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This paper investigates the random horizon optimal stopping problem for measurevalued piecewise deterministic Markov processes (PDMPs). This is motivated by population dynamics applications, when one wants to monitor some characteristics of the individuals in a small population. The population and its individual characteristics can be represented by a point measure. We first define a PDMP on a space of locally finite measures. Then we define a sequence of random horizon optimal stopping problems for such processes. We prove that the value function of the problems can be obtained by iterating some dynamic programming operator. Finally we prove on a simple counter-example that controlling the whole population is not equivalent to controlling a random lineage.

Introduction

Piecewise deterministic Markov processes (PDMPs) form a general class of non diffusion processes that was introduced by M. Davis in the 80's [START_REF] Davis | Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models[END_REF][START_REF] Davis | Markov models and optimization[END_REF]. Such processes have deterministic trajectories punctuated by random jumps. They belong to the family of hybrid processes with a discrete component called mode or regime interacting with a Euclidean component. PDMPs can model a wide area of phenomena from insurance and queuing problems [START_REF] Davis | Markov models and optimization[END_REF], finance [START_REF] Bäuerle | Markov decision processes with applications to finance[END_REF], reliability [START_REF] De Saporta | Numerical methods for simulation and optimization of piecewise deterministic Markov processes: application to reliability[END_REF] to neuroscience [START_REF] Genadot | Multiscale piecewise deterministic Markov process in infinite dimension: central limit theorem and Langevin approximation[END_REF][START_REF] Riedler | Limit theorems for infinitedimensional piecewise deterministic Markov processes[END_REF], population dynamics [START_REF] Benaïm | Lotka-volterra with randomly fluctuating environments or "how switching between beneficial environments can make survival harder[END_REF][START_REF] Cloez | Probabilistic and piecewise deterministic models in biology[END_REF] and many other fields. In this paper we are especially interested in population dynamics applications. In this area, special cases of PDMPs include for instance growth-fragmentation processes for one or several interacting species [START_REF] Campillo | Links between deterministic and stochastic approaches for invasion in growth-fragmentation-death models[END_REF][START_REF] Cloez | Limit theorems for some branching measure-valued processes[END_REF][START_REF] Costa | A piecewise deterministic model for a prey-predator community[END_REF][START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF]. In that case, commonly, the deterministic part is the growth process that may depend e.g. on the age of the individual, on its size, on the quantity of available nutriment and the jumps correspond to fragmentation or division (for cells), birth or death events, abrupt changes in the environment,. . . In Davis' original construction, PDMPs are defined on subsets of R d , for some dimension d that may change when the process jumps. In this paper we are interested in extending the definition of PDMPs to measure-valued state spaces. Infinite dimensional PDMPs have already been introduced in [START_REF] Buckwar | An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution[END_REF] (see also [START_REF] Genadot | Multiscale piecewise deterministic Markov process in infinite dimension: central limit theorem and Langevin approximation[END_REF][START_REF] Riedler | Limit theorems for infinitedimensional piecewise deterministic Markov processes[END_REF]). In those papers, PDMPs take values in a separable Hilbert space and model spatio-temporal phenomena occurring on neuronal membranes. Our approach differs as we are interested in measure-valued PDMPs to deal with population dynamics models. Instead of modeling the dynamics of only a single individual by a finite-dimensional PDMP, we aim at taking into account simultaneously the dynamics of all the individuals in the branching population when the population remains small and the stochastic approach is relevant and large scale approximations do not hold. Such a population can be represented by a point measure, hence the need to define measure-valued PDMPs. The measure-valued process representation in population dynamics is used e.g. in [START_REF] Bertoin | Random fragmentation and coagulation processes[END_REF][START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF], with fragmentation-type processes. It is a particular case of measure-valued PDMPs, with no deterministic dynamics between jumps and exponential distributions for the jump times.

After constructing measure-valued PDMPs, we define a sequence of random horizon optimal stopping problems for measure-valued PDMPs and prove that the value functions can be obtained by iterating some dynamic programming operator. We also exhibit a sequence of ε-optimal stopping times. Our approach is based on [START_REF] Gugerli | Optimal stopping of a piecewise-deterministic Markov process[END_REF] that solved the optimal stopping problem for finite-dimensional PDMPs.

When dealing with a branching population, some important characteristics of the global population, e.g. laws of large numbers for functionals of the individuals, can be obtained by simply studying a suitably weighted random tagged lineage, by means of many-to-one formulas, see e.g. [START_REF] Bertoin | Random fragmentation and coagulation processes[END_REF][START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF][START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF]. Here, we prove that this property does not hold true for the optimal stopping problem. We provide a simple counter-example of cell division where stopping a suitably chosen tagged cell and the whole population yield different value functions.

The paper is organized as follows. In Section 2, we construct measure-valued PDMPs.

In Section 3, we state and solve the optimal stopping problem for such processes. Finally in Section 4 we compare the value functions of the optimal stopping problems for the whole population and a tagged lineage.

Construction of measure-valued PDMPs

This section is dedicated to the construction of piecewise deterministic Markov processes taking values in some measure space. Our construction of measure-valued PDMPs follows the same lines as in [START_REF] Davis | Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models[END_REF]: we first define the hybrid state space in which the process evolves, then we define the local characteristics giving the dynamics of trajectories between jumps, the jump times and the post-jump locations, and prove that a strong Markov process with such characteristics can be constructed. Finally we provide some toy example of such processes. We start by setting some notation that will be used throughout the paper.

Notation

Let d be a positive integer. We denote by B the σ-field of Borel sets on R d and B b its subset of bounded Borel sets. More generally, For any topological space E, we denote by B(E) its Borel σ-field, B(E) its set of measurable bounded real-valued functions, E its closure, and ∂E its boundary. Let M be the set of locally finite measures on (R d , B) and N = {µ ∈ M; ∀B ∈ B b , µ(B) ∈ N} be the set of locally finite point measures. Note that any µ in N can be expressed as a (possibly infinite) sum of Dirac distributions; the Dirac distribution with point mass at x, for x in R d , will be denoted by δ x .

Let C c (R d ) be the set of continuous real-valued functions with compact support on R d . For any measure µ ∈ M and function

f ∈ C c (R d ) set µf := R d f (x)µ(dx).
We endow M with the vague topology. Recall that the vague convergence for a sequence of measures (µ n ) n ⊂ M to a measure µ ∈ M is defined by

µ n f ---→ n→∞ µf, ∀f ∈ C c (R d ). We denote it µ n v ---→ n→∞ µ.
It is easily seen that that N is a closed subset of M for the vague topology.

For any real numbers a and b, a ∨ b and a ∧ bdenote the maximum and minimum respectively between a and b.

State space of measure-valued PDMPs

Let K be a finite set called modes or regimes space. For any mode v ∈ K, let E v be an open subset of M, representing the state space in mode v. The global state space is then

E = {(v, ζ) ∈ K × M | v ∈ K, ζ ∈ E v }.
We endow this set E with the σ-field E generated by sets of the form 

A = {v} × A v for all Borel sets A v ∈ B(E v ).
δ x i ∈ N.
It gives a complete view of the population: all the information is contained in ζ. As time goes by, the number of individuals may increase or decrease leading to more or less terms in this Dirac sum representation but it will remain a measure in N. This representation is then easier to manipulate than a changing-dimension vector.

On the measure space M, we introduce a particular metric ρ for the vague topology in order to have a Polish space (i.e. a separable completely metrizable topological space). This property will be used in Section 2.3, for the explicit construction of the stochastic process. As shown in [START_REF] Kallenberg | Random measures, theory and applications[END_REF]Appendix], a suitable choice for ρ is constructed as follows. Let C be a countable basis of open bounded subsets in R d closed under finite unions. For all C in C, it exists a sequence (C n ) n in B b and an increasing sequence (f

C,n ) n in C c (R d ) such that f C,n ---→ n→∞ 1 C and 1 Cn f C,n 1 C . Since C is countable, the set {f C,n | C ∈ C
, n ∈ N} is also countable, and we then number f 1 , f 2 , . . . those functions. Any measure µ is completely determined by the set {µf k , k ∈ N}. Now, for all µ and µ ′ in M, we define the distance ρ by

ρ(µ, µ ′ ) := k 1 1 2 k 1 -exp(-|µf k -µ ′ f k |) .
From this metric on M, we define a metric on E related to its hybrid structure: any two points in E with different modes must be arbitrarily far away from each other. For all x = (v, ζ) and 

x ′ = (v ′ , ζ ′ ) in E set ρ 0 (x, x ′ ) :=    2 π arctan(ρ(ζ, ζ ′ )) if v = v ′ ,
   v n = v for n m, ζ m+k ---→ k→∞ ζ in (E m , ρ). (2.1)
We thus denote

E = {(v, ζ) ∈ K × M | v ∈ K, ζ ∈ E v },
the closure of E for the distance ρ 0 . The following statement is then straightforward.

Lemma 2.1. The metric space (E, ρ 0 ) is a Polish space.

Construction of measure-valued PDMPs

We now introduce the three local characteristics of the PDMP specifying the dynamics of trajectories between jumps, the jump times and the post-jump locations.

• The flow Φ is defined by (

x, t) → Φ(x, t) = (v, Φ v (ζ, t)) for all x = (v, ζ
) in E and non-negative t, where the functions Φ v : M × R → M are continuous and have a semi-group property: for all s, t 0, we have

Φ v (•, t + s) = Φ v (Φ v (•, s), t).
The flow describes the deterministic trajectory of the process between jumps. Let

t * (x) = inf{t > 0, Φ v (t, ζ) ∈ ∂E v }
be the deterministic time the flow takes to reach the boundary of the domain starting from x = (v, ζ) ∈ E, with the usual convention inf ∅ = +∞. An infinite exit time t * means that the process cannot reach the boundary in finite time.

• The jump intensity λ : E → R + is a mesurable function, with a local integrability property: for all x = (v, ζ) ∈ E there exists some ε > 0 such that

ε 0 λ(v, Φ v (ζ, s))ds < ∞.
It determines the frequency of the jumps.

• The Markov kernel Q : E × B(E) → [0, 1] selects the post-jump locations. It has the following property: ∀x ∈ E, Q(x, {x}) = 0,
meaning that he process cannot have a no-move jump.

From these local characteristics, one can construct a stochastic process similarly to [10, Section 24] as follows. Let (Ω, F, P) be the canonical space for a sequence (U n ) n 1 of independent random variables with uniform distribution on [0, 1]. The sample path of an E-valued PDMP (X t (ω)) t 0 starting from a fixed initial point x = (v, ζ) ∈ E and for some ω ∈ Ω is defined iteratively. Let

F (x, t) = 1 {t<t * (x)} exp - t 0 λ(v, Φ v (ζ, s))ds (2.2) for (x, t) = (v, ζ, t) ∈ E × R + and Ψ 1 be the function from E × [0, 1] onto R + defined by Ψ 1 (x, u) = inf{t 0; F (x, t) u},
and define S 1 (ω) = T 1 (ω) = Ψ 1 (x, U 1 (ω)) the first jump time of the process. Thus F (x, •) is the survivor function of T 1 .
As the spaces M and E are Polish, one can use [18, p. 6] to obtain that {Q(x, •)} x∈E is a collection of probability measures on E, with a measurable dependence on the parameter x in E. Then there is a measurable function

Ψ 2 : E × [0, 1] → E such that the distribution of Ψ 2 (y, U ) is Q(y, •) for any random variable U with uniform distribution on [0, 1]. Hence, one can then define X t (ω) = Φ v (ζ, t), for 0 t < T 1 , X T 1 (ω) = Ψ 2 (v, Φ v (ζ, T 1 (ω))), U 2 (ω) .
Hence the trajectory X t follows the deterministic flow starting from

X 0 = x until the first jump time T 1 . At T 1 a new location Z 1 = X T 1 is drawn according to the Markov kernel Q. Namely, the law L(Z 1 | T 1 ) of Z 1 conditionally on T 1 is L(Z 1 | T 1 ) = Q(Φ(x, S 1 ), •), (2.3) 
The process now restarts from X T 1 following the same steps. Define

S 2 (ω) = Ψ 1 (X T 1 (ω), U 3 (ω)), T 2 (ω) = S 1 (ω) + S 2 (ω),
and set

X t (ω) = Φ(X T 1 (ω), t -T 1 (ω)), for T 1 (ω) t < T 2 (ω), X T 2 (ω) = Ψ 2 (v, Φ(X T 1 (ω), S 2 (ω))), U 4 (ω) ,
and so on. In order to avoid explosion issues, the following assumption will hold throughout the paper.

Assumption 2.1. For all (x, t) in E × R + , E x [ ∞ n=1 1 (Tn<t )] < ∞.
Hence the trajectories of (X t ) are well defined for all t 0. The positive random variables S 1 , S 2 , . . . are the times between two consecutive jumps or inter-jump times. For notational convenience, we set T 0 = S 0 = 0 and T n := n i=1 S n the n th jump time of the process. Note that we have T 1 = S 1 and S n+1 = T n+1 -T n . The sequence (Z n ) n with Z n = X Tn describes the post jump locations of the process. By construction, all the randomness of the continuous-time process (X t ) t 0 is contained in the discrete-time process (Z n , S n ) n 0 .

Structure of stopping times and Markov property

The aim of this section is to prove that the special structure of stopping times for finite dimensional PDMPs given in [START_REF] Davis | Markov models and optimization[END_REF]Theorem A2.3] still holds in the measure space context. This yields the Markov property and will be important for the study of the optimal stopping problem in Section 3.

Let D E [0, +∞) be the set of unctions on R + with values in E that are rightcontinuous with left limits. Denote by Xt the coordinate function Xt (f ) = f (t) for f ∈ D E [0, +∞). Let (F 0 t ) t 0 denote the natural filtration of (x t ) and F 0 = ∨ t 0 F 0 t . Under Assumption 2.1, for each starting point x ∈ E, the construction in the previous section defines a measurable mapping Ψ x from Ω onto D E [0, +∞) such that Xt (Ψ x (ω)) = X t (ω). Let P x denote the image measure of P by Ψ x . This defines a family of measure (P x ) x∈E on D E [0, +∞). In the sequel, we identify Xt and X t . For any probability measure ν on E define the measure P ν on (D E [0, +∞), F 0 ) by

P ν (• • • ) = E P x (•)ν(dx). Now let F ν
t be the completion of F 0 t with all P ν -null sets of F 0 and define F t = ∩ ν∈P(E) F ν t , where P(E) is the set of probability measures on E.

We can now state a crucial result on the structure of stopping-times for our process. 

τ = ∞ n=1 R n-1 ∧ S n .
Proof. The proof follows the same lines as in [START_REF] De Saporta | Numerical methods for simulation and optimization of piecewise deterministic Markov processes: application to reliability[END_REF]Section 1.7]. It is based on Theorem A2.3 in [START_REF] Davis | Markov models and optimization[END_REF] that is valid for any right-continuous piecewise constant process taking values in a Borel set and the one-to-one correspondence between our process (X t ) and the right-continuous piecewise constant E × N-valued process (η t ) defined by

η t = (X 0 , 0), t < T 1 , η t = (X Tn , n), T n t < T n+1 ,
see [10, (25.1)].

Theorem 2.2. The process (X t ) t 0 on (D E [0, +∞), F, (F t ), (P x ) x∈E ) is a strong Markov process.

Proof. The strong Markov property is proved in the same way that in [10, Section 25], using Theorem 2.1 and the one-to-one correspondence with the piecewise constant process (η t ) defined above.

Toy example

We now develop Example 2.1 into a more generic model for some cells population. Typically, cells grow and divide into two daughter-cells that start growing and then divide and so on.

Single cell model

We first define a single-cell model that follows standard final dimensional PDMP dynamics, where one randomly selects a single daughter cell at each division. This model was further studied in [START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF]. We consider a model with a single mode, hence the state space is simply R + . For ξ in R + and t > 0, the size at time t for a cell with initial size ξ is given by φ(ξ, t) = ξ exp(rt), where r > 0 is the common growth rate for all the cells. The jump intensity giving the division dates is given by l(ξ) = ξ α , for some positive number α. This is simplified model consistent with the statistical evidence that division is triggered by the cell size rather than its age, see [START_REF] Robert | Division in escherichia coliis triggered by a size-sensing rather than a timing mechanism[END_REF]. The jump kernel is simply a division by two Q(x, A) = δ x/2 (A) for any Borel subset A of R + .

Population model

We now consider the previous cell growth-division dynamics but for the whole population instead of a single randomly selected cell. Again we consider a single mode so that he space E is simply N.

Let ζ = n i=1 δ x i be in N be an initial state of n cells with respective sizes (x i ) 1 i n . Each cell grows following the previous dynamics, so that globally the flow is

Φ : N × R + → N (ζ, t) → n i=1 δ φ(x i ,t) .
The first jump time corresponds to the first split ie the minimum between n exponentially distributed random variables. Thus, the jump intensity is:

λ : N → R ζ → n i=1 l(x i ).
Given that the j th cell is the one which split, the post-jump location is

Z 1 = n i=1 i =j δ x i + 2δ x j /2 ,
where celle number j was removed and two new cells are added with half the size of cell j. For notational convenience, we set

ζ (j) := ζ -δ x j + 2δ x j /2 .
Thus, for A in E, the Markov jump kernel of the PDMP is given by

Q(ζ, A) = n j=1 l(x j ) n i=1 l(x i ) 1 A (ζ (j) ).

Time-augmented population model

Sometimes, it is convenient to add time in the state variable of a PDMP, for instance when one wants to use time-dependent jump intensity, or trigger some jump when a certain lapse of time has passed, or to study control problems with time-dependent reward functions. In [10, Section 31] Davis proves that for finite dimensional PDMPs, the time-augmented process is still a PDMP. The same property holds in the framework of our toy example. We consider the time-augmented process X t : defined as the PDMP on N starting from the initial state ζ = n i=1 δ (x i ,0) . The flow is now given by

Φ : N × R + → N ( ζ, t) → n i=1 δ (φ(x i ,t),u+t) ,
for any ζ in N of the form ζ = n i=1 δ (x i ,u) . The jump intensity is

λ : N → R ζ = n i=1 δ (x i ,u) → n i=1 l(x i ),
and the jump kernel is simply

Q( n i=1 δ (x i ,u) , A) = n j=1 l(x j ) n i=1 l(x i ) 1 A ( n i=1 δ (x i ,u) -δ (x j ,u) + 2δ (x j /2,u) ).
We will further study this toy example in Section 4 to prove that controlling the whole population is not equivalent to controlling a suitably chosen random lineage.

Optimal stopping problem

We now turn to the main aim of this paper: defining and solving the optimal stopping problem for measure-valued PDMPs. Roughly speaking, one wants to stop the process at the best time in order to maximize some reward depending on the state of the process when stopped. More precisely, let (X t ) t 0 be an E-valued PDMP on (D E [0, +∞), F, (F t ) t 0 , (P x ) x∈E ) and g ∈ B(E) be some non-negative reward function. Denote by M the set of stopping-times with respect to the filtration (F t ) t 0 and for all positive integer N , let M N be the set of stopping-times bounded by the N th time jump

T N of the PDMP M N = {τ ∈ M; τ T N }. For all x ∈ E, set V(x) := sup τ ∈M N E[g(X τ ) | X 0 = x]. (3.1)
Thus V(x) is the best possible (average) performance when stopping a PDMP starting from X 0 = x before its N -th jump. Function V is called the value function of the optimal stopping problem. Solving an optimal stopping problem consists in characterizing the value function as the solution of some recursive equations called dynamic programming equations and exhibiting a family of ε-optimal stopping times τ ε ∈ M N such that

V(x) -ε E[g(X τε ) | X 0 = x] V(x).
In this section, we first define some suitable dynamic programming operators and a family of stopping times. Then we prove that the value functions can be constructed by iteration of the dynamic programming operators and that the stopping times are ε-optimal. This section is inspired from the study of the optimal stopping problem for finite (fixed) dimension PDMPs derived in [START_REF] Gugerli | Optimal stopping of a piecewise-deterministic Markov process[END_REF].

Dynamic programming operators

We start with some additional notation and assumption. For w in B(E), x in E and l a measurable real-valued function on E, we denote in short

lQw(x) := l(x) × Qw(x) = l(x) E w(y)Q(x, dy).
The following assumption is made for simplicity reasons. It is satisfied in most real-life examples for instance when monitoring a population until some finite horizon time.

Assumption 3.1. The exit time t * is in B(E).

We now define some operators on B(E). Let H and I be the operators from B(E) onto B(E × R + ) defined for all w in B(E), x in E and t ∈ R + , by

Hw(x, t) = w (Φ(x, t ∧ t * (x))) e -Λ(x,t∧t * (x)) , Iw(x, t) = t∧t * (x) 0 λQw(Φ(x, s)) e -Λ(x,s) ds, where Λ(x, t) = t 0 λ(Φ(x, s))ds.
We also introduce operator K from B(E) onto B(E), defined for all w in B(E) and x in E as

Kw(x) = t * (x) 0 λQw(Φ(x, s)) e -Λ(x,s) ds + Qw(Φ(x, t * (x)))e -Λ(x,t * (x)) .
It is straightforward to see that these operators can be expressed as expectations involving the embedded Markov chain (Z n , S n ) defined in Section 2.3. Proposition 3.1. For all w in B(E), x in E and t 0 one has:

Hw(x, t) = E x w(X t∧t * (x) ) 1 S 1 >t∧t * (x) = w (Φ(x, t ∧ t * (x))) P x (S 1 > t ∧ t * (x)) , Iw(x, t) = E x w(Z 1 ) 1 S 1 t∧t * (x) , Kw(x) = E x [w(Z 1 )].
Finally we denote by J and L the operators from B(E) onto B(E × R + ) and B(E) respectively defined for all w in B(E), x in E and t ∈ R + by J(w, g)(x, t) = Hg(x, t) + Iw(x, t),

L(w, g)(x) = sup t 0 {J(w, g)(x, t)} ∨ Kw(x),
where g is the reward function of the optimal stopping problem. Roughly speaking, operator L represents the best compromise between stopping at the best location along the deterministic trajectory following the flow (sup t 0 J part) or waiting until the next jump (K part).

Family of stopping-times

Now we introduce a family of random variables and prove they are stopping times. They will be candidates ε-optimal stopping times for our optimal stopping problem. For all x ∈ E, n ∈ N and ε > 0 set

r n,ε (x) = t * (x) if KV n (x) > sup t>0 J(V n , g)(x, t), inf{s 0 ; J(V n , g)(x, s) sup t>0 J(V n , g)(x, t) -ε} otherwise.
For all ε > 0 and n 2 also set

R 1,ε = r 0,ε (Z 0 ), R ε n,0 = r n-1,ε/2 (Z 0 ), R ε n,k = r n-k-1,ε/2 k (Z k )1 (R ε n,k-1 S k ) , 1 k n -1. Then R ε n,k is clearly F T k -measurable for 0 k n -1. Finaly, define S 1,ε := r 0,ε (Z 0 ) ∧ T 1 = R ε 1,0 ∧ S 1 ,
and by iteration,

S n,ε := R ε n,0 T 1 > R ε n,0 , T 1 + θ(T 1 )S n-1,ε/2 T 1 R ε n,0 ,
where θ(t) is the shift operator with lag t on D E [0, +∞), namely for

f ∈ D E [0, +∞), θ(t)f (•) = f (t + •).
In order to prove that the S n,ε are stopping-times in M n , we first study the effect of the shift operator on R ε n,k . Lemma 3.1. For all ε > 0 and n 2 and 1 k n -1, on the set (T 1 S n,2ε ), one has

R 2ε n,k = θ(T 1 )(R ε n-1,k-1 ). Proof. For n = 2, by definition, one has R ε 1,0 = r 0,ε (Z 0 ) hence θ(T 1 )(R ε 1,0 ) = r 0,ε (Z 1 ) and R 2ε 2,1 = r 0,ε (Z 1 ) on (T 1 S 2,2ε ) = (T 1 R ε 2,0
). Hence the result holds. For n 3 we prove the result by induction on k using similar arguments and the fact that (T 1 S n,ε ) = (R 2ε n,0 T 1 ).

We now prove that S n,ε is a stopping-time using the characterization of Theorem 2.1. Lemma 3.2. For all ε > 0 and n ∈ N * one has

S n,ε = n k=1 R ε n,k-1 ∧ S k .
In particular, S n,ε is a stopping time and S n,ε T n .

Proof. We proceed by induction on n. For n = 1, by definition

S 1,ε = r 0,ε (Z 0 ) ∧ T 1 = R ε 1,k-1 ∧ S 1
and the result is true. Suppose the result holds for n -1. From the definition, on the event (r

n-1,ε/2 (Z 0 ) = R ε n,0 < S 1 ), one has S n,ε = R ε n,0 and R ε n,1 = 0 < S 2 , R ε n,2 = 0 < S 3
, and so on, so that

n k=1 R ε n,k-1 ∧ S k = R ε n,0 and the result is valid. On the event (R ε n,0 S 1 ), by definition S n,ε = T 1 + θ(T 1 )S n-1,ε/2
. Now, the induction hypothesis and the previous lemma yield

T 1 + θ(T 1 )S n-1,ε/2 = S 1 + n-1 k=1 R ε n,k ∧ S k+1 = n k=1 R ε n,k-1 ∧ S k , on (R ε n,0 S 1 )
. Hence the result.

Characterization of the value function

We can now propose an iterative construction of value functions by iterating operator L. For all x ∈ E, set

V 0 (x) = g(x), V n (x) = L(V n-1 , g)(x) for all n 1. (3.2) 
Clearly the functions V n are in B(E). We can now state and prove our main result, namely that the value function V of the optimal stopping problem (4.2) equals the N -th iterate V N and that S N,ε is an ε-optimal stopping time.

Theorem 3.1. Let x be in E and n ∈ N. Then one has, for all ε > 0, S n,ε is a stopping-time in M n and

V n (x) = sup S∈Mn E x [g(X S )], (3.3) 
E x [g(X Sn,ε )] V n (x) -ε. (3.4)
Proof. By an induction argument we will prove Equation (3.4) and the following inequality

∀S ∈ M, ∀n ∈ N, E x [g(X S∧Tn )] V n (x). (3.5) 
These two equations imply (3.3). Indeed, for all S in M ∞ , we have S ∧ T n ∈ M n then for all S in M ∞ , n in N and x in E, (3.4) and (3.5) yield

V n (x) -ε E x [g(X Sn,ε )] sup S∈Mn E x [g(X S )] = sup S∈Mn E x [g(X S∧Tn )] V n (x),
which is valid for all positive ε, hence the result.

It remains now to prove (3.5) and (3.4) by induction.

The case n = 1 is based on Theorem 2.1. Indeed, we obtain E x [g(X S∧T 1 )] = E x [g(X R 0 ∧T 1 )], for some F 0 -measurable random variable R 0 . From this, we deduce

E x [g(X S∧T 1 )] = E x [g(X R 0 )1 T 1 >R 0 ] + E x [g(Z 1 )1 T 1 R 0 ] = Hg(x, R 0 ) + Ig(x, R 0 ) = J(g, g)(x, R 0 ) sup t 0 {J(g, g)(x, t)} V 1 (x);
which proves (3.5) for n = 1. To prove (3.4), we distinguish two cases:

• if Kg(x) > sup t 0 J(g, g)(x, t), then V 1 (x) = Kg(x) = E x [g(Z 1
)] and also

S 1,ε = t * (x) ∧ T 1 = T 1 . Thus E x [g(X S 1,ε )] = E x [g(Z 1 )] = V 1 (x) V 1 (x) -ε. • otherwise, V 1 (x) = sup t 0 J(g, g)(x, t) and, by definition of J, E x [g(X S 1,ε )] = E x [g(X r 0,ε (x)∧T 1 )] = E x [g(X r 0,ε (x) )1 T 1 r 0,ε (x) ] + E x [g(Z 1 )1 T 1 r 0,ε (x) ] 
= J(g, g)(x, r 0,ε (x)).

We then deduce, by definition of r 0,ε :

E x [g(X S 1,ε )] sup t 0 {J(g, g)(x, t)} -ε = V 1 (µ) -ε.
This completes the proof of (3.4) for n = 1. Now, let N 1, suppose that (3.5) and (3.4) hold true for all n N and prove that they hold for n = N + 1.

Begin by proving (3.5). Again, this is based on Theorem 2.1. As S is a stopping-time, it can be decomposed as

S = ∞ n=1 R n-1 ∧ S n .
where (R n ) n∈N are non-negative (F Tn ) n∈N -adapted random variables. In particular, on (S T 1 ) one has

S = S 1 + ∞ n=2 R n-1 ∧ S n = T 1 + θ(T 1 )(S ′ ),
for some stopping-time S ′ . Thus one has

E x [g(X S∧T n+1 )] = E x [g(X S∧T 1 )1 S<T 1 ] + E x [g(X S∧T n+1 )1 S T 1 ] = E x [g(X R 0 ∧T 1 )1 R 0 <T 1 ] + E x [g(X S∧T n+1 )1 R 0 T 1 ] = E x [g(X R 0 )1 R 0 <T 1 ] + E x [E x [g(X (T 1 +θ(T 1 )(S ′ ))∧T n+1 )|F 1 ]1 R 0 T 1 ] = E x [g(X R 0 )1 R 0 <T 1 ] + E x [E Z 1 [g(X S ′ ∧Tn )]1 R 0 T 1 ] (3.6) E x [g(X R 0 )1 R 0 <T 1 ] + E x [V n (Z 1 )1 R 0 T 1 ] (3.7) sup r 0 E x [g(X r )1 r<T 1 ] + E x [V n (Z 1 )1 r T 1 ] sup r 0 J(V n , g)(x, r) ∨ KV n (x) = V n+1 (x).
Line (3.6) is obtained thanks to the strong Markov property. The induction hypothesis is applied in line (3.7). This achieves the induction for (3.5).

Let us now prove (3.4). One has

E x [g(X S n+1,2ε )] = E x [g(X S n+1,2ε )1 R ε n,0 <T 1 ] + E x [g(X S n+1,2ε )1 R ε n,0 T 1 ] = E x [g(X R ε n,0 )1 R ε n,0 <T 1 ] + E x [g(X T 1 +θ(T 1 )Sn,ε )1 R ε n,0 T 1 ] = E x [g(X R ε n,0 )1 R ε n,0 <T 1 ] + E x [E Z 1 [g(X Sn,ε )]1 R ε n,0 T 1 ] E x [g(X R ε n,0 )1 R ε n,0 <T 1 ] + E x [V n (Z 1 )1 R ε n,0 T 1 ] -ε × P x (R ε n,0 T 1 ) E x [g(X R ε n,0 )1 R ε n,0 <T 1 ] + E x [V n (Z 1 )1 R ε n,0 T 1 ] -ε. From the definition of R n,ε one readily obtains • if KV n (x) > sup t 0 J(V n , g)(x, t), then V n+1 (x) = KV n (x) = E x [V n (Z 1 )] and R ε n,0 = t * (x). So the previous inequality becomes E x [g(X S n+1,2ε )] E x [g(X t * (x) )1 t * (x)<T 1 ] + E x [V n (Z 1 )1 T 1 t * (x) ] -ε = KV n (x) -ε = V n+1 (x) -ε.
• Otherwise, V n+1 (x) = sup t 0 J(V n , g)(x, t), and the previous inequality becomes

E x [g(X S n+1,2ε )] J(V n , g)(x, r 0,ε (x)) -ε sup t 0 J(V n , g)(x, t) -ε -ε = V n+1 (x) -2ε.
Thanks to these two cases, we prove (3.4) and we end the proof.

Comparaison between the tagged cell and measure-valued process

In this section, we investigate wether stopping a single well chosen individual is equivalent to stopping the whole population. When dealing with a branching population, some important characteristics of the global population, e.g. laws of large numbers for functionals of the individuals, can be obtained by simply studying a suitably weighted random tagged lineage, by means of many-to-one formulas, see e.g. [START_REF] Bertoin | Random fragmentation and coagulation processes[END_REF][START_REF] Cloez | Limit theorems for some branching measure-valued processes[END_REF][START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF][START_REF] Guyon | Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging[END_REF]. We prove that this property does not hold true for the optimal stopping problem. We use the simple toy example of cell division from Section 2.5 to show that stopping a suitably chosen tagged cell and the whole population yield different value functions.

Tagged cell and many-to-one formula

Let us rapidly describe the many-to-one formula and the definition of the tagged as presented in [START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF]. Heuristically, picking a branch uniformly at random along the genealogical tree describe the path of a tagged cell whose the behaviour is similar to the one of an individual picked at time t. More precisely, for any measurable positive function h and any t 0 we have the following formula, commonly called many-to-one formula

E x u∈U X t (h)e -rt = n i=1 E x i h(χ t ) χ t × x i , ( 4.1) 
where x = µ = n i=1 δ (x i ,0) , (X t ) t 0 is the measure-valued PDMP of Section 2.5.2, and (χ t ) t 0 is the tagged process, representing the evolution of the size of the tagged cell. Its dynamics is as a real-valued PDMP described in Section 2.5.1 but whose parameters are different from those of (X t ) t 0 ; see [START_REF] Bertoin | Random fragmentation and coagulation processes[END_REF][START_REF] Cloez | Limit theorems for some branching measure-valued processes[END_REF][START_REF] Doumic | Statistical estimation of a growth-fragmentation model observed on a genealogical tree[END_REF] for details.

To compare the value functions of the tagged cell and the measure-valued process, we will impose the form of our reward functions based on Equation 4.1. For the tagged cell, we choose a bounded nonnegative function f continuous along the flow. For the process (X t ) t , the reward function g has the form g :

n i=1 δ (x i ,t) ∈ E → n i=1 f (x i )e -rt , ( 4.2) 
where we used the time-augmented process defined in Section 2.5.3 to take the time dependence into account.

Comparison of the value functions

Numerically computing the value function V N is very demanding, as for each iteration of the dynamic programming operators, one needs to compute the functions on the whole state space E, at least at first sight. Actually, when dealing with the optimal stopping problem with horizon N , the dynamic programming recursion on functions V n can be rewritten as a recursion on the random variables V k (Z N -k ). Still, the recursion is numerically intractable as one needs to compute conditional expectations at each step.

In order to avoid such intricacies, we simply consider the optimal stopping problem with horizon N = 1 jump.

We thus have to compute

V 0 (Z 1 ) = g(Z 1 ), V 1 (Z 0 ) = sup t 0 {E Z 0 [V 0 (Z 1 )1 T 1 t ] + g • Φ(Z 0 , t) × P Z 0 (T 1 > t)} ∨ E Z 0 [V 0 (Z 1 )].
The only quantities to look at are V 0 (Z 1 ) = g(Z 1 ) and V 1 (Z 0 ) = V 1 (µ). Moreover, this last expression is deterministic if we choose a deterministic Z 0 . More specifically, one has

V 0 (Z 1 ) = e -rT 1   i =I 1
(x i e rT 1γ)1 x i <γe -rT 1 + (x I 1 e rT 1 -2γ)1 x I 1 <2γe -rT 1 + (n + 1)γ   , (4.3) and

V 1 (Z 0 ) = sup t>0    E x   e -rt   i =I 1
(x i e rT 1γ)1 x i <γe -rT 1 + (x I 1 e rT 1 -2γ)1 x I 1 <2γe -rT 1 + (n + 1)γ

  1 T 1 t   + e -rt i (x i e rt -γ)1 x i <γe -rt + nγ exp -(x α i ) e rtα -1 αr ∨ E x [V 0 (Z 1 )], (4.4 
) where the first jump time T 1 is distributed as (2.2) and the random variable I 1 is the rank of the split cell. Its distribution is given by P µ (I 1 = j) = . We can numerically simulate V 0 (Z 1 ). For V 1 (µ), we fix a (large enough) maximum time and discretize the time interval in order to compute (an approximation of) the supremum. In the same way, the value function for the tagged cell is given by: V 1 (x) = sup t 0 (xe rtγ)1 xe rt <γ + γ exp -

x α αr (e rαt -1)

+ E x (xe rT 1 /2 -γ)1 xe rT 1 <2γ + γ 1 T 1 t ∨ E x [V 0 (Z 1 )] .
For the numerical results, we use the following parameters: α = 1, r = 2, γ = 1. For the discretization step, we evaluate the maximum value of T 1 by the Monte-Carlo simulations and we divide it by nbpt which corresponds to the number of discretization points for the evaluation of the supremum. Here, nbpt = 10000 and the Monte Carlo sample size is N = 100000. We obtain the following approximation V 1 (3) = 1.0018 ± 2.54 × 10 -4 V 1 (δ 3 ) = 1.3447 ± 3.6034 × 10 -4 .

(4.5)

Hence, even on this simple toy example where the cost functions g and h match and with a short one-step horizon, the optimal performance for the global population and the tagged cell differ. It will be the object of future work to design specific numerical approximations of the value function of the global measure-valued population.

  For instance, if one can consider the temporal evolution of a cell population characterized by state variables such as age, size, growth, maturity, protein content... Then the quantity ζ ∈ N represents such state variables and the mode can be the experiment conditions. In the following example, we consider a simple case with only one mode and the variable state corresponds to the cell size.

	Example 2.1. Consider a population of 3 individuals at a given time. Their sizes are
	denoted by (x i ) 1 i 3 . This population is identified with the measure
	3
	ζ =
	i=1

  (x, x ′ ) equals 1 if and only if x and x ′ have different modes. With this metric, a sequence (x n ) n = (v n , ζ n ) n converges to x = (v, ζ) in (E, ρ 0 ) if and only if it exists some m in N such that:

	Thus ρ 0	
	1	otherwise.
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