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A ONE-STEP OPTIMAL ENERGY DECAY FORMULA FOR INDIRECTLY
NONLINEARLY DAMPED HYPERBOLIC SYSTEMS COUPLED
BY VELOCITIES

FATIHA ALABAU-BOUSSOUIRA!, ZHIQIANG WANG? AND LIXIN YU3

Abstract. In this paper, we consider the energy decay of a damped hyperbolic system of wave-wave
type which is coupled through the velocities. We are interested in the asymptotic properties of the
solutions of this system in the case of indirect nonlinear damping, i.e. when only one equation is
directly damped by a nonlinear damping. We prove that the total energy of the whole system decays
as fast as the damped single equation. Moreover, we give a one-step general explicit decay formula for
arbitrary nonlinearity. Our results shows that the damping properties are fully transferred from the
damped equation to the undamped one by the coupling in velocities, different from the case of couplings
through displacements as shown in [F. Alabau, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 1015—
1020; F. Alabau, P. Cannarsa and V. Komornik, J. Fvol. Equ. 2 (2002) 127-150; F. Alabau, SIAM J.
Control Optim. 41 (2002) 511-541; F. Alabau-Boussouira and M. Léautaud, ESAIM: COCV 18 (2012)
548-582] for the linear damping case, and in [F. Alabau-Boussouira, NoDEA 14 (2007) 643-669] for the
nonlinear damping case. The proofs of our results are based on multiplier techniques, weighted nonlinear
integral inequalities and the optimal-weight convexity method of [F. Alabau-Boussouira, Appl. Math.
Optim. 51 (2005) 61-105; F. Alabau-Boussouira, J. Differ. Equ. 248 (2010) 1473-1517].
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1. INTRODUCTION

Let £2 be a bounded subset of R” with a smooth boundary denoted by I'. We consider the following wave
system
u”" — Au+ a(x)v" + p(a,u’) =0 in 2 x (0,+00),
v — Av — afz)u’ =0 in 2 x (0,+00), 11
u=v=0 on I' x (0,400), (1.1)
(u,u")(0) = (u¥,ub), (v,0")(0) = (v°,01) in 0.

Keywords and phrases. Energy decay, nonlinear damping, wave equation, plate equation, weighted nonlinear integral inequality,
optimal-weight convexity method.
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To a strong solution of this system, we associate the energy defined by

1
B() = 5 [ (W + Va2 + P+ (90 (1.2)

One can show that the energy of the strong solutions of this system satisfies

E'(t) = —/Qu'p(w,u')dx. (1.3)

In the sequel, the assumption on p will ensure that p(-, s)s > 0 a.e. in {2 and for all s € R, so that the energies
of the strong solutions satisfy E’(t) < 0. Hence the nonlinear term in our coupled system is indeed a damping
term, so that one expects the energies to decay to 0 at infinity.

Let us recall that for the scalar damped wave equation, that is for

v — Au+p(z,u') =0 in 2x (0,400),u=0 on I x (0,+00).

It is well known that when the damping term is linear, i.e. when p(.,u’) = a(-)u’, where a > 0 a.e. on {2, the
energy of the solution decays exponentially under some geometric conditions on the support of a (see [17,30]).
When the damping term p(-,-) is nonlinear with respect to the second variable [4,7,11], give, under some
suitable geometric conditions, a one-step explicit energy decay formula in terms of the behavior of the nonlinear
feedback close to the origin. These results rely on a general weighted nonlinear integral inequality together with
an optimal-weight convexity method developed in [4]. If no geometric assumptions on the damping region are
made, the decay is known to be of logarithmic type for a linear damping. Such types of results has first been
proved in [28] (see also [18,22]).

Let us go back to the above wave-wave coupled system (1.1). At this stage, four main features characterize
this system:

only the first equation is damped

the damping p may have an arbitrary growth around 0 with respect to the second variable
the coupling coefficient a@ may vanish in some parts of {2

the coupling is acting through the velocities.

Let us now comment on these features.

e The fact that only one equation of the coupled system is damped refers to the so-called class of “indirect”
stabilization problems initiated and studied in [1,2,14] and further studied in [5,12,15]. Indeed, when dealing
with coupled systems, it may be impossible or too expensive to damp each equation. Such an example is
provided for instance by the Timoshenko system [6,25,37]. More generally, coupled systems involving some
undamped equations, are said to be indirectly damped. From the point of view of applications in control theory,
a challenging question is to determine whether the single feedback is sufficient to guarantee that the energy of
the full system decays to 0 at infinity and to determine at which rate. In this latter case, the lack of feedback
on the second equation is compensated by the coupling effects.

e Concerning the scalar wave equation. The case of general damping feedbacks, that is with arbitrary growth
close to 0, has received a lot of attention since more than a decade. The first result in this direction has been
derived in [27], however no general simple explicit formula was provided except for linearly or polynomially
growing dampings close to 0. Such first examples of explicit general formula are given in [33] (see also [32]),
but this formula does not allow to recover in a single step the expected quasi-optimal energy decay rate in the
polynomial case (or for polynomial-logarithmic growth). As far as we know, the first result giving a general
one-step quasi-optimal semi-explicit formula is given in [4]. A further analysis based on a suitable and original
classification of the feedback growth has been introduced in [7]. This classification gives a very simple one-step
explicit energy decay formula for general feedbacks growth, provided that this growth is not close to a linear
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behavior. A more complex semi-explicit formula holds in the general case including feedbacks with a growth close
to a linear one around 0. By a one-step formula, we mean here, a formula which gives a decay rate depending
explicitly on the feedback in a simple explicit way. In particular, this formula does not require further steps as in
most of the existing literature to lead to explicit expressions. Moreover the optimality of the formula is proved
for the corresponding finite dimensional systems or for semi-discretized scalar wave or plate equations, whereas
optimality results are proved for some examples in the infinite dimensional case in [4], using results of [38,39].

For results using microlocal analysis and devoted to linearly damped semilinear wave equation, we refer
the reader to [21,24] and the references therein. In [24], the authors prove the exponential stabilization of
the linearly damped semilinear wave equation in the defocusing, subcritical case and under the Geometric
Control Condition (GCC for short) of [17]). One can also see former results based on multiplier approach in for
instance [19,26,36,40,41], under less sharper geometric conditions.

e When the coupling coefficient is bounded below by a strictly positive constant, the coupling is active in the
whole domain (2, so that the equations are coupled in the whole domain. If « is nonnegative on {2 but is allowed
to vanish on a subset of (2, the equations are “uncoupled” in 2\supp{a}, so that in this region the second
equation is decoupled from the first equation and is undamped. Such cases are harder to handle. A first study
in this framework, but for linearly damped wave-type equations coupled in displacements is given in [12].

e When indirect damping occurs through displacements, that is for systems coupled in displacements, as for
instance

u”" — Au+ a(z)v + a(z)u’ =0 in (0,00) x §2,
V' — Av+ a(z)u =0 in (0,00) x £2,
u=v=0 on (0,00) x T,

(u(0),u'(0)) = (u®,ul), (v(0),v'(0)) = (v°,v"),  in L2,

it has been shown in [14] that even for constant coefficients «, the energy of this linearly damped system never
decays exponentially, but decays only polynomially with a decay rate depending on the smoothness of the initial
data and a general lemma announced in [1] (see [2,14] for a proof). These results are based on the method of
higher order energies initiated in [1] and developed in [14] and [2] for the indirect boundary damping cases in
an abstract setting and applied to various examples. The result of [14] has been generalized to the case that
each coefficient «, a vanishes on a subset of {2 in [12,13], under certain assumptions on the supports of o and a
(roughly speaking they are both supposed to satisfy the PMGC in [12] and the GCC in [13] (see Prop. 2.5)).
Further results on coupled models with distributed dampings but satisfying hybrid boundary conditions have
been obtained in [15]. Sharper results have been obtained through interpolation techniques extending the first
results of [1]. Let us further mention that in [23], the author shows that the energy decays logarithmically
under the assumption supp{a} N supp{a} # 0. Hence when the coupling acts through displacements, indirect
stabilization occurs but in a weaker form than the one of the corresponding scalar case, since exponential
stabilization does not hold even for a linearly damped case.

The loss of exponential stability was generally known to be a consequence of the loss of certain geometric
conditions, namely GCC, in the case of direct and linear damping. The former results of [14] in the case of
coupled systems in displacements show that the loss of exponential stability can appear for indirectly damped
systems even if the damping is globally distributed (the support of the damping coefficient then satisfies the
GCC) and the coupling coefficient is a constant. The present paper shows that the assumptions on the coupling
operator are decisive, not only as far as the geometric assumptions on the support of its coeflicient are concerned,
but also as far as the order of the coupling operator is concerned. It shows, together with [14], an important
new phenomenon in the loss or not of exponential stability. In particular, exponential stability occurs even in
case of linear indirect damping, if the coupling acts in a stronger way (here through velocities). On the other
hand, the results in [6,9] provide examples of systems of PDE’s (namely Timoshenko beams), coupled through
mixed zero and first order terms, globally indirectly damped and for which exponential stability may hold or
not depending on the property of identical or distinct dynamics in the two coupled equations. Hence, this paper
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allows us to complete the literature on indirect damping properties for coupled systems, showing that positive
results, strongly depend on the assumptions made on the dynamics, the order of the coupling and the geometric
assumptions of the coupled systems.

The goal of this paper is to generalize the quasi-optimal energy decay formula given for scalar wave-type
systems in [7] (see also [4]), to the case of coupled systems in velocities, under the above four features. More
precisely, we prove, under some geometric conditions on the localized damping domain and the localized coupling
domain, that the energy of these kinds of system decays as fast as that of the corresponding scalar nonlinearly
damped equation. Hence, the coupling through velocities allows a full transmission of the damping effects, quite
different from the coupling through the displacements.

The optimality of the above estimates has been proved for finite dimensional equations, including the semi-
discretized wave equations in [7]. In the infinite dimensional setting, lower energy estimates or optimality
are open questions. Optimality has been only proved in the particular case of one-dimensional wave equation
with boundary damping (see [4,38,39]). Lower energy estimates have been established in [7-9] for scalar one-
dimensional wave equations, scalar Petrowsky equations in two-dimensions and Timoshenko systems. We use
the comparison method developed in [9] to extend these results to one-dimensional wave systems coupled by
velocities.

Remark 1.1. The method presented here is general and can easily be adapted to handle corresponding coupled
systems of plate equations, elasticity models, and more complex examples in the spirit of the general approach
given in [4]. Our aim through this paper is to give a general methodology on a concrete PDE example to show
that if the damping effects are suitably transferred through the coupling operators, then indirect stabilization
can produce damping mechanisms of the quality of a direct damping for the corresponding scalar equation.

Note that one can also present, with no additional mathematical originality and no gain with respect to
applications, all our results by means of a “Lyapunov” type presentation. In this case, one introduces in a
standard way a modified energy function L. = F + P where E stands for the usual energy of the solution, and
the terms in P involve the successive required multipliers. This modified energy function is equivalent to the
original energy for e sufficiently small. Then one writes a differential inequality for this modified energy, then
uses a weakened form of the optimal-weight convexity method introduced in [4] (announced in [3]), replacing
the original optimal weight by a less good weight function, and which gives weaker estimates. Mathematically
and schematically, this consists to reproduce all the steps of the optimal-weight convexity integrating only with
respect to space and replacing integral inequalities by differential inequalities for suitable functions as described
above.

The rest of this paper is organized as follows: in Section 2, we give some basic preliminaries, assumptions
and notations. The main results, including Theorems 3.1 on well-posedness of (1.1), Theorem 3.2 on energy
decay for polynomially growing damping case, Theorem 3.4 on energy decay for general nonlinear damping case,
Theorem 3.8 on lower energy estimates for one dimensional system (3.7), are presented in Section 3. Explicit
decay rates corresponding to some typical dampings are also provided in Section 3.4. As the main tool of deriving
the quasi-optimal one-step explicit energy decay formula, the optimal-weight convexity method together with
general weighted nonlinear integral inequalities are introduced in Section 4. The proof of the main results, as well
as the decay rates of Examples 3.11-3.14 are given in Section 5. Finally, Section 6 is used to prove Lemma 5.2
on weighted energy estimates for a single non homogeneous wave equation by the multiplier method.

2. PRELIMINARIES, ASSUMPTIONS AND NOTATIONS

e Notations

For the simplicity of statement, we denote in the whole paper L?({2) by L2, H}(£2) by H}, HQ((Z) by HZ2.
Moreover, we say that the initial data are in the energy space whenever (u°, u') 6 HO x L? and (v°,v') € Hj x L?
and the initial data are smooth if (u®,u') € (H2 N Hy) x Hi and (v°,v') € (H? N HY) x Hy.
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e Geometric conditions

As already mentioned in the introduction, stabilization results for wave-like systems require geometric conditions
on the region where the feedback is active. In the sequel, we shall consider the so-called Piecewise Multipliers
Geometric Condition (denoted by PMGC, in short), which has been first introduced in [31]:

Definition 2.1 (PMGC). We say that a subset w C (2 satisfies the PMGC, if there exist subsets 2; C 2
having Lipschitz boundaries and points z; € RN, j =1,...,J, such that ;N £; = () for i # j and w contains
a neighborhood in {2 of the set szlvj(asj) U(£02\ U‘jjzl 2;), where vj(z;) = {x € 092; : (x — z;) -vj(x) > 0} and
v; is the outward unit normal to 042;.
e Assumptions on the coupling coefficient -
We assume that the coupling function a € C(§2) satisfies
J oy > 0,a_ > 0 such that
ay zalr) >0, Ve, (HC)
afz) Z2a_ >0, Vrew.C 2,

where and w,. is an open subset of 2 with positive measure.

e Assumptions on the feedback
We consider feedbacks p with an arbitrary growth close to 0. However, to give the reader a better insight of
the scope and challenge of one-step explicit general quasi-optimal energy decay formulas, we first provide the
result and proof for polynomially growing feedbacks, for which the proofs are easier and then the general result
for arbitrary growing feedbacks. Hence, we detail below the two sets of assumptions: the one for the polynomial
case, then those for the general case.

The assumptions in the case of polynomially growing feedbacks is as follows:

p€C(N2xR),p(x,0) =0 Vze,

s+ p(x, s) is nondecreasing V = € 2,
Je>0andp>13ac C(f2) such that

a(z)|s| < |p(x, s)| < ca(z)|s|, Vz e 2,]s] =1,

a(x)|s|? < |p(z,s)| < ca(x)\s\%, Vo € £2,]s| <1, where
a>0on 2,3 a_ >0such that a(z) 2 a_, VrecwyC 2,

where wq is an open subset of {2 with positive measure.
The assumptions in the case of arbitrary growing feedbacks is as follows

p€C(2xR),p(x,0) =0 Vz e,

s+ p(x,s) is nondecreasing V x € 2,

Je>0,3acC(R) and 3 g € CH(R) such that

a(@)|s| < |p(x, s)| < ca(z)ls|, Vo e 2]s| > 1, (HF,)
a(z)g(ls]) < [p(x, s)| < ca(z)g~'(|s]), Vo € 2,]s| <1, where

a > 0on 2,3 a_ > 0such that a(x) > a_, Vre€wyC 2,

g is a strictly increasing and odd function.
Remark 2.2. Thanks to the hypotheses (HF,) or (HF), we have
plx,s)s 20, Vee2VseR, (2.1)

which ensures that the energy of the solutions of the above wave system is nonincreasing.



726 F. ALABAU-BOUSSOUIRA ET AL.

Remark 2.3. Note that we can infer from (HFy) that for very € € (0, 1), there exists constants ¢; > 0,¢co > 0
such that

{clau)s < lola.s)| < caa(@)lsl, Vo e 25| > e, 02

cra(z)g(|s]) < lp(z, 5)| < c2a(z)g™ (ls]), Vo € Qs <e.

Remark 2.4. We assume that p has a linear growth at infinity. When p is bounded or has a nonlinear growth
at infinity, the decaying properties of the energy change substantially, depending in particular on higher norms
of the initial data even for linear dampings [35] (and the references therein).

Convexity assumptions on the feedback and some definitions
Assume that (HF,) holds. Then, following [4,7], we assume that the function H defined by

H(x) = v/ag(v/3), (2.3)

is strictly convex in a right neighborhood of 0, i.e. on [0,73] for some sufficiently small ro € (0,1]. We define
the function H on R by H(z) = H(x) for every x € [0,73] and by H(x) = +o0o otherwise, and we define the
function L on [0, +00) by

H*(y)

if
Ly =4 5 "v=0 (2.4)
0 ify=0,

where H* is the convex conjugate function of H , defined by

H*(y) = sup{ay — H(z)}.

By construction, the function L : [0, +00) — [0,73) is continuous, one-to-one, onto and increasing, moreover it
is easy to check that

0< L(H'(r2)) < r? (2.5)
holds (see [4,7] for a complete proof). We also define the function Ay on (0,73] by
H{(z)
A = . 2.6
Finally, we define, for z > 1/H’(r2),
Yo(@) = — +/H(Tg) ! a6 27
T) = —5 : :
U HGY) Sy 00— A((H)TH0))
Then, ¥o(z) > z for all z € [W, 00). Moreover, 1y is a strictly increasing function. Hence g is a one-to-one
0
and onto function from [ﬁ, 00) on [ﬁ, 00) (see also [4,7] for the proof).
0 0

Remark 2.5. The function A has been introduced for the first time by the first author in [7]. It is an essential
tool to classify the feedback growths around 0 and to simplify the decay estimate formula given in [4] — without
loosing optimality properties — for the feedbacks having a growth around 0 which is not close to a linear one
(as explained below).

Remark 2.6. Note that due to our convexity assumptions, we have
When g(z) = « (linear feedback case), Ay (.) = 1. If we now set for instance, g(z) = x(In(1/x))~? in (0, ] with

g > 0 and & > 0, then limsup Ay (z) = 1. Many other examples of feedbacks such that limsup Ay (z) = 1 can
z—0t z—0t
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be given, they characterize a growth which is close to a linear one. This leads to the following definition:

Definition 2.7. We say that a feedback p satisfying (HF ;) has a growth close to a linear one in a neighborhood
of 0, if it is such that the function H defined by (2.3) satisfies limsup Ag(z) = 1. Otherwise, one says that the

x—0+
feedback p is away from a linear growth.

On the opposite side, for functions g which converge very fast to 0 as = goes to 0, such as for instance g(z) = e~ /*

for x € (0,¢] (and many other examples), one has limsup Ay (z) = 0.
z—0t

For polynomially growing feedbacks, e.g. when g(z) = 2P with p > 1, we have Ay (.) = 1%. For feedbacks
such as g(z) = 2P(In1/2)7 with p > 1,¢ > 0, we still have limsup Ay (z) = %.
z—0t
We will see later on, in Theorem 3.4, that the case of feedbacks close to a linear behavior as = goes to 0 has
to be distinguished from the other cases.

Remark 2.8. Note that when ¢’(0) # 0, g has a linear growth close to 0. Therefore, this case is similar to the

linear case which is already well-known. We thus focus in the sequel on the cases where ¢'(0) = 0.

3. MAIN RESULTS

3.1. Well-posedness
We set H = (H} x L?)? and set U = (u,p,v,q). We equip H with the scalar product

(U,0) :/ (V- Vi + pp + Vo - VO + ¢q) da.
22

Theorem 3.1. Assume (HF,) and that o € L*(£2). Then for all initial data in energy space, there exists
a unique solution (u,v) € C([0,+00); (H})?) N CH([0,400); (L?)?) of (1.1). Moreover for any smooth initial
data, the solution satisfies (u,v) € L>([0,+00); (H?> N HE)?) N WL ([0, +00); (HE)?) N W22°([0, +00); (L?)?).
Moreover, in this latter case the energy of order one, defined by

1
Ei(t) =5 /Q(|Utt\2 + Ve + o |* + |V [*)da, (3.1)

1§ non increasing, i.e.,
Ei(t) < E1(0). (3.2)
3.2. One-step quasi-optimal energy decay rate for the wave-wave system

First case: Polynomially growing dampings close 0
For the sake of clarity, we first provide the results in the case of a polynomially growing feedback s — p(-, s).

Theorem 3.2. Assume that p > 1, (HF,) and (HC) hold. Assume also that wq and w. satisfy the PMGC.
Then there exists o > 0 such that for any ay € (0,a*] and any non vanishing initial data in the energy space,
the total energy of (1.1) defined in (1.2) decays as

E(t) < Cp() tT7, Vit € [Ty, +00), (3.3)
where Cg ), Tr) > 0 are constants depending on E£(0).

Remark 3.3. If p = 1, we can follow the Proof of Theorem 3.2 and obtain, by using Lemma 4.6 instead of
Lemma 4.3, the exponential stability for system (1.1)

E(t) < CE(0)e ", Vte[0,+0), (3.4)

where C' > 0,k > 0 are constants independent of the initial data.
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Second case: Arbitrarily growing dampings close to the origin

If we consider a more general nonlinear damping p, we provide below a quasi-optimal one-step explicit energy
decay formula following the optimal-weight convexity method together with general weighted nonlinear integral
inequalities developed in [4,7].

Theorem 3.4. Assume (HF,) and (HC) hold. Assume that the function H defined by (2.3) is strictly convex
in [0,73] for some sufficiently small ro € (0,1] and satisfies H(0) = H'(0) = 0. We define the maps L and Ay
respectively as in (2.4) and (2.6). Assume also that wg and w. satisfy the PMGC. Then there exists o > 0
such that for any oy € (0,a*] and any non vanishing initial data in the energy space, the total energy of (1.1)
defined in (1.2) decays as

1 M

Et) <28po)L | —755 |, Vt=> ) (3.5)
o (w&(ﬁ)) H'(r3)

where Bgy is defined by (5.30), M is defined by (5.34) and independent of E(0). Furthermore, if

limsup Ay (z) < 1, then E satisfies the following simplified decay rate
z—0t

kM kM

B(0) < 200 (1) (“1) B0) < 200 ()™ (5. (36)

for t sufficiently large, and where k > 0 is a constant independent of E(0).

Remark 3.5. In both Theorems 3.2 and 3.4, we assume that the support of the coupling and of the damping
coefficents satisfy the PMGC. In the nonlinear damping case, as far as we know, there exists no direct proof of a
similar result under the GCC, even for single scalar wave equation. Instead, it is possible to prove such a result
by an indirect method as in [11] (see also [16] in a more general setting). It consists on deducing the energy
decay rate for the nonlinearly damped scalar wave equation from an observability result for the conservative
scalar equation. Then one can use the classical results of [17] which establishes the observability inequality
for the conservative scalar wave equation under the GCC. As explained in [11], this indirect approach allows
to optimize both the geometric condition on the support of the damping and the decay rate of the energy in
the scalar case. We plan to perform such an analysis in a future work for the indirectly damped wave systems
considered here. Note also, that smoothness assumptions on the domain and on the damping coefficient are less
restrictive in the direct method.

Remark 3.6. Our results in Theorems 3.2 and 3.4 are valid under a smallness assumption on the coupling
coefficient. It allows us to deal with a positive total energy E (which includes the coupling effects) and also
to absorb coupling terms at crucial steps of our proofs, but it is not always necessary. Actually, inspired by
the present article, the asymptotic stability of wave equations coupled by velocities with general constant
coefficients have been studied in [20]. The exponential stability results are determined and classified by the
algebraic property of the coupling and damping coefficients. In particular, if a(x) = « and p(z, us) = auy in 2
with a > 0, then the coupled system is always exponentially stable.

Remark 3.7. Note that when g(z) = 2'/? wih p > 1, then H(x) = 2»T1/2 5o that limsup Ag(z) = < 1.

z—0t

Then the formula (3.6) gives back the energy decay rate of t=2/(P=1) given in Theorem 3.2.

2
p+1

3.3. Lower energy estimates

The optimality of the above estimates are open questions. Here we use the comparison method developed in [9]
to establish the lower estimate of the energy of the one-dimensional coupled wave system. Actually, we consider
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the following wave-wave system in {2 = (0,1) C R and p(z, s) = a(z)g(s) for all x € 2 and all s € R.

Ut — Ugg + (X)) + a( )g(ug) =0, in £2 x (0,400),
Vet —a(x)uy =0, in £ x (0,4+00),
u(t, 0) u(t,1) =v(t,0) =v(t,1) =0, for ¢ € (0,+00),
(u, ut)(0,z) = uo(w),ul(x)), (v,v.)(0,2) = (10(z), v (x)), for x € 2.

(3.7)

A\_/

We define H by (2.3), Ag by (2.6) and consider the following assumptions

Jrg > 0 such that the function H : [0,73] — R defined by (2.3)
is strictly convex on [0, 73] and
either 0 < lirg(l)r}rf Ap(z) <limsup Ag(z) <1 (HF))

z—04
or there exist p > 0 and z; € (0, zo] with (5.39) such that

(1 ar) zZ1
0< lirglr}rf( I y) dy) and lmi?)lipAH( x) < 1.
Theorem 3.8. Assume that (HF,), (HF;), and (HC) hold. Assume also that wq and w. satisfy the PMGC,
and that ay € (0, a*] where o > 0 is as in Theorem 3.4. Then for all non vanishing smooth initial data, there
exist Ty > 0 and Ty > 0 such that the energy of (3.7) satisfies the lower estimate

1 _ 1 2
E(t)ZWOH/) 1(1&—%)) , Vix>T+ Ty, (3.8)

where vs = 41/ E1(0), Cs is as in Lemma 5.7.

Remark 3.9. In [38,39], optimality of the upper estimates have been shown to hold for the one-dimensional
scalar wave equation (or in radial cases) with a nonlinear damping acting on the boundary for particular sets
of initial data. It woud be very interesting to extend this analysis to the coupled systems we consider here, and
in particular to check that at least for particular initial data the solutions decay exactly at the speed given by
the upper estimate.

Remark 3.10. Similar lower energy estimates have been established for a different example of coupled system
in [9], namely the Timoshenko beams. This system is a one-dimensional model coupling two wave equations
through mixed zero and first order coupling operators in space. The proof is also based on an energy comparison
principle together with interpolation type arguments.

3.4. Some examples of decay rates

For the sake of completeness, we give some significative examples (taken from [4,7]) of feedback growths
together with the resulting energy decay rate when applying our results. In the sequel, Cg(g) > 0 stands for a
constant depending on F(0), while Cp, (0) > 0 is a constant depending on E1(0).

Example 3.11 (The polynomial case). Let g (z) = xP on (0,79] with p > 1. Then the energy of (1.1) satisfies
the estimate ,
E(t) < Cgyt 7,

for ¢ sufficiently large and for all non vanishing initial data in the energy space. Moreover, the energy of (3.7)
satisfies the estimate

E(t) > Cpy o)t 77,

for ¢ sufficiently large and for all non vanishing smooth 1n1t1a1 data.
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Example 3.12 (Exponential growth of the feedback). Let g (z) = e"3% on (0,79]. Then the energy of (1.1)
decays as
E(t) < Cpo) (In ()",

for ¢ sufficiently large and for all non vanishing initial data in the energy space. Moreover, the energy of (3.7)
satisfies the estimate

E(t) > Cg, (o) (In )72,

for ¢ sufficiently large and for all non vanishing smooth initial data.

Example 3.13 (Polynomial-logarithmic growth). Let g (z) = a? (In (1/2))? on (0,r¢] with p > 2 and ¢ > 1.
Then the energy of (1.1) decays as

E(t) < CE(O)t72/(p71)(111(75))72(1/(1)71)

for ¢ sufficiently large and for all non vanishing initial data in the energy space. Moreover the energy of (3.7)
satisfies the estimate
E(t) > Cél(o)t_él/(p_l)(ln(t))_4Q/(p_1)7

for ¢ sufficiently large and for all non vanishing smooth initial data.

Example 3.14 (Faster than Polynomials, Slower than Exponential). Let g (z) = e~(1/#)” on (0,r,] with
p > 2. Then the energy of (1.1) decays as

E(t) < CE(O)GQ(IH(’:))UP,

for ¢ sufficiently large and for all non vanishing initial data in the energy space. Moreover the energy of (3.7)
satisfies the estimate
E(t) > Cp, e 1O

for ¢ sufficiently large and for all non vanishing smooth initial data.

Remark 3.15. For these above four examples, one can show that lim Agy (z) < 1. Moreover, it is proved

z—0

in [7], that the above decay rates are optimal in the finite dimensional case.

4. WEIGHTED NONLINEAR INTEGRAL INEQUALITIES AND DECAY RATES

Definition 4.1. We say that a nonnegative function F defined on [0, +00) satisfies a weighted nonlinear integral
inequality if there exists a nonnegative function w defined on [0,7) with 0 < n < 400 and a constant M > 0
such that E([0,+00)) C [0,7) and

/ w(E(s))E(s)ds < ME(t), Vtel0,+00). (4.1)

t

Definition 4.2. We say that such a weight function w is of “polynomial” type, if there exists a > 0 such that
w(s) =%, Vs>=0, with n = +oo.

It is well-known that when E is a nonnegative, nonincreasing absolutely continuous function satisfying (4.1)

with a polynomial weight function, then E satisfies an optimal decay rate at infinity, proved in ([26], Thm. 9.1)
(see also herein for other references), that we recall in the next subsection.
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4.1. Polynomial weights

Lemma 4.3 ([26], Thm. 9.1). Assume that E : [0, +00) — [0, +00) is a non-increasing function and that there
are two constants o > 0 and T > 0 such that

/OO E“t(s)ds < TE(0)*E(t), Vt€0,+00).

Then we have

Q=

, VtelT,+o0).

E(t) < E(0) (T““t)_

T+ oT

Remark 4.4. Note that when applied to decay estimates for dissipative systems, the above Lemma has to
be used with a constant T which blows up as E(0) = 0, so that the minimal time for which the above decay
estimate is valid, blows up as E(0) = 0. This result can be reformulated as below, to give an estimate which is
valid for E(0) > 0 as well as for F(0) = 0 and for any ¢ > 0 as explained below.

Corollary 4.5. Assume that E : [0,+00) — [0,+00) is a non-increasing function and that there are two
constants o > 0 and M > 0 such that

/ E“tl(s)ds < ME(t), Vte|[0,+00).
t

Then we have

o 1/«
E(t) < E(0) min ((%) ,1), V>0,

In particular for E(0) > 0, we deduce that

a 1/
E(t) < E(0) (#&&t) Vi3> ME©0)V

Lemma 4.6 ([26], Thm. 8.1). Assume that E : [0,+00) — [0, +00) is a non-increasing function and that there
is a constant T' > 0 such that

E(s)ds <TE(t), Vte|[0,400).
t
Then we have
E(t) < E(0)e'T Vit e [T, +o0).

4.2. General weights

For general weight functions, semi-explicit optimal decay rates have been derived for the first time in [4], and
later on a simplified form of the rates in [7].
Let n > 0 and M > 0 be fixed and w be a strictly increasing function from [0,7) onto [0, +0o0). For any
r € (0,n), we define a function K, from (0, r] on [0,400) by:
T dy
K. (1) = / _ 4.2
") - yw(y) (2

and a function 1, which is a strictly increasing onto function defined from [ﬁ, +00) on [ﬁ, +00) by:

Ur(2) = 2+ K, (wl (%)) >z Vz> w(lr)- (4.3)
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We can now formulate our weighted integral inequality:

Theorem 4.7 ([4], Thm. 2.1). We assume that E is a nonincreasing, absolutely conlinuous function from
[0,4+00) on [0,7), satisfying the inequality

T
/ w(E()E@#)dt < ME(S), YO<S<T. (4.4)
s
Then E satisfies the following estimate:
1 M
Et)<w!'| ——— Vit> , 4.5

where r > 0 is such that N
1 oo
—/ E(r)w(E(T))dr <r <n.
M Jo

In particular, we have lim E(t) =0 with the decay rate given by (4.5).

t——+o0

Theorem 4.8 ([7], Thm. 2.3). Let H be a strictly convex function on [0,7r2] such the H(0) = H'(0) = 0. We
define L and Ap as above. Let E be a given nonincreasing, absolutely continuous function from [0,+00) on
[0, +00) with E(0) >0, M >0 and 3 is a given parameter such that

E(0)

— < [5.
2E ) =
In addition, E satisfies the following weighted nonlinear inequality
g E(t)
/ Lt <%> E(t)dt < ME(S), YVO<S<T. (4.6)
s
Then E satisfies the following estimate:
1 M
E(t)<20L | ——— Vit> . (4.7)
(wo 1(&)) H(13)
Furthermore, if limsup Ay (z) < 1, then E satisfies the following simplified decay rate
z—0t
_ M
B(t) < 23(H)"" (K"T) (4.8)

for t sufficiently large, and where k > 0 is a constant independent of E(0).

5. PROOF OF MAIN RESULTS

In this section, we prove the main results including Theorems 3.1-3.8 and the decay rates in Examples 3.11—
3.14.

5.1. Proof of Theorem 3.1
We define the following unbounded nonlinear operator A in H by

‘AU = (p7 Au —aq — p('vP)anAU + ap)v
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with the domain

D(A) ={U e H; AU € H}.

It is easy to check that D(A) = H* N (Hg) x Hg)?. Moreover, since p is nondecreasing with respect the second
variable, we have for all U,U € D(A),

<AU—A3U—5%=jéwwm%m@ﬁ”@—ﬁmﬁo

Thus —A is a monotone operator. We now claim that —.A is a maximal operator. We proceed as follows. We
denote by A the unbounded operator in L? defined by A = —A and D(A) = H? N H}. Then I — A is invertible
as an operator acting from Hg in H~1(£2), so that the operator (I — A)~! is a well-defined, self-adjoint and if
w € L? then (I — A)~'w € H?> N H}. Then for any F = (f,g,h,r) € H, the equation

(I-AU=F
with U = (u, p,v,q) € D(A) is equivalent to
u—Au+a(l — A)~Hou) + p(.,u— f) =G,
v=(I—-A)"YHy + au), (5.1)
p:u—f,qzv—h,

where
Hi=g+ f+ahelL?

Hy=7r+h—af € L? (5.2)
G=H; ol -A)~'Hy € L%
We define for § € R
R(z,0) = /09 p(x, s)ds.

Let us define the functional J : H} — R defined by

J(u) = /Q (%(ﬁ + |Vul? + ’(I - A)—1/2(au)’2) + R(z,u— f) — Gu) dz.

Note that thanks to our hypotheses, |p(z,s)| < C(1+ |s|) for all (z,s) € £2 x R, so that J is well-defined and
continuously differentiable on H}. Moreover, we have

J' (u).p = /Q(ugo +Vu-Vo+ (I —A) Y2 (au) (I — A)7V2 (o) + p(x,u — flp — Ge)da.

We denote by || - || the L? norm. Since p is nondecreasing with respect to the second variable, J is a convex

function and we also have ,
|Jul] |[Vul|
sty > (Bl — o) i+ 5,

so that J(u) — 400 as ||[Vu|| — +oo. Hence J is coercive. Therefore J attains a minimum at some point
u € H}, which satisfies the Euler equation
J'(u) = 0.
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The usual elliptic theory implies that the weak solution u of the variational problem

u € HE,
J'(u).p=0, V¢ecH}

is in H2. Hence u € H?NH}. By defining v as in (5.1), and p, ¢ as in (5.1), it follows that U = (u,p, v, q) € D(A)
and (I — A)U = F. Hence —A is a maximal monotone operator. We conclude Theorem 3.1 using the classical
theory of maximal monotone operator (see e.g. [26] and the references therein).

5.2. Proof of Theorems 3.2 and 3.4
The proof will be divided in three steps, following those described in [10] (see also [4,7]).

e Step 1: we first prove that the energy FE satisfies a suitable dominant energy estimate. This is the step in
which the geometric assumptions PMGC on both the damping and the coupling regions are used, together
with suitable multipliers adapted to the coupled structure of the wave-wave system. The proof is valid
without specifying the growth assumptions on the feedback p.

e Step 2: we then prove that nonnegative and nonincreasing functions F satisfying a suitable dominant energy
estimate, satisfies a general weighted nonlinear inequality. In the case of polynomially growing feedbacks p,
the proof is easier since the weight function for integral inequalities is known. The general growing case relies
on the optimality-convexity method of the first author [4].

e Step 3: we deduce energy decay rates, applying Corollary 4.5 for polynomially growing feedbacks, whereas
applying Theorem 4.8 for general growing feedbacks.

Let us start with Step 1. We use the dominant energy method as developed and explained by the first author
in [4,10]. This method consists in estimating time integrals of the nonlinear weighted energy of the system by
corresponding dominant weighted energies, here in the frictional case, it means by respectively the nonlinear
kinetic energy and the localized linear kinetic energy. Note that this step is valid for feedbacks with polynomial
as well as arbitrary growth close to the origin.

Theorem 5.1 (Weighted dominant energy method). We assume that (HC) holds where w. satisfies the PMGC
and that p € C(£2 x R) is nondecreasing with respect to the second variable, and p(-,0) = 0 on 2. Let wqy be
a given subset of (2 satisfying the PMGC. Let ¢ : [0,400) +— [0,400) be a non-increasing and absolutely
continuous function. Then, there exist constants §; > 0(i = 1,2,3) and o* > 0 depending only on 2,wq but
independent of ¢ such that for any initial data in the energy space, for all a™ € (0, a*], the total energy of the
system (1.1) satisfies the following nonlinear weighted estimate

T

T
/ S(OE(W)dt < 516(S)E(S) + 65 /
S

S

T
qb(t)/QpQ(x,u/)dxdt—i—ég/S qi)(t)/ [/ |>dadt. (5.3)

Before proving Theorem 5.1, we give a Lemma on a weighted energy estimate for a non-homogeneous wave
equation. The Proof of Lemma 5.2 will be given in Section 6.

Lemma 5.2. Let w be a nonempty open subset of 2 satisfying the PMGC. Let ¢ : [0,+00) — [0,400) be a
non-increasing and absolutely continuous function. Then, there exist constantsn; > 0 (i = 1,2, 3,4) independent
on ¢ such that for all (u®,u') € H} x L?, all f € L*((0,00); L2(£2)) and all 0 < S < T, the solution u of

v — Au=f in 2 x (0,+00),
u=0 on I'x(0,4+00), (5.4)
(u, u')(0) = (u®, ul) in 2
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satisfies the estimate

T T T T
/S B(H)e()dt < m(S)[e(S) + e(T)] + mo /S — (B)e(t)dt + g /S o(1) /Q | Pdadt + s /S o(1) / o [2dadt.

(5.5)
where e(t) =% [ (|v']* + |[Vu[?*)dz.

Proof of Theorem 5.1. We first consider the case with smooth initial data, then system (1.1) admits a unique
solution (u,v) € C([0,+o0), (H? N HE)?) N WH2([0, +00), (H)?).

Let the weight function ¢ be a non-increasing absolutely continuous function. Let then

1

ex(t) = 5/Q(|u'|2+|W|2)dx.

We now apply Lemma 5.2 to the first equation of (1.1) with w = wq, f = —p(., v') —a(x)v’, with E given by (1.2)
and e(t) = ey (t). Using e;(t) < E(t) and the property that E is nonincreasing, we obtain for all 0 < .S < T and
some constants n; > 0 (i = 1,2,3,4) that

T T
/S o(t)er (DAt < mo(S)[er(S) + er(T)] + s /S (—/ (D)es (t)at
T T
—1—2773/5 ¢(t)/ﬂa2(x)\v’|2dxdt+2n3/s qb(t)/n,oQ(x,u')dxdt

T
g / ot) [ o Pdadt
S

wd

T
< CLo(S)E(S) + 215 /S "0 /Q p2(, u')dadt

T

[/ |*dadt + 2n3 /
s

T
oA ()| |2dxdt. .
+774/S o(1) ¢<t>/ﬂ (2l [Pdadt (5.6)

wWq

We now set

1
ealt) == 5 [ (P + Vo)

and secondly, we apply Lemma 5.2 to the second equation of (1.1) with w = w,, f = a(z)u’, with E given
by (1.2), e(t) = ez(t). Again, using the inequality es(¢t) < E(t) and the property that F is nonincreasing, we
obtain for all 0 < S < T and some constants v; > 0 (i = 1,2, 3,4),

T T
/ b()es ()t < 416(S)[ea(S) + ea(T)] + 7 / (—' (1)) es (1)t
S S

T T
s /S 6(t) /Q 02 (z) o/ P dadt + 4 /S o) | 1war
T

T
< C28(9)E(S) +74/S o(t) \v’|2dxdt—|—73/

S

é(¢) /Q (@) Pdedt. (5.7

We
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Let § > 0 be a real parameter to be chosen later on. Adding (5.6) to §-(5.7), we obtain that for all 0 < .S < T
and all § > 0

/ 6(¢) (ex(t) + dea(t)) dt < C(1 + 8)6( +c/ / o)dadt
+o/5 6(¢) /wdu’zdxdt+0<a++ai) /STqb(t)/Qav’Qdasdt
T
+ Coas /S 6(1) /Q ol [2dzdt, (5.8)

Where C denotes generic positive constants which may vary from one line to another. Next, we estimate the term
T

fq @ S (t) [ o) |2dzdt through the coupling relation. Obviously, the following identity holds for the solution
(u,v) of system (1.1):

T
/ o(t) / [V (0 — Au+ a(x)v" + p(z,u’)) +u' (v — Av — a(z)u)]dzdt = 0.
S o

After integration by parts, we obtain by Cauchy—Schwartz inequality that for all e; > 0

/ST o(t) /Qa(x)\v'|2dxdt = /ST o(t) /Qa(:r)|u'\2dwdt - [qb(t) /Q(u'v' + Vu - Vov)dz '

S

T
+/S qﬁ(t)/ﬂ(uv + Vu - Vo)dadt

—/ST ¢(t)/ﬂp(w,u’)v’dwdt

T
12
< /S 6(1) / alu! Pdzdt + Co(S)E(S)

+e / / o/ Padt + = / / u')dxdt. (5.9)

Using (5.9) in (5.8), we obtain for all 0 < 6 <1 and all 1 > 0 that

T )
/S 6(¢) (er(t) + dea(t)) dt < C (1 ota,+ a—_) 6(S)E(S)

s\ 1Y [ .
+C (1 + <a+ + a_> g) /S o(t) /sz(as,u Ydzdt
T
+C/S ott) | wParat +0; (a+—|——) / / W Pdadt

+Chay (a+ + —) / / |/ 2ddt, (5.10)

where C,Cy and Cs are generic positive constants. Thus,

(1 —2C 0y (a+ + O%)) /ST d(t)er (H)dt + <5 — 2046, (a+ + O%)) /ST d(t)es(t)dt
<C (1 +54+ oy + O%) #(S)E(S) + C (1 + <a+ + i) e /ST ¢(t)/ p%(x, u')dzdt

o_ €1 0

T
+C/ ¢(t)/ lu'|2dadt. (5.11)
S wq
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Let a be small so that

O<ay <ai=4)—-

We then fix § > 0 so that

<1 —2C1ay <a+ + i)) > 1
o 2

and choose next €1 > 0 so that

1)
6 — 2C5e, (a+ + a—> >

With these successive choices of ay,d and €1, we deduce that

T 1)
| ewrwa<c (1 Fotag a—) o(S)E(S)

+C (1 + (a+ + ai) é) /ST #(t) /sz(x,u’)dasdt

T
—1—0/ ¢(t)/ lu'[2dadt. (5.12)
S wq

For initial data in the energy space, we conclude by a standard argument using density of (H? N H}) x H}
in H} x L?, together with the dissipativity of the underlying nonlinear semigroup. This ends the Proof of
Theorem 5.1. O

Remark 5.3. The constant C7, and therefore the constant o* depends only on (2, wg.

Proof of Theorem 3.2. (Case of polynomially growing feedbacks).
Step 2. Assume that (HF},) holds.

We first consider the case with smooth initial data, then system (1.1) admits a unique solution (u,v) €
C([0,4+00), (H? N HE)?) N WLo°([0, +00), (HE)?). Moreover, the total energy E defined by (1.2) is absolutely
continuous and is non-increasing due to the monotonicity of p, that is

E'(t)=— /Q p(z,u)u'dz <0. (5.13)

Let t > 0 be fixed and W)’ := {z € wy : [u/(t,x)] =1} and w)’ == {z € wy: |u/(t,x)] < 1}. In short, we just
write w9, w} in the sequel. Then it follows from (HF,) and (5.13) that

T T
/ 6(1) / (' 2dadt < —C / S(O)E'(1)dt < CH(S)E(S) (5.14)
S w9 S

d
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Similarly we obtain from (HF,), (5.13) and Young inequality that for every 3 > 0,

T
/ o) [ |u/dadt < c/ / lp(z, v/ )| 757 dadt
S wd

<C/ (/pwu |d:c> +1dt

S
T . /
< /S [22(6(6) 5 — Ce2) B/ ()] dt
T p+1
<es /S (6(1) Pt + C(e2) B(S), (5.15)

where C(g2) > 0 stands for a constant depending on €3 (going to +00 as €2 goes to zero). Summing (5.14)
and (5.15) gives

T pi1

T
/ 6(1) / (o [2dadt < max (C(es), Co(S)) E(S) + £ / (1) FE dt. (5.16)
S wq S

Similarly, let 20 := {z € 2 : |[v/| > 1} and 2! := {z € 2 : |v/| < 1}. Note that these subsets depend as
above on t. We get from (HF)), (5.13) and Young inequality that for every e3 > 0

/ST o(t) /Qp2(ac,u’)dxdt = /ST o(t) (/QO P (x,u')dz + /91 pz(ac,u’)dx) dt

T
<Co®BS) + [ o) [ pte.a) Araas

T 1
< max (C(ea), COS) E(S) +a [ (o(e) et (5.17)
s
We now choose the weight function ¢ as follows
o(t)=E"> (t), Yt>0. (5.18)

Combining (5.3), (5.16), (5.17), together with this choice for ¢, and letting £2, £3 small enough, we obtain that
foral 0 < S <T,

T
[ B ()t < max (1, BT 0)) E(S),
S

where Cy, Cy are positive constants independent of E(0).
We finish the proof by Step 3, which says that nonnegative, nonincreasing functions E satisfying a polynomial
nonlinear integral inequality, then satisfy a polynomial decay rate. Applying Corollary 4.5 with o = % > 0,

and M = C(1 + E*= (0)), we end the Proof of Theorem 3.2 and obtain when E(0) > 0

E(t) < Cpot ® Y, Vi>CE 7 (0)+ Cs, (5.19)

where

o1 1 1/
Cro) = <max (01702ET(0)) (1 + E)) . 0
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Proof of Theorem 3.4. (Case of general growing feedbacks).
In Step 2, We shall prove the following theorem

Theorem 5.4 (Optimal-weight convexity method). Assume the hypotheses of Theorem 5.1. Assume further-
more that (HF,) holds where g is such that the function H defined in (2.3) is strictly convex on [0,7¢], and
g’ (0) = 0. We define L by (2.4). Let the initial data be in the energy space and be non vanishing, (u,v) be the
solution of (1.1) and E be its energy. Then E satisfies the following nonlinear weighted integral inequality

’ E(t)
/ [ (W) E(t)dt < ME(S), Y0<S<T, (5.20)
s
where B and M are respectively given by:
_ E(0)
3= (O )

and
M =2C1(1+ H'(r3)),

with C1 > 0,Cy > 0 depending on 6; (i =1,2,3), 2, wa but independent of E(0).

Remark 5.5. This method is called the optimal-weight convexity method according to the property that the
weight function ¢ is chosen in an optimal way by setting

thanks to suitable convexity arguments relying both on Jensen and Young’s inequalities for an appropriate
convex function.

Proof. We consider as before smooth initial data, then the solution (u,v) of (1.1) is in C([0,4o0), (H? N
HY2) N Whe2([0, +00), (H})?). Moreover, the total energy E satisfies the dissipation relation (5.13). Thanks
to Theorem 5.1, we know that E satisfies the weighted dominant energy estimate (5.3). We shall now use the
optimal-weight convexity method of the first author [4] to build an optimal weight function ¢ to prove that the

two terms - -
/ qi)(t)/ p*(x,u')dzdt and / ¢(t)/ |u'|2dxdt
S ] S wd

in (5.3), are bounded above by the term
T
CE(S)(1 + () + C / E()o(t)dt Y0<S<T.
5
We proceed as in [4]. Choose a parameter ¢q sufficiently small, e.g. £9 = min(1, g(ro)).

For fixed ¢ > 0, we define the subset 2! = {z € 2, |u/(t,z)| < £0}. Now thanks to (HF,), we know that (2.2)
holds. Hence, since g is increasing, we have

"(t
g (M) < |u/(t,z)|, for a.e x € 2%, (5.21)
where K = ¢3]al|s, with || - ||c standing for the L° norm. Now, we can note that parameter £y has been
chosen to guarantee the following two properties
1 x,u' (t,x))|?
ol D) 4, ¢ 0,42, (5.22)

19211 J o K?
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and
1

K /o p(a,u'(t,2)u'(t, 2)dz € [0, H(r5)], (5.23)

hold. Since H has been assumed to be convex on [0, 73] and thanks to (5.22), the Jensen’s inequality, and (5.21),
we obtain
1 |p(z, u'(t, 2))|? 1 (ﬂ(fﬂ,U’(t,x)V)
H| — ————dz | < — H(——— | dx
(mﬂQ; e ] oy e

~ i L ol (P 0o
1

—_

1

/ o' (t,z)p(z, v (t, z))dz.
Qf

1

By (5.23), we deduce that

/STW)/Q

and using further Young’s inequality, the dissipation relation (5.13), we obtain

/STW)/Q

On the other hand, we prove easily as in the Proof of Theorem 3.2 that

T
|p(z,u/(t,))|?dzdt < /S K22t p(t)H? <|(2th ; u’(t,w)p(w,u'(t,x))dx) dt,
1 {

t
1

T
|p(z, (¢, 2))|*dzdt < Kz\m/s H*(¢(t))dt + KE(S), Y0<S<T.

t
1

/T ¢(t)/ Ip(z, (¢, 2)[2dadt < KE(S)6(S), ¥0<S<T.
s o\t

Adding these two inequalities, we obtain

T T =N
/ ¢>(t)/ |p(z, v (t,x))|*dedt < K2m|/ H*(¢())dt + KE(S)(1+¢(S)), V0<S<T. (5.24)
S 2 S

We now turn to the estimate of the localized weighted linear kinetic energy. Thanks to (HF), we know that (2.2)
holds. Choose a parameter ¢; sufficiently small, e.g. £; = min{rg, g(r1)} where r is defined by

=i (e )

where k = ¢ia_. For fixed t > 0, we define the subset w = {z € wyq, [u/(¢,z)| < e1}. Thanks to (2.2) and since
(HF ;) holds, we have
_ ol (t,2))

g(Ju'(t,2)|) < - , for a.e x € W, (5.25)
Now, we can note that parameter €; has been chosen to guarantee the following two properties
1
L / W (8, 2)2dz € [0,72), (5.26)
|wd| wh
and .
|fm/pmwmwwmwMeMH%» (5.27)
w(/i “"(ti
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hold. Since H has been assumed to be convex on [0, r3] and thanks to (5.26), the Jensen’s inequality, and (5.25),

we obtain
H 1 | / 2 1 / 2
| W) de | < — [ H([W(t2)")de
|wd| wh ‘ d| wh

w / ' (8, 2) gl (8, ) )

u'(t, ) p(z,u (t,z))dx.

~

\

- ‘wd|k wé

Thanks to (5.27), we deduce that

r / 2 ’ t —1 1 / /
e [ )Pt < | ilewn (wék / iu(t,mp(m,u<t,x>>daf> a,

and using further Young’s inequality, the dissipation relation (5.13), we obtain

/Squ()/w W/ (t, z)] dxdt<\wd|/ i ( ())dt+%E(S), VO<S<T.

d

On the other hand, we prove easily as in the Proof of Theorem 3.2 that

T 1
/ gzb(t)/ [/ (t,z)|dzdt < —E(S)$(S), Y0<S<T.
S wa\wf k

Adding these two inequalities, we obtain
T 1
| o [ ) Pdoa < |wd|/ H*(6()dt + E(S)(1+6(5), VO<S<T.  (5.28)
S wq
Using (5.24) and (5.28) in the weighted dominant energy estimate (5.3), we obtain
T A~
/ SO E@)AE < CLE(S)(1 4+ 6(S)) + 02/ B (6()dt, YO<S<T, (5.29)
5

where the constants C7,C> depend only on the §; for i = 1,2,3 and on |{2] and |w,| in an explicit way. In
particular, they do not depend on ¢.

Let )
E(0
5 = max <02, m) 5 (530)
where L is defined in (2.4). Since F is a nonincreasing function, and thanks to (2.5), we have
E{t) _ E(0) 102 2
— < —= < L(H .
25 — 2/8 — ( (TO)) < T
Hence, since L~ is defined from [0,73) onto [0, +00), we can define ¢ by
EB(t
p(t)=L"" (%) , Yt=0. (5.31)



742 F. ALABAU-BOUSSOUIRA ET AL.

By definition of L, ¢ is a nonnegative, non increasing and absolutely continuous function on [0, +00). We first
note that
¢(S) < H'(r3), V.S =0. (5.32)

Then, thanks to our “optimal” choice of the weight function ¢ and to the definition of L, we have

E(t) _ H*(¢(t))
2p o(t) 7

L(g(t)) = Vi>0.

This implies 1
Col" (9(1)) < BH™(6(1)) = 50(DE(), ¥t >0.

Combining this estimate together with (5.32) in (5.29), we obtain

"o (EQ
/S L ( 5 ) E(t)dt < ME(S), Y0<S<T, (5.33)
where
M =2C,(1+ H'(r2)). (5.34)
O

We finish the Proof of Theorem 3.4 by Step 3. Thanks to Step 2, E satisfies the weighted nonlinear integral
inequality (5.33), where 3 is defined by (5.30), M is defined by (5.34). Hence applying Theorem 4.8 with this 3
and M we deduce that E satisfies the decay rate (4.7) in the general case, and the simplified decay rate (4.8)
if limsup Ag(z) < 1. This concludes the Proof of Theorem 3.4. O

z—0t

Remark 5.6. The smallness of « can be reduced if we assume additionally supp{a} C wg in Theorem 3.4.
Actually, we can choose § = 1 in the proof of (5.10), and in that case, the last term of (5.10) can be replaced by

a /ST é(¢) /w o [2ddt.

Then (5.3) follows easily by choosing £; > 0 sufficiently small in (5.10). The proof afterwards is the same.

5.3. Proof of Theorem 3.8

Thanks to our hypotheses, the simplified upper energy estimate (4.8) of Theorem 4.8 holds, so that E(t)
converges to 0 as t goes to infinity. Hence, there exists T > 0 such that

2\ 2
E(t) < (2—0) , V>, (5.35)
where v, = 44/F1(0). Hence
sV E(t) € [0,72] for all t > T. (5.36)

On the other hand, thanks to the regularity of u (see [9] for details), we have

[/ (¢, )= (2) < 1V E(t).

Using this inequality in the dissipation relation
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together with (5.36), we deduce that for all t > Tj

~B'(0) < llallu=(o— VO H (2 /ED)

Therefore, we have

1 2
E<t>>(7K1<|a|mm<t—To>>) CvisT, (5.37)

S

where K ! denotes the inverse function of K defined by

K(r) = :D%, vr € (0, /E(Ty), (5.38)

where
20 = vsV/ E(Tp)- (5.39)

We denote by z the solution of the following ordinary differential equation
() + [lal o H(=(0)) = 0, 2(0) = 2. (5.40)
Then we have the relation
2(t — To) = K~ (||al| (o)t — To)), Vt=Ty. (5.41)
We now use the following comparison Lemma, that we recall for the sake of completeness.

Lemma 5.7 ([7], Lem. 2.4). Let H be a given strictly convexr C! function from [0,73] to R such that H(0) =
H'(0) = 0, where 7o > 0 is sufficiently small and define Ay on (0,73] by (2.6).
Let z be the solution of the ordinary differential equation:

)+ rkH(2(t)=0,20)=2 >0, (5.42)

where zg > 0 and k > 0 are given. Then z(t) is defined for every t > 0 and decays to 0 at infinity. Moreover
assume that (HF;) holds. Then there exists Ty > 0 such that for all R > 0 there exists a constant C' > 0 such
that

2(t) > Co(H)! (%) . Vit>Ty, (5.43)

where Th is a positive constant.

We apply this Lemma to the solution z of (5.40) with R =1 and & = ||al| (o). Thus, there exist two constants
T: > 0 and Cs > 0 such that

1
2(t) > Co(H") ™! (;) . Vt>T, (5.44)
Combining (5.44) together with (5.37) and (5.41), we obtain the lower estimate (3.8). O

Remark 5.8. The constant C' of the above Lemma 5.7 depends explicitly on x, R (and in addition of p if
the second alternative of (H F}) holds). This dependence is given in the proof of Lemma 2.4 in [7]. Moreover,
Lemma 5.7 is also true for g = co. In this case the interval [0, rZ] becomes [0, +00).
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5.4. Proof of the decay rates given in Examples 3.11-3.14

Example 3.11. We have H(z) = ®+1/2 for z € [0 r3]. Thus H'(x) = p'glx(f’_l)m and H is strictly convex
on a right neighborhood of 0. Moreover, Ay (z) = p+1 < 1 for all z € [0,73]. We easily conclude applying (4.8)

of Theorems 4.8 and 3.8 for the lower estimate in the one-dimensional case.
—1/x

Example 3.12. We have H(z) = /ze= for z € [0,72]. Thus H’( ) = 75
on a right neighborhood of 0. Moreover, we have Ay (x) = (1 ) for all x > 0 sufficiently close to 0, so that
hm Ap(z) = 0. We apply (4.8) of Theorem 4.8. So we set z(t) = (H') " (22£). Then one can prove that z(t) is

z—0
equlvalent to m as t goes to +00. We therefore obtain the desired upper bound, using this equivalence.
One can show that the second alternative of (HF;) holds for any 4 > 1 (see Sect. 7.10 in [7]). Thus, we obtain
in the same way by Theorem 3.8 the lower estimates in the one-dimensional case.

Example 3.13. We have H(x) = 2P+1/2(In(1/,/x))? for 2 € [0,73]. Thus H is strictly convex on a right neigh-

borhood of 0 and H'(z) = %x(f’_l)m(ln(l/\/a?))q (p+1—q(In(1/y/x))~"). Moreover, Ay (x) = p+1_q(1n%1/ﬁ))71

for all x > 0 sufficiently close to 0, so that lir(r)lJr Ag(z) = 1%. We apply (4.8) of Theorem 4.8. So we set
xr—

- (p—1)/2
z(t) = (H’)—l (2M) and y(t) = (@)2/@ Y. Then one can prove that (%) (In(1/y/x))? is equiv-
alent to ? as t goes to +o0o. On the other hand, computing In(z(¢)) and In(y(¢)), we find that In(z(t)) is

equivalent to In(y(t)) as t goes to 4+oco. Using this relation in the previous one, we find that z(t) is equiva-

(1 4+ 1), and H is strictly convex

lent to Dt—2/(P—1) (ln(t))_2Q/(p_1), where D is an explicit positive constant which depends on x, M,p and q.

We therefore obtain the desired upper estimate. The lower estimates in the one-dimensional case follows from

Theorem 3.8.

Example 3.14. We have H(x) = ﬁef(ln(l/ﬁ))p for z € [0,72]. Thus, H is strictly convex on a right neighbor-
g) = L o= (n(1/va))” ( (L))p ! -2

hood of 0 and H'(x) 53¢ (1 +p(ln 7 . Moreover, we have Ay (x) VT

for all x > 0 sufficiently close to 0, so that lim AH(.T) = 0. We apply (4.8) of Theorem 4.8. So we set

z(t) = (H)7' (24) and y(t) = *Q(IH(W))UP Then one can prove that In(z(t)) is equivalent to In(y(t)) as
t goes to +oo. We further set z(t) = In(1/4/2(t)) so that z(t) goes to +00 as ¢t goes to +oo, then we have
2P(t)(1—6(t)) = In(557), where 9( ) 217P(#) + In(1 + p2P~1(t))2P(¢), so that O(t) goes to 0 as t goes to +oo.

n 1
Hence we have x(t) = e 2 ()" G0 . We can check that In(547)YP(1 — (1 — 6(t))"/?) goes to 0 as t

2k M
goes to +oo. Hence, x(t) is equivalent to e~2Mn()” a5y goes to +o0o0. We therefore obtain the desired upper

estimate. One can show that the second alternative of (HF}) holds for any u > 1 (see Sect. 7.10 in [7]). Thus,
we obtain by Theorem 3.8 the lower estimates in the one-dimensional case.

6. PROOF OF LEMMA 5.2

In this section, we give a Proof of Lemma 5.2 based on the piecewise multiplier method which relies on the
geometric assumptions PMGC on the subset w C {2 (introduced for the first time in [31], see also [33,34]). Our
Lemma concerns a forced wave equation, and is not formulated under this form in the literature. For the sake
of completeness, we give its proof below. Denoting by 2 and z; (j =1,...,J) the sets and the points given
by the PMGC, we have w D NE(szlvj(mJ) (2\ U 2;)) N 2. Here, N ( ) ={z € R",d(z,U) < e} with
d(-,U) the usual euclidian distance to the subset U of R ,and v(z;) = {x € I}, (x — x;) - v; > 0}, where v;
denotes the outward unit normal of the boundary I'; = 8()

Let 0 < g9 < €1 < €2 < € and define Q; := N¢, [U‘jjzlfyj(x]) (2\U7_,2))](i = 0,1,2). Since (£2;\Q1)NQo
we introduce a cut-off function ¢; € C5°(RY) satisfying

0<v; <1, Y =1 on 2;\Qs; ¥; =0 on Qo. (6.1)

0,
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For m;(z) = x — x, we define the C! vector field on (2:

h(gﬁ):{wj(x)mj(x) ifee,j=1,...,J

6.2
0 if 2 € Q\U/_, 0 (6:2)

Using the multiplier ¢(t)h(z) - Vu to equation (5.4):

T
/ ¢(t)/ h(z) - Vu(u" — Au — f)dzdt =0
S (9]

J

leads to

T T
—/ gb'(t)/ u'h - Vudzdt
s 2

S J

T
+/ ¢(t)/ %divh(\u’\z—wu\z)dxdt

S 2;
T Ou Ou Ohy
+ g o(t) /Qj [; ox; axk 83: —h-vuf

/ / c‘)_ujh Vit (h vi)(Ju'|* = [Vul*)dldt = ¢(t)/ W'h - Vudz

2;

dzdt.

(6.3)

Thanks to the choice of 1, the terms in the left hand side of (6 3) vanish except on the boundary (17 \~;(x;))NI".
Since u = 0 on this part of boundary, then v’ = 0, Vu = £% 1/J Hence, the left side of (6.3) becomes

i/ o0 ] 7l
z vim, - v;dldt < 0.
2 S (Lj\v;j (z;))NT" al/j I ’

Therefore (6.3) implies that
’ 1 r du du Oh
t) [ Sdiva(ju']? - Qddt/ t/E: — Fazat
/@¢()/(221V (™ = [Vul")dedt + s¢() jSkﬁaziﬁxkﬁazix

T T
+/ gb’(t)/ u'h - Vudzdt
s 2;

S J

4 /ST 6(1) /Q h- Vu fdadt.

Since, moreover h(z) = m;(z) on £2;\Q1, we obtain that

< - [qb(t)/Q u'h - Vudz

J

T T
—I—/ (b’(t)/ u'h - Vudzdt
17}

S S J

+/ST¢(t)/th~Vufdacdt

T
_ 1 . ne _ 2 ou Ou 8hk
/S 0] o {deh(u [Vul )—i—gk 9z, 02y 021 dadt.

T
/ ¢(t)/ E(u’2—|Vu|2)+Vuzdasdtg—lqﬁ(t)/ o Vuds
s 27\@1 2 Y

J
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Summing the above inequality on j and using the facts that 2\Q; = U}']=1 (2;)\@Q1 and h(z) = 0 on 2\ szlﬁ

we obtain

T

T T
/S 6(1) /rz\Q1 g(\u’\2—|Vu|2)+|Vu|2dxdtS - {gb(t)/gu’hVudx]s—l—/S ¢’(t)/nu’h-vudxdt
T
+/S gb(t)/(/rVufdazdt

T
—/ ¢>(t)/ ldwh(|u’|2—\VuP)JrZ Ou @%] dadt.
s 2nQ: | 2 n

p Ox; Oxy, Ox;

(6.4)
Using the second multiplier 252 ¢(¢)u for (5.4):
N-1 [T v B
T/S gzb(t)/ou(u Au — f)dzdt =0,
yields that
N-1 [T . N -1 . T (N-1) [T, )
T/S ¢(t)/9(|v16|2—|u |2)dxdt:—T {gﬁ)(t)/ﬂuudx}s —l—( 5 )/S qb(t)/guudxdt
N-1 (T
= /S 6(1) /Q w fdadt. (6.5)

Adding (6.5) to (6.4) and using Cauchy—Schwarz and Poincaré’s inequalities, we obtain for all §; > 0 that

L e — [ \Vu\z—k\u/\zw
/S o(t)e(t)dt = /S o(1) /Q Al U Y

T
< COS)[e(8) + (T +C [ ~¢'(t)e(t)s

g c
+ (51/ p(t)e(t)dt + — / / | f|?dxdt
+ C'/ / (Ju'|? + |Vu|*)dzdt. (6.6)
02NQq
Compared to the desired estimate (5.5), the term concerning |Vu|? on the right hand of (6.6) is crucial. We

just follow the techniques developed in [33] to deal with this term.
Since RN\ Q2 N Q; = 0, there exists a cut-off function £ € C§°(R) such that

0<E<1, £€=1 onQ;, £=0 onR"\Q,. (6.7)
Applying now the multiplier ¢(¢)¢(z)u to (5.4) gives, after integration by parts, that

T T 1
2 - ne 1,2
[ ot [ evutasar= [ ote) [ 6P+ guagaaar
T T
“‘/S ¢/(t)/nfuu/dxdt— {(b(t)/ﬂfuu'dx]s
T
+/S ¢(t)/9§ufdxdt.
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Then it follows from the definition of £ that

/Sch(t)/Qle Vquxdtg/ST(b(t)/vauzdxdt

T
< CH(9)[e(S) + e(T)] + C /S — ¢ (De(t)dt

-+C[j¢@)AJf%M&

T
+C/S 6(1) /erQ(|u| + [uf?)dzdt. (6.8)

Now it remains to estimate the term concerning |u|? in (6.8). Since RN \w N Q, = (), there exists a function
B € C3°(R) such that
0<B<1, f=1 onQy B=0 onRM\w. (6.9)

Fix the t variable and consider the solution z of the following elliptic problem in space:

Az = p(z)u, in £2,
z =0, on I

Hence, z and 2’ satisfy the following estimates
I#las < € [ p@)lubas. (6.10)
213 <C [ B Pda. (6.11)
[0’

Applying the multiplier ¢(¢)z to (5.4) gives, after integration by parts, that

T

Af¢a>[;ﬁ@nu%nﬂt:[¢a>l;m/¢4s._Zj¢qﬂjizwdﬂﬁ

-|-/T ¢(t)/ﬁ(—z/u/ — 2 f)dxdt.

S

Hence, using the estimates (6.10)-(6.11) in the above relation, and noting the definition of 3, we obtain for all
62 >0

T T
U2 X X U2 €T
L¢®Ade&<L¢mAMNd&
T
< CH(9)[e(S) +e(T)] + C /S — ¢ (De(t)dt
T C T o
+52/S ¢(t)e(t)dt+g/s qﬁ(t)/w|u| dadt

c [ )
w5 ¢(t)/ﬂ|f\ dadt. (6.12)

Inserting (6.8) and (6.12) in (6.6), then choosing finally §; and d2 sufficiently small, we obtain (5.5) which ends
the Proof of Lemma 5.2. O



748 F. ALABAU-BOUSSOUIRA ET AL.

Acknowledgements. The authors are thankful to the support of the ERC advanced Grant 266907 (CPDENL) and the
hospitality of the Laboratoire Jacques-Louis Lions of Université Pierre et Marie Curie. Fatiha Alabau-Boussouira was
supported by the LIASFMA for a visit at Fudan University during August 2014. Zhiqiang Wang was partially supported
by the National Science Foundation of China (No. 11271082) and by the State Key Program of National Natural Science
Foundation of China (No. 11331004).

REFERENCES

[1] F. Alabau, Stabilisation frontiere indirecte de systémes faiblement couplés. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999)
1015-1020.

[2] F. Alabau, Indirect boundary stabilization of weakly coupled systems. STAM J. Control Optim. 41 (2002) 511-541.

[3] F. Alabau-Boussouira, Une formule générale pour le taux de décroissance des systémes dissipatifs non linéaires. C. R. Acad.
Sci. Paris Sér I Math. 338 (2004) 35-40.

[4] F. Alabau-Boussouira, Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic
systems. Appl. Math. Optim. 51 (2005) 61-105.

[5] F. Alabau-Boussouira, Piecewise multiplier method and nonlinear integral inequality for Petrowsky equation with nonlinear
dissipation. J. Evol. Equ. 6 (2006) 95-112.

[6] F. Alabau-Boussouira, Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control. NoDEA 14
(2007) 643-669.

[7] F. Alabau-Boussouira, A unified approach via convexity for optimal energy decay rates of finite and infinite dimensional
vibrating damped systems with applications to semi-discretized vibrating damped systems. J. Differ. Equ. 248 (2010) 1473~
1517.

[8] F. Alabau-Boussouira, New trends towards lower energy estimates and optimality for nonlinearly damped vibrating systems.
J. Differ. Equ. 249 (2010) 1145-1178.

[9] F. Alabau-Boussouira, Strong lower energy estimates for nonlinearly damped Timoshenko beams and Petrowsky equations.
NoDEA 18 (2011) 571-597.

[10] F. Alabau-Boussouira, On some recent advances on stabilization for hyperbolic equations. Vol. 2048 of Lect. Note Math. CIME
Foundation Subseries Control of Partial Differential Equations. Springer Verlag (2012) 101.

[11] F. Alabau-Boussouira and K. Ammari, Sharp energy estimates for nonlinearly locally damped PDEs via observability for the
associated undamped system. J. Funct. Anal. 260 (2011) 2424-2450.

[12] F. Alabau-Boussouira and M. Léautaud, Indirect stabilization of locally coupled wave-type systems. ESAIM: COCV 18 (2012)
548-582.

[13] F. Alabau-Boussouira and M. Léautaud, Indirect controllability of locally coupled wave-type systems and applications. J.
Math. Pures Appl. 99 (2013) 544-576.

[14] F. Alabau, P. Cannarsa and V. Komornik, Indirect internal damping of coupled systems. J. Evol. Equ. 2 (2002) 127-150.

[15] F. Alabau-Boussouira, P. Cannarsa and R. Guglielmi, Indirect stabilization of weakly coupled systems with hybrid boundary
conditions. Math. Control Relat. Fields 1 (2011) 413-436.

[16] F. Alabau-Boussouira, Y. Privat and E. Trélat, Nonlinear damped partial differential equations and their uniform discretiza-
tions. Preprint arXiv:1506.04163 (2015).

[17] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from
the boundary. SIAM J. Control Optim. 30 (1992) 1024-1065.

[18] M. Bellassoued, Rate of decay of solution of the wave equation with arbitrary localized nonlinear damping. J. Differ. Equ.
211 (2005) 303-332.

[19] G. Chen, A note on boundary stabilization of the wave equation. SIAM J. Control Optim. 19 (1981) 106-113.

[20] Y. Cui and Z. Wang, Asymptotic stability of wave equations coupled by velocities. Math. Control Relat. Fields 6 (2016)
429-446.

[21] B. Dehman, G. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation. Annales Scien-
tifiques de I’Ecole Normale Supérieure 36 (2003) 525-551.

[22] X. Fu, Longtime behavior of the hyperbolic equations with an arbitrary internal damping. Z. Angew. Math. Phys. 62 (2011)
667-680.

[23] X. Fu, Sharp decay rates for the weakly coupled hyperbolic system with one internal damping. SIAM J. Control Optim. 50
(2012) 1643-1660.

[24] R. Joly and C. Laurent, Stabilization for the semilinear wave equation with geometric control condition. Ann. PDE 6 (2012)
1089-1119.

[25] J.U. Kim and Y. Renardy, Boundary control of the Timoshenko beam. SIAM J. Control Optim. 25 (1987) 1417-1429.

[26] V. Komornik, Exact controllability and stabilization: The Multiplier Method. Vol. 36 of Collection RMA. Masson-John Wiley,
Paris-Chicester (1994).

[27] I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping.
Differ. Integral Equ. 8 (1993) 507-533.

[28] G. Lebeau, Equation des ondes amorties, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993). Math.
Phys. Study. Kluwer Acad. Publ., Dordrecht (1996) 73-109.


http://arxiv.org/abs/1506.04163

OPTIMAL ENERGY DECAY FOR SYSTEMS COUPLED IN VELOCITIES 749

[29] G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity. Arch. Ration Mech. Anal.
148 (1999) 179-231.

[30] J.-L. Lions, Controlabilité exacte et stabilisation de systémes distributés. Vol. 1 of Collection RMA. Masson, Paris (1988).

[31] K. Liu, Locally distributed control and damping for the conservative systems. SIAM J. Control Optim. 35 (1997) 1574-1590.

[32] W.-J. Liu and E. Zuazua, Decay rates for dissipative wave equations. Ricerche di Matematica 48 (1999) 61-75.

[33] P. Martinez, A new method to obtain decay rate estimates for dissipative systems with localized damping. Rev. Mat. Complut.
12 (1999) 251-283.

[34] P. Martinez, A new method to obtain decay rate estimates for dissipative systems. ESAIM: COCV 4 (1999) 419-444.

[35] P. Martinez and J. Vancostenoble, Exponential stability for the wave equation with weak nonmonotone damping. Portugal.
Math. 57 (2000) 285-310.

[36] M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation. Math. Ann. 305 (1996) 403-417.

[37] A. Soufyane, Stabilisation de la poutre de Timoshenko. C. R. Acad. Sci. Paris Sér I Math. 328 (1999) 731-734.

[38] J. Vancostenoble, Optimalité d’estimation d’énergie pour une équation des ondes amortie. C. R. Acad. Sci. Paris série I 328
(1999) 777-782.

[39] J. Vancostenoble and P. Martinez, Optimality of energy estimates for the wave equation with nonlinear boundary velocity
feedbacks. SIAM J. Control Optim. 39 (2000) 776-797.

[40] E. Zuazua, Uniform stabilization of the wave equation by nonlinear feedbacks. SIAM J. Control Optim. 28 (1989) 265—268.

[41] E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping. Commaun. Part. Differ. Equ.
15 (1990) 205-235.



	Introduction 
	Preliminaries, assumptions and notations
	Main results
	Well-posedness
	One-step quasi-optimal energy decay rate for the wave-wave system
	Lower energy estimates
	Some examples of decay rates

	Weighted nonlinear integral inequalities and decay rates
	Polynomial weights
	General weights

	Proof of main results
	Proof of Theorem 3.1
	Proof of Theorems 3.2 and 3.4
	Proof of Theorem 3.8
	Proof of the decay rates given in Examples 3.11--3.14

	Proof of Lemma 5.2
	References

