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A DECOMPOSITION THEOREM FOR Q-FANO KÄHLER-EINSTEIN
VARIETIES

STÉPHANE DRUEL, HENRI GUENANCIA, AND MIHAI PĂUN

ABSTRACT. Let X be a Q-Fano variety admitting a Kähler-Einstein metric. We
prove that up to a finite quasi-étale cover, X splits isometrically as a product of
Kähler-Einstein Q-Fano varieties whose tangent sheaf is stable with respect to
the anticanonical polarization. This relies among other things on a very general
splitting theorem for algebraically integrable foliations. We also prove that the
canonical extension of TX by OX is semistable with respect to the anticanonical
polarization.
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1. INTRODUCTION

Let (X, ω) be a Fano Kähler-Einstein manifold, i.e. X is a projective manifold
with −KX ample and admitting a Kähler metric ω solving Ric ω = ω. It follows
from the (easy direction of the) Kobayashi-Hitchin correspondence that the tan-
gent bundle of X splits as a direct sum of parallel subbundles

(1.1) TX =
⊕
i∈I

Fi

such that Fi is stable with respect to −KX . Since X is simply connected, de Rham’s
splitting theorem asserts that one can integrate the foliations arising in decompo-
sition (1.1) and obtain an isometric splitting

(X, ω) '∏
i∈I

(Xi, ωi)

into Kähler-Einstein Fano manifolds which is compatible with (1.1).

Over the last few decades, a lot of attention has been drawn to projective va-
rieties with mild singularities, in relation to the progress of the Minimal Model
Program (MMP). In that context, the notion of Q-Fano variety (cf. Definition 2.1)
has emerged and played a central role in birational geometry.

On the analytic side, singular Kähler-Einstein metrics have been introduced
and constructed in various settings (see e.g. [EGZ09, BBE+19, BG14] and Defi-
nition 2.2). They induce genuine Kähler-Einstein metrics on the regular part of the
variety but are in general incomplete, preventing the use of most useful results
in differential geometry (like the de Rham’s splitting theorem mentionned above)
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to analyze their behavior. However, these objects are well-suited to study (poly)-
stability properties of the tangent sheaf as it was observed by [Gue16], relying on
earlier results by [Eno88].

In the Ricci-flat case, the holonomy of the singular metrics was computed in
[GGK19]. Moreover, [Dru18] provided an algebraic integrability result for foli-
ations as well as a splitting result in that setting. Building upon those results,
Höring and Peternell [HP19] could eventually prove the singular version of the
Beauville-Bogomolov decomposition theorem.

In the positive curvature case, some new difficulties arise. In this paper, our
main contribution is to single out and overcome those difficulties in order to prove
the following structure theorem for Q-Fano varieties that admit a Kähler-Einstein
metric.

Theorem A. Let X be a Q-Fano variety admitting a Kähler-Einstein metric ω. Then TX
is polystable with respect to c1(X). Moreover, there exists a quasi-étale cover f : Y → X
such that (Y, f ∗ω) decomposes isometrically as a product

(Y, f ∗ω) '∏
i∈I

(Yi, ωi),

where Yi is a Q-Fano variety with stable tangent sheaf with respect to c1(Yi) and ωi is a
Kähler-Einstein metric on Yi.

It was proved very recently by Braun [Bra20, Theorem 2] that the fundamental
group of the regular locus of a Q-Fano variety is finite. Relying on that result, one
can refine Theorem A and obtain that the varieties Yi satisfy the additional prop-
erty: π1(Y

reg
i ) = {1}.

Note that the semistability of TX for a Kähler-Einstein Q-Fano variety X was
proved by Chi Li in [Li18, Proposition 3.7] in the case where X admits a resolu-
tion where all exceptional divisors have non-positive discrepancy, e.g. a crepant
resolution.

Strategy of proof of Theorem A. There are two main steps in the proof of Theo-
rem A.

• The first step is the object of Theorem 2.6 where one proves that TX is the di-
rect sum of stable subsheaves that are parallel with respect to the Kähler-Einstein
metric ω on Xreg. This is achieved by computing slopes of subsheaves using the
metric induced by the Kähler-Einstein metric and using Griffiths’ well-known for-
mula for the curvature of a subbundle. However, the presence of singularities (for
X and ω) makes it hard to carry out the analysis directly on X. One has to work
on a resolution using approximate Kähler-Einstein metrics as in [Gue16]. Yet an
additional error term appears in the Fano case, requiring to introduce some new
ideas to deal with it.

• The main result of the second step is a very general splitting theorem for al-
gebraically integrable foliations, cf. Theorem 4.14. The context is as follows: after
the first step above is completed, we know that the tangent bundle of X splits as
direct sum of foliations, say (Fi)i∈I . Since each Fi admits a complement inside
TX , it is weakly regular. It turns out that weakly regular foliations have many nice
properties. The important fact which is established here is that an algebraically
integrable, weakly regular foliation on a Q-factorial projective variety with klt sin-
gularities is induced by a surjective, equidimensional morphism X → Y, cf. The-
orem 4.6. When combined with suitable generalisations of techniques and results
in [Dru20], this leads to the proof of Theorem 4.14.
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Finally, Theorem A can be proved by applying the splitting theorem from the
second step to the foliations induced by the Kähler-Einstein metric as showed in
the first step. Note that the algebraic integrability of these foliations follows from
the deep results of [BM16].

Our second main result is the following generalisation of a theorem of Tian
[Tia92, Theorem 0.1], which is a way to express some ”strong” semistability of TX .

Theorem B. Let X be a Q-Fano variety admitting a Kähler-Einstein metric. Then the
canonical extension of TX by OX is semistable with respect to c1(X).

We refer to Section 3.1 for the construction of the canonical extension. Note that
one can slightly improve the result above by showing that the canonical extension
is actually polystable, cf. Remark 3.6.

Strategy of proof of Theorem B. The proof of Theorem B takes up most of § 3. It
relies largely on the computations carried out in § 2 to prove the polystability of
TX , but on top of those, several new ideas are needed to overcome the presence of
singularities.

First, one needs reduce the statement to one on a resolution in order to use ana-
lytic methods. As we do that and introduce approximate Kähler-Einstein metrics,
we need to change the vector bundle structure; this has the effect to make it im-
possible to compute directly the slope of a subsheaf of the canonical extension.
We explain how to overcome this difficulty in the first step of the proof of Theo-
rem 3.5. The rest of the proof uses a combination of the original idea of Tian and
the computations of § 2.

Some remarks about Theorems A & B. • One can express Theorem A and Theo-
rem B in a purely algebraic way using the notion of K-stability, cf. Remark 2.4.

• The conclusion of Theorem B remains true under the more general assump-
tion that the greatest Ricci lower bound of X is 1, cf. Theorem 3.3.

• Combining the recent uniformization result [GKP20, Theorem 1.3] with Theo-
rem B, one can prove that a Kähler-Einstein Q-Fano variety that achieves equality
in the Miyaoka-Yau inequality is a quotient of the projective space, cf. [GKP20,
Theorem 1.5] and the few lines above. Moreover, one can relax the Kähler-Einstein
condition and only require that the greater Ricci lower bound is one, cf. item
above.

Acknowledgements. It is our pleasure to thank Daniel Greb, Stefan Kebekus and
Thomas Peternell for sharing their results [GKP20] and encouraging us to prove
Theorem B. H. G. thanks Sébastien Boucksom for useful discussions about Re-
mark 2.4. S. D. was partially supported by the ERC project ALKAGE (ERC grant
Nr 670846), the CAPES-COFECUB project Ma932/19 and the ANR project Foliage
(ANR grant Nr ANR-16-CE40-0008-01). H.G. was partially supported by the ANR
project GRACK.

2. POLYSTABILITY OF THE TANGENT SHEAF

2.1. Set-up.
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2.1.1. Notation.

Definition 2.1. Let X be a projective variety of dimension n. We say that X is a
Q-Fano variety if X has klt singularities and −KX is an ample Q-line bundle.

We also recall the definition of (twisted) singular Kähler-Einstein metric, cf.
[BBE+19].

Definition 2.2. Let X be a Q-Fano variety, let ϑ ∈ c1(X) be a smooth representative
and let γ ∈ [0, 1). A twisted Kähler-Einstein metric relatively to the couple (ϑ, γ) is
a closed, positive current ωKE,γ ∈ c1(X) with bounded potentials, which is smooth
on Xreg and satisfies

Ric ωKE,γ = (1− γ)ωKE,γ + γϑ

on that open set.
When γ = 0, we write ωKE := ωKE,0 and we call it a Kähler-Einstein metric.

Remark 2.3. By [BBE+19, Proposition 3.8], a smooth Kähler metric ω ∈ c1(Xreg)
on Xreg satisfying Ric ω = ω extends to a Kähler-Einstein metric in the sense of
Definition 2.2 if and only if

∫
Xreg

ωn = c1(X)n. In particular, if f : Y → X is a
(finite) quasi-étale cover between Q-Fano varieties and ωKE is a Kähler-Einstein
metric on X, then f ∗ωKE is a Kähler-Einstein metric on Y.

Let ωX ∈ c1(X) be a fixed Kähler metric on X. We will systematically make
either one of the following assumptions:

Assumption A. For any γ ∈ (0, 1) small enough, there exists a twisted Kähler-Einstein
metric ωKE,γ on X relatively to (ωX , γ).

Assumption B. There exists a Kähler-Einstein metric ωKE on X.

Remark 2.4. One can rephrase the Assumptions A-B using the algebraic notion of
K-stability. It follows from [LTW19] (building upon results of [CDS15a, CDS15b,
CDS15c], [Tia15], [Li17], [BBJ15] in the smooth case) that

• X satisfies Assumption A if and only if X is K-semistable.

• X satisfies Assumption B if X is uniformly K-stable, and the converse holds
provided Aut◦(X) = {1}.

Notation 2.5. Let π : X̂ → X be a resolution of singularities of X with exceptional
divisor E = ∑k∈I Ek and discrepancies ak > −1 given by

KX̂ = π∗KX + ∑ akEk.

There exist numbers εk ∈ Q+ such that the cohomology class π∗c1(X)−∑ εkc1(Ek)
contains a Kähler metric ωX̂ . We fix it for the rest of the paper. Next, we pick
sections sk ∈ H0(X̂,OX̂(Ek)) such that Ek = (sk = 0), smooth hermitian metric hk

onOX̂(Ek) with Chern curvature ϑk := iΘhk
(Ek) and a volume form dV on X̂ such

that Ric dV = π∗ωX −∑k∈I akϑk. We set

(2.1) hE := ∏
k∈I

hk

which defines a smooth metric on OX̂(E).
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2.1.2. The twisted Kähler-Einstein metric and its regularizations. In this section, we
assume that either Assumption A or Assumption B is fulfilled so that there exists
a (twisted) Kähler-Einstein metric ωKE,γ

◦ either for any γ ∈ [0, 1) such that 0 < γ� 1

◦ or for γ = 0.

For the time being, the parameter γ is fixed.

We denote by π∗ωKE,γ = π∗ωX + ddc ϕ the singular metric solving

(π∗ωX + ddc ϕ)n = e−(1−γ)ϕ f dV

where f = ∏i∈I |si|2ai ∈ Lp(dV) for some p > 1. It is known that ϕ is bounded
(even continuous) on X̂ and smooth outside E, cf. [BBE+19]. Note that ϕ depends
on γ, but as notation will get quite heavy later, we choose not to highlight that
dependence.

Next, we choose a family ψε ∈ C ∞(X̂) of quasi-psh functions on X̂ such that

• One has ψε → ϕ in L1(X̂) and in C ∞
loc(X̂ \ E).

• There exists C > 0 such that ‖ψε‖L∞(X̂) ≤ C.

• There exists a continuous function κ : [0, 1] → R+ with κ(0) = 0 such that
π∗ωX + ddcψε ≥ −κ(ε)ωX̂ .

This is a standard application of Demailly’s regularization results. The smooth
convergence outside E claimed in the first item follows from the explicit expres-
sion of the function ψε, see e.g. [DNL17, (3.3)].

For ε, t ≥ 0, one introduces the unique function ϕt,ε ∈ L∞(X)∩PSH(X̂, π∗ωX +
tωX̂) solving {

(π∗ωX + tωX̂ + ddc ϕt,ε)n = fεe−(1−γ)ψε e−ct dV
supX̂ ϕt,ε = 0

where
• fε := eaε ∏(|si|2 + ε2)ai ,

• aε is a normalizing constant such that
∫

X̂ fεe−(1−γ)ψε dV = c1(X)n; it con-
verges to 1 when ε→ 0.

• ct is defined by {π∗ωX + tωX̂}
n = ect · c1(X)n.

The existence and uniqueness of ϕt,ε follows from Yau’s theorem [Yau78] when
t, ε > 0 (in which case ϕt,ε is actually smooth) while the general case is treated in
[EGZ09]. It follows from ibid. that there exists a constant C > 0 such that

(2.2) ‖ϕt,ε‖L∞(X) ≤ C

for any t, ε ∈ [0, 1]. Moreover, any weak limit ϕ̂ of a sequence (ϕtk ,εk ) is bounded
and is a smooth limit outside E. Therefore, it solves the equation

(π∗ωX + ddc ϕ̂)n = e−(1−γ)ϕ f dV

on X̂. By the uniqueness result [EGZ09, Thm. A], we have ϕ̂ = ϕ. That is

(2.3) ϕt,ε −→
t,ε→0

ϕ in L1(X̂) and in C ∞
loc(X̂ \ E).

One sets

(2.4) ωt,ε := π∗ωX + tωX̂ + ddc ϕt,ε
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which solves the equation

(2.5) Ric ωt,ε = π∗ωX + (1− γ)ddcψε −Θε

where

(2.6) Θε = Θ(E, hε
E) = ∑ aiϑi,ε

is the curvature of

(2.7) hε
E = ∏

i
(|si|2 + ε2)−1hi

and ϑi,ε = ϑi + ddc log(|si|2 + ε2) converges to the current of integration along Ei
when ε→ 0.

2.2. Stability of TX . Setup and notation as in § 2.1.
Let F ⊂ TX̂ be a subsheaf of rank r. We can assume that F is saturated in TX̂ ,

i.e. TX̂/F is torsion-free. This is because saturating a subsheaf increases its slope.
From now on, we choose small numbers t, ε > 0 which we will later let go to

zero. The Kähler metric ωt,ε defined in (2.4) induces an hermitian metric ht,ε on TX̂
which in turn induces a hermitian metric hF on F := F |W where W ⊂ X̂ is the
maximal locus where F is a subbundle of TX̂ . Then, it is classical (see e.g. [Kob87,
Rem. 8.5]) that one can compute the slope of F by integrating the trace of the first
Chern form of (F, hF) over W, i.e.

(2.8)
∫

W
c1(F, hF) ∧ωn−1

t,ε = c1(F ) · {ωt,ε}n−1.

On W, we have the following standard identity (cf. e.g. [Dem12, Thm. 14.5])

iΘ(F, hF) = prF
(
iΘ(TX̂ , ht,ε)|F

)
+ βt,ε ∧ β∗t,ε

where β ∈ C∞
0,1(W, Hom(TX̂ , F)) and β∗ is its adjoint with respect to ht,ε and hF.

Therefore, we get

(2.9) c1(F, hF) ∧ωn−1
t,ε = trEnd

(
prF
(
iΘ(TX̂ , ht,ε)|F

))
∧ωn−1

t,ε + trEnd(βt,ε ∧ β∗t,ε ∧ωn−1
t,ε )

By (2.8), the integral of the left-hand side over W, yields r times the slope of F
with respect to {π∗ωX + tωX̂}. As for the right-hand side, one can simplify the
first term using the formula

(2.10) n · iΘ(TX̂ , ht,ε) ∧ωn−1
t,ε = (]Ric ωt,ε)ωn

t,ε.

Here we denote by ]Ric ωt,ε the endomorphism of TX̂ induced by the Ricci curva-
ture of ωt,ε.

The equation (2.5) is equivalent to

(2.11) Ric ωt,ε = (1− γ)ωt,ε + γπ∗ωX − tωX̂ + (1− γ)ddc(ψε − ϕt,ε)−Θε.
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Using the formula above, one gets

µωt,ε(F ) ≤(1− γ)µωt,ε(TX) +
1− γ

nr

∫
X̂

trEndprF(]ddc(ψε − ϕt,ε))|F ωn
t,ε︸ ︷︷ ︸

=:(I)

+
γ

nr

∫
X̂

trEndprF(]π
∗ωX)|F ωn

t,ε︸ ︷︷ ︸
=:(II)

− 1
nr

∫
X̂

trEndprF(]Θε)|F ωn
t,ε︸ ︷︷ ︸

=:(III)

+
1
nr

∫
W

trEnd(βt,ε ∧ β∗t,ε ∧ωn−1
t,ε )︸ ︷︷ ︸

=:(IV)

.

We therefore have four terms to deal with. To deal with (II)− (IV), we will use
the same computations as in [Gue16], cf. explanations below. The main new term
is (I), which we treat first.

The term (I).

It arises from the fact that, say when γ = 1, we can not necessarily solve the per-
turbed equation Ric ωt,ε = ωt,ε − tωX̂ −Θε unlike in the case where KX is ample
or trivial. If all the discrepancies ai were negative, one could likely still solve that
equation using e.g. properness of Ding functional but we will not expand on that.

In order to deal with (I), one makes the following observations:

• Given δ > 0, there exist η = η(δ) > 0 and an open neighborhood Uδ of E ⊂ X̂
such that

(2.12) ∀ε, t ≤ η,
∫

Uδ

(ωψε + ωt,ε) ∧ωn−1
t,ε ≤ δ

where ωψε = π∗ωX + tωX̂ + ddcψε. This inequality is a consequence of the Chern-
Levine-Nirenberg inequality along with the bound of the potentials below

(2.13) ∃C > 0, ∀ε, t, ‖ϕt,ε‖L∞(X̂) + ‖ψε‖L∞(X̂) ≤ C

that we infer from (2.2). Indeed, as explained in [Gue16] one proceeds as follows.
Let

(
Ξδ

)
δ>0 be a family of functions defined on R+, such that Ξδ(x) = 0 if x ≤ δ−1

and Ξδ(x) = 1 if x ≥ 1 + δ−1. Moreover we can assume that the derivative of Ξδ

is bounded by a constant independent of δ. Then we evaluate the quantity

(2.14)
∫

X̂
Ξδ

(
log log

1
|sE|2

)
(ωψε + ωt,ε) ∧ωn−1

t,ε

and the proof of the classical Chern-Levine-Nirenberg inequality shows that the
integral in (2.12) is smaller than

(2.15)
∫

Uδ

ωn
E

up to a constant which is independent of t, ε. In (2.15) we denote by ωE a met-
ric with Poincaré singularities along the divisor E, and by Uδ the support of the

truncation function Ξδ

(
log log

1
|sE|2

)
. Here the main point is that the norm of the

Hessian of the truncation function is uniformly bounded when measured with
respect to ωE. The conclusion follows.
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The hermitian endormorphism ]ddc(ψε − ϕt,ε) is dominated (in absolute value)
by the positive endomorphism

](ωψε + ωt,ε)

whose endomorphism trace is nothing by trωt,ε(ωψε + ωt,ε). By (2.12), we are done
with (I) on Uδ.

• The second observation is that given K b X̂ \ E, there exists η = η(K) > 0
such that

(2.16) ∀ε, t ≤ η, ‖ψε − ϕt,ε‖C 2(K) ≤ δ.

This is a consequence of the fact that (ϕt,ε) and (ψε) converge uniformly (in ε, t) to
ϕ on K by stability of the Monge-Ampère operator, cf. e.g. [GZ12, Thm. C], and
have uniformly bounded C p(K) norm for any p thanks to (2.13), Tsuji’s trick and
Evans-Krylov plus Schauder estimates.

Therefore, one has ±]ddc(ψε − ϕt,ε) ≤ δωX̂ hence (I) is controlled on K by
δ
∫

K ωX̂ ∧ωn
t,ε ≤ Cδ.

Conclusion. Let Ft,ε := trEndprF(]ddc(ψε − ϕt,ε))|F ωn
t,ε. One fixes δ > 0. We get

a neighborhood Uδ of E and a number η′ = η′(δ) > 0 such that
∫

Uδ
Ft,ε ≤ δ for

any ε, t ≤ η′. Applying the second observation to K = X̂ \Uδ, we find η′′ = η′′(δ)
such that

∫
X\Uδ

Ft,ε ≤ Cδ for any ε, t ≤ η′′. Choosing η := min{η′, η′′}, we find
that

∀ε, t ≤ η,
∫

X̂
Ft,ε ≤ C′δ.

In short, the term (I) converges to zero when ε, t→ 0.

The term (II).

As π∗ωX ≥ 0, one has

trEndprF(]π
∗ωX)|Fωn

t,ε ≤ trEnd(]π
∗ωX)ω

n
t,ε

= trωt,ε(π
∗ωX) = n π∗ωX ∧ωn−1

t,ε .

Integrating over X, one finds

(II) ≤ γr−1(π∗c1(X) · {ωt,ε}n−1)

and the right-hand side converges to γn
r µ(TX̂) when t → 0, where the slope is

taken with respect to π∗c1(X).

The term (III).

As said above, the arguments to treat this term are borrowed from [Gue16]. For the
convenience of the reader, we will recall the important steps. To lighten notation,

we will drop the index i. One can write Θε = ε2lD′s|2
(|s|2+ε2)2 + ε2

|s|2+ε2 · ϑ. Let us set

gε := ε2

|s|2+ε2 . Up to rescaling ωX̂ , one can assume that −ωX̂ ≤ ϑ ≤ ωX̂ so that
Θε + gεωX̂ ≥ 0. Then one sees easily that

trEndprF(]Θε)|F ωn
t,ε ≤ trEnd

(
]Θε + ](gεωX)

)
ωn

t,ε

= Θε ∧ωn−1
t,ε + gεωX̂ ∧ωn−1

t,ε

and one obtains that the term (III) converges to zero when ε, t→ 0 since

•
∫

X Θε ∧ωn−1
t,ε = c1(E)· {π∗ωX + tωX̂}

n−1 and E is exceptional,
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•
∫

X gεωX̂ ∧ωn−1
t,ε → 0 when ε, t→ 0 thanks to the smooth convergence to 0

outside E and the Chern-Levine-Nirenberg inequality combined with the
bound (2.2) on the potentials, cf. first item in Part (I).

The term (IV).

Note that the term βt,ε ∧ β∗t,ε is pointwise negative in the sense of Griffiths on W.
In particular, the term (IV) is non-positive. Since (I) and (III) converge to zero,
this shows that

(2.17) µ(F ) ≤
(
1 + γ

(n
r
− 1
))
· µ(TX̂)

where the slope is taken with respect to π∗c1(X).
Working under Assumption A, one obtains the inequality (2.17) above for any

γ > 0 small enough. In particular, this shows that under Assumption A, TX̂ is
semistable with respect to π∗c1(X).

From now on, we assume that the stronger Assumption B holds; i.e. one can
choose γ = 0. Assume additionally that there exists a subsheaf F ⊂ TX̂ with
the same slope as TX̂ and let F sat be its saturation in TX̂ ; it is a subbundle in
codimension one. As the slope has not increased by saturation, F = F sat in
codimension one on X̂ \ E. Therefore, if we set W◦ := W ∩ (X̂ \ E), then W◦ ⊂
X̂ \ E has codimension at least two and by the above computation, one has

lim
ε,t→0

∫
W◦

(βt,ε ∧ β∗t,ε ∧ωn−1
t,ε ) = 0.

We know by (2.3) that βt,ε → β∞ locally smoothly on W◦ when ε, t → 0 where
β∞ is the second fundamental form induced by the hermitian metric hKE induced
by π∗ωKE on TX̂ |W◦ and on F by restriction. By Fatou lemma, we have β∞ ≡ 0
on W◦, that is, we have a holomorphic decomposition TX̂ |W◦ = F⊕ F⊥ where the
orthogonal is taken with respect to hKE.

We are now ready to prove

Theorem 2.6. Let X be a Q-Fano variety.
(i) If Assumption A is satisfied, then TX is semistable with respect to c1(X).

(ii) If Assumption B is satisfied, then TX is polystable with respect to c1(X). More
precisely, we have:
• Any saturated subsheaf F ⊂ TX with µ(F ) = µ(TX) is a direct summand

of TX and F |Xreg ⊂ TXreg is a parallel subbundle with respect to ωKE.

• There exists a decomposition

TX =
⊕
i∈I

Fi

such that Fi is stable with respect to c1(X) and Fi|Xreg ⊂ TXreg is a parallel
subbundle with respect to ωKE.

Proof. Let F ⊂ TX be a subsheaf and let α := c1(X). The sheaf F induces a
subsheaf G ◦ ⊂ TX̂ |X̂\E and we denote by G ⊂ TX̂ the saturation of G ◦ in TX̂ .
By the arguments above (cf. inequality (2.17) and the comments below it), one has
µπ∗α(G ) ≤ µπ∗α(TX̂) = c1(X)n/n = µα(TX). Moreover, one has clearly µπ∗α(G ) =
µα(F ). This shows that TX is semistable with respect to c1(X).

Now, assume that there exists a Kähler-Einstein metric ωKE. If F ⊂ TX satisfies
µα(F ) = 0, then µπ∗α(G ) = 0 and we have showed above that π∗ωKE induces
a splitting TX̂ |W = G |W ⊕ (G |W)⊥ over a Zariski open subset W ⊂ X̂ \ E whose
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complement in X̂ \ E has codimension at least two. Set V := π(W) ⊂ Xreg so that
F |V is a subbundle of TX and we have a splitting TX |V = F |V ⊕ (F |V)⊥ induced
by ωKE and codimX(X \V) ≥ 2.

Let us denote by j : V ↪→ X the open immersion. As F ⊂ TX is saturated, it
is reflexive, hence j∗(F |V) = F . Moreover, (F |V)⊥ extends to a reflexive sheaf
F⊥ := j∗((F |V)⊥) on X satisfying TX = F ⊕F⊥ on the whole X. In partic-
ular, F is a direct summand of TX and as such, it is subbundle of TX over Xreg.
By iterating this process and starting with F with minimal rank, one can decom-
pose TX =

⊕
i∈I Fi into reflexive sheaves which, over Xreg, are parallel (pairwise

orthogonal) subbundles with respect to ωKE. �

3. SEMISTABILITY OF THE CANONICAL EXTENSION

In this section, we keep using the setup and notation of § 2.1.

3.1. The canonical extension. Let E be a coherent sheaf on X sitting in the exact
sequence below

(3.1) 0 −→ Ω[1]
X −→ E −→ OX −→ 0

The sheaf E is automatically torsion-free and it is locally free on Xreg.

Remark 3.1. Let U ⊂ X be a non-empty Zariski open subset. As an extension of OX

by Ω[1]
X , E |U is uniquely determined by the image of 1 ∈ H0(U, OX) in H1(U, Ω[1]

X )

under the connecting morphism in the long exact sequence arising from H0(U,−).

From now on, one assumes that the extension class of E is the image of c1(X)
in H1(X, Ω1

X) under the canonical map

Pic(X)⊗Q ' H1(X, O∗X)⊗Q→ H1(X, Ω1
X)→ H1(X, Ω[1]

X ).

This is legitimate since KX is Q-Cartier.

Definition 3.2. The dual E ∗ of the sheaf E sitting in the exact sequence (3.1) with
extension class c1(X) is called the canonical extension of TX by OX .

The exact sequence (3.1) is locally splittable since for any affine U ⊂ X, one has
h1(U, Ω[1]

U ) = 0. In particular, when one dualizes (3.1), one see that the canonical
extension of TX by OX sits in the short exact sequence below

(3.2) 0 −→ OX −→ E ∗ −→ TX −→ 0.

The goal of this section is to prove the following, cf. Theorem B.

Theorem 3.3. Let X be a Q-Fano variety. If Assumption A is satisfied, then the canonical
extension E ∗ of TX by OX is semistable with respect to c1(X).

The proof of Theorem 3.3 above is divided into two main steps corresponding to
the next two sub-sections. First one can reduce the statement above to a stability
property on the resolution X̂ thanks to Lemma 3.4 and then we prove the said
statement, cf. Theorem 3.5.
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3.2. Reduction to a statement on the resolution. Let Ê be the vector bundle on X̂
sitting in the exact sequence below

(3.3) 0 −→ Ω1
X̂ −→ Ê −→ OX̂ −→ 0

such that its extension class is π∗c1(X) ∈ H1(X̂, Ω1
X̂
). Its dual sits in the exact

sequence

(3.4) 0 −→ OX̂ −→ Ê ∗ −→ TX̂ −→ 0.

Lemma 3.4. If the vector bundle Ê ∗ is semistable with respect to π∗c1(X), then the
torsion-free sheaf E ∗ is semistable with respect to c1(X).

Proof. Set α := c1(X). Let X◦ ⊆ Xreg be an open set with complement of codimen-
sion at least 2 in X such that the restriction π|X̂◦ of π to X̂◦ := π−1(X◦) induces an

isomorphism X̂◦ ' X◦. By Remark 3.1 we have

(3.5) (π∗E ∗)|X̂◦ ' Ê ∗|X̂◦ .

Let F ⊆ E ∗ be a subsheaf and let F̂ ⊆ Ê ∗ be the saturated subsheaf of Ê ∗ whose
restriction to X̂◦ is (π∗F )|X̂◦ . By the projection formula together with the fact that
X \ X◦ has codimension at least 2 in X, we have

µα(F ) = µπ∗α(F̂ ) and µα(E
∗) = µπ∗α(Ê

∗).

The lemma follows easily. �

3.3. Statement on the resolution. In this section, we prove that the vector bundle
Ê ∗ from § 3.2 is semistable with respect to π∗c1(X), cf. Theorem 3.5 below. In
order to streamline the notation, we set V := Ê ∗ and in the following we will
not distinguish between the locally free sheaf V and the associated vector bundle.
Recall that V fits into the exact sequence of locally free sheaves

(3.6) 0 −→ OX̂ −→ V → TX̂ −→ 0,

We denote by β ∈ H1(X̂, T?
X̂
) the second fundamental form.

Our result in this section is a singular version of Theorem 0.1 in [Tia92].

Theorem 3.5. Let X be a Q-Fano variety satisfying Assumption A. Let V be the vector
bundle on X̂ appearing in (3.6), whose extension class β coincides with the inverse image
of the first Chern class of X by the resolution π : X̂ → X.
Then V is semistable with respect to π?c1(X).

Proof. The strategy of proof is as follows. We would like to compute the slope of F
using an hermitian metric on V induced by the (twisted) Kähler-Einstein metric,
using an approximation process as in § 2.2. As the natural metric in the extension
class of V is singular, we introduce an algebraic 1-parameter family (Vz)z∈C that
can be endowed with natural smooth hermitian metrics for suitable z ∈ R close to
zero and such that we have sheaf injections V ↪→ Vt ⊗OX̂(E). We then proceed to
compute slopes following the strategy of § 2.2.

Step 1. Deformations of V .

We pick an arbitrary subsheaf F ⊆ V of the vector bundle V sitting in the exact
sequence below

0→ OX̂ → V → TX̂ → 0
and corresponding to the extension class

α = (aij) ∈ Ext1(TX̂ , OX̂) ' H1(X̂, H om(TX̂ , OX̂))
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relatively to a covering by open subsets (Ui). The bundle V can be obtained as
follows: on Ui, it is the trivial extension, V|Ui

= OX̂ |Ui
⊕ TX̂ |Ui

and the transition
functions are given by (

IdOX̂
|Uij aij

0 IdTX̂
|Uij

)
.

The subsheaf F is given by two morphisms of sheaves pi : F|Ui
→ OX̂ |Ui

and
qi : F|Ui

→ TX̂ |Ui
satisfying{

pi|Uij = pj|Uij + aij ◦ (qj|Uij),
qi|Uij = qj|Uij .

Recall that we have a reduced divisor E = E1 + · · · + Er. Up to refining the
covering (Ui), one can assume that Ek is given by the equation fki = 0 on Ui. The

transition functions of OX̂(Ek) are gk,ij =
fkj
fki

.
Now, given complex numbers z1, . . . , zr ∈ C, one considers the extension Vz1,...,zr

of TX̂ by OX̂ whose class is

α + z1[
dg1,ij

g1,ij
] + · · ·+ zr[

dgr,ij

gr,ij
] = α + ∑

k
zkc1(Ek).

Set Vz1,...,zr (E) := Vz1,...,zr ⊗OX̂(E). Then, there is an injection of sheaves

F ⊆ Vz1,...,zs(E)

extending F ⊆ V ⊆ V (E) for (zk) in a Zariski open neighborhood of 0 ∈ Cr.
Indeed, consider the morphism F|Ui

→ Vz1,...,zs(E)|Ui given by pi +∑k zk
d fki
fki
◦ qi

on the first factor and qi on the second. Those morphisms can be glued since one
has

d fki
fki

=
dgk,ij

gk,ij
+

d fkj

fkj
,

for any index k. The induced map F → Vz1,...,zs(E) is obviously injective for (zk)
in a Zariski open neighborhood of 0 ∈ Cr.

Now, recall that α = π∗c1(X) and that the Kähler metric ωX̂ lives in the class
α − ∑ εkc1(Ek) for some εk > 0, so that the approximate Kähler-Einstein metric
ωt,ε ∈ (1 + t)αt where

αt := α− t
1 + t ∑

k
εkc1(Ek).

For any t ∈ R, we set

Vt := Vz1,...,zr and Vt(E) := Vt ⊗OX̂(E)

where zk := − t
1+t · εk for 1 ≤ k ≤ r. This vector bundle Vt is the extension of TX̂

by OX̂ with extension class αt and Vt(E) comes equipped with a sheaf injection

(3.7) F ⊆ Vt(E).

Moreover, it is clear from the definition of Vz1,...,zr that we have

(3.8) c1(Vt(E)) = c1(V ) + c1(E)

for any t ∈ R.

Step 2. Metric properties of Vt(E).
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First of all, we pick one number γ > 0 as in Assumption A. It will be fixed until
the very end of the argument.

We seek to endow Vt(E) with a suitable smooth hermitian metric, at least when
t > 0 is small enough. Given that Vt(E) = Vt ⊗OX̂(E) and that we have already
fixed a smooth hermitian metric hE on OX̂(E) in (2.1), it is enough to construct a
hermitian metric on Vt.

Now, we can endow the bundles OX̂ and TX̂ with the trivial metric and the
hermitian metric ht,ε induced by ωt,ε, respectively. Now, we set

βt =
1

1 + t
ωt,ε ∈ αt

which we view as an element of C∞
0,1(X̂, T∗

X̂
). Relatively to a fixed C∞ splitting of

Vt, the direct sum metric hVt induced on Vt has a Chern connection DVt which has
the following expression

DVt =

(
d −βt
β∗t DTX̂

)
or equivalently

(3.9) DVt(s1, s2) =
(

ds1 − βt · s2, β?
t · s1 + DTX̂

s2

)
where DTX̂

is the Chern connections induced by ht,ε on TX̂ . Of course, it depends

strongly on the parameters t, ε. We denote by β?
t ∈ C∞

1,0(X̂, TX̂) the adjoint of βt ∈
C∞

0,1(X̂, T∗
X̂
). Moreover, the Chern curvature of DVt is given by

Θ(Vt, hVt) =

(
−βt ∧ β∗t D′T∗

X̂
βt

∂β∗t Θ(TX̂ , ht,ε)− β∗t ∧ βt

)
where D′T∗

X̂
is the (1, 0)-part of the Chern connection of (T?

X̂
, h∗t,ε).

We analyze next several quantities which are playing a role in the evaluation of
the curvature of Vt.

• The factor βt.

The form βt is given by

(3.10) βt =
1

1 + t ∑ ωpq

(
∂

∂zp

)?

⊗ dzq

where ωpq are the coefficients of ωt,ε with respect to the coordinates (zi)i=1,...,n. Its
adjoint is computed by the formula

(3.11) 〈βt · v, w〉+ 〈v, β?
t · w〉 = 0,

where the first bracket is the standard hermitian product in C and the second one
is the one induced by (TX̂ , ht,ε). We have

(3.12) β?
t = − 1

1 + t ∑
∂

∂zi
⊗ dzi.

We have the following formulas

(3.13) D′T∗
X̂

βt = 0, ∂β?
t = 0.

The first equality holds since ωt,ε is a Kähler metric while the second one is obvious
from (3.12).
Moreover, we have
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(3.14) (1 + t)2 · βt ∧ β?
t ∧ωn−1

t,ε = − 1
n

ωn
t,ε

as well as

(3.15) (1 + t)2 · β?
t ∧ βt = ωt,ε ⊗ IdTX̂

.

• The curvature of Vt.

If we replace βt by (1+ t)
√

µβt for some positive number µ, this does not affect
the complex structure of the bundles at stakes but only the metrics. Moreover, we
see from the identities (3.13)-(3.14)-(3.15) that the curvature becomes

Θ(Vt, hVt) ∧ωn−1
t,ε =

(
µ
n ωn

t,ε 0
0 Θ(TX̂ , ht,ε) ∧ωn−1

t,ε − µωn
t,ε ⊗ IdTX̂

)
Now we choose µ so that µ

n = 1 − µ, i.e. µ := n
n+1 . Recalling (2.10) and the

expression of the Ricci curvature of ωt,ε given in (2.11), we get that

Θ(TX̂ , ht,ε) ∧ωn−1
t,ε − µωn

t,ε ⊗ IdTX̂
=

1
n + 1

ωn
t,ε ⊗ IdTX̂

+ At,ε,γωn
t,ε

where

(3.16) At,ε,γ = −γIdTX̂
+ ]
[
γπ∗ωX − tωX̂ + (1− γ)ddc(ψε − ϕt,ε)−Θε

]
is such that the number

at,ε,γ :=
1
n

∫
X̂

trEndprF(At,ε,γ)|F ωn
t,ε

satisfies

(3.17) lim sup
γ→0

lim sup
t→0

lim sup
ε→0

at,ε,γ = 0

thanks to the computations of §2.2.

• The curvature of Vt(E).

Finally, we endow Vt(E) with the metric hVt(E) := hVt ⊗ hE. It satisfies
(3.18)

Θ(Vt(E), hVt(E)) ∧ωn−1
t,ε =

1
n + 1

ωn
t,ε ⊗ IdVt + At,ε,γωn

t,ε + (ΘE ∧ωn−1
t,ε )⊗ IdVt(E).

where At,ε,γ is defined in (3.16) and satisfies (3.17).

Step 3. The slope inequality.

Now, one wants to follow the strategy in § 2.2 and compute the slope of F
using the induced metric hFt from (Vt(E), hVt(E)) under the sheaf injection (3.7).
The metric hFt is well-defined only on the locus W ⊂ X̂ where Ft := F |W is a
subbundle. As F may not be saturated in Vt(E), the complement of W may have
codimension one. However, we have the formula

µωt,ε(F ) =
1
r

∫
W

c1(Ft, hFt) ∧ωn−1
t,ε − c1(D) · {ωt,ε}n−1

≤ 1
r

∫
W

c1(Ft, hFt) ∧ωn−1
t,ε

≤ µωt,ε(Vt(E)) + at,ε,γ + c1(E) · {ωt,ε}n−1
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where D is an effective divisor such that OX(D) = det((Vt(E)/F )tor). Since E
is π-exceptional, the conclusion follows from the curvature formula (3.18) along
with (3.17) and the two easy facts below

• µωt,ε(F )→ µα(F ) when t→ 0,

• µωt,ε(Vt(E))→ µα(V ) when t, ε→ 0 since E is exceptional, cf. (3.8).
Theorem 3.5 is now proved. �

Remark 3.6. If µα(F ) = 0 and assuming Assumption B, then the same arguments
as in the end of Section 2.2 show the the orthogonal complement of F ⊂ V0(E)
with respect to hV0(E) on X̂ \ E is holomorphic. Thanks to (3.5) in Lemma 3.4, this
shows that the canonical extension E ∗ is polystable with respect to c1(X).

4. A SPLITTING THEOREM

4.1. Foliations. In this section, we recollect some results about foliations that we
will use later on for the reader’s convenience. We refer to [Dru20, Sec. 3 and 4]
and the references therein for notions around foliations on normal varieties and
their singularities.

Here we only recall the notion of weakly regular foliation. Let F be a foliation
of positive rank r on a normal variety X. The r-th wedge product of the inclusion
F ⊆ TX gives a map

OX(−KF ) ↪→ (∧rTX)
∗∗.

We will refer to the dual map

Ω[r]
X → OX(KF )

as the Pfaff field associated to F . The foliation F is called weakly regular if the
induced map

(Ωr
X ⊗OX(−KF ))∗∗ → OX

is surjective (see [Dru20, Sec. 5.1]).

Examples of weakly regular foliations are provided by the following result (see
[Dru20, Lem. 5.8]).

Lemma 4.1. Let X be a normal variety, and let F be a foliation on X. Suppose that there
exists a distribution G on X such that TX = F ⊕ G . Then F is weakly regular.

The following lemma says that a weakly regular foliation has mild singularities
if its canonical divisor is Cartier and the ambient space has klt singularities (see
[Dru20, Lem. 5.9]).

Lemma 4.2. Let X be a normal variety with klt singularities, and let F be a foliation on
X. Suppose that KF is Cartier. If F is weakly regular, then it has canonical singularities.

Next, we recall the behaviour of weakly regular foliations with respect to finite
covers (see [Dru20, Prop. 5.13]).

Lemma 4.3. Let X be a normal variety, let F be a foliation on X, and let f : X1 → X be
a finite cover. Suppose that each codimension 1 irreducible component of the branch locus
of f is F -invariant. Then F is weakly regular if and only if f−1F is weakly regular.

Finally, we recall the behaviour of foliations with canonical singularities with
respect to finite covers and birational maps (see [Dru20, Lem. 4.3]).

Lemma 4.4. Let f : X1 → X be a finite cover of normal varieties, and let F be a foliation
on X with KF Q-Cartier. Suppose that each codimension 1 component of the branch
locus of f is F -invariant. If F has canonical singularities, then f−1F has canonical
singularities as well.
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Lemma 4.5. Let q : Z → X be a birational quasi-projective morphism of normal varieties,
and let F be a foliation on X. Suppose that KF is Q-Cartier and that Kq−1F ∼Q q∗KF .
If F has canonical singularities, then q−1F has canonical singularities as well.

Proof. By assumption, there exist a normal variety Z ⊇ Z and a projective bira-
tional morphism q : Z → X whose restriction to Z is q. The same argument used
in the proof of [Dru20, Lem. 4.2] shows that

a(E, Z, q−1F ) = a(E, X, F )

for any exceptional prime divisor E over Z with non-empty center in Z. The
lemma follows easily. �

4.2. Weakly regular foliations with algebraic leaves. This section contains a gen-
eralization of Theorem 6.1 in [Dru20]. The following result is proved in loc. cit.
under the additional assumption that F has canonical singularities.

Theorem 4.6. Let X be a normal projective variety with Q-factorial klt singularities, and
let F be a weakly regular foliation on X with algebraic leaves.
(4.6.1) Then F is induced by a surjective equidimensional morphism p : X → Y onto a

normal projective variety Y.

(4.6.2) Moreover, there exists an open subset Y◦ with complement of codimension at least
2 in Y such that p−1(y) is irreducible for any y ∈ Y◦.

Before we give the proof of Theorem 4.6, we need to prove a number of auxiliary
statements.

Throughout the present section, we will be working in the following setup.

Setup 4.7. Let X and Y be normal quasi-projective varieties, and let p′ : X 99K Y be
a dominant rational map with r := dim X−dim Y > 0. Let Z be the normalization
of the graph of p′, and let p : Z → Y and q : Z → X be the natural morphisms. Let
F be the foliation induced by p′.

Proposition 4.8. Setting and notation as in 4.7, and assume that KF is Cartier.

(4.8.1) Then the Pfaff field Ω[r]
X → OX(KF ) associated to F induces a map

Ω[r]
Z → q∗OX(KF )

which factors through the Pfaff field Ω[r]
Z → OZ(Kq−1F ) associated to q−1F . In

particular, there exists an effective q-exceptional Weil divisor B on Z such that

Kq−1F + B ∼Z q∗KF .

(4.8.2) Moreover, if E is a q-exceptional prime divisor on Z such that p(E) = Y, then
E ⊆ Supp B.

Proof. Let Z0 ⊆ Y × X be the graph of p′, and denote by n : Z → Z0 the normal-
ization map. Consider the foliation

G := pr∗XF ⊆ pr∗XTX ⊆ pr∗YTY ⊕ pr∗XTX .

Let Ωr
X → OX(KF ) be the map induced by the Pfaff field Ω[r]

X → OX(KF ). By
construction, Z0 is invariant under G , and hence, there is a factorization:

Ωr
Y×X |Z0 pr∗XΩr

X |Z0 (pr∗XOX(KF ))|Z0

Ωr
Z0

OY×X(KG )|Z0 .
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Notice that the foliation induced by G on Z is q−1F . By [ADK08, Prop. 4.5], the
map Ωr

Z0
→ (pr∗XOX(KF ))|Z0 extends to a map

Ωr
Z → n∗((pr∗XOX(KF ))|Z0) ' q∗OX(KF ),

which gives a morphism

Ω[r]
Z → q∗OX(KF ).

This map factors through the Pfaff field

νZ : Ω[r]
Z → OZ(Kq−1F )

associated to q−1F away from the closed set where νZ is not surjective, which has
codimension at least 2 in Z. Hence, there exists an effective Weil divisor B on Z
such that

Kq−1F + B ∼Z q∗KF .

Moreover, the morphism Ω[r]
Z → q∗OX(KF ) identifies with the composed map

Ω[r]
Z → OZ(Kq−1F )→ q∗OX(KF )

since q∗OX(KF ) is torsion-free. Note that B is obviously q-exceptional, proving
the first item.

The second item follows from [Dru20, Lem. 4.19] by induction on the rank of
F as in the proof of Proposition 4.17 in loc. cit. Notice that the assumption that the
birational morphism is projective in the statement of Lemma 4.19 in loc. cit. is not
necessary. �

Corollary 4.9. Setting and notation as in 4.7. Suppose that X has klt singularities.
Suppose in addition that KF is Cartier and that F is weakly regular.

(4.9.1) Then the foliation q−1F is weakly regular and Kq−1F ∼Z q∗KF .

(4.9.2) Moreover, if E is a prime q-exceptional divisor on Z, then p(E) ( Y.

Proof. By item (4.8.1) in Proposition 4.8, the Pfaff field

Ω[r]
X → OX(KF )

associated to F induces a map

Ω[r]
Z → q∗OX(KF )

which factors through the Pfaff field Ω[r]
Z → OZ(Kq−1F ) associated to q−1F . On

the other hand, by [Keb13, Thm. 1.3], there exists a morphism of sheaves

q∗Ω[r]
X → Ω[r]

Z

that agrees with the usual pull-back morphism of Kähler differentials wherever
this makes sense. One then readily checks that we obtain a commutative diagram
as follows:

q∗Ω[r]
X q∗OX(KF )

Ω[r]
Z q∗OX(KF ).
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This implies that the map Ω[r]
Z → q∗OX(KF ) is surjective. Consequently, this map

identifies with Pfaff field associated to q−1F , proving item 1.
Finally, item 2 is an immediate consequence of item 1 together with item (4.8.2)

in Proposition 4.8. �

As we will see, Theorem 4.6 is an easy consequence of Lemma 4.10 and Lemma
4.11 below.

Lemma 4.10. Setting and notation as in 4.7. Suppose that X has klt singularities and
that F is weakly regular. Then there exists an open subset Y◦ with complement of codi-
mension at least 2 in Y such that, for any y ∈ Y◦, either p−1(y) is empty or any connected
component of p−1(y) is irreducible.

Proof. We argue by contradiction and assume that there exists a prime divisor
D ⊂ Y such that, for a general point y ∈ D, p−1(y) is non-empty and some
connected component of p−1(y) is reducible. Let S ⊆ p−1(D) be a subvariety
of codimension 2 in Z such that for a general point z ∈ S there is at least two
irreducible components of p−1(p(z)) passing through z.

Step 1. Construction.

Shrinking Y if necessary, we may assume without loss of generality that p is
equidimensional. Replacing X by an open neighborhood of the generic point of
q(S), we may also assume that there exists a positive integer m such that

OX(mKF ) ' OX .

Let f : X1 → X be the associated cyclic cover, which is quasi-étale (see [KM98,
Def. 2.52]), and let Z1 be the normalization of the product Z×X X1. The induced
morphism g : Z1 → Z is then a finite cover.

By [Dru17, Lem. 4.2], there exists a finite cover Y2 → Y with Y2 normal and
connected such that the following holds. If Z2 denotes the normalization of the
product Y2 ×Y Z1, then the natural morphism p2 : Z2 → Y2 has reduced fibers
over codimension 1 points in Y2. We may also assume that Y2 → Y is a Galois
cover. We obtain a commutative diagram as follows:

Z2 Z1 X1

Z X

Y2 Y.

p2

g1

p1

g

q1

f

p

q

Notice that g ◦ g1 : Z2 → Z is a finite Galois cover.

Step 2. Away from a closed subset of codimension at least 3, Z has quotient
singularities and the foliation induced by p on Z is weakly regular.

Notice that X1 has klt singularities by [Kol97, Prop. 3.16], and that the foliation
FX1 := f−1F is weakly regular by Lemma 4.3. Observe now that the foliation
FZ1 := q−1

1 FX1 is given by p1 and that Z1 identifies with the normalization of the
graph of the rational map p1 ◦ q−1

1 . Therefore, FZ1 is weakly regular and

KFZ1
∼Z q∗1KFX1
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by item (4.9.1) in Corollary 4.9. On the other hand, FX1 has canonical singularities
(see Lemma 4.2). Applying Lemma 4.5, we conclude that FZ1 has canonical sin-
gularities as well. This in turn implies that the foliation FZ2 := g−1

2 FZ1 has also
canonical singularities (see Lemma 4.4). From [Dru17, Lem. 5.4], we conclude that
Z2 has canonical singularities over a big open set contained in Y2, using the fact
that p2 has reduced fibers over codimension 1 points by construction. In particular,
Z2 has canonical singularities in codimension 2.

Since g ◦ g1 : Z2 → Z is a finite Galois cover, there exists an effective Q-divisor
∆ on Z such that

KZ2 ∼Q (g ◦ g1)
∗(KZ + ∆).

Moreover, away from a closed subset of codimension at least 3, KZ +∆ is Q-Cartier
by [Dru20, Lemma 2.6]), and the pair (Z, ∆) is klt by [Kol97, Prop. 3.16].

By construction, any irreducible codimension 1 component of the ramification
locus of g is q1-exceptional, and hence invariant under FZ1 by item (4.9.2) in Corol-
lary 4.9. It follows from Lemma 4.3 that FZ := q−1F is weakly regular in codi-
mension 2.

Step 3. End of proof.

Let z ∈ S be a general point. Recall from [GKKP11, Prop. 9.3] that z has an
analytic neighborhood U ⊆ Z that is biholomorphic to an analytic neighborhood
of the origin in a variety of the form Cdim Z/G, where G is a finite subgroup of
GL(dim Z, C) that does not contain any quasi-reflections. In particular, if W de-
notes the inverse image of U in the affine space Cdim Z, then the quotient map

gU : W →W/G ' U

is étale outside of the singular set.
By Lemma 4.3 again, FZ induces a regular foliation on W. Let F1 and F2 be

irreducible components of p−1(p(z)) passing through z with F1 6= F2. Note that

g−1
U (F1 ∩U) ∩ g−1

U (F2 ∩U) 6= ∅.

By general choice of z, F1 and F2 are not contained in the singular locus of FZ, and
hence both g−1

U (F1 ∩U) and g−1
U (F2 ∩U) are a disjoint union of leaves. But then,

any leaf passing through some point of g−1
U (F1 ∩U) ∩ g−1

U (F2 ∩U) is a connected
component of both g−1

U (F1 ∩U) and g−1
U (F2 ∩U). This in turn implies that F1 = F2,

yielding a contradiction. This finishes the proof of the lemma. �

Lemma 4.11. Setting and notation as in 4.7. Suppose that X has klt singularities and that
F is weakly regular. Let E be a prime q-exceptional divisor on Z such that dim p(E) ≥
dim Y− 1.

(4.11.1) Then dim p(E) = dim Y− 1. In particular, E is invariant under the foliation on
Z induced by p.

(4.11.2) Moreover, if z is a general point in E, then there exists a curve T ⊆ E passing
through z with dim p(T) = 1 such that q(Ep(t1)

(t1)) = q(Ep(t2)
(t2)) for gen-

eral points t1 and t2 in T, where Ep(t)(t) denotes the irreducible component of
Ep(t) ⊆ p−1(p(t)) passing through t ∈ T ⊂ E.

Proof. For the reader’s convenience, the proof is subdivided into a number of
steps.

Step 1. Reduction to the case where KF is Cartier and proof of item 1.
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Replacing X by an open neighborhood of the generic point of q(E), we may
assume without loss of generality that there exists a positive integer m such that

OX(mKF ) ' OX .

Let f : X1 → X be the associated cyclic cover, which is quasi-étale (see [KM98,
Def. 2.52]), and let Z1 be the normalization of the product Z×X X1. The induced
morphism g : Z1 → Z is then a finite cover. We obtain a commutative diagram as
follows:

Z1 X1

Z X

Y.

p1

g

q1

f

p

q

Notice that X1 has klt singularities by [Kol97, Prop. 3.16], and that the foliation
FX1 := f−1F is weakly regular by Lemma 4.3. Observe now that the foliation
FZ1 := q−1

1 FX1 is given by p1 and that Z1 identifies with the normalization of the
graph of the rational map p1 ◦ q−1

1 . By item (4.9.1) in Corollary 4.9, FZ1 is weakly
regular. Let E1 be a prime divisor on Z1 such that g(E1) = E. Notice that E1 is
q1-exceptional and that dim p(E) = dim p1(E1). Thus, replacing X by X1, we may
assume without loss of generality that

KF ∼Z 0.

Then, by item (4.9.2) in Corollary 4.9, we must have p(E) ( Y. It follows that
p(E) is a prime divisor on Y since dim p(E) ≥ dim Y − 1 by assumption. In par-
ticular, E is invariant under the foliation FZ := q−1F .

Step 2. The foliation induced by F on q(E).

Set B := q(E), and let E◦ ⊆ E ∩ Zreg be a non-empty open set. We obtain a
commutative diagram as follows:

E◦ B

E B

Z X

Y.

a

j

i

p

q

Shrinking X, if necessary, we may assume without loss of generality that B is
smooth. By [Keb13, Thm. 1.3 and Prop. 6.1], there is a factorization:

Ωr
X |B Ω[r]

X |B Ωr
B.

di

drefli
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This implies that the map Ω[r]
X |B → Ωr

B is surjective.

Claim 4.12. The foliation FE◦ on E◦ induced by FZ is projectable under a.

Proof. Let

νX : Ω[r]
X � OX(KF ) and νZ : Ω[r]

Z → OZ(KFZ )

be the Pfaff fields associated to F and FZ respectively. Since E◦ is invariant by
FZ, there is a factorization:

Ωr
Z|E◦ Ω[r]

Z |E◦ OZ(KFZ )|E◦

Ωr
E◦ Ωr

E◦ OZ(KFZ )|E◦ .

drefl j

νZ |E◦

Recall from the proof of Corollary (4.9.1) that there is a commutative diagram:

q∗Ω[r]
X q∗OX(KF )

Ω[r]
Z OZ(KFZ ).

q∗νX

dreflq

νZ

∼

Finally, by [Keb13, Prop. 6.1], the diagram

(q∗Ω[r]
X )|E◦ ' a∗(Ω[r]

X |B) a∗Ωr
B

Ω[r]
Z |E◦ Ωr

E◦

a∗drefli

dreflq|E◦

drefl j

is commutative as well. Therefore, we have a commutative diagramm as follows:

(q∗Ω[r]
X )|E◦ ' a∗(Ω[r]

X |B) a∗Ωr
B

Ωr
E◦

(q∗OX(KF ))|E◦ OZ(KFZ )|E◦

a∗drefli

(q∗νX)|E◦

∼

This in turn implies that there is a factorization:

Ω[r]
X |B Ωr

B

OX(KF )|B OX(KF )|B

νX |B

drefli

whose pull-back to E◦ gives the diagram above. It follows that the map

Ωr
B � OX(KF )|B

is the Pfaff field associated to a weakly regular foliation FB of rank r on B such
that da(FE◦) = FB. This completes the proof of the claim. �

Then item 2 is an immediate consequence of Claim 4.12 above. �
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We are now ready to prove Theorem 4.6.

Proof of Theorem 4.6. Let p : Z → Y be the family of leaves, and let q : Z → X be
the natural morphism. Since p has connected fibers by construction, Lemma 4.10
applied to p ◦ q−1 implies that p has irreducible fibers over a big open set contained
in Y. Hence, to prove Theorem 4.6, it suffices to show that Exc q is empty.

We argue by contradiction and assume that Exc q 6= ∅. Let E be an irreducible
component of Exc q. Then E has codimension 1 since X is Q-factorial by assump-
tion. Recall from Lemma 4.10 that p−1(y) is irreducible for a general point y in
p(E). Therefore, by Lemma 4.11, we must have E = p−1(p(E)). Moreover, if y
is a general point in p(E), then there exists a curve T ⊆ p(E) passing through y
such that q(p−1(t1)) = q(p−1(t2)) for general points t1 and t2 in T. Now, there
exists a positive integer t such that the cycle theoretic fiber p[−1](y) is t[p−1(y)] for
a general point y in p(E). It follows that the restriction of the map Y → Chow(X)
to p(E) has positive dimensional fibers, yielding a contradiction. This finishes the
proof of the theorem. �

Remark 4.13. In the setup of Theorem 4.6, let p : Z → Y be the family of leaves,
and let q : Z → X be the natural morphism. If X is only assumed to have klt
singularities, then the same argument used in the proof of the theorem shows that
q is a small birational map. We have

KZ/Y − R(p) ∼Q q∗KF ,

where R(p) denotes the ramification divisor of p. In particular, if F denotes the
normalization of the closure of a general leaf of F , then

KF |F ∼Q KF.

4.3. A splitting theorem. The following is the main result of this section.

Theorem 4.14. Let X be a normal projective variety, and let

TX =
⊕
i∈I

Fi

be a decomposition of TX into involutive subsheaves with algebraic leaves. Suppose that
there exists a Q-divisor ∆ such that (X, ∆) is klt. Then there exists a quasi-étale cover
f : Y → X as well as a decomposition

Y '∏
i∈I

Yi

of Y into a product of normal projective varieties such that the decomposition TX =⊕
i∈I Fi lifts to the canonical decomposition

T∏i∈I Yi =
⊕
i∈I

pr∗i TYi .

Proof. To prove the theorem, it is obviously enough to consider the case where
I = {1, 2}. Set τ(i) = 3− i for each i ∈ {1, 2}.

Step 1. Reduction to the case where X is Q-factorial with klt singularities.

Let π : Z → X be a Q-factorialization, whose existence is established in [Kol13,
Cor. 1.37]. Recall that π is a small birational projective morphism and that Z is
Q-factorial with klt singularities. Then we have the decomposition

TZ = π−1F1 ⊕ π−1F2

into involutive subsheaves with algebraic leaves.
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Suppose that there exist normal projective varieties W1 and W2 and a quasi-étale
cover

g : W1 ×W2 → Z

such that the decomposition TZ = π−1F1 ⊕ π−1F2 lifts to the canonical decom-
position

TW1×W2 = pr∗1 TW1 ⊕ pr∗2 TW2 .

The Stein factorization
f : Y → X

of π ◦ g is then a quasi-étale cover, and the natural map

W1 ×W2 → Y

is a small birational morphism. Moreover, by [Kol97, Prop. 3.16], Y has klt singu-
larities. In particular, it has rational singularities. Lemma 4.15 below applied to
Y 99KW1 ×W2 then implies that X satisfies the conclusion of Theorem 4.14.

Therefore, replacing X by Z, if necessary, we may assume without loss of gen-
erality that X is Q-factorial with klt singularities.

Step 2. Covering construction.

By Lemma 4.1, Fi is a weakly regular foliation. Therefore, by Theorem 4.6, Fi is
induced by a surjective equidimensional morphism pi : X → Ti onto a normal pro-
jective variety Ti. Moreover, pi has irreducible fibers over a big open set contained
in Ti. Let Fi be a general fiber of pτ(i).

Let Mi denote the normalization of the product Fi ×Ti X, and let Mi → Ni → X
denote the Stein factorization of the natural morphism Mi → X. We will show
that Ni → X is a quasi-étale cover. Notice that for any prime P on Ti, p∗i P is
well-defined (see [Dru20, Sec. 2.7]) and has irreducible support.

Write p∗i P = mQ for some prime divisor Q on X and some integer m ≥ 1.
Set n := dim X, and s := dim Ti. By general choice of Fi, we may assume that
Fi \ Xreg has codimension at least 2 in Fi. In particular, Fi ∩ Q ∩ Xreg 6= ∅. Let
x ∈ Fi ∩ Q ∩ Xreg be a general point. Since F1 and F2 are regular foliations at x
and TX = F1 ⊕F2, there exist local analytic coordinates centered at x and pi(x)
respectively such that pi is given by

(x1, x2, . . . , xn) 7→ (xm
1 , x2 . . . , xs),

and such that Fi is given by the equations

xs+1 = · · · = xn = 0.

A straightforward local computation then shows that Ni → X is a quasi-étale
cover over the generic point of p−1

i (P). This immediately implies that Ni → X is a
quasi-étale cover.

Let Y be the normalization of X in the compositum of the function fields C(Ni),
and let f : Y → X be the natural morphism. Set Gi := f−1Fi. By construction, f is
a quasi-étale cover, and Gi is induced by a surjective equidimensional morphism
qi : Y → Ri with reduced fibers over a big open set contained in Ri. Moreover,
there exists a subvariety Gi ⊆ f−1(Fi) such that the restriction Gi → Ri of qi to Gi
is a birational morphism.

Step 3. End of proof.

Let R◦i denote the smooth locus of Ri, and set Y◦i := q−1
i (R◦i ). Let Z◦i ⊆ Y◦i be the

open set where qi|Y◦i is smooth. Notice that Z◦i has complement of codimension at
least 2 in Y◦i since qi has reduced fibers over a big open set contained in Ri.
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The restriction of the tangent map

Tqi|Y◦i : TY◦i
→
(
qi|Y◦i

)∗TR◦i

to Gτ(i)|Z◦i ⊆ TZ◦i
then induces an isomorphism Gτ(i)|Z◦i '

(
qi|Z◦i

)∗TR◦i
. Since

Gτ(i)|Y◦i and
(
qi|Y◦i

)∗TR◦i
are both reflexive sheaves, we finally obtain an isomor-

phism
Gτ(i)|Y◦i '

(
qi|Y◦i

)∗TR◦i
.

A classical result of complex analysis says that complex flows of vector fields on
analytic spaces exist (see [Kau65]). It follows that qi|Y◦i is a locally trivial analytic
fibration for the analytic topology.

The morphism q1 × q2 : Y → R1 × R2 then induces an isomorphism

q−1
1 (R◦1) ∩ q−1

2 (R◦2) ' R◦1 × R◦2
since G1 · G2 = 1 and qi is locally trivial over R◦i . In particular, q1 × q2 is a small
birational morphism. By [Kol97, Prop. 3.16] again, Y has klt singularities. Hence, it
has rational singularities. Lemma 4.15 below applied to q1× q1 then implies that X
satisfies the conclusion of Theorem 4.14, completing the proof of the theorem. �

Lemma 4.15 ([KL09, Prop. 18]). Let X, Y1 and Y2 be normal projective varieties, and
let π : X 99K Y1 × Y2 be a birational map that does not contract any divisor. Suppose in
addition that X has rational singularities. Then X decomposes as a product X ' X1× X2
and there exist birational maps πi : Xi → Yi such that π = π1 × π2.

5. PROOF OF THEOREM A

The present section is devoted to the proof of Theorem A.

Proof of Theorem A. We have seen in Theorem 2.6 that the tangent sheaf of X is
polystable. By definition it means that we have a decomposition

TX =
⊕
i∈I

Fi

where the Fi are stable with respect to c1(X) and have the same slope. Moreover,
each subsheaf Fi defines on Xreg a parallel subbundle of TXreg with respect to the
Kähler-Einstein metric ωKE|Xreg . This immediately implies that Fi|Xreg is involu-
tive.

Claim 5.1. Each foliation Fi has algebraic leaves.

Proof. Let m be a positive integer such that −mKX is very ample, and let C ⊂ X be
a general complete intersection curve of elements in | − mKX |. By general choice
of C, we may assume that C ⊂ Xreg and that Fi is locally free in a neighborhood
of C. If m is large enough, then the vector bundle Fi|C is semistable by [Fle84,
Thm.1.2]). We conclude that it is ample since it has positive slope. Then [BM16,
Fact 2.1.1] says that Fi has algebraic leaves. Alternatively, one can apply [CP19,
Thm. 1.1] to the foliation F̂i on X̂ induced by Fi. �

Let f : Y → X be the quasi-étale cover and Y = ∏i∈I Yi be the splitting that are
both provided by Theorem 4.14. The decomposition

(5.1) TY =
⊕
i∈I

pr∗i TYi

is a decomposition of TY into summands of maximal slope. If there exists i ∈ I
such that TYi is not stable with respect to c1(Yi), then it means that the polystable
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decomposition of TY provided by Theorem 2.6 via f ∗ωKE refines strictly the de-
composition (5.1). By applying Theorem 4.14 again, we can find another quasi-
étale cover Y′ → Y which splits according to the polystable decomposition of TY
and one can then compare again the polystable decomposition of TY′ to the one
coming from TY. After finitely many such steps, one can find a quasi-étale cover
g : Z → X such that

(i) There exists a splitting Z = ∏k∈K Zk into a product of Q-Fano varieties.

(ii) For any k ∈ K, the tangent sheaf TZk is stable with respect to c1(Zk).

(iii) The variety Z admits a Kähler-Einstein metric given by g∗ωKE.
Theorem A is a consequence of the Claim below.

Claim 5.2. There exist a Kähler-Einstein metric ωk on each variety Zk such that
g∗ω = ∑k∈K pr∗k ωk.

Proof of Claim 5.2. We set nk := dim Zk. As the subsheaf Fk := pr∗k TZk ⊂ TZ has
maximal slope with respect to c1(Z), it follows from Theorem 2.6 that Fk|Zreg is
parallel with respect to g∗ωKE. This enables us to define a smooth Kähler metric ωk
on Zreg

k such that g∗ωKE = ∑k∈K prk
∗ωk on Zreg. Clearly, one has Ric ωk = ωk on

Zreg
k . In order to check that ωk defines a Kähler-Einstein metric on Zk in the sense

of Definition 2.2, it is sufficient to check that
∫

Zreg
k

ω
nk
k = c1(Zk)

nk by Remark 2.3.

By [BBE+19, Proposition 3.8] we always have the inequality
∫

Zreg
k

ω
nk
k ≤ c1(Zk)

nk

and therefore

c1(Z)n =
∫

Zreg
g∗ωn

KE

= ∏
k∈K

∫
Zreg

k

ω
nk
k

≤ ∏
k∈K

c1(Zk)
nk .

Since c1(Z)n = ∏k∈K c1(Zk)
nk , one must have

∫
Zreg

k
ω

nk
k = c1(Zk)

nk for all k ∈
K. �

Theorem A is now proved. �
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[KM98] J. KOLLÁR AND S. MORI: Birational geometry of algebraic varieties, Cambridge Tracts in
Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998, With the collabo-
ration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. 1658959
(2000b:14018) ↑ 18, 20

[Li17] C. LI: Yau-Tian-Donaldson correspondence for K-semistable Fano manifolds, J. Reine Angew.
Math. 733 (2017), 55–85. 3731324 ↑ 4

[Li18] C. LI: On the stability of extensions of tangent sheaves on Kähler-Einstein Fano/Calabi-Yau pairs,
Preprint arXiv:1803.01734, to appear in Math. Ann., 2018. ↑ 2

[LTW19] C. LI, G. TIAN, AND F. WANG: The uniform version of Yau-Tian-Donaldson conjecture for sin-
gular Fano varieties, Preprint arXiv:1903.01215, 2019. ↑ 4

[Tia92] G. TIAN: On stability of the tangent bundles of Fano varieties, Internat. J. Math. 3 (1992), no. 3,
401–413. 1163733 ↑ 3, 11

[Tia15] G. TIAN: K-stability and Kähler-Einstein metrics, Comm. Pure Appl. Math. 68 (2015), no. 7,
1085–1156. 3352459 ↑ 4

[Yau78] S.-T. YAU: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère
equation. I., Commun. Pure Appl. Math. 31 (1978), 339–411. ↑ 5

http://dx.doi.org/10.1007/BF02566370
http://arxiv.org/abs/2006.08769
http://arxiv.org/abs/1803.01734
http://arxiv.org/abs/1903.01215


A DECOMPOSITION THEOREM FOR Q-FANO KÄHLER-EINSTEIN VARIETIES 27
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