof is to approximate the vector field X =
∑
XQ of the previous section (see (3.4)) by a

vector field in H1 using the kernel ρ. In this part, we will use the notations of the previous section: in particular,
the definition of D(f) in Definition 3.6, the measures XQ in (3.4) and X =

∑
Q∈D(f)XQ.

Since C(Q0) ⊂ D(f), we can construct the regularized vector field Y by the formula

Y =
∑

Q∈D(f)
Q	=Q0

ZQ,

where, for all Q ∈ D(f) such that Q �= Q0 (see Fig. 1),

ZQ := θQ nQ ρQ ∗ H1
|[cF(Q),cQ], (3.9)

nQ being the normalized vector nQ = cQ−cF(Q)

‖cQ−cF(Q)‖ and ρQ being defined in (3.2).
By definition of the kernel ρQ, one has

Mα
ε (ZQ) ≤ Cθα

Q diam(Q). (3.10)

This a consequence of the choice of RQ as a minimizer in (1.2). Indeed, for the sake of simplicity, let us assume
that supp ρ is the unit ball centered at the origin. Then ZQ is concentrated on a strip of width RQ around the
segment S = [cF (Q), cQ], i.e.

suppZQ ⊂ S̃ := {x ∈ Rd : dist(x, S) ≤ RQ} (3.11)

and ZQ satisfies the two estimates

‖ZQ‖L∞ ≤ CθQR
1−d
Q and ‖∇ZQ‖L∞ ≤ CθQR

−d
Q . (3.12)
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Then, the same computations as in (1.2) and the fact that RQ ≤ diam(Q) give (3.10).
Let us estimate the L1 norm of Y which has to be controlled by θ as stated in Theorem 3.2:

‖Y ‖L1(Q0) ≤
∑
j≥1

∑
Q∈D(f)∩Qj

‖ZQ‖L1(S̃) ≤
∑
j≥1

∑
Q∈D(f)∩Qj

θQ L 2−j = L θ.

Note that
∇ · Y = ρQ0 − h− λεf,

where h stands for the extra divergence. h can be written as

h =
∑

Q∈Dfr.

⎧⎨⎩ρQ −
∑

Q′∈C(Q)

ρQ′,Q

⎫⎬⎭ ,

where ρQ′,Q represents the kernel ρQ′ translated at cQ, center of Q, and, for the sake of simplicity, the set of
all cubes Q such that C(Q) ⊂ D(f) has been denoted by Dfr.:

Dfr. := {Q ∈ D(f) : C(Q) ⊂ D(f)}.
Since ∇ · Y = ρQ0 − f + (f − λεf) − h �= ρQ0 − f , we have to slightly modify the vector field Y . This will be
done replacing Y by

V = Y + V1 + V2,

where V1, V2 ∈ H1(Q0,Rd) are constructed so that ∇ · V1 = h and ∇ · V2 = λεf − f . The construction of
V1 and the estimate of Mα

ε (V1), ‖V1‖L1 will be the object of the first step. In the second step we prove that
Mα

ε (Y ) ≤ CθαL. Then, Proposition 3.7 allows us to construct V2 ∈ H1 such that ∇ · V2 = λεf − f with an
estimate on Mα

ε (V2) and ‖V2‖L1.

3.2.1. First step: Correction at the nodes, construction of V1

For all Q ∈ Dfr., let BQ be the support of ρQ. Since supp ρ has been supposed to be the unit ball centered
at the origin and ρQ(x) = θQρRQ(x − cQ), we have BQ = B(cQ, RQ) ⊂ Q. Let us define the extra divergence
corresponding to this node,

hQ = ρQ −
∑

Q′∈C(Q)

ρQ′,Q.

For each Q ∈ Dfr., thanks to Theorem 3.4, we can find VQ ∈ H1
0 (BQ) such that ∇·VQ = hQ and ‖VQ‖H1(BQ) ≤

C ‖hQ‖L2(BQ). But in this case, because hQ is radial up to a translation, we essentialy use the proposition in
dimension 1 which is quite easy and gives better estimates. Let us give more details on this point:

Lemma 3.8. Let d ≥ 1 and B = B(0, R) ⊂ Rd be a ball centered at the origin. There exists a constant C > 0
only depending on d such that the following holds.

Let F ∈ L∞(B) be a radial function: i.e. for a.e. x ∈ B, F (x) = f(|x|) for some f ∈ L∞(0, R). Assume that�
B F = 0. Then, there exists a radial function V ∈ W 1,∞

0 (B,Rd) such that ∇ · V = F and

‖∇V ‖L∞(Q0) ≤ C ‖F‖L∞(Q0).

Proof. First of all, by a scaling argument, one can assume that R = 1. The vector field V : B → Rd defined by
V (x) = v(|x|)x for some Lipschitz function v : R+ → R satisfies

∇ · V (x) = r1−d[rdv(r)]′

in the distributional sense. Thus, if v is chosen as

v(r) = r−d

� r

0

f(s)sd−1 ds,
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then V solves the following problem: {∇ · V (x) = F (x) on B,

V (x) = 0 on ∂B.

Moreover, for a.e. x ∈ B, we have ∇V (x) = v′(|x|)x⊗ x
|x| +v(|x|) Id, where Id is the matrix identity. In particular,

we get ‖∇V ‖L∞ ≤ C(‖rv′(r)‖L∞ +‖v‖L∞). The second term in the RHS on the preceding equation is estimated
by ‖v‖L∞ ≤ r1−d‖f‖L∞rd−1 = ‖f‖L∞. For the first term, one has v′(r) = −dr−d−1

� r

0 f(s)sd−1 ds + r−1f(r)
and so ‖rv′(r)‖L∞ ≤ C‖f‖L∞ . Thus, ‖∇V ‖L∞ ≤ C‖F‖L∞ . �

Applying Lemma 3.8 to F = hQ and R = RQ gives VQ ∈ H1
0 (BQ) such that ∇ · VQ = hQ and

‖∇VQ‖L∞(BQ) ≤ CθQR
−d
Q ‖∇VQ‖L1(BQ) ≤ |BQ|‖∇VQ‖L∞(BQ) ≤ CθQ. (3.13)

Moreover, since VQ is supported on BQ = B(cQ, RQ), we deduce that ‖VQ‖L∞(BQ) ≤ RQ‖∇VQ‖L∞(BQ) ≤
CθQR

1−d
Q so that VQ satisfies the same estimate as (3.12). In particular, we get Mα

ε (VQ) ≤ Cθα
Q diam(Q). Now

define
V1 =

∑
Q∈Dfr.

VQ.

Since ‖VQ‖L1(BQ) ≤ CRQ‖∇VQ‖L1(BQ) ≤ C diam(Q)θQ, Lemma 3.5 implies

‖V1‖L1(Q0) ≤ C diam(Q0)θQ0 ≤ C′L‖f‖L1(Q0)

as required. Then, using the definition of Mα
ε in (2.4) and the subadditivity of x→ |x|β , one gets

Mα
ε (V1) ≤ ε−γ1

∑
Q∈Dfr.

�
|VQ|β + 2 εγ2

� ∑
Q,Q′∈Dfr. : Q′⊂Q

|∇VQ′ : ∇VQ| , (3.14)

where A : B stands for the euclidian product of two matrices A = (Aij)1≤i,j≤d, B = (Bij)1≤i,j≤d of size
d × d: A : B :=

∑
ij AijBij . For the estimate of |∇V1|2, we have used the identity |∇V1|2 = ∇V1 : ∇V1 =∑

Q,Q′∈Dfath
∇VQ : ∇VQ′ . Since VQ is supported on Q, ∇VQ : ∇VQ′ vanishes except when Q ∩ Q′ �= ∅, i.e.

Q ⊂ Q′ or Q′ ⊂ Q, thus justifying the factor 2 and the inclusion Q′ ⊂ Q in (3.14).
We need to estimate the two terms in (3.14). Since Mα

ε (VQ) ≤ Cθα
Q diam(Q), thanks to Lemma 3.5, this

term is less or equal than CθαL as required. Using the inequality ‖fg‖L1 ≤ ‖f‖L∞‖g‖L1, one can estimate the
second term of (3.14) by

2 εγ2
∑

Q,Q′∈Dfr. : Q′⊂Q

‖∇VQ‖L∞(BQ)‖∇VBQ′ ‖L1(BQ′ ).

Note that it would be more natural to use a Cauchy–Schwarz inequality (L2-L2) at this step but, using it, we
were not able to deduce the estimate by θαL. Once again, since RQ′ ≤ diam(Q′), we have

‖∇VQ′‖L1(BQ′ ) ≤ CθQ′ ≤ diam(Q′)R−1
Q′ θQ′ = C diam(Q′)ε−γθ

1− 1−γ
d−1

Q′ . (3.15)

Since 1 − 1
d < 1 − 1−γ

d−1 < 1, Lemma 3.5 gives∑
Q′∈Dfr. : Q′⊂Q

‖∇VQ′‖L1(BQ′ ) ≤ Cε−γ diam(Q)θ
1− 1−γ

d−1
Q .

Now, elementary computations on exponents α, γ2, γ and Lemma 3.5 give successively γ2 = (d + 1)γ, α =
2 − (d+ 1)1−γ

d−1 and

Cεγ2
∑

Q∈Dfr.

diam(Q)θQR
−d
Q ε−γθ

1− 1−γ
d−1

Q = C
∑

Q∈Dfr.

diam(Q)θα
Q ≤ CθαL.

Finally, we have obtained the desired inequality: Mα
ε (V1) ≤ C θαL.
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3.2.2. Second step: Estimate of the energy of Y on the node set

In order to get estimates on Y , it is convenient to divide Q0 into 2 domains: the node set N and its comple-
mentary N c, where

N :=
⋃

Q∈D(f)

B(cQ, cRQ)

and c > 0 is a constant which will be chosen later. By analogy with V1, one can write Y|N as a sum of vector
fields YQ, where

YQ =

⎧⎨⎩1B(cQ,cRQ)

(
ZQ −∑Q′∈C(Q) ZQ′

)
if Q ∈ Dfr. (see (3.9)),

1B(cQ,cRQ)ZQ otherwise.

Now, from (3.12), we deduce the estimates (3.13) satisfied by VQ are also true for YQ and consequently, we
obtain Mα

ε (Y,N) ≤ C θαL as well (see (2.4) for the definition of Mα
ε (Y,N)).

3.2.3. Third step: Estimate of the energy of Y out of the node set

Reminding that
Y =

∑
Q∈D(f)
Q	=Q0

ZQ,

considering that Mα
ε is not subadditive (due to the term |∇Y |2), the first thing to do is to understand to

which extent the supports of ZQ can intersect. To this aim, let us note that if the constant c > 0 in (3.2.2)
is chosen equal to

√
d or more, due to (3.11), then each ZQ restricted to N c is supported on Q (see Fig. 1):

suppZQ ∩N c ⊂ Q. In particular, this implies that

suppZQ ∩ suppZQ′ ∩N c �= ∅ =⇒ Q ∩Q′ �= ∅ =⇒ Q ⊂ Q′ or Q′ ⊂ Q.

For this reason, Mα
ε (Y,N c) can be estimated exactly in the same way as we did for the estimate of Mα

ε (V1)
in (3.14). Moreover, the Young inequality, ‖f ∗ μ‖L1 ≤ ‖f‖L1|μ|(Rd), valid for all f ∈ L1(Rd), μ ∈ M(Rd), and
the definition of ZQ in (3.9), easily give

‖∇ZQ′‖L1(Q′) ≤ CθQ′R−1
Q′ diam(Q′).

Since this estimate (which is the same as (3.15)) and (3.10) are the only ones we have used in the first step for
the estimate of Mα

ε (V1), we get Mα
ε (Y,N c) ≤ CθαL as well.

3.2.4. End of the proof of Theorem 3.2

Finally, the vector field V = Y + V1 + V2, where V2 is given by Proposition 3.7, satisfies ∇ · V = ρQ0 − f ,

Mα
ε (V ) ≤ 3{Mα

ε (Y ) +Mα
ε (V1) +Mα

ε (V2)} ≤ C{θαL+ εγ2‖f‖2
L2}

and
‖V ‖L1 ≤ ‖Y ‖L1 + ‖V1‖L1 + ‖V2‖L1 ≤ CL‖f‖L1.

4. Estimate between dα
ε and the Wasserstein distance

Our aim is to prove an estimate on the pseudo-distances dα
ε similar to Proposition 2.2. Because of the Dirichlet

term in the definition of Mα
ε , dα

ε cannot be estimated only by the Wasserstein distance W1 but one has to add
a term involving ‖f+ − f−‖L2. Using Theorem 3.2, we are going to prove the following theorem.



324 A. MONTEIL

Theorem 4.1. Let Q = (0, L)d be a a cube of side length L > 0 in Rd and ε ∈ (0, 1). There exists C > 0 only
depending on α, d and L such that for all f+, f− ∈ L2

+(Q) with
�

Q f
+ =

�
Q f

− = 1, there exists u ∈ H1(Rd)
compactly supported on the set Qε := {x ∈ Rd : dist(x,Q) ≤ Cεγ} satisfying ∇ · u = f := f+ − f− as well as

dα
ε (f+, f−) ≤Mα

ε (u) ≤ C H
(
W

1−d(1−α)
1 (f+, f−) + εγ2‖f‖2

L2

)
and ‖u‖L1 ≤ C, (4.1)

where H : R+ −→ R+ is the scalar function defined by H(x) = x+ xλ for some λ ∈ (0, 1) depending on α, and
W1 stands for the Wasserstein distance associated to the Monge cost (x, y) → |x− y|.

Remark 4.2. One can replace the condition
�
f± = 1 by

�
f± = θ ≥ 0. Then, the constant C will also depend

on θ: C = C(θ, α, d, L). However, we can easily check that C is locally bounded with respect to θ, i.e. it is
uniform for bounded values of θ.

Remark 4.3. It is tempting to think that estimate (4.1) also holds when H(x) = x which would be the natural
choice. Indeed, if ε is taken very small, since Mα

ε Γ -converge to Mα and because of Proposition 2.2, one can
expect that dα

ε (f+, f−) � dα(f+, f−) ≤ CW1(f+, f−)1−d(1−α). On the contrary, when ε is very large, because
of Theorem 3.4, one can expect that dα

ε (f+, f−) � εγ2‖f‖2
L2. However, for technical reasons, due to the lack of

subadditivity of the second term (Dirichlet energy) in the definition of Mα
ε , we were not able to reach the case

H(x) = x.

Proof. Our method to prove this proposition is an adaptation of that of Morel and Santambrogio in [17] (see
also Prop. 6.16, p. 64 in [3]).

Up to replacing (f+, f−) by (f+ − f+ ∧ f−, f− − f+ ∧ f−), one can assume that f+ ∧ f− = 0, where for all
x ∈ Q, (f− ∧ f+)(x) = inf(f−(x), f+(x)). Indeed, it is sufficient to note that, if μ± are two measures with the
same mass and ν is a positive measure on Q then we have W1(μ+ + ν, μ− + ν) = W1(μ+, μ−).

For the sake of simplicity, in all the proof, C > 0 will denote some constant only depending on α, d and L
and big enough so that all the inequalities below are satisfied.

Let f+, f− ∈ L2
+(Q) be two densities on the cube Q = (0, L)d such that

�
Q
f± = 1. Chose an optimal

transport planΠ between f+ and f− for the Monge–Kantorovich problem associated to the cost c(x, y) = |x−y|.
Hence Π satisfies the constraint P±

#Π = f±(x) dx where P+ (resp. P−) is the projection on the first variable
x (resp. the second variable y) and dx is the Lebesgue measure. Moreover we have

�
Q

|x− y| dΠ(x, y) = W1(f+, f−) =: W. (4.2)

So as to use the local estimate of the previous part, let us classify the set of ordered pairs (x, y) with respect to
the distance |x− y|. More precisely, for j ≥ 0, set

Xj = {(x, y) ∈ Q2 : dj ≤ |x− y| < dj+1},

where dj = (2j −1)w and w ∈ (0, 1) will be chosen later. In particular, d0 = 0 and Xj is empty if dj > diam(Q),

i.e. j > J :=
⌊
ln2

(
diam(Q)

w + 1
)⌋

. For this reason, one can restrict to integers j ≤ J ≤ C(1 + | lnw|): we will
assume that dj ≤ diam(Q). Moreover, (4.2) immediately gives the estimate∑

j

djθj ≤W , where θj = Π(Xj). (4.3)

Next, for each integer j ∈ [1, J ], consider a uniform partition of Q into cubes Qjk, k = 1, . . . ,Kj, with side
length dj+1. It is easy to estimate Kj by

Kj ≤ Cd−d
j+1. (4.4)
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For j ≥ 0, set
Πj = Π|Xj

; θj = Π(Xj); f±
j = P±

#Πj and fj = f+
j − f−

j ,

Clearly, one has
Π =

∑
j

Πj and f± =
∑

j

f±
j .

In the same way, for j ≥ 0 and 1 ≤ k ≤ Kj, set

Πjk = Π|Xj ∩ (Qjk×Q) ; θjk = Πjk(Q2) and f±
jk = P±

# Πjk

so that
Πj =

∑
k

Πjk; θj =
∑

k

θjk and f±
j =

∑
k

f±
jk.

Πjk represents the part of the transport plan Π corresponding to points in Qjk which are sent at a distance
comparable to dj+1. In particular, f+

jk is supported on Qjk and f−
jk is supported on the cube Q̃jk with the same

center but twice the side length of Qjk. As we did in (3.3), let us define ρjk the kernel associated to Qjk by

ρjk(x) =

{
(Rjk)−dρ(Rjk(x− cjk)) if θjk �= 0,

0 otherwise,

where ρ ∈ C1
c (Rd,R+), Rjk = εγθ

1−γ
d−1
jk and cjk is the center of Qjk. For the sake of simplicity, let us assume that

supp ρ is the unit ball centered at the origin. Let Bjk := B(cjk, rjk) be the smallest ball containing Q̃jk and
supp ρjk = B(cjk, Rjk): i.e. rjk = max{Rjk, diam(Qjk)}. Thanks to Theorem 3.2, it is possible to find a vector
field ujk ∈ H1

0 (Bjk) satisfying ∇ · ujk = fjk := f+
jk − f−

jk , ‖ujk‖L1(Bjk) ≤ Cθjk and

Mjk := Mα
ε (ujk) ≤ C {θα

jkdj+1 + εγ2‖fjk‖2
L2(Bjk)}. (4.5)

Moreover, if Rjk ≥ dj+1/2, the first term in the right-hand side of (4.5) can be omitted since one has

θα
jkdj+1 ≤ Cεγ2‖fjk‖2

L2 . (4.6)

Indeed, in this case, writing θ := θjk and R := Rjk, one has θαdj+1 ≤ 2θαR and, using 2 − α = (1−γ)(d+1)
d−1 ,

we get θαR = [θα−2R1+d][θ2R−d] = εγ2R−dθ2. Then, (4.6) follows from the fact that, by the Cauchy–Schwarz
inequality, we have

R−dθ2 ≤ R−d|Bjk|
�

Bjk

(fjk)2 ≤ C

�
Bjk

(fjk)2.

Now, let us define the vector field u =
∑
j,k

ujk, which satisfies

∇ · u =
∑
j,k

∇ · ujk =
∑
j,k

fjk = f := f+ − f−.

First note that
‖u‖L1(Q) ≤ C

∑
‖ujk‖L1(Bjk) ≤ 2C

∑
θjk = 2C.

In order estimate the energy of u, a similar development of |∑∇ujk|2 as in (3.14) and the Cauchy–Schwarz
inequality give

Mα
ε (u) ≤ J

J∑
j=1

Mα
ε

⎛⎝Kj∑
k=1

ujk

⎞⎠ ≤ C J
∑

j

⎧⎨⎩∑
k

Mjk +
∑

(k,l)∈Ij

√
Mjk

√
Mjl

⎫⎬⎭ , (4.7)

where Ij stands for the set of pairs (k, l) satisfying k �= l, θjk ≥ θjl and Bjk ∩Bjl �= ∅. We have to estimate the
two terms in the right-hand side of (4.7).
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4.1. Estimate of the first term in (4.7)

We recall that Mjk ≤ θα
jkdj+1 + εγ2‖fjk‖2

L2(Bjk). For the second term, note that∑
j,k ‖fjk‖2

L2 ≤ ‖f‖2
L2. (4.8)

Indeed, since f+ ∧f− = 0, for all j, k, one has f+
jk ∧f−

jk = 0 as well. In particular, ‖fjk‖2
L2(Bjk) = ‖f+

jk‖2
L2(Bjk) +

‖f−
jk‖2

L2(Bjk) , ‖f‖2
L2(Q) = ‖f+‖2

L2(Q) + ‖f−‖2
L2(Q) and (4.8) follows from the super-additivity of the power

function x→ |x|p for p ≥ 1: |x+ y|p ≥ |x|p + |y|p for x, y ∈ R whenever xy ≥ 0.
For the first term, applying successively the Jensen inequality with power α ∈ (0, 1), the Hölder inequality,

(4.3) and the fact that Kjdj+1 = Cd1−d
j+1 (see (4.4)), one gets∑

j,k

θα
jkdj+1 ≤

∑
j

dj+1Kj[θj/Kj]α =
∑

j

[dj+1θj ]α[dj+1Kj ]1−α

≤
⎛⎝∑

j

θj dj+1

⎞⎠α⎛⎝∑
j

dj+1Kj

⎞⎠1−α

≤ C(w +W )α

⎛⎝∑
j

[w(2j+1 − 1)]1−d

⎞⎠1−α

≤ C′(wα +Wα)w(1−d)(1−α)

since θ0d1 ≤ d1 = w (we cannot estimate this term by W because d0 = 0) and, because of (4.3),
∑

j≥1 θj dj+1 ≤
3
∑

j≥1 θj dj ≤ 3W . Finally, we get∑
j,k Mjk ≤ C

{
w1−d(1−α) +Wαw−(d−1)(1−α) + εγ2‖f‖2

L2

}
. (4.9)

4.2. Estimate of the second term in (4.7)

Before following these computations, we need to understand what the condition “Bjk ∩Bjl �= ∅ ” is meaning.
Assume that (k, l) ∈ Ij . From Qjk ∩ Qjl = ∅, we see that either supp ρjk or supp ρj

l is not included in Qjk

(resp. Qjl). Since, by definition of Ij , we have θjk ≥ θjl, this implies that Rjk ≥ dj+1/2. Therefore, as we
noticed after formula (4.5),

Mjk ≤ εγ2‖fjk‖2
L2(Bjk)

and (4.6) also implies that
θα

jldj+1 ≤ θα
jkdj+1 ≤ Cεγ2‖fjk‖2

L2(Bjk).

Now, (4.5), the subadditivity of the square root function, the preceding inequality, (4.8) and Cauchy–Schwarz
inequality give in turn∑

(k,l)∈Ij

√
Mjk

√
Mjl ≤ C

∑
(k,l)∈Ij

√
εγ2‖fjk‖2

2

(√
εγ2‖fjl‖2

2 +
√
θα

jldj+1

)
≤ Cεγ2

∑
(k,l)∈Ij

‖fjk‖2
2 + ‖fjk‖2‖fjl‖2

≤ Cεγ2

⎧⎨⎩Kj‖fj‖2
L2(Q) +

√∑
k,l

‖fjk‖2
2

√∑
k,l

‖fjk‖2
2

⎫⎬⎭
≤ 2Cεγ2Kj‖fj‖2

L2(Q).
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From Kj ≤ d−d
j+1 ≤ 2−djw−d and ‖fj‖2

L2(Q) ≤ ‖f‖2
L2(Q), we obtain in the end that∑

j

∑
(k,l)∈Ij

√
Mjk

√
Mjl ≤ Cw−dεγ2‖f‖2

L2. (4.10)

4.3. End of the proof

Let F = εγ2‖f‖2
L2. We remind the definition of W = W1(f+, f−). One can assume that f− �= f+ so that

F,W > 0. Now, (4.7), (4.9), (4.10) and the fact that J ≤ C(1 + lnw) yield

Mα
ε (u) ≤ C(1 + | lnw|){wν +Wαwν−α + w−dF

}
,

where ν := 1− d(1− α) ∈ (0, 1) and so α− ν = −(d− 1)(1− α) < 0. Let us fix some δ ∈ (0, 1) small enough so
that 0 < ν ± δ < 1 and ν − α ± δ < 0. For some constant c depending on δ, one has 1 + | lnw| ≤ c(wδ + w−δ)
and so

Mα
ε (u) ≤ C

{
wν±δ +Wαwν−α±δ + w−d±δF

}
,

where the sum is taken over the values of ±1 (+1 or −1) in the right-hand side. Then, we make the choice
w = W +Fλ > 0 for some λ = λ(α, d) > 0 which will be fixed later. Note that all the estimates above are valid
only if w < 1. However, if W + Fλ ≥ 1 then the right-hand side of (4.1) is greater than some positive constant
and (4.1) easily follows from Theorem 3.2 since H(x) ≥ x. Thus, one can assume that w ∈ (0, 1).

Since 0 < ν ± δ < 1, we get wν±δ ≤ W ν±δ + Fλ(ν±δ) and, because −d ± δ < 0, ν − α ± δ < 0, we have
wν−α±δ ≤W ν−α±δ and w−d±δ ≤ Fλ(−d±δ) which gives

Mα
ε (u) ≤ C

{
W ν±δ + Fλ(ν±δ) +W ν±δ + F 1+λ(−d±δ)

}
.

We fix λ > 0 small enough so that 1 + λ(−d ± δ) > 0: in this way, all the exponents in the preceding
formula are positive. Finally, (4.1) follows from the fact that we have W , F ≤ 1 as a consequence of W ,
F ≤W 1−d(1−α) + F . �

Remark 4.4. Since min{wν + w−dF : w ∈ (0, 1)} = cF
1

d+ν and 1
d+ν < 1, one cannot obtain an estimate of

the form Mα
ε (u) ≤ C(W + F ) as expected. However, one could improve a bit (4.1) by a better estimate of the

number of indices l such that (k, l) ∈ Ij .

5. A Γ -convergence result

Let Ω ⊂ R2 be a bounded open set and μ = μ+ − μ− be a finite measure, where μ± are two probability
measures compactly supported on Ω. We recall the definition of the set

Mdiv(Ω) =
{
u : Ω → R2 : u and ∇ · u are finite measures on Ω

}
which is endowed with the topology of weak star convergence on vector measures and their divergence. As weak
star topology is never metrizable in infinite dimensional Banach spaces, the space Mdiv(Ω) is not metrizable.
Indeed, assume that X is some infinite dimensional Banach space such that X ′ is metrizable. In particular X ′

admits a countable neighborhood basis (Vn)n≥1 which one can assume to be of the form

Vn = {ϕ : |〈ϕ ;xi〉| < εn for i = 1, . . . , n}

for some linearly independent family of vectors (xi)i≥1 ⊂ X and εn > 0. Then the Hahn–Banach Theorem
easily provides a sequence (ϕn)n≥1 satisfying ϕn(xi) = 0 for all i ≤ n ∈ N∗ and ‖ϕn‖X′ = n. In particular
the sequence (ϕn)n weakly converges to 0 as n→ ∞ which is a contradiction with the fact that (ϕn)n is norm
unbounded.
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However, every bounded subsets of the dual space of a separable Banach space are metrizable for the weak
star topology. In particular, for the natural norm ‖u‖Mdiv(Ω) = |∇ · u|(Ω) + |u|(Ω) given by the total variation
of u and its divergence, we know that all bounded subsets of Mdiv(Ω) are metrizable: for all M > 0, there
exists a metric dM for the weak star convergence of u and ∇ · u on the set

MM (Ω) = {u ∈ Mdiv(Ω) : |u|(Ω) + |∇ · u|(Ω) ≤M}.
In [18] the Γ -convergence of the functional sequence Mα

ε to Mα was proved. Our aim is to prove that this
property remains true when adding a divergence constraint. Since, for u ∈ H1(Ω), one has ∇ · u ∈ L2, one
cannot prescribe ∇ · u = μ if μ is not in L2. For this reason, we first have to define a regularization of μ. Let
(fε)ε>0 ⊂ L2 be a sequence of L2 functions weakly converging to μ as measures and satisfying

�
Ω

fε(x) dx = 0 and εγ2‖fε‖2
L2 −→

ε→0
0. (5.1)

This choice is going to be useful for the proof of Theorem 1.1. For example, we can define fε as

fε := ρε ∗ μ,
where ρε(x) = ε−2γρ(ε−γx) for some compactly supported ρ ∈ C1(Rd,R+) such that

�
Ω
ρ = 1 and γ is still

defined as γ = γ2
d+1 = α+1

3 . Now, let us define the functionals M
α

ε (resp M
α
) adding a divergence constraint on

u ∈ Mdiv(Ω):

M
α
(u) =

{
Mα(u) if ∇ · u = μ,

+∞ otherwise,

M
α

ε (u) =

{
Mα

ε (u) if ∇ · u = fε,

+∞ otherwise.

The main result of this section is Theorem 1.1:

Theorem 5.1. There exists a constant c0 such that the functional sequence (M
α

ε )ε>0 Γ -converges to c0M
α

as
ε→ 0. Moreover c0 is given by the minimum value for the minimization problem (5.2).

We first remind how to build a recovery sequence in the case of a mass θ flowing on a single segment S, i.e.
u = θH1

|S . To this aim, we need to find a structure close to u which is almost optimal for Mα
ε . We proceed by

a slicing argument:
Let u be any vector measure in Mdiv(Ω). Take some ν ∈ S1 := {x ∈ R2 : |x| = 1} which has to be thought

as the tangent vector to S in the case where u = θH1
|S . Let us consider v = [(u ·ν)+]|ν⊥ (restriction on ν⊥ of the

positive part of u · ν) the flux of u across the hyperplane ν⊥ = {x ∈ R2 : x · ν = 0} and assume that
�
v = θ.

Then Mα
ε (u) can be controlled from below by integrals on subintervals of Rν of the following Cahn–Hilliard

type energy (see [10] for physical motivations):

F β
ε (v) = ε−γ1

�
R

vβ + εγ2

�
R

|∇v|2.

This kind of models for droplets equilibrium was studied by Bouchitté et al. in [6] for instance (see also [5]). F β
ε (v)

can be renormalized through the formula: v(x) = θR−d
θ,εw(R−1

θ,εx), where Rθ,ε = εγθ
1−γ
d−1 . Then, the constraint�

v = θ turns into
�
w = 1 and F β

ε (v) = θαF β(w), where

F β(w) =
{�

R

wβ +
�

R

|∇w|2
}
.
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Then, the existence of an optimal profile w is given by

Lemma 5.2. There exists a profile w ∈ H1
loc(R,R

+) solution of the minimization problem

min
{�

R

wβ +
�

R

|w′|2 : w ∈ H1
loc(R,R

+) and
�

R

w = 1
}
. (5.2)

Moreover, w is compactly supported, Lipschitz continuous on R and C∞ inside its support, i.e. on the open set
{w > 0}. Last of all, it is possible to choose w such that it is even and non-increasing on R+.

Remark 5.3. Although we restrict to the two dimensional case, some works by Bouchitté et al. (see [13])
suggest that Lemma 5.2 and Theorem 1.1 could be generalized in every dimension as well. However, the aim
of this paper is to use the tools of Section 4 so as to establish the Γ -lim sup property for functionals M

α

ε (with
divergence constraint) and, from the point of view of the complexity of the proof, this is independent of the
dimension. Since the Γ -lim inf property was only established in the 2D case in [18], we prefer to stay in this
framework. Actually, the difficulty to prove a Γ -convergence result of M

α

ε (resp. Mα
ε ) to M

α
(resp. Mα) in

every dimension would concern the Γ -lim inf part and this is not the purpose of this paper.

Remark 5.4. Note that the minimum value in (5.2) is related to the best constant in the one-dimensional

Gagliardo-Nirenberg inequality
�

R
|u| ≤ C

(�
R
|u′|2) 1−β

2+β
(�

R
|u|β) 3

2+β :

1
C

= inf

{(�
R

|u′|2
) 1−β

2+β
(�

R

uβ

) 3
2+β

: u ∈ H1
loc(R,R

+) and
�

R

u = 1

}
.

Proof. First notice that there exists a finite energy configuration, i.e. w ∈ H1(R,R) such that F β(w) < +∞. In-
deed, every compactly supported and nonnegative C1 function has finite energy. Let take a minimizing sequence,
i.e. (wn)n ⊂ H1(R) ⊂ C0(R) such that F β(wn) → cβ. One can assume that wn is even and non-increasing on R+.
Indeed if w∗ stands for the spherical rearrangement of some w ∈ H1(R,R+), then one has

�
R
|w∗|β =

�
R
|w|β

and the classical Polya–Szego Theorem states that the spherical rearrangement reduces the Dirichlet energy
of w: �

R

|(w∗)′|2 ≤
�

R

|w′|2.

In particular F β(w∗) ≤ F β(w) as announced. Since (w′
n)n is bounded in L2(R), one can assume that it weakly

converges in L2(R). Moreover, as wn ≥ 0 a.e. and
�

R
wn = 1, (wn)n is bounded in L1(R). Thanks to the

Poincaré-Wirtinger inequality, one deduces that (wn)n is bounded in H1
loc(R). Up to extraction, one can assume

that (wn)n weakly converges in H1
loc(R). Let call w ∈ H1

loc(R) the limit. In particular, (wn)n strongly converges
to w in L1

loc(R) and so w is even, nonnegative and non-increasing on R+. Moreover, the Fatou lemma and the
weak convergence of w′

n yields
F β(w) ≤ lim inf

n→∞ F β(wn) = cβ.

In order to prove that w is a global minimizer it remains to prove that w satisfies the constraint
�
w = 1.

Indeed, from the Fatou Lemma we can only deduce that
�
w ≤ 1. One has to prove the strong convergence of

wn in L1(R). Since wn converges in L1
loc, it is enough to prove that the sequence (wn) is tight. Let R > 0. For

all n ≥ 1, since wn is non increasing on [0, R], one has ‖wn‖L∞({x : |x|>R) = wn(R) and Markov’s inequality
yields wn(R) ≤ 1

2R

�
R
wn = 1

2R . Hence
�
|x|>R

wn(x) dx ≤ wn(R)1−β

�
R

wβ
n(x) dx ≤ (2R)β−1F β(wn) ≤ C

R1−β

for some constant C > 0 non depending on n which implies that (wn)n is tight since 1 − β > 0. Now, let
check the regularity of w: Lipschitz continuous and smooth inside its support. Note that we already know that
w ∈ C0,1/2(R) thanks to the Sobolev embedding H1

loc(R) ⊂ C0,1/2(R). Let check the regularity of w inside its
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support. Since w is even and non-increasing on R+, the set {x : w(x) > 0} is an interval (−R,R) for some
R > 0. Since w is a minimizer of the minimizing problem (5.2), w also satisfies the following Euler–Lagrange
equation

∀x ∈ (−R,R), −w′′(x) + βw(x)β−1 = λ, (5.3)

where λ ∈ R is the Lagrange multiplier associated to the volume constraint
�
w = 1. Note that λ = −w′′(0) +

βw(0)β−1 > 0. Indeed, since x = 0 is a global maximum of w, w′(0) = 0 and w′′(0) ≤ 0. From (5.3), one deduces
that w is smooth on (−R,R). Now, multiplying (5.3) by w′ and integrating it on [0, x] or [x, 0] yields

∀x ∈ (−R,R),
w′(x)2

2
= w(x)β − λw(x) + λw(0) − w(0)β .

Since w is bounded on R, we deduce that w is Lipschitz continuous on R. Last of all, we prove that w is
compactly supported, i.e. R < ∞. Assume by contradiction that R = ∞. Then f ∈ C∞(R), f > 0 on R and
integrating (5.3) yields

∀x ∈ R, w′(x) =
� x

0

(βw(y)β−1 − λ) dy.

Since w(x) −→
x→∞ 0 and β − 1 < 0, w(x)β−1 −→

x→∞ +∞ and the right hand side of the preceding equation goes to

+∞ as well. Thus w′(x) −→
x→∞ +∞ which is a contradiction. �

Now let wθ,ε be defined by wθ,ε(x) = θR−d
θ,εw(R−1

θ,εx) where w is the optimal profile of Lemma 5.2 (satisfying all
claimed regularity and symmetry properties) and let us introduce the kernel ρθ,ε associated to wθ,ε, given by
the following lemma

Lemma 5.5. There exists a bounded and compactly supported radial kernel ρθ,ε ∈ L∞
c (R2,R+) such that wθ,ε

is the projection of ρθ,ε on the axis (x1 = 0):

Π2

 ρθ,ε(x) dx = wθ,ε(x2) dx2,

where Π2 stands for the projection on the second variable, dx (resp. dx2) is the Lebesgue measure on R2 (resp.
R) and Π
μ stands for the pushforward of some measure μ by Π : R2 → R. Moreover, one can choose ρθ,ε of
the form ρθ,ε(x) = R−2

θ,ερ(R
−1
θ,εx) for some ρ ∈ L∞

c (R,R+).

Proof. After the renormalization ρθ,ε(x) = R−2
θ,ερ(R

−1
θ,εx), it remains to find ρ satisfying Π1


 ρ(x)dx = w(x2) dx2.
It is not very difficult to see that a radial solution is given by the formula

ρ(x) =
� ∞

|x|

−w′(s)
π
√
s2 − |x|2 ds. (5.4)

Details are left to the reader. Let justify how (5.4) implies that ρ is bounded. Since w is compactly supported,
there exists R > 0 such that w(x) = 0 for |x| > R. In particular, ρ is compactly supported on B(0, R). Then,
since w′(0) = 0 and since w′ is bounded on R and smooth around 0, one has |w′(x)| ≤ C|x| for all x ∈ R and
some C > 0. Hence, there exists a constant C > 0 such that for all x ∈ R2 such that |x| =: r ∈ [0, R),

ρ(x) =
� R

1

−w′(rs) ds
π
√
s2 − 1

≤ C

� R/r

1

rs ds√
s2 − 1

≤ C

{
R

� 2

1

s ds√
s2 − 1

+ r

� R/r

2

s ds√
s2 − 1

}

which is bounded since s→ s√
s2−1

is integrable on [1, 2] and bounded on [2,+∞). �
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As a consequence, in the case where u = θH1
|S , a recovery sequence, i.e. a sequence (uε) such that uε → u in

Mdiv(Ω) and Mα
ε (uε) →Mα(u) as ε→ 0, is obtained as

uε = ρθ,ε ∗ u.

In the case of a finite energy configuration, i.e. u ∈ Mdiv(Ω) such that Mα(u) < ∞, thanks to classical
properties in the theory of Γ -convergence, it is enough to find a recovery sequence for u belonging to a class of
measures which are dense in energy. Thanks to the work of Xia in [23] (see also [18]), we know that the class of
vector measures concentrated on finite graphs is dense in energy so that one can restrict to this case. In [23], the
branched transportation energy was in fact defined by relaxation of its restriction to the set of vector measures
concentrated on a graph. The rectifiability of finite energy configurations and the Eulerian representation (2.1)
was discovered later in [24] (see also [3]). This density property was used in [18] to prove the Γ -convergence of
Mα

ε toward Mα. In the setting of functionals with divergence constraint, we need the following lemma:

Lemma 5.6. Let u ∈ Mdiv(Ω) be such that Mα(u) <∞. For all λ > γ, there exists a sequence (uε) ⊂ H1
0 (Ω)

converging to u in Mdiv(Ω) such that

Mα
ε (uε) −→

ε→0
c0M

α(u) and ελ‖∇ · uε‖L2 is bounded.

Before proving this statement, we are going to investigate the case where u is concentrated on a finite graph.
First of all, let us give some details on what “a vector measure concentrated on a finite graph G” is. Let
G = (V (G), E(G), θ) be a weighted directed graph: V (G) ⊂ Ω is a finite set of vertices, E(G) is the finite set
of oriented edges e = (e, τe), where e = [ae, be] ⊂ Ω and τe is a unit vector representing the direction of e, and
θ : E(G) → (0,+∞) is the weight function. Then the “vector measure associated to G” is given by:

uG =
∑

e=(e,τe)∈E(g)

θ(e)τe dH1
|e.

These measures uG belong to Mdiv(Ω), i.e. ∇ · uG is a measure, and they are called “transport paths” (see
Def. 2.1 in [23]). When u is a transport path, we have the following lemma:

Lemma 5.7. Let u = uG ∈ Mdiv(Ω) for some weighted directed graph G. Then, there exists a sequence (uε)ε>0

converging to u in Mdiv(Ω) and a constant C depending on u such that, for ε small enough, uε ∈ H1
0 (Ω) and

1.
�

Ω |uε| ≤ |u|(Ω) + C εγ,
2.

�
Ω
|∇ · uε| ≤ |∇ · u|(Ω),

3. εγ ‖∇ · uε‖L2 ≤ C,
4. |Mα

ε (uε) − c0M
α(u)| ≤ Cεγ.

Proof. By definition, such a vector measure u can be written as a finite sum of measures ui = θi τi H1
|Si

concentrated on a segment Si ⊂ Ω directed by τi with multiplicity θi for i = 1, . . . , I. We first define a
regularized vector fied vε by vε :=

∑
i vi, where vi = ρθi,ε ∗ ui. Then, for ε small enough, vε is compactly

supported on Ω and satisfies {�
Ω
|vε| ≤ |u|(Ω),

|Mα
ε (vε) − c0M

α(u)| ≤ Cεγ .

The first statement is a consequence of the fact that
�
ρθi,ε = 1 and the inequality ‖f ∗μ‖L1 ≤ ‖f‖L1 |μ|(Ω) for

f ∈ Cc(Ω) and for a finite measure μ on Ω. For the second statement, by definition of the kernel ρθ,ε we know
that, out of the nodes set N =

⋃
i supp(∇ · vi),

Mα
ε (vε, N

c) = c0M
α(v,N c).
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As a result, we just have to estimate these energies on N which is a finite union of balls: the supports of
ρθi,ε recentered at each end-point of the segment Si. Since the radius of these balls is of the order of εγ , this
immediately gives the fact that Mα(u,N) ≤ Cεγ for some constant C > 0 depending on u. For the sake of
simplicity, in the rest of this proof, C > 0 will denote some constant depending on u which is large enough so
that all the inequalities below are true. We are going to prove that

Mα(u,N) +Mα
ε (vε, N) ≤ Cεγ .

It remains to estimate Mα
ε (vε, N). Since Mα

ε (vε, N) ≤ I
∑

iM
α
ε (vi, N), it is enough to estimate Mα

ε (vi, N). But
‖vi‖L∞(N) = ‖ρθi,ε ∗ ui‖L∞(N) ≤ Cε−2γ‖ρ‖L∞|ui|(Ni), where Ni := N + supp ρθi,ε := {x + y : x ∈ N, y ∈
supp ρθi,ε}. Note that supp ρθi,ε is a ball centered at the origin with radius smaller than Cεγ so that Ni is
a finite union of balls with radii smaller than Cεγ as well. In particular, using the fact that ui = θi τi H1

|Si
,

we get |ui|(Ni) ≤ Cεγ and so ‖vi‖L∞(N) ≤ Cε−γ . Similarly, one has ‖∇vi‖L∞(N) = ‖∇ρθi,ε ∗ ui‖L∞(N) ≤
Cε−3γ‖∇ρ‖L∞|ui|(Ni) ≤ Cε−2γ . Now, the definition (2.5) gives

Mα
ε (vε, N) = εα+1

�
N

|∇vε|2 + εα−1

�
N

|vε|β ≤ |N |{εα+1‖∇vε‖2
L∞ + εα−1‖vε‖β

L∞}.

From the inequality |N | ≤ Cε2γ and the equalities α = 3γ − 1, βγ = (4α−2)γ
α+1 = 4γ − 2, we deduce

Mα
ε (vε, N) ≤ Cε2γ{ε3γ−4γ + ε3γ−2−βγ} ≤ 2Cεγ

as required. In order to construct an approximating vector field with controlled divergence, we need to consider
uε := vε − wε where wε ∈ H1

0 (N) is constructed as follows:
The node set N , defined above, is a finite union N =

⋃n
j=1 Bj , where each node Bj is a ball centered at

the end-point ai of some segment Si = [ai, bi]. Let assume that ε is small enough so that these balls are non-
overlapping. Then, on each node Bj , gj := ∇ · vε is a finite superposition of kernels like ρθ,ε recentered at cj ,
the center of Bj . In particular ‖gj‖L2(Bj) ≤ Cε−γ and

�
Bj
gj =

�
Bj

∇ · vε = (∇ · u)(Bj) =: θj . If θj = 0, then
Theorem 3.4 allows to find wj ∈ H1

0 (Bj) satisfying ∇ · wj = gj and ‖wj‖H1(Bj) ≤ C ε−γ . If θj �= 0, let say
θj > 0, we rewrite gj as gj = g+ − g− = λg+ + (1− λ)g+ − g− where g+ (resp. g−) stands for the positive part
(resp. negative part) of g and λ ∈ (0, 1] is chosen such that (1 − λ)

�
B
g+ =

�
B
g−, i.e. θj = λ

�
Bj
g+. Applying

Theorem 3.4, we get wj ∈ H1
0 (Bj) satisfying ∇ · wj = (1 − λ)g+ − g− and ‖wj‖H1(N) ≤ C ε−γ . Let us define

wε =
∑

j wj and uε := vε − wε. Since
�

Bj
|∇ · uε| =

�
Bj

|gj −∇ · wj | = λ
�

Bj
g+ = θj for all j, we have

�
Ω

|∇ · uε| =
�

N

|∇ · uε| ≤
∑

j

θj = |∇ · u|(Ω).

Moreover, to estimate ‖∇ ·uε‖L2 , note that ‖∇ ·wε‖L2 ≤ ‖wε‖H1 ≤ Cε−γ and, because ∇· vε is only composed
of a finite sum of translated kernels of the form ρθi,ε, ‖∇ · vε‖L2 ≤ Cε−γ as well. In particular εγ‖∇ · uε‖L2 is
bounded. Then, the Poincaré inequality yields

‖wε‖L2 =
∑

j

‖wj‖L2(Bj) ≤ C
∑

j

εγ‖∇wj‖L2(Bj) ≤ C′

since Bj is a ball of radius Cεγ . Consequently, by the Cauchy–Schwarz inequality, we get
�

Ω

|uε| ≤
�

Ω

|vε| +
�

N

|wε| ≤ |u|(Ω) + |N |1/2‖wε‖L2 ≤ |u|(Ω) + Cεγ .

Similarly, by a Hölder inequality, we have�
N

|wε|β ≤ |N | 2−β
2 ‖wε‖β

L2 ≤ (nε2γ)| 2−β
2 ‖wε‖β

L2 ≤ Cεγ(2−β).
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Once again, since α = 3γ − 1 and βγ = 4γ − 2, we deduce

Mα
ε (wε) = εα+1

�
N

|∇wε|2 + εα−1

�
N

|wε|β ≤ C{εα+1−2γ + εα−1+γ(2−β)} = 2Cεγ .

Since Mα(u,N) ≤ Cεγ , we get Mα
ε (uε, N) ≤ 2[Mα

ε (vε, N) +Mα
ε (wε, N)] ≤ Cεγ which finally gives

|Mα
ε (uε) − c0M

α(u)| = |Mα
ε (uε, N) − c0M

α(u,N)| ≤ Cεγ . �

Proof of Lemma 5.6. First fix u ∈ Mdiv(Ω) and construct a sequence (un)n≥1 converging to u such that un =
uGn is a vector measure associated to some weighted directed graph Gn ⊂ Ω and Mα(un) converges to Mα(u).
Since (un) weakly converges in Mdiv(Ω), the total variations of both measures un and ∇ · un are bounded by
some constant M > 0. In the following, we use a metric d on the space MM+1(Ω). Extracting a subsequence if
necessary, one can suppose that the two following estimates hold

d(un, u) ≤ 2−n−1 and |Mα(un) −Mα(u)| ≤ 2−n−1.

For each n ≥ 1, let uε,n be a sequence converging to un as ε→ 0 and satisfying all properties in Lemma 5.7 for
some constant C = Cn. Then, one can construct by induction a decreasing sequence (εn)n≥1 → 0 such that for
all n ≥ 1 and ε ≤ εn, uε,n ∈ H1

0 (Ω) and

1. uε,n ∈ MM+1(Ω),
2. d(uε,n, un) ≤ 2−n−1,
3. |Mα

ε (uε,n) − c0M
α(un)| ≤ 2−n−1,

4. ελ−γCn ≤ 1 so that ελ ‖∇ · uε,n‖L2 ≤ 1.

Indeed, assume that εn > 0 satisfies all the asked properties. Then, one can find εn+1 ∈ (0, εn) small enough so
that

• Cn+1 ε
γ
n+1 < 2−n−2 thus implying the first and third properties (see props. 1, 2 and 4 in Lem. 5.7),

• Cn+1 ε
λ−γ
n+1 < 1 which is possible since λ > γ

• and d(uε,n+1, un+1) ≤ 2−n−2 for all ε ∈ (0, εn+1) which is possible since uε,n+1 converges to un+1 in
(MM+1(Ω), d) as ε→ 0.

Now it is quite straightforward that the sequence (uε)ε>0 defined by

uε =

{
uε,1 if ε > ε1,

uε,n if εn+1 < ε ≤ εn for some n ≥ 1,

satisfies all the properties of Lemma 5.6. �

Proof of Theorem 1.1. It is already shown in [18] that Mα
ε

Γ−→ c0M
α. We just have to prove that the Γ−lim sup

property still holds when we add the divergence constraint. In other words, it remains to prove that for all
u ∈ Mdiv(Ω) such that ∇ · u = μ, there exists a sequence (vε)ε>0 ⊂ Mdiv(Ω) weakly converging to u as
measures, satisfying ∇ · vε = fε (so that (vε) also converges in Mdiv(Ω)) and Mα

ε (vε) −→
ε→0

c0M
α(u).

First of all, take a sequence (uε)ε>0 ⊂ H1
0 (Ω) converging to u given by Lemma 5.6 for λ = 5γ

4 : Mα
ε (uε) →

Mα(u) with ελ‖∇ · uε‖L2 bounded. Then define gε := fε −∇ · uε the residual divergence. Note that
�

Ω gε = 0.
Indeed

�
Ω fε = 0 by assumption (see (5.1)) and

�
Ω ∇ · uε = 0 since uε ∈ H1

0 (Ω). Moreover, our assumptions on
the sequences (uε)ε>0 and (fε)ε>0 yield

εγ2‖gε‖2
L2 −→

ε→0
0.

Indeed, we know that the same estimate is satisfied by (fε)ε>0 thanks to (5.1). Moreover, since 3γ = γ2 and
λ = 5γ

2 , one has εγ2‖∇·uε‖L2 = ε
γ
2 ε

5γ
2 ‖∇·uε‖L2 ≤ Cε

γ
2 → 0. Moreover, since fε and ∇·uε weakly converge to μ
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as ε goes to 0, we know that gε weakly converges to 0. Let g+
ε (resp. g−ε ) denote the positive (resp. negative)

part of gε. In order to satisfy the divergence constraint, we may correct uε with a vector field wε, given by
Theorem 4.1 (together with Rem. 4.2), such that ∇ · wε = gε,

Mα
ε (wε) ≤ H

(
W1(g+

ε , g
−
ε )1−d(1−α) + εγ2‖gε‖2

L2

)
−→
ε→0

0 (5.5)

and ‖wε‖Mdiv(Ω) is bounded, where H(x) = C(x + xδ) for some C > 0 and δ ∈ (0, 1). We deduce that (wε) is
relatively compact in Mdiv(Ω). From (5.5) and the Γ − lim inf property, this implies that wε converges to 0 in
Mdiv(Ω). Now, by construction, vε = uε+wε satisfies ∇·vε = fε, vε → u in Mdiv(Ω) and Mα

ε (vε) −→
ε→0

c0M
α(u).

Indeed, this last limit is a consequence of �

Lemma 5.8. Let Ω be some bounded open set in Rd, d ≥ 1. Let (uε), (vε) ⊂ H1(Ω) be two sequences such that
Mα

ε (uε − vε) −→
ε→0

0 and assume that Mα
ε (vε) is bounded. Then,

|Mα
ε (uε) −Mα

ε (vε)| −→
ε→0

0.

Proof. Let ν > 0 be some constant. For all real matrices A and B of size d × d, by the Young inequality, we
have

|A+B|2 = |A|2 + |B|2 + 2A : B ≤ (1 + ν)|A|2 + (1 + 1/ν)|B|2.
Writing uε = vε + uε − vε, we use the preceding inequality for A = ∇vε, B = ∇(uε − vε) and the subadditivity
of x→ |x|β to get

Mα
ε (uε) = ε−γ1

�
Ω

|uε|β + εγ2

�
Ω

|∇uε|2 ≤ (1 + ν)Mα
ε (vε) + (1 + 1/ν)Mα

ε (uε − vε).

Since Mα
ε (vε) < C for some constant C < +∞, we deduce that

Mα
ε (uε) −Mα

ε (vε) ≤ Cν + (1 + 1/ν)Mα
ε (uε − vε).

For any value of ε such that uε �= vε, let take ν =
√
Mα

ε (uε − vε) > 0. Hence, taking the lim sup when ε → 0,
one gets

lim sup
ε→0

{Mα
ε (uε) −Mα

ε (vε)} ≤ C′ lim sup
ε→0

√
Mα

ε (uε − vε) = 0.

Since Mα
ε (vε) ≤ 2[Mα

ε (uε) +Mα
ε (vε − uε)] and Mα

ε (vε) is bounded, we deduce that Mα
ε (uε) is bounded as well.

Then we can apply all the preceding computations exchanging uε and vε to get lim sup
ε→0

{Mα
ε (vε)−Mα

ε (uε)} ≤ 0

which concludes the proof. �
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