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Exact quadratic convex reformulations of
Mixed-Integer Quadratically Constrained

Problems
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1.CEDRIC-ENSIIE, 1 square de la résistance, 91025 Evry cedex, France
2. CEDRIC-Cnam, 292 rue Saint-Martin, F-75141 Paris cedex 03, France

Abstract. We propose a solution approach for the general problem
(QP ) of minimizing a quadratic function of bounded integer variables
subject to a set of quadratic constraints. The resolution is based on the
reformulation of the original problem (QP ) into an equivalent quadratic
problem whose continuous relaxation is convex, so that it can be ef-
fectively solved by a branch-and-bound algorithm based on quadratic
convex relaxation. We concentrate our efforts on finding a reformulation
such that the continuous relaxation bound of the reformulated problem
is as tight as possible.
Furthermore, we extend our method to the case of mixed-integer quadratic
problems with the following restriction: all quadratic sub-functions of
purely continuous variables are already convex.
Finally, we illustrate the different results of the article by small examples
and we present some computational experiments on pure-integer and
mixed-integer instances of (QP ). Most of the considered instances with
up to 53 variables can be solved by our approach combined with the use
of Cplex.

Key words: Integer quadratic programming, Equivalent convex refor-
mulation, semidefinite programming, branch-and-bound algorithm

1 Introduction

In this paper, we aim at the exact solution of mixed-integer quadratically con-
strained programs. For this, we first consider the pure integer case, i.e. the fol-
lowing program (QP ):

(QP )



min f0(x)

s.t.

fr(x) ≤ br r = 1, . . . ,m

`i ≤ xi ≤ ui i ∈ I
xi ∈ N i ∈ I

where
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fr(x) = 〈Qr, xxT 〉+ cTr x ∀ r = 0, . . . ,m

with 〈A,B〉 =

n∑
i=1

n∑
j=1

aijbij , and for r = 0, . . . ,m, Qr is a symmetric n×n matrix,

cr ∈ Rn, br ∈ R, I = {1, . . . , n}. Variables xi are integers and are bounded by
ui ∈ N and `i ∈ N. Without loss of generality, we shall suppose `i = 0 since it
is possible to change variable xi into xi − `i. We assume the feasible domain of
(QP ) to be non-empty.

This general program trivially contains the case where there are quadratic
equalities, since an equality can be replaced by two inequalities. It also contains
the case of linear constraints since a linear equality is a quadratic constraint
with a zero quadratic part.

Program (QP ) belongs to the class of NP-hard [13] Mixed-Integer Non Lin-
ear Programs (MINLP). General approaches to solve MINLP are based on global
optimization techniques [5,11,12,17,24,25]. More specific methods are also avail-
able to solve quadratically constrained programs, where all variables are contin-
uous [2, 4, 18, 22]. These approaches can handle binary quadratic programming
using identity x2

i = xi. Hence, they are also able to handle (QP ) by applying a
binary expansion of each integer variable. This method will have to consider the
large size of the equivalent binary quadratic program.

Other methods are available to obtain convex relaxations of mixed-integer
quadratically constrained programs. A general technique for computing such
relaxations is semi-definite programming [3]. A recent paper [23] proposes sev-
eral ideas for keeping the tightness of these relaxations while improving their
computation times.

References [20] and [21] provide effective approaches for solving mixed-
integer quadratic problems with real variables and 0-1 variables. The considered
problem consists in optimizing a quadratic function subject to quadratic con-
straints, but the quadratic parts of the objective function and constraints include
only continuous variables. In contrast, the linear parts include both continuous
variables and 0-1 variables.

We introduced in [8] the Mixed Integer Quadratic Convex Reformulation
(MIQCR) approach. This method handles mixed-integer quadratic problems with
linear equality constraints only. The idea of MIQCR is to design the tightest pos-
sible equivalent program to (QP ) with a convex objective function, within a
convex reformulation scheme. This best equivalent problem can be computed
using the dual solution of a semidefinite relaxation of the initial problem, and
further solved by a branch-and-bound algorithm based on quadratic convex re-
laxation.

In this paper, we present a method to solve (QP ) based on the reformulation
of the original problem into an equivalent quadratic problem whose continuous
relaxation is convex. This new method handles quadratic constraints. At this
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aim, we consider a different reformulation scheme than in MIQCR. This scheme
allows further extension to the case where some of the variables are continuous.

The structure of the paper is as follows. In Section 2, we introduce a new
family of equivalent formulations to (QP ). Each of these equivalent formulations
has a convex continuous relaxation.

In Section 3, we focus on finding the tightest equivalent formulation within
this family. We show that this best equivalent formulation can be deduced from
a semidefinite relaxation to (QP ), and that, surprisingly, it consists in linearizing
all the constraints.

In Section 4, we study the equality constrained case. After a brief recall of the
MIQCR method, we highlight its links with our current work. Moreover, we prove
another interesting result: for equality constraints, any linear or quadratic convex
reformulation of these constraints can be used to build the best reformulation.

In Section 5, we show how the whole framework can be extended to the case
of mixed-integer variables, with the restriction that the quadratic sub-functions
of purely continuous variables are already convex.

Throughout this paper, we present some small numerical examples to illus-
trate different aspects of the method. In Section 6, we present computational
results on various instances of (QP ) to show the effectiveness of the approach.
Section 7 draws a conclusion.

Notation
The following notation is used throughout the paper. We denote by v(P ) the
optimal value of a mathematical program (P ). For a vector u ∈ Rn, diag(u)
denotes a diagonal matrix whose ith diagonal element equals ui. We denote by
Sn the set of n × n symmetric matrices, by S+

n the set of positive semidefinite
matrices of Sn and M � 0 means that M ∈ S+

n . We also denote by 0n the zero
n× n matrix and by I2 the Cartesian product of a set I by itself.

2 A general family of convex equivalent formulations to
(QP )

In this section, we introduce a family of equivalent formulations to (QP ). These
formulations use additional variables yij that are enforced, by linear constraints,
to be equal to the product xixj . Any quadratic function is then formulated as
a sum of a quadratic function of the x variables and a linear function of the y
variables.

Equivalent formulation of the quadratic functions
We first introduce n2 new variables y that will satisfy yij = xixj ∀(i, j) ∈ I2,
or, equivalently Y = xxT .

Then, for r = 0, . . . ,m we consider a positive semidefinite matrix Sr ∈ S+
n and

replace the quadratic function fr(x) by a convex function fr,Sr
(x, Y ) that is
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equal to fr under the condition Y = xxT . We define function fr,Sr
(x, Y ) as

follows :

fr,Sr (x, Y ) = 〈Sr, xxT 〉+ cTr x+ 〈Qr − Sr, Y 〉 ∀ r = 0, . . . ,m

Hence, problem (QP ) is equivalently stated as:



min 〈S0, xx
T 〉+ cT0 x+ 〈Q0 − S0, Y 〉

s.t.

〈Sr, xxT 〉+ cTr x+ 〈Qr − Sr, Y 〉 ≤ br r = 1, . . . ,m

0 ≤ xi ≤ ui i ∈ I (1)

xi ∈ N i ∈ I (2)

yij = xixj (i, j) ∈ I2 (3)

Because matrices Sr are positive semidefinite, functions fr,Sr
(x, Y ) are convex.

Linearization of the quadratic constraints Y = xxT [7]
We now concentrate our effort on replacing Constraints (3) together with (1)
and (2) by a set of linear inequalities. For this, each variable xi is replaced by

its unique binary decomposition xi =
∑blog(ui)c
k=0 2ktik, we can then express the

product yij of two variables xi and xj as a linear function of the products of

a variable x by a variable t: yij =
∑blog(ui)c
k=0 xj2

ktik. These products are then
linearized by replacing them with a variable z and adding the appropriate linear
constraints. To get closer to the convex hull, we furthermore add the McCormick
inequalities [19]. We obtain the following set PxY zt:

PxY zt



xi =

blog(ui)c∑
k=0

2ktik i ∈ I

yij =

blog(ui)c∑
k=0

2kzijk (i, j) ∈ I2

zijk ≤ ujtik (i, k) ∈ E, j ∈ I
zijk ≤ xj (i, k) ∈ E, j ∈ I
zijk ≥ xj − uj(1− tik) (i, k) ∈ E, j ∈ I
zijk ≥ 0 (i, k) ∈ E, j ∈ I
tik ∈ {0, 1} (i, k) ∈ E
yii ≥ xi i ∈ I
yij = yji (i, j) ∈ I2, i < j

yij ≥ ujxi + uixj − uiuj (i, j) ∈ I2, i ≤ j
yij ≥ 0 (i, j) ∈ I2, i ≤ j
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where E = {(i, k) : i = 1, . . . , n, k = 0, . . . blog(ui)c}. The number of binary

variables is N = |E| = n +

n∑
i=1

(blog(ui)c) and the number of real variables is

n+ n2 + nN , so that the set PxY zt has O(nN) variables and constraints.

The family of integer convex quadratic equivalent formulations to (QP )
To sum up, for any set of positive semidefinite matrices Sr (r = 0, . . . ,m), we
replace Constraints (1)-(3) by the set PxY zt. We obtain the following equivalent
problem to (QP ):

(QPS0,...,Sm)


min〈S0, xx

T 〉+ cT0 x+ 〈Q0 − S0, Y 〉
s.t.

〈Sr, xxT 〉+ cTr x+ 〈Qr − Sr, Y 〉 ≤ br r = 1, . . . ,m

(x, Y, z, t) ∈ PxY zt

Hence, we built an infinite family of equivalent problems to (QP ).

The advantage of (QPS0,...,Sm
) is that the only non-convexity comes from

the integrality constraints tik ∈ {0, 1}. Relaxing these constraints leads to a
quadratic convex optimization problem which optimal value can be computed in
polynomial time. Hence, problem (QPS0,...,Sm) can for example be handled by a
mixed-integer quadratic programming solver which performs a branch-and-cut
algorithm to solve it.

This general family of reformulations includes two extreme cases. The first
one is Sr = Qr, when all Qr matrices are already positive semidefinite. In that
case, functions fr(x) are left unchanged. The second one is when all Sr are zero-
matrices. In this case, the reformulation consists in replacing each product of
two x variables by a Y variable. This amounts to a complete linearization [1], a
classical approach in discrete quadratic optimization.

3 Computing the best convex equivalent formulation

In this section, we will focus on finding the positive semidefinite matrices S∗0 , . . . , S
∗
m

such that the continuous relaxation bound of problem (QPS0,...,Sm
) is as tight

as possible.

Let us first recall a result already proved in [8] (Theorem 1). In PxY zt, replace
the integrality constraints tik ∈ {0, 1} by tik ∈ [0, 1] and project the obtained
polyhedron on variables x and Y . The projected polyhedron is the following
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P xY :

P xY



yii ≥ xi i ∈ I (4)

yij = yji (i, j) ∈ I2, i < j (5)

yij ≥ ujxi + uixj − uiuj (i, j) ∈ I2, i ≤ j (6)

yij ≥ 0 (i, j) ∈ I2, i ≤ j (7)

yij ≤ uixj (i, j) ∈ I2, i ≤ j (8)

yij ≤ ujxi (i, j) ∈ I2, i ≤ j (9)

Hence, since variables z and t are not in the objective function, the contin-
uous relaxation optimal value of (QPS0,...,Sm) can be computed by solving the
following smaller problem (RQPS0,...,Sm) with x and Y variables only:

(RQPS0,...,Sm
)


min〈S0, xx

T 〉+ cT0 x+ 〈Q0 − S0, Y 〉
s.t.

〈Sr, xxT 〉+ cTr x+ 〈Qr − Sr, Y 〉 ≤ br r = 1, . . . ,m (10)

(x, Y ) ∈ P xY (11)

We want to find positive semidefinite matrices S∗0 , . . . , S
∗
m such that the con-

tinuous relaxation value of (QPS∗0 ,...,S∗m) is maximized. This amounts to solving
the following problem (CP ):

(CP )

{
max

S0,...,Sm�0

{v(RQPS0,...,Sm)}

3.1 Finding an optimal solution to (CP )

Here, we prove that an optimal solution to (CP ) can be deduced from a dual
solution of the following program (SDP ) which is also a semidefinite relaxation
of (QP ). More precisely, to build (SDP ) we perform a classical semidefinite
relaxation of (QP ), and we add McCormick inequalities (13)–(16) [19], and in-
equalities (17) that are satisfied since xi ∈ N.
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(SDP )



min f(X,x) = 〈Q0, X〉+ cT0 x

s.t.

〈Qr, X〉+ cTr x ≤ br r = {1, . . . ,m} (12)

Xij − ujxi ≤ 0 (i, j) ∈ I2, i ≤ j (13)

Xij − uixj ≤ 0 (i, j) ∈ I2, i ≤ j (14)

−Xij + ujxi + uixj ≤ uiuj (i, j) ∈ I2, i ≤ j (15)

−Xij ≤ 0 (i, j) ∈ I2, i ≤ j (16)

−Xii + xi ≤ 0 i ∈ I (17)(
1 x
xT X

)
� 0 (18)

x ∈ Rn X ∈ Sn

Theorem 1. The optimal value of (CP ) is equal to the optimal value of (SDP ).

Proof.

� Let us firstly prove that v(CP ) ≤ v(SDP )
Let S̄0, . . . , S̄m ∈ S+

n be any feasible solution to (CP ). To prove that v(CP ) ≤
v(SDP ) we prove that from any feasible solution (X̄, x̄) to (SDP ), we can build
a feasible solution (x, Y ) to (RQPS̄0,...,S̄m

) with a lower objective value, i.e.,

satisfying 〈S̄0, x̄x̄
T 〉+ cT0 x̄+ 〈Q0 − S̄0, X̄〉 ≤ f(X̄, x̄).

i) Take x = x̄. Variables Y can be seen as a symmetric matrix, so we can
take yij = X̄ij , ∀(i, j) ∈ I2. We prove that this solution (x, Y ) is feasible
to (RQPS̄0,...,S̄m

). Constraints(4)-(9) are obviously satisfied. We now prove
that Constraints (10) are satisfied. We have:

〈S̄r, xxT 〉+ cTr x+ 〈Qr − S̄r, Y 〉 = 〈S̄r, x̄x̄T 〉+ cTr x̄+ 〈Qr − S̄r, X̄〉
= 〈S̄r, x̄x̄T − X̄〉+ cTr x̄+ 〈Qr, X̄〉
≤ br from Constraints (12), since

S̄r � 0, and x̄x̄T − X̄ � 0.

ii) Prove that 〈S̄0, x̄x̄
T 〉 + cT0 x̄ + 〈Q0 − S̄0, X̄〉 − 〈Q0, X̄〉 − cT0 x̄ ≤ 0 or that

〈S̄0, x̄x̄
T−X̄〉 ≤ 0. This last inequality follows from S̄0 � 0 and x̄x̄T−X̄ � 0.

� Let us secondly prove that v(CP ) ≥ v(SDP ) or equivalently v(CP ) ≥ v(DSDP )
where (DSDP ) is the dual of (SDP ). The following problem (DSDP ) is the
dual of (SDP ):



8 Alain Billionnet, Sourour Elloumi, Amélie Lambert

(DSDP )



max g(α,Φ) = −
m∑
r=1

αrbr − 〈Φ3, uuT 〉

s.t.

Q0 +

m∑
r=1

αrQr + Φ � 0 (19)

c0 +

m∑
r=1

αrcr − (Φ1 + Φ2 − 2Φ3)Tu+ ϕ ≥ 0 (20)

Φ = Φ1 + Φ2 − Φ3 − Φ4 − diag(ϕ) (21)

α ∈ Rm+ , Φ ∈ Sn, Φ1, Φ2, Φ3, Φ4 ∈ S+
n , ϕ ∈ Rn+

where α ∈ Rm+ are the dual variables associated to constraints (12), and Φi,
i = 1, . . . , 4 are the positive semidefinite matrices built from the dual variables
θ associated with constraints (13), (14), (15), (16), respectively. For instance, if

θ1
ij is the dual variable associated to constraint (13), then Φ1

ij = Φ1
ji =

θ1ij
2 for

i < j, and Φ1
ii = θ1

ii. ϕ are the dual variables associated to constraints (17). As
mentioned in Constraint (21) we have Φ = Φ1 + Φ2 − Φ3 − Φ4 − diag(ϕ).

Let (ᾱ, Φ̄1, Φ̄2, Φ̄3, Φ̄4, ϕ̄) be a feasible solution to (DSDP ) and, by Con-
straint (21), let Φ̄ = Φ̄1 + Φ̄2 − Φ̄3 − Φ̄4 − diag(ϕ̄), then we build the following
positive semidefinite matrices:

S̄r = 0n r = 1, . . . ,m

S̄0 = Q0 +

m∑
r=1

ᾱrQr + Φ̄

(S̄0, . . . , S̄m) form a feasible solution to (CP ). The objective value of this solution
is equal to v(RQPS̄0,...,S̄m

).

We now prove that v(RQPS̄0,...,S̄m
) ≥ v(DSDP ). For this, we prove that

for any feasible solution (x̄, Ȳ ) to (RQPS̄0,...,S̄m
), the associated objective value

is not smaller then g(ᾱ, Φ̄). Denote by ∆ the difference between the objective
values, i.e., ∆ = 〈S̄0, x̄x̄

T 〉+ cT0 x̄+ 〈Q0 − S̄0, Ȳ 〉 − g(ᾱ, Φ̄). We below prove that
∆ ≥ 0
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∆ = 〈S̄0, x̄x̄
T 〉+ cT0 x̄+ 〈Q0 − S̄0, Ȳ 〉+

m∑
r=1

ᾱrbr + 〈Φ̄3, uuT 〉

≥ cT0 x̄− 〈
m∑
r=1

ᾱrQr + Φ̄, Ȳ 〉+

m∑
r=1

ᾱrbr + 〈Φ̄3, uuT 〉 since S̄0 � 0

= cT0 x̄+

m∑
r=1

ᾱr(br − 〈Qr, Ȳ 〉)− 〈Φ̄, Ȳ 〉+ 〈Φ̄3, uuT 〉

≥ cT0 x̄+

m∑
r=1

ᾱrc
T
r x̄− 〈Φ̄, Ȳ 〉+ 〈Φ̄3, uuT 〉

as cTr x̄+ 〈Qr, Ȳ 〉 ≤ br and ᾱr ≥ 0. Moreover, by Constraint (21) we get:

∆ ≥ cT0 x̄+

m∑
r=1

ᾱrc
T
r x̄− 〈Φ̄1 + Φ̄2 − Φ̄3 − Φ̄4 − diag(ϕ̄), Ȳ 〉+ 〈Φ̄3, uuT 〉

≥ cT0 x̄+

m∑
r=1

ᾱrc
T
r x̄− 〈Φ̄1, Ȳ 〉 − 〈Φ̄2, Ȳ 〉+ 〈Φ̄3, Ȳ + uuT 〉+ 〈Φ̄4, Ȳ 〉+ 〈diag(ϕ̄), Ȳ 〉

By Constraints (4)–(9), and since all the coefficients of Φ̄1, Φ̄2, Φ̄3, Φ̄4, and ϕ̄ are
non-negative, we get:

∆ ≥ cT0 x̄+

m∑
r=1

ᾱrc
T
r x̄− 〈Φ̄1, x̄Tu〉 − 〈Φ̄2, x̄Tu〉+ 〈Φ̄3, 2x̄Tu〉+ ϕ̄T x̄

≥
(
c0 +

m∑
r=1

ᾱrcr − (Φ̄1 + Φ̄2 − 2Φ̄3)Tu+ ϕ̄
)T
x̄

≥ 0 since x̄ ≥ 0 and by Constraint (20).

2

From the proof of Theorem 1, we can characterize an optimal solution to
(CP ).

Corollary 1. An optimal solution S∗r , r = 0, ...,m to (CP ) amounts to lineariz-
ing the constraints by taking

S∗r = 0n for r = 1, ...,m

and, for the objective function, we take

S∗0 = Q0 +

m∑
r=1

α∗rQr + Φ∗

where α∗r and Φ∗ are computed from an optimal solution of the dual (DSDP ) of
the semidefinite programming problem (SDP ):
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i) α∗ is the vector of optimal dual variables associated with constraints (12) of
(SDP ),

ii) Φ∗ij are computed as Φ∗ij = Φ1∗
ij +Φ2∗

ij −Φ3∗
ij −Φ4∗

ij , for i 6= j, and Φ∗ii = Φ1∗
ii +

Φ2∗
ii −Φ3∗

ii −Φ4∗
ii −Φ5∗

i , where Φ1∗, Φ2∗, Φ3∗, Φ4∗ are the symmetric matrices
built from the optimal dual variables associated with constraints (13), (14),
(15), (16), respectively, and Φ5∗ the vector of dual variables associated with
constraints (17).

To sum up, let us write the optimal equivalent formulation:

(QP ∗) = (QPS∗0 ,0n,...,0n)



min〈Q0 +

m∑
r=1

α∗rQr + Φ∗, xxT 〉+ cT0 x− 〈
m∑
r=1

α∗rQr + Φ∗, Y 〉

s.t.

cTr x+ 〈Qr, Y 〉 ≤ br r = 1, . . . ,m (22)

(x, Y, z, t) ∈ PxY zt

A discussion on the optimal equivalent formulation
An important fact is that the continuous relaxation value of program (QP ∗) is
equal to the optimal value of the semi-definite relaxation (SDP ). Hence, in a
branch-and-bound algorithm for solving (QP ∗), the root-node gap is the same as
the SDP-relaxation gap which is known to be strong. In [6], quadratic programs
with continuous bounded variables are considered and this SDP relaxation, with-
out Constraints (17) which is specific to the integer variables case, is called ”Shor
plus RLT” relaxation. It is recalled in [6] that this relaxation dominates six other
considered SDP relaxations. It is further shown that it provides the same bound
as the doubly nonnegative relaxation.

In presence of a linear inequality aTx ≤ b, we consider it as a quadratic
constraint with a zero quadratic part. Moreover, in order to improve the tightness
of the relaxation, we add the following quadratic inequality xTaaTx ≤ b2.

3.2 A solution algorithm for (QP )

From Theorem 1 and Corollary 1, we can deduce Algorithm 1 to solve (QP ).

Algorithm 1 Solution algorithm to (QP )

step 1: Solve the semidefinite program (SDP ).

step 2: Deduce (S∗0 , . . . , S
∗
m) as described in Corollary 1.

step 3: Solve the program (QPS∗0 ,...,S∗m) by a MIQP solver.
(Its continuous relaxation is a convex program with an optimal value equal
to the optimal value of (SDP ))
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3.3 Illustrative examples

In this section, we first examine the solution of an example by Algorithm 1.
Then, we show on a convex example that Algorithm 1 can lead to a tighter
continuous relaxation bound than the direct solution by Cplex [?].

Illustration of Algorithm 1

Consider the following example whose optimal value is equal to −1872 for x∗ =
(9, 0, 20, 14):

(Ex)



min f(x) = −4x1x2 − 4x1x4 + 6x2x4 − 3x2
3 − 2x3x4 + 2x2

4
s.t.

8x2
1 + 5x2

2 + 8x2x3+ 4x2x4 + 2x2
4 ≤ 1080

0 ≤ x1 ≤ 11
0 ≤ x2 ≤ 14
0 ≤ x3 ≤ 20
0 ≤ x4 ≤ 16
xi ∈ N i = {1, 2, 3, 4}

Following Algorithm 1, we first solve the semidefinite relaxation (SDPEx):

(SDPEx)



min f(X, x) = −4X12 − 4X14 + 6X24 − 3X33 − 2X34 + 2X44

s.t. 8X11 + 5X22 + 8X23 + 4X24 + 2X44 ≤ 1080
Xij ≤ ujxi

Xij ≤ uixj

−Xij ≤ −ujxi − uixj + uiuj

−Xij ≤ 0
−Xii ≤ −xi(

1 x

xT X

)
� 0

x ∈ R4 X ∈ S4

We obtain the following optimal dual solution:

– α∗1 = 0.3773

– Φ∗ =

 0 0.31 −0.18 0
0.31 1.32 −1.00 −1.36
−0.18 −1.00 3.61 0.89

0 −1.36 0.89 0


We build matrix S∗0 = Q0 + α∗1Q1 + Φ∗, and we get:

S∗0 =

 3.02 −1.69 −0.18 −2
−1.69 3.21 0.51 2.39
−0.18 0.51 0.61 −0.11
−2 2.39 −0.11 2.75

 and then Q0 − S∗0 =

−3.02 −0.31 0.18 0
−0.31 −3.21 −0.51 0.61
0.18 −0.51 −3.61 −0.89

0 0.61 −0.89 −0.75


Then, to solve (Ex), we reformulate it into the following quadratic program

with linear constraints (Ex∗)

(Ex
∗
)


min f0,S∗0

(x, Y ) = −3.02y11 − 0.62y12 + 0.36y13 − 3.21y22 − 1.02y23

+1.22y24 − 3.61y33 − 1.78y34 − 0.75y44 + 3.02x2
1 − 3.38x1x2 − 0.36x1x3

−4x1x4 + 3.21x2
2 + 1.02x2x3 + 4.78x2x4 + 0.61x2

3 − 0.22x3x4 + 2.75x2
4

s.t. 8y11 + 5y22 + 8y23 + 4y24 + 2y44 ≤ 1080
(x, Y, z, t) ∈ PxY zt

The continuous relaxation value of (Ex∗) is equal to −1887.32, the initial gap
is thus of 0.82%. The continuous relaxation value of the complete linearization
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(i.e. S0 = 0n) of (Ex) is equal to −2148.83 leading to a gap of 14.79%.

Improving the continuous relaxation bound for already convex in-
stances

Through this instance, we illustrate the interest of using our algorithm for
convex instances. We consider the instance available at www.cedric.cnam.fr/

~lamberta/Library/IQCP_MIQCP/convex_instance.dat. This instance has 30
binary variables, 1 quadratic and convex inequality constraint and a linear ob-
jective function. For this instance we obtain the following results:

– Optimal value of the instance: 0
– Optimal value of the continuous relaxation: −8.18
– Optimal value of the continuous relaxation after reformulation by a complete

linearization (i.e. Sr = 0n, r = 0, . . . ,m): −34.41
– Optimal value of the continuous relaxation after reformulation by our algo-

rithm: −3.078

The continuous relaxation of this instance is a convex problem. Hence, a first
bound b1 can be computed by solving this problem. Our approach computes a
bound b2 such that b2 ≥ b1 and possibly b2 > b1 as in this example. Observe
that b1 is the minimum of a linear function subject to one quadratic constraint,
while b2 is the minimum of a quadratic function subject to linear constraints.

4 The case of equality constraints

In this section, we study the case where the initial problem contains some
quadratic equality constraints. First, we briefly recall the MIQCR method [8] for
the purely integer case. This method can handle the following class of problems:

(P )



min f0(x)

s.t.
n∑
i=1

arixi = br r = 1, . . . ,m

`i ≤ xi ≤ ui i ∈ I
xi ∈ N i ∈ I

By use of a scalar parameter α and of a matrix parameter Φ, we build the
following family of quadratic equivalent formulation to (P ):

(Pα,Φ)



min f0(x) + α

m∑
r=1

(

n∑
i=1

arixi − br)2 +

n∑
i=1

n∑
j=i:Φij 6=0

Φij(yij − xixj)

n∑
i=1

arixi = br r = 1, . . . ,m

(x, Y, z, t) ∈ PxY zt
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We then compute the parameters α∗ and Φ∗ that give the tightest possible
equivalent program to (P ), and where the reformulated objective function is con-
vex. These best parameters are deduced from the dual solution of a semidefinite
problem that is similar to (SDP ).

Below, we highlight the link between our current work and the MIQCR method.
We show that, in the case of linear equality constraints, our reformulation (QP ∗)
can be viewed as an extension of the MIQCR method. Then, we prove that, unlike
for quadratic inequalities, any positive semidefinite matrices can be used to re-
formulate the quadratic equalities to obtain the tightest equivalent formulation.

4.1 Application of our new method in the presence of quadratic
equalities and link to the MIQCR method

Without loss of generality, we consider that the two first inequalities in (QP )
come from a single equality which was previously rewritten as two inequalities.
More formally, the quadratic constraints in (QP ) are precisely:


〈Q1, xx

T 〉+ cT1 x ≤ b1
〈−Q1, xx

T 〉 − cT1 x ≤ −b1
〈Qr, xxT 〉+ cTr x ≤ br r = 3, . . .m

and the two first inequalities come from the equality 〈Q1, xx
T 〉+ cT1 x = b1.

The optimally reformulated problem described in Corollary 1 is in this case:

(QP ∗)



min f0,S∗0
(x, Y ) = 〈S∗0 , xxT 〉+ cT0 x+ 〈Q0 − S∗0 , Y 〉

s.t. (23)

〈Q1, Y 〉+ cT1 x ≤ b1
〈−Q1, Y 〉 − cT1 x ≤ −b1
〈Qr, Y 〉+ cTr x ≤ br r = 3, . . . ,m

(x, Y, z, t) ∈ PxY zt

where

S∗0 = Q0 + (α∗1 − α∗2)Q1 +

m∑
r=3

α∗rQr + Φ∗

and the first two inequalities are equivalent to the equality 〈Q1, Y 〉+ cT1 x = b1.
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Observation 1 For any feasible solution (x, Y ) to problem (QP ∗), we have:

f0,S∗0 (x, Y ) = 〈S∗0 , xxT 〉+ cT0 x+ 〈Q0 − S∗0 , Y 〉

= 〈Q0, xx
T 〉+ cT0 x+ 〈S∗0 −Q0, xx

T − Y 〉

= 〈Q0, xx
T 〉+ cT0 x+ 〈Φ∗, xxT − Y 〉+

m∑
r=3

α∗r〈Qr, xxT − Y 〉

+ (α∗1 − α∗2)〈Q1, xx
T − Y 〉

= 〈Q0, xx
T 〉+ cT0 x+ 〈Φ∗, xxT − Y 〉+

m∑
r=3

α∗r〈Qr, xxT − Y 〉

+ (α∗1 − α∗2)
(
〈Q1, xx

T 〉+ cT1 x− b1
)

We can notice that the last term of the above calculation is the initial equality
constraint multiplied by an unsigned scalar parameter ν = α∗1 − α∗2. Hence, if
equality constraints are considered in the initial formulation and when we build
the optimal solution (S∗0 , . . . , S

∗
m) as in Corollary 1, it amounts to explicitely

integrating equality constraints into the objective function multiplied by a scalar
parameter.

Observation 1 brings us back to the spirit of MIQCR. Indeed, in the MIQCR

method, we integrate in the objective function a set of quadratic functions mul-
tiplied by a scalar parameter α. Thus, for the equality case, this new family of
convex reformulations can be viewed as an extension of the MIQCR method.

4.2 Optimal equivalent reformulations for equality constraints

Here, we start by considering a slightly different reformulation scheme where
we explicitly integrate the quadratic inequalities into the objective function. We
show that, within this scheme, the equivalent reformulated equalities can be any
convex functions.

Without loss of generality, we consider the case of just one equality which
corresponds to the first two inequalities. Following the same developments as in
Section 3, we obtain the corresponding relaxed problem (RQPν,S0,S1,S′1,S3...,Sm

)
where the equality constraint is lifted in the objective function weighted by a
scalar ν:



min f1(x, Y ) = 〈S0, xx
T 〉+ cT0 x+ 〈Q0 − S0, Y 〉+ ν

(
〈Q1, xx

T 〉+ cT1 x− b1
)

s.t.

〈S1, xx
T 〉+ cT1 x+ 〈Q1 − S1, Y 〉 ≤ b1 (24)

〈S′1, xxT 〉 − cT1 x− 〈Q1 + S′1, Y 〉 ≤ −b1 (25)

〈Sr, xxT 〉+ cTr x+ 〈Qr − Sr, Y 〉 ≤ br r = 3, . . . ,m (26)

(x, Y ) ∈ P̄xY (27)
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Finding the best formulation amounts to solving problem (CP ′):

(CP ′)

 max
ν ∈ R, S0+νQ1�0

S1,S
′
1,S3...,Sm�0

{v(RQPν,S0,S1,S′1,S3,...,Sm
)}

We prove in Theorem 2 that when quadratic equalities are explicitely inte-
grated in the objective function, in an optimal solution to (CP ′), matrices S1

and S′1 associated to the equality constraint can be any positive semidefinite
matrices.

Theorem 2. Let (ν∗, S∗0 , S
∗
1 , S

′∗
1 , S

∗
3 , . . . , S

∗
m) be an optimal solution to (CP ′),

then for any semi-definite matrices S̄1, S̄′1, the solution (ν∗, S∗0 , S̄1, S̄
′
1, S
∗
3 , . . . , S

∗
m)

is also an optimal solution to (CP ′).

Proof. To prove that, in an optimal solution to (CP ′), matrices S1 and S′1
can be any semi-definite matrices, we prove that solving (CP ′) is equivalent to
solving the following problem (CP 1):

(CP 1)


max
ν∈R

S0+νQ1�0

S3,...,Sm�0

{v(RQP 1
ν,S0,S3,...,Sm

)}

where (RQP 1
ν,S0,S3...,Sm

) is (RQPν,S0,S1,S′1,S3...,Sm
) without Constraints (24) and (25).

� We first prove that v(CP ′) ≥ v(CP 1). This follows from the immediate
observation that v(RQPν,S0,S1,S′1,S3...,Sm

) ≥ v(RQP 1
ν,S0,S3,...,Sm

).

� We now prove that v(CP ′) ≤ v(CP 1), or equivalently that v(DCP ′) ≤
v(CP 1), where (DCP ′) is the following problem:

(DCP ′)


max
ν∈R

S0+νQ1�0

S1,S
′
1,S3,...,Sm�0

λ1≥0λ2≥0

{v(RQP 2
ν,S0,S1,S

′
1,S3...,Sm,λ1,λ2

)}

where (RQP 2
ν,S0,S1,S′1,S3...,Sm,λ1,λ2

) is:


min f2(x, Y ) = f1(x, Y ) + λ1(〈S1, xx

T 〉+ cT1 x+ 〈Q1 − S1, Y 〉 − b1)

+λ2(〈S′1, xxT 〉 − cT1 x− 〈Q1 + S′1, Y 〉+ b1)

s.t. (26)(27)

(DCP ′) is obtained from (CP ′) by dualizing Constraints (24) and (25). By
convexity, (DCP ′) and (CP ′) have the same optimal values.

Let (ν∗, S∗0 , S
∗
1 , S

′∗
1 , S

∗
3 , . . . , S

∗
m, λ

∗
1, λ
∗
2) be an optimal solution to (DCP ′).

We build the following feasible solution (ν̄, S̄0, S̄3, . . . , S̄m) to (CP 1):
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– S̄0 = S∗0 + λ∗1S
∗
1 + λ∗2S

′∗
1 + (λ∗2 − λ∗1)Q1

– S̄r = S∗r , r = 3, . . . ,m
– ν̄ = ν∗ + λ∗1 − λ∗2

(ν̄, S̄0, S̄3, . . . , S̄m) is feasible to (CP 1). Indeed, S̄r, r = 3, . . . ,m are positive
semidefinite matrices. Moreover, S̄0 + ν̄Q1 = S∗0 +λ∗1S

∗
1 +λ∗2S

′∗
1 + (λ∗2−λ∗1)Q1 +

(ν∗ + λ∗1 − λ∗2)Q1 = S∗0 + ν∗Q1 + λ∗1S
∗
1 + λ∗2S

′∗
1 is positive semidefinite since

S∗0 + ν∗Q1 � 0, S∗1 , S
′∗
1 � 0 and λ∗1, λ

∗
2 ≥ 0.

The objective function value of the associated problem (RQP 1
ν̄,S̄0,S̄3...,S̄m

) is:

f1(x, Y ) = 〈S∗0 + λ∗1S
∗
1 + λ∗2S

′∗
1 + (λ∗2 − λ∗1)Q1, xx

T 〉+ cT0 x

+ 〈Q0 − S∗0 − λ∗1S∗1 − λ∗2S
′∗
1 − (λ∗2 − λ∗1)Q1, Y 〉

+ (ν∗ + λ∗1 − λ∗2)(〈Q1, xx
T 〉+ cT1 x− b1)

= 〈S∗0 , xxT 〉+ cT0 x+ 〈Q0 − S∗0 , Y 〉+ ν∗(〈Q1, xx
T 〉+ cT1 x− b1)

+ λ∗1(〈S∗1 , xxT 〉 − 〈S∗1 −Q1, Y 〉+ cT1 x− b1)

+ λ∗2(〈S
′∗
1 , xx

T 〉 − 〈S
′∗
1 +Q1, Y 〉 − cT1 x+ b1)

= f2(x, Y )

Therefore, v(RQP 1
ν̄,S̄0,S̄3...,S̄m

) = v(RQP 2
ν∗,S∗0 ,S

∗
1 ,S
′∗
1 ,S∗3 ,...,S

∗
m,λ

∗
1 ,λ
∗
2

) as these

two problems have the same objective functions and the same set of constraints.
2

Let us now state Corollary 2 that, as claimed in the beginning of the section,
shows that for any equivalent reformulated equality constraints the value of the
best reformulation is reached.

Corollary 2. v(CP ′) = v(SDP ) = v(CP )

Proof. We know by Theorem 1 that v(CP ) = v(SDP ). Moreover, by convexity
and by dualizing the first two inequalities of (SDP ) which are equivalent to the
equality 〈Q1, X〉+ cT1 x = b1, we obtain v(SDP ) = v(CP 1). Thus, as v(CP ′) =
v(CP 1) by Theorem 2, we obtain v(CP ′) = v(SDP ). 2

5 Extension to the mixed-integer case

In this section, we study the case where some of the variables in the initial
problem are continuous. More formally, we aim to solve the following problem:

(MQP )



min f0(x)

s.t.

fr(x) ≤ br r = 1, . . . ,m

0 ≤ xi ≤ ui i ∈ I ∪ J
xi ∈ N i ∈ I
xi ∈ R i ∈ J
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where ∀ r ∈ {0, . . . ,m}, fr(x) = 〈Qr, xxT 〉 + cTr x, Qr ∈ SN , cr ∈ RN , br ∈ R,
I = {1, . . . , n}, J = {n+ 1, . . . , N}, and ui ∈ N (i ∈ I), uj ∈ R (j ∈ J).

We denote by H the set of pairs of indices of variables x involving at least
one integer variable:

H = {(i, j) ∈ I2 ∪ (I × J) ∪ (J × I)}

Definition 1. For any matrix A ∈ SN , we define the following decomposition
of A into two matrices MA ∈ SN and CA ∈ SN such that:

A = MA + CA

where the terms of MA, for (i, j) ∈ J2, are zeros and the terms of CA, for
(i, j) ∈H , are zeros.

An illustration of Definition 1 is presented in Figure 1. The aim of this definition
is to formalize the decomposition of the quadratic function xTAx into the sum
of the quadratic sub-function with the real variables only xTCAx and the other
quadratic sub-function xTMAx. Of course, for any vector x, xTAx = xTMAx+
xTCAx.

A =
AI

2

AI×J

AJ×I AJ
2 = MA + CA =

AI
2

AI×J

AJ×I 0
+

0 0

0 AJ
2

Fig. 1. Decomposition of a matrix A into matrices MA and CA

Assumption 1 We make the assumption that for all r = 0, . . . ,m, CQr
� 0,

i.e. the quadratic sub-functions xTCQrx of real variables are convex functions.

In the following, we first present the extension of Algorithm 1 to the case
where CQr

= 0N for r = 1, . . . ,m, i.e., in the constraints, there are no quadratic
sub-functions of real variables. Then, we deduce an algorithm to solve (MQP )
in the more general case where the quadratic sub-functions of real variables are
convex functions.

5.1 The case where the quadratic sub-functions of real variables of
constraints are zero-functions (CQ0 � 0, and for r = 1, . . . ,m,
CQr = 0N)

In this section, we suppose that, in the constraints, there are no quadratic terms
involving two real variables, i.e. that ∀r = 1, . . . ,m, CQr

= 0N . We now present
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our algorithm following the same reasoning steps as for the pure integer case.

As in Section 2, we introduce additional variables yij , but these variables are
defined only for (i, j) ∈H (set of indices of products involving at least one inte-
ger variable). Furthermore, we consider semidefinite matrices S0, . . . , Sm ∈ SN
such that for all r = 0, . . . ,m, Sr = MSr + CSr with CSr = 0N .

The following program (MQPS0,...,Sm
) is equivalent to (MQP ):

(MQPS0,...,Sm)


min f0,S0(x, Y )

s.t.

fr,Sr (x, Y ) ≤ br r = 1, . . . ,m

(x, Y, z, t) ∈ P ′xY zt

where P ′xY zt is:

P ′xY zt



xi =

blog(ui)c∑
k=0

2ktik i ∈ I

yij =

blog(ui)c∑
k=0

2kzijk (i, j) ∈ I × (I ∪ J)

zijk ≤ ujtik (i, k) ∈ E, j ∈ I ∪ J
zijk ≤ xj (i, k) ∈ E, j ∈ I ∪ J
zijk ≥ xj − uj(1− tik) (i, k) ∈ E, j ∈ I ∪ J
zijk ≥ 0 (i, k) ∈ E, j ∈ I ∪ J
tik ∈ {0, 1} (i, k) ∈ E
yii ≥ xi i ∈ I
yij = yji (i, j) ∈H , i < j

yij ≥ ujxi + uixj − uiuj (i, j) ∈H , i ≤ j
yij ≥ 0 (i, j) ∈H , i ≤ j

We now define the semidefinite program (SDP ′) which is obtained from
(SDP ) by replacing in Constraints (13)–(16) (i, j) ∈ I2 by (i, j) ∈H . This sub-
stitution amounts to not considering these constraints for pairs of real variables.

Theorem 3. Let (α∗, Φ∗) be an optimal dual solution to (SDP ′), where Φ∗

is the symmetric matrix built as described in Theorem 1 from the optimal dual
variables associated to new Constraints (13)–(16), and α∗ is the vector of optimal
dual variables associated to Constraints (12). We build S∗0 as follows:

S∗0 = MS∗0
+ CS∗0 where MS∗0

= MQ0
+

m∑
r=1

α∗rMQr
+MΦ∗ and CS∗0 = CQ0
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The optimal value of (MQP ∗) = (MQPS∗0 ,0N ,...,0N
) is equal to the optimal value

of (SDP ′).

The proof can be deduced from the proof of Theorem 1.

5.2 The case where the quadratic sub-functions of real variables are
arbitrary convex functions (∀r = 0, . . . ,m, CQr � 0)

To handle this case, we propose to first build the problem (MQP1) from (MQP )
by replacing constraints

cTr x+ 〈MQr , xx
T 〉+ 〈CQr , xx

T 〉 ≤ br r = 1, ...,m

by

cTr x+ 〈MQr
, xxT 〉 ≤ br r = 1, ...,m

Although (MQP1) is a relaxation of (MQP ) (as a consequence of Assump-
tion 1), we do not use this fact in the following.

Now, (MQP1) falls in the case of Section 5.1. So, one can apply the refor-
mulation of Section 5.1 to (MQP1). We obtain a program (MQP1∗) equivalent
to (MQP1) and whose continuous relaxation is a convex problem.

Finally, in each constraint of (MQP1∗), we add back the quadratic sub-
functions of real variables 〈CQr

, xxT 〉 and obtain problem (MQP ∗) as an equiv-
alent problem to (MQP ). More formally, the constraints of (MQP ∗) have the
following form:

cTr x+ 〈MQr
, Y 〉+ 〈CQr

, xxT 〉 ≤ br
The sequence of transformations is illustrated in Figure 2. The algorithm

is presented in Algorithm 2, where Step 1 corresponds to item (i) of Figure 2,
Step 2 to item (ii), and Step 3 to item (iii).

5.3 An illustrative example

We consider here the same example as for the pure-integer case (Section 3.3)
where we relax the integrality constraint of variable x4. This example, which we
call (MEx), has an optimal value equal to −1884.97 for x∗ = (9, 0, 20, 14.7):

(MEx)



min f(x) = −4x1x2 − 4x1x4 + 6x2x4 − 3x2
3 − 2x3x4 + 2x2

4
s.t.

8x2
1 + 5x2

2 + 8x2x3 + 4x2x4 + 2x2
4 ≤ 1080

0 ≤ x1 ≤ 11
0 ≤ x2 ≤ 14
0 ≤ x3 ≤ 20
0 ≤ x4 ≤ 16
xi ∈ N i = {1, 2, 3}
x4 ∈ R
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(MQP ) (i) (MQP1)
−→

m (iv) m (ii)

(MQP∗) (iii) (MQP1∗)
←−

Where

(i): Build (MQP1) from (MQP ).
(ii): Obtaining (MQP1∗) by the reformulation of Section 5.1.

(iii): Obtaining (MQP ∗) by adding to each linearized constraint the quantity
〈CQr , xx

T 〉 from the initial constraints.
(iv): The equivalence holds because (MQP1∗) is equivalent to (MQP1) as Y = xxT .

Fig. 2. Illustration of the sequence of transformations

Algorithm 2 Solution algorithm to (MQP ) where ∀r = 0, . . . ,m, CQr
� 0

step 1: Build (MQP1) from (MQP ).

step 2: Reformulation of (MQP1) into (MQP1∗) by the reformulation of Sec-
tion 5.1 by fixing momentarily CQr to 0N , r = 1, . . . ,m.

a) Solve the semidefinite program (SDP ′).
b) Deduce (S∗0 , . . . , S

∗
m) as described in the proof of Theorem 3.

step 3: For each (linearized) constraint of (MQP1∗), add back the initial associ-
ated quadratic sub-functions of real variables 〈CQr , xx

T 〉, obtaining problem
(MQP ∗).

step 4: Solve the program (MQP ∗) by a MIQP solver.
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Following Algorithm 2, we first solve the semidefinite relaxation (SDP ′MEx):

(SDP
′
MEx)



min f(X, x) = −4X12 − 4X14 + 6X24 − 3X33 − 2X34 + 2X44

s.t. 8X11 + 5X22 + 8X23 + 4X24 ≤ 1080
Xij ≤ ujxi

Xij ≤ uixj

−Xij ≤ −ujxi − uixj + uiuj

−Xij ≤ 0
−Xii ≤ −xi(

1 x

xT X

)
� 0

x ∈ R4 X ∈ S4

The optimal value of (SDP ′MEx) is equal to −2031.995. We obtain the fol-
lowing optimal dual solution:

– α∗1 = 0

– Φ∗ =

 1.89 0.51 −0.21 0.49
0.51 2.20 0.04 −0.95
−0.21 0.04 3.48 1.01
0.49 −0.95 1.01 0


We build matrix S∗0 = Q0 + α∗1Q1 + Φ∗, and we obtain:

S∗0 =

 1.89 −1.49 −0.21 −1.51
−1.49 2.20 0.04 2.05
−0.21 0.04 0.48 0.01
−1.51 2.05 0.01 2

 and thus Q0 − S∗0 =

−1.89 −0.51 0.21 −0.49
−0.51 −2.20 −0.04 0.95
0.21 −0.04 −3.48 −1.01
−0.49 0.95 −1.01 0


Then, to solve (MEx), we reformulate it into the following quadratic program

with a quadratic constraint (MEx∗)

(MEx
∗
)


min f0,S∗0

(x, Y ) = −1.89y11 − 1.02y12 + 0.42y13 − 0.98y14 − 2.20y22

−0.08y23 + 1.9y24 − 3.48y33 − 2.02y34 + 1.89x2
1 − 2.98x1x2 − 0.42x1x3

−3.02x1x4 + 2.20x2
2 + 0.08x2x3 + 4.10x2x4 + 0.48x2

3 + 0.02x3x4 + 2x2
4

s.t. 8y11 + 5y22 + 8y23 + 4y24 + 2x2
4 ≤ 1080

(x, Y, z, t) ∈ P ′xY zt

The continuous relaxation value of (MEx∗) is equal to −1910.03, the initial
gap is thus of 1.33%.

6 Computational results

In this section, we present experiments on pure-integer (QP ) and mixed-integer
(MQP ) quadratically constrained programs. We randomly generate pure-integer
instances (IQCPm, m = 0, 1, 5) and mixed-integer instances (MIQCPm, m = 1)
where m denotes the number of quadratic inequalities. All instances are avail-
able at www.cedric.cnam.fr/lamberta/Library/iqcpmiqcp.html [16]. Both
for pure- integer (IQCPm) and mixed integer (MIQCPm) instances we com-
pare an exact algorithm applied to our best reformulation (QP /MQP ) and an
exact algorithm applied to the complete linearization (LP/LQP ) defined by
taking Sr = 0n , for r = 0, ...,m. More precisely, (LP ) and (LQP ) consist in
linearizing all quadratic terms involving an integer variable and keeping all the
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products of two real variables. In the pure integer case, (LP ) has a linear objec-
tive function and linear constraints. In the mixed case, (LQP ) has a quadratic
objective function and quadratic constraints, where the quadratic terms of all
functions are the initial convex sub-functions of real variables.

Experimental environment:

Our experiments were carried out on a laptop with an Intel core i7 processor
of 2 GHz and 8 GB of RAM using a Linux operating system.

For solving the semidefinite programs (SDP ) and (SDP ′) we use CSDP [9],
where programs are solved with a precision of 10−6.

For solving convex reformulated programs (QP ∗), (MQP ∗), (LP ), and (LQP ),
we use the solver Cplex version 12.5.0 [14], where programs are solved with a
precision of 10−8 and a time limit of 3 hours. For our experiments, we use the
multithreading mode of Cplex with up to 4 threads.

Legends of Tables 1, 2, 3 and 4 :

– Name: c N n i, where c is the class of the instance, N is the number of
variables, n is the number of integer variables and i the index of the instance.

– Opt : The optimal solution value of the instance or the best known solution
which is obtained within the time limit of 3 hours.

– Cont : The optimal value of the continuous relaxation of the reformulated
problem.

– Gap:

∣∣∣∣Opt− ContOpt

∣∣∣∣ ∗ 100.

– Ref CPU (Reformulation CPU) : CPU time in seconds for solving (SDP )
with CSDP [9].

– Cplex CPU : CPU time in seconds for solving (QP ∗), (MQP ∗), (LP ), or
(LQP ) with Cplex [14].

– Tot CPU (Total CPU) : Ref CPU + Cplex CPU, for reformulations (QP ∗)
and (MQP ∗), and Cplex CPU for reformulations (LP ) and (LQP ). The
Total CPU time is limited to 3 hours. If the optimum is not found within

this time, we present the final gap (g%), g =

∣∣∣∣Opt− bOpt

∣∣∣∣ ∗ 100 where b is the

best bound obtained within the time limit.

– Nodes: Number of nodes visited by the branch-and-bound algorithm.

6.1 Computational experiments on pure-integer instances

Instances (IQCPm) with quadratic inequality constraints (m = 1 and m = 5)

Our experiments were carried out on inequality constrained pure-integer in-
stances of class (IQCPm). Each instance consists of minimizing a quadratic
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function subject to m quadratic inequality constraints.

(IQCPm)



min 〈Q0, xx
T 〉

s.t.

xTQrx ≤ br r = 1, . . . , m

`i ≤ xi ≤ ui i ∈ I
xi ∈ N i ∈ I

We generate instances where the coefficients of (IQCPm) are randomly gen-
erated as follows:

– `i = 0 and ui = 20, for all i ∈ I = {1, . . . , n}.
– The coefficients ofQ0 are integers uniformly distributed in the interval [−5, 5]

with a density of 75%. More precisely, ∀(i, j) ∈ I2 : i ≤ j, we generate
q0ij ∈ [−5, 5], then q0ji = q0ij . We observe that the number of negative
eigenvalues of the generated matrices is always close to 50%.

– The coefficients of Qr are integers uniformly distributed in the interval [0, 10]
with a density of 25%. More precisely, ∀(i, j) ∈ I2 : i ≤ j, we generate
qrij ∈ [0, 10], then qrji = qrij .

– br = b0.1 ∗ (

n∑
i=1

n∑
j=1

qrijuiuj)c.

In these experiments, we fixed m = 1 and m = 5. For class (IQCP1), we generate
instances with n = 10, 20, 30, or 40, and for class (IQCP5) we generate instances
with n = 10, 20, or 30. For each n we generate 10 instances obtaining a total of
70 instances.

In table 1, we compare the solution of instances of class (IQCP1) by reformu-
lations (LP ) and (QP ∗). We can observe that the initial gap obtained with the
reformulation (QP ∗) is always much smaller than the gap obtained by the refor-
mulation (LP ). More precisely, this gap is divided by a factor of 44 in average
over all the instances. As a consequence, the number of nodes visited during the
branch-and-bound algorithm is significantly smaller with reformulation (QP ∗)
in comparison with reformulation (LP ). Finally, reformulation (QP ∗) is faster
than reformulation (LP ) for instances with 20 variables or more. Moreover, re-
formulation (LP ) is unable to solve instances of sizes 30 or 40.

In Table 2, we present results of class (IQCP5). The initial gap is much
smaller with (QP ∗) than with (LP ) since it is divided by a factor of about
13.5. However, this improvement is not as significant as in the case of instances
(IQCP1).We can also notice that the average gap increases with sizes of problems
for reformulation (LP ), while it remains quite stable for reformulation (QP ∗).
Regarding the total CPU time, we find that both approaches are comparable
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(QP∗) (LP )
Opt Cont Gap Ref CPU Cplex CPU Tot CPU Nodes Cont Gap Tot CPU Nodes

IQCP1 10 10 1 -6480 -6868.17 5.99 1 1 2 97 -12710.00 96.14 1 122
IQCP1 10 10 2 -8094 -8343.27 3.08 1 1 2 178 -17047.18 110.62 1 489
IQCP1 10 10 3 -9132 -10014.47 9.66 1 5 6 457 -15056.25 64.87 0 248
IQCP1 10 10 4 -12602 -12710.46 0.86 1 0 1 8 -12880.74 2.21 0 0
IQCP1 10 10 5 -16293 -16666.41 2.29 1 1 2 36 -17828.17 9.42 0 0
IQCP1 10 10 6 -10400 -10399.98 0.00 1 1 2 0 -15672.22 50.69 0 18
IQCP1 10 10 7 -19925 -20475.93 2.77 1 1 2 12 -20476.00 2.77 0 0
IQCP1 10 10 8 -17280 -17486.01 1.19 2 0 2 58 -19357.79 12.02 0 0
IQCP1 10 10 9 -8605 -9060.32 5.29 1 1 2 145 -15954.00 85.40 1 177
IQCP1 10 10 10 -18676 -19589.90 4.89 3 2 5 353 -26243.61 40.52 1 641

Average 3.6 1 2 2.6 134 47.5 0.4 169
IQCP1 20 20 1 -42784 -42930.54 0.34 70 5 75 13 -60173.33 40.64 7 471
IQCP1 20 20 2 -38755 -40134.44 3.56 47 17 64 225 -71456.00 84.38 29 2631
IQCP1 20 20 3 -24332 -24957.35 2.57 52 25 77 298 -59417.14 144.19 250 15094
IQCP1 20 20 4 -42047 -43438.84 3.31 67 46 113 779 -84592.22 101.18 352 18133
IQCP1 20 20 5 -41765 -42768.76 2.40 43 20 63 476 -72682.86 74.03 24 1479
IQCP1 20 20 6 -43168 -43278.08 0.25 69 10 79 131 -70658.57 63.68 30 1182
IQCP1 20 20 7 -40780 -41592.13 1.99 69 41 110 624 -81170.00 99.04 245 9594
IQCP1 20 20 8 -53520 -53742.30 0.42 66 6 72 64 -84250.00 57.42 23 908
IQCP1 20 20 9 -33920 -34161.85 0.71 70 18 88 197 -68750.00 102.68 86 5576
IQCP1 20 20 10 -35412 -37158.67 4.93 71 71 142 1942 -77732.00 119.51 498 19799

Average 2.0 62.2 26 88.3 475 88.7 154.4 7487
IQCP1 30 30 1 -74564 -75853.65 1.73 328 66 394 258 -155497.50 108.54 (9.6%) 127268
IQCP1 30 30 2 -83240 -83403.34 0.20 468 30 498 29 -181836.00 118.45 (29.8%) 187571
IQCP1 30 30 3 -74176 -74250.59 0.10 177 11 188 9 -171918.00 131.77 (31.8%) 168305
IQCP1 30 30 4 -64252 -66063.23 2.82 479 130 609 700 -143422.00 123.22 (20.5%) 171016
IQCP1 30 30 5 -72564 -74360.49 2.48 359 262 621 1321 -155603.33 114.44 (27.7%) 170972
IQCP1 30 30 6 -68240 -68860.59 0.91 348 148 496 701 -159313.33 133.46 (26.8%) 198873
IQCP1 30 30 7 -80800 -81319.99 0.64 480 28 508 27 -158102.00 95.67 (23.6%) 135321
IQCP1 30 30 8 -65840 -68262.45 3.68 358 761 1119 4034 -160310.00 143.48 (45%) 134769
IQCP1 30 30 9 -58937 -59589.24 1.11 475 65 540 216 -147703.33 150.61 (36.9%) 208016
IQCP1 30 30 10 -69456 -70159.24 1.01 326 54 380 99 -153665.00 121.24 (19.3%) 167622

Average 1.5 379.8 155 535.3 739 124.1 - 166973
IQCP1 40 40 1 -101328 -103471.51 2.12 1685 3601 5286 4078 -272558.57 168.99 (103.5%) 73878
IQCP1 40 40 2 -134344 -136626.67 1.70 1747 567 2314 1042 -302984.00 125.53 (77.9%) 81929
IQCP1 40 40 3 -118324 -118779.41 0.38 2129 142 2271 75 -316666.25 167.63 (105.8%) 114192
IQCP1 40 40 4 -89641 -95139.22 6.13 2172 (2.7%) - 29756 -271700.00 203.10 (126.8%) 80102
IQCP1 40 40 5 -111077 -114710.96 3.27 2154 1994 4148 6475 -274985.71 147.56 (84.6%) 69510
IQCP1 40 40 6 -133516 -133814.01 0.22 2189 226 2415 98 -300148.75 124.80 (62.9%) 76622
IQCP1 40 40 7 -105040 -107134.61 1.99 1899 307 2206 542 -267817.14 154.97 (88.6%) 72252
IQCP1 40 40 8 -118782 -119816.45 0.87 2231 619 2850 559 -293542.00 147.13 (81.5%) 73367
IQCP1 40 40 9 -84142 -88195.02 4.82 1541 5203 6744 22650 -279803.33 232.54 (149.4%) 84920
IQCP1 40 40 10 -92809 -96375.14 3.84 2194 2863 5057 7668 -269400.00 190.27 (117.1%) 88860

Average 2.5 1994.1 1705 3699 4799 166.3 - 81563

Pure integer variables – 1 quadratic inequality constraint - time limit 3 hours

Table 1. Results for the exact solution of instances (IQCP1) by (QP ∗) and (LP ).
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(QP∗) (LP )
Opt Cont Gap Ref CPU Cplex CPU Tot CPU Nodes Cont Gap Tot CPU Nodes

IQCP5 10 10 5 1 -6880 -7674.31 11.55 3 1 4 108 -11761.69 70.95 1 41
IQCP5 10 10 5 2 -10047 -10743.60 6.93 10 1 11 573 -17503.32 74.21 1 262
IQCP5 10 10 5 3 -7966 -8938.46 12.21 10 1 11 65 -14341.01 80.03 0 327
IQCP5 10 10 5 4 -9799 -10782.58 10.04 7 2 9 608 -19396.44 97.94 1 782
IQCP5 10 10 5 5 -7260 -9469.95 30.44 3 3 6 2007 -17257.59 137.71 1 916
IQCP5 10 10 5 6 -5375 -6419.93 19.44 2 5 7 2903 -14527.34 170.28 2 915
IQCP5 10 10 5 7 -9314 -10063.65 8.05 3 1 4 310 -13127.70 40.95 0 86
IQCP5 10 10 5 8 -7872 -8232.16 4.58 3 1 4 93 -13403.50 70.27 1 99
IQCP5 10 10 5 9 -11716 -12337.24 5.30 2 2 4 256 -17656.32 50.70 1 57
IQCP5 10 10 5 10 -6276 -7738.93 23.31 3 2 5 702 -13818.04 120.17 1 862

Average 13.2 4.6 1.9 6.5 763 91.3 0.9 435
IQCP5 20 20 5 1 -27747 -29493.40 6.29 103 37 140 2300 -65618.21 136.49 253 15055
IQCP5 20 20 5 2 -36245 -37826.09 4.36 143 24 167 1619 -72305.92 99.49 191 8895
IQCP5 20 20 5 3 -34153 -36884.65 8.00 140 111 251 7701 -74355.19 117.71 268 13950
IQCP5 20 20 5 4 -27466 -29623.50 7.86 141 42 183 3714 -59500.00 116.63 61 5909
IQCP5 20 20 5 5 -24813 -26250.41 5.79 104 37 141 3317 -55442.56 123.44 70 4733
IQCP5 20 20 5 6 -32648 -33236.63 1.80 118 9 127 491 -61143.92 87.28 42 2567
IQCP5 20 20 5 7 -29218 -31178.65 6.71 140 30 170 1607 -61536.10 110.61 148 8830
IQCP5 20 20 5 8 -22016 -24958.28 13.36 140 112 252 10345 -57627.19 161.75 558 40979
IQCP5 20 20 5 9 -33856 -35001.03 3.38 140 16 156 544 -69851.49 106.32 80 4559
IQCP5 20 20 5 10 -32053 -37163.45 15.94 109 554 663 30601 -77604.15 142.11 779 44380

Average 7.4 127.8 97.2 225 6224 120.2 245 14986
IQCP5 30 30 5 1 -54272 -60373.66 11.24 702 (6.5%) - 90556 -159296.11 193.51 (70.2%) 140852
IQCP5 30 30 5 2 -53978 -58234.79 7.89 843 5359 6202 83912 -150880.24 179.52 (53.5%) 161325
IQCP5 30 30 5 3 -58168 -61680.35 6.04 840 4167 5007 52184 -148322.72 154.99 (46.5%) 177551
IQCP5 30 30 5 4 -58655 -62121.66 5.91 842 894 1736 7971 -149236.15 154.43 (48.1%) 74678
IQCP5 30 30 5 5 -64708 -69544.03 7.47 692 4713 5405 53807 -166755.83 157.71 (79.6%) 17601
IQCP5 30 30 5 6 -62032 -64632.77 4.19 802 485 1287 7681 -141292.72 127.77 (15.3%) 154769
IQCP5 30 30 5 7 -56226 -60112.81 6.91 872 3059 3931 35313 -142991.58 154.32 (43%) 161049
IQCP5 30 30 5 8 -72261 -76070.89 5.27 782 1136 1918 18873 -166487.75 130.40 (32.8%) 163079
IQCP5 30 30 5 9 -46273 -51609.73 11.53 873 (3%) - 132604 -140216.73 203.02 (53.2%) 151056
IQCP5 30 30 5 10 -52629 -53716.97 2.07 721 150 871 2128 -126301.11 139.98 (17.1%) 154617

Average 6.9 796.9 2495.4 3294.6 48503 159.6 - 135658

Pure integer variables – 5 quadratic inequality constraints - time limit 3 hours

Table 2. Results for the solution of instances of class (IQCP5) by (QP ∗) and (LP )
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for instances with 10 or 20 variables. However, the solution of instances with
30 variables is much faster with reformulation (QP ∗) than with reformulation
(LP ). Thus (QP ∗) solves 8 instances of 30 variables, out of 10, while (LP ) solves
none of them. We do not present results for n = 40 because for this size the re-
formulation phase becomes too difficult with the SDP solvers available to us.
Indeed, standards SDP solvers were not able to solve (SDP ) for all the consid-
ered instances.

Influence of the percentage of negative eigenvalues on our algorithm on instances
of class (IQCP0)

We also experiment our algorithm on instances of class (IQCP0) where we
vary the percentage of negative eigenvalues in order to evaluate the impact of
this parameter on our algorithm. We generate these instances as in [10]. More
precisely, we generate random objective functions as follows: given a percent-
age p ∈ [0, 100], we choose n numbers µi, where the first bpn/100c are cho-
sen uniformly at random from [−1, 0] and the remaining ones are chosen uni-
formly at random from [0, 1]. Next, we generate n vectors of dimension n each,
now choosing all entries uniformly at random from [−1, 1], and orthonormal-
ize them to obtain vectors vi. The coefficient matrix Q0 is then calculated as
Q0 =

∑n
i=1 µiviv

T
i . Therefore, the parameter p makes it possible to control

whether the matrix Q0 is positive semidefinite (p = 0), negative semidefinite
(p = 100) or indefinite. We randomly generate vector c0 in [−1, 1], `i = −10
and ui = 10 for all i = 1, . . . , n. Then, we replace xi by xi + 10 in order to
obtain 0 ≤ xi ≤ 20. The number of variables n was set to 10, 30, or 50. For each
percentage of negative eigenvalues p out of {10, 30, 50, 70, 90} and for each n we
created 10 instances obtaining a total of 150 instances.

In Table 3 we present results for class (IQCP0). For this class of problems,
we can observe that 147 instances over the 150 considered were solved by refor-
mulation (QP ∗) within the time limit of 3 hours. We can first notice that the
percentage of negative eigenvalues does not influence the average reformulation
time of our algorithm, while the average Cplex time is impacted. We observe
that hardest instances are those with 30% and 50% of negative eigenvalues. In-
deed, this time is multiplied by about 12 for these instances in comparison to
instances with 90% of negative eigenvalues and by about 2 in comparison to
instances with 10% and 70% of negative eigenvalues. For these instances, we do
not present results of the reformulation (LP ), i.e. complete linearisation. Indeed,
this method solves only instances of size n = 10 within the time limit. Moreover,
the average initial gap over all these instances of reformulation (LP ) is about
252.5%, while that of reformulation (QP ∗) is about 9.5%.
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(QP∗)
n p (% negEv) Gap Ref CPU Cplex CPU Tot CPU Nodes
10 10 0.03 0.10 1.00 1.10 34.20
30 10 5.25 113.90 24.70 138.60 7459.80
50 10 8.25 2292.10 1701.30 3993.40 1450943.70

Average 4.51 802.03 575.67 1377.70 486145.90
10 30 3.19 0.30 0.80 1.10 91.20
30 30 11.66 111.80 58.10 169.90 42979.60
50 30 14.83 2245.70 3643.29 (7) 5877.43 (7) 2360653.86

Average 9.89 785.93 1234.06 2016.14 801241.55
10 50 14.18 0.20 1.00 1.20 105.60
30 50 10.44 113.30 35.40 148.70 22212.40
50 50 14.76 2271.70 3532.50 5804.20 2434841.60

Average 13.13 795.07 1189.63 1984.70 819053.20
10 70 6.01 0.30 0.90 1.20 107.70
30 70 9.61 116.00 20.00 136.00 9125.30
50 70 14.21 2209.20 1605.60 3814.80 779952.50

Average 9.94 775.17 542.17 1317.33 263061.83
10 90 6.09 0.10 1.10 1.20 76.20
30 90 12.78 110.60 13.40 124.00 7154.50
50 90 10.33 2224.30 299.80 2524.10 123295.60

Average 9.73 778.33 104.77 883.10 43508.77

(i) means that i instances over 10 were solved within the time limit of 3 hours
Pure integer variables – unconstrained - time limit 3 hours

Table 3. Results for the solution of instances of class (IQCP0) by (QP ∗)

6.2 Computational experiments on mixed-integer instances

Our experiments were carried out on inequality constrained mixed-integer in-
stances of class (MIQCPm). Each instance consists of minimizing a quadratic
function subject to m quadratic inequality constraints.

(MIQCPm)



min 〈Q0, xx
T 〉

s.t.

xTQrx ≤ br r=1, . . . , m

`i ≤ xi ≤ ui i ∈ I ∪ J
xi ∈ N i ∈ I
xi ∈ R i ∈ J

For this class, we fixed m = 1 (one quadratic inequality), and we generate
instances with 13, 27, 40, and 53 variables, with about 1

4 of real variables and 3
4

of integer variables. For r = 0, 1, matrices Qr are equal to MQr + CQr , where
MQr and CQr are defined as in Section 5. The coefficients of (MIQCP1) are
randomly generated as follows:

– `i = 0 and ui = 10, for all i ∈ I ∪ J .
– The coefficients of MQ0 are integers uniformly distributed in the interval

[−20, 20] with a density of 75%. To generate coefficients of CQ0
so that CQ0

is positive semi-definite, we generate a matrix CA, where the elements of the
non-zero block are integers uniformly distributed in the interval [0, 5] with a
density of 100%, and CQ0

= CAC
T
A .
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– The coefficients of MQ1
are integers uniformly distributed in the interval

[0, 10] with a density of 25%. To generate coefficients of CQ1
such that CQ1

is positive semi-definite, we generate a matrix CA, where the elements of the
non-zero block are integers uniformly distributed in the interval [0, 3] with a
density of 100%, and CQ1

= CAC
T
A .

– b1 = b0.1 ∗ (

n∑
i=1

n∑
j=1

q1ijuiuj)c.

For each n = 13, 27, 40, or 53 we generate 10 instances obtaining a total of 40
instances for class (MIQCP1).

In Table 4, we compare the solution of instances of class (MIQCP1) by re-
formulations (LQP ) and (MQP ∗). These results reveal a similar trend as for
class (IQCP1). More precisely, the initial gap obtained with the reformulation
(MQP ∗) is much tighter than the gap obtained by the reformulation (LQP )
(improved on average by a factor 10), and the number of nodes is smaller with
reformulation (MQP ∗) in comparison with reformulation (LQP ). For these in-
stances, reformulation (LQP ) is faster than reformulation (MQP ∗) for the small-
est instances, with N = 13, 27 or 40 when we consider the reformulation time
plus the solution time. However, the total solution time of (MQP ∗) is highly pe-
nalized by the CPU time for solving (SDP ′). For larger instances, with N = 53,
(MQP ∗) is faster than (LQP ), since it solves all the considered instances in less
than 3 hours of CPU time, while reformulation (LQP ) is able to only solve 5
instances out of 10.

7 Conclusion

In this paper, we considered the general problem of minimizing a quadratic
function subject to equality and/or inequality quadratic constraints. Variables
can be integer or continuous but the sub-functions of pure continuous variables
must be convex. The general idea of our approach is to reformulate this problem
as an equivalent quadratic program whose continuous relaxation is convex. This
makes it easier to globally solve the problem by branch-and-bound. We show that
the reformulation which provides the best continuous relaxation is obtained by
solving a semidefinite relaxation of the original problem.

We report computational results on 220 instances. These results show that in
the pure integer case the method allows us to solve almost all the considered in-
stances with up to 40 variables and one or five inequality quadratic constraints in
less than three hours of computation time. Regarding the mixed-integer case, the
method can handle instances with 40 integer variables, 13 continuous variables,
and one inequality constraint in less than three hours of computation time.

A perspective of this work is to extend our approach to any mixed-integer
quadratic program.
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(MQP∗) (LQP )
Opt Cont Gap Ref CPU Cplex CPU Tot CPU Nodes Cont Gap Tot CPU Nodes

MIQCP1 13 10 1 -4764.13 -4764.82 0.01 1 1 2 58 -6574.15 37.99 1 364
MIQCP1 13 10 2 -13559.99 -13618.17 0.43 1 1 2 47 -13824.85 1.95 0 51
MIQCP1 13 10 3 -18699.99 -18699.95 0.00 1 0 1 0 -18700.00 0.00 1 51
MIQCP1 13 10 4 -13781.29 -14500.63 5.22 1 1 2 256 -14938.91 8.40 1 108
MIQCP1 13 10 5 -6288.95 -6399.57 1.76 1 1 2 223 -8558.21 36.08 1 286
MIQCP1 13 10 6 -4909.99 -4928.72 0.38 1 0 1 11 -6189.20 26.05 0 39
MIQCP1 13 10 7 -6682.81 -7129.04 6.68 1 1 2 29 -9230.19 38.12 0 180
MIQCP1 13 10 8 -8337.85 -9874.30 18.43 1 1 2 139 -12221.75 46.58 0 510
MIQCP1 13 10 9 -5699.99 -5699.95 0.00 1 0 1 0 -8596.87 50.82 0 39
MIQCP1 13 10 10 -14867.07 -15087.38 1.48 1 1 2 41 -16644.56 11.96 0 131

Average 3.4 1.1 0.7 1.8 80 25.8 0.4 176
MIQCP1 27 20 1 -18911.98 -18919.68 0.04 59 3 62 188 -21448.27 13.41 3 230
MIQCP1 27 20 2 -20733.04 -20733.87 0.00 66 2 68 5 -23262.06 12.20 3 53
MIQCP1 27 20 3 -15766.99 -15818.26 0.33 71 6 77 1018 -23353.64 48.12 9 1628
MIQCP1 27 20 4 -26393.34 -27129.78 2.79 63 4 67 150 -31457.11 19.19 8 958
MIQCP1 27 20 5 -19299.99 -19299.88 0.00 61 2 63 30 -19573.13 1.42 2 0
MIQCP1 27 20 6 -20664.00 -20664.25 0.00 72 3 75 54 -24569.77 18.90 4 459
MIQCP1 27 20 7 -31399.46 -31647.82 0.79 50 3 53 34 -32810.55 4.49 4 143
MIQCP1 27 20 8 -13499.96 -13677.20 1.31 65 4 69 275 -18603.78 37.81 15 2633
MIQCP1 27 20 9 -21905.47 -22361.32 2.08 66 2 68 22 -27385.42 25.02 7 989
MIQCP1 27 20 10 -14687.99 -14701.87 0.09 79 5 84 666 -21432.47 45.92 11 2016

Average 0.7 65.2 3.4 68.6 244 22.7 6.6 911
MIQCP1 40 30 1 -33303.89 -37559.88 12.78 596 64 660 6015 -46755.00 40.39 1052 54209
MIQCP1 40 30 2 -34323.98 -34324.49 0.00 849 8 857 10 -45130.00 31.48 70 2181
MIQCP1 40 30 3 -45993.24 -46807.64 1.77 887 19 906 929 -58554.29 27.31 195 12228
MIQCP1 40 30 4 -41227.94 -42895.96 4.05 774 10 784 242 -52083.78 26.33 300 8848
MIQCP1 40 30 5 -28947.86 -30127.91 4.08 790 10 800 186 -39883.60 37.78 219 8930
MIQCP1 40 30 6 -19780.97 -19784.60 0.02 825 20 845 1887 -27558.67 39.32 270 17435
MIQCP1 40 30 7 -36047.02 -36046.76 0.00 754 7 761 2 -45425.35 26.02 80 2405
MIQCP1 40 30 8 -28687.92 -28784.52 0.34 867 6 873 14 -39845.43 38.89 175 9966
MIQCP1 40 30 9 -23702.93 -24703.67 4.22 729 13 742 810 -32877.05 38.70 131 7086
MIQCP1 40 30 10 -29195.98 -29196.39 0.00 747 10 757 129 -38001.92 30.16 90 3671

Average 2.7 781.7 16.7 798.4 1022 33.6 258.2 12696
MIQCP1 53 40 1 -40830.98 -42804.81 4.83 3632 336 3968 12233 -55848.83 36.78 (7.4%) 104560
MIQCP1 53 40 2 -36483.82 -39341.73 7.83 4623 107 4730 5619 -58532.53 60.43 (14.1%) 335258
MIQCP1 53 40 3 -45280.96 -45281.28 0.00 4274 93 4367 582 -59848.30 32.17 3548 50664
MIQCP1 53 40 4 -36057.83 -37009.76 2.64 3824 11 3835 506 -53618.14 48.70 8778 230101
MIQCP1 53 40 5 -36545.36 -36545.94 0.00 3362 26 3388 43 -45177.88 23.62 734 9657
MIQCP1 53 40 6 -57271.95 -58418.01 2.00 4224 84 4308 2169 -74298.57 29.73 8817 114865
MIQCP1 53 40 7 -31112.93 -37194.08 19.55 3223 2742 5965 168641 -59618.12 91.62 (37.3%) 156685
MIQCP1 53 40 8 -36324.93 -38960.41 7.26 3576 335 3911 12831 -52440.28 44.36 (6.6%) 134298
MIQCP1 53 40 9 -40052.92 -45408.84 13.37 3821 411 4232 31694 -66801.44 66.78 (27.4%) 144419
MIQCP1 53 40 10 -48979.76 -49218.53 0.49 4354 107 4461 2486 -58133.68 18.69 1378 55975

Average 5.8 3891.3 425.2 4316.5 23680 45.3 4651 133648

Mixed-integer variables – 1 quadratic inequality constraint - time limit 3 hours

Table 4. Results for the solution of instances of class (MIQCP1) by (MQP ∗) and
(LQP )
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