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ABSTRACT

While tropical cyclone (TC) track forecasts have become increasingly accurate over recent decades,

intensity forecasts from both numerical models and statistical schemes have been trailing behind. Most

operational statistical–dynamical forecasts of TC intensity use linear regression to relate the initial TC

characteristics and most relevant large-scale environmental parameters along the TC track to the TC

intensification rate. Yet, many physical processes involved in TC intensification are nonlinear, hence

potentially hindering the skill of those linear schemes. Here, we develop two nonlinear TC intensity

hindcast schemes, for the first time globally. These schemes are based on either support vector machine

(SVM) or artificial neural network (ANN) algorithms. Contrary to linear schemes, which perform slightly

better when trained individually over each TC basin, nonlinear methods perform best when trained

globally. Globally trained nonlinear schemes improve TC intensity hindcasts relative to regionally trained

linear schemes in all TC-prone basins, especially the SVM scheme for which this improvement reaches

;10% globally. The SVM scheme, in particular, partially corrects the tendency of the linear scheme to

underperform for moderate intensity (category 2 and less on the Saffir–Simpson scale) and decaying TCs.

Although the TC intensity hindcast skill improvements described above are an upper limit of what could

be achieved operationally (when using forecasted TC tracks and environmental parameters), it is com-

parable to that achieved by operational forecasts over the last 20 years. This improvement is sufficiently

large to motivate more testing of nonlinear methods for statistical TC intensity prediction at operational

centers.

1. Introduction

Storm surges associated with tropical cyclones (TCs)

are a major contributor to casualties and property loss

caused by natural disasters in tropical coastal regions

(Needham et al. 2015), especially in the Bay of Bengal

and the Gulf of Mexico. For instance, TCNargis caused

140 000 deaths, 1 million homeless, and $1 billion

(U.S. dollars) damages in Myanmar in April–May 2008

(McPhaden et al. 2009). A timely and accurate pre-

diction of the TC track and intensity is therefore of

great importance to allow authorities to take preventive

actions, such as evacuating areas under threat.Over the last

decades, TC track forecasting has improved significantly

due to refined numerical weather prediction models, but

accurate TC intensity forecasting is still a challenge

(Elsberry et al. 2013; Emanuel and Zhang 2016). Track

forecast errors have for instance been reduced by;66%

both in the North Pacific and Atlantic over the past

decades (Landsea and Cangialosi 2018), whereas inten-

sity forecasts have improved by only one-third to one-half

of this rate (Cangialosi and Franklin 2014; DeMaria et al.

2014). The errors of TC intensity forecasts are indeed still

large, reaching from ;5–8kt (1kt ’ 0.51ms21) at 12-h

lead time to 15–25kt for 120-h lead time (DeMaria et al.

2014; Cangialosi and Franklin 2014; Bushnell and Falvey

2018; Cangialosi 2019).

Operational centers run a hierarchy of operational

TC intensity forecast models that range from fully

coupled ocean–atmosphere or atmospheric-only numericalCorresponding author: S. Neetu, neetu@nio.org
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models to statistical–dynamical models to simple sta-

tistical prediction schemes (DeMaria 2009; DeMaria

et al. 2014). Because of the complex physical processes af-

fecting intensity changes, the very high spatial resolution

required and the difficulties in initializing the real-time

forecasts, statistical–dynamical TC intensity forecast

models have remained competitive with dynamical

models (Kucas 2010; DeMaria et al. 2007, 2014; Kaplan

et al. 2015), except in the Atlantic basin where dynam-

ical models outperform statistical–dynamical forecasts

for the most recent hurricane seasons (Cangialosi 2019).

Statistical–dynamical models use statistical techniques

to relate the future TC intensity changes to the cyclone

initial characteristics (current intensity and its time

derivative) and to large-scale environmental parame-

ters encountered by the cyclone along its forecast

track. Several large-scale environmental parameters

indeed have a well-documented effect on the cyclone

intensity. Strong vertical wind shear can for instance

inhibit a TC intensification (Gray 1968; DeMaria 1996).

The maximum potential intensity (MPI; e.g., Miller

1958; Emanuel 1995; Holland 1997) increases as a

function of the sea surface temperature, and gives an

upper bound of the intensity that the cyclone can reach.

The midtropospheric relative humidity represents the

convection inhibition in dry environments (Emanuel

et al. 2004). Other currently used environmental pa-

rameters (Emanuel 2007; Knaff et al. 2005; DeMaria

et al. 2005) that we also include in the current study are

the vorticity at lower levels; air temperature in the upper

troposphere and boundary layer equivalent potential

temperature.

There are 6 major regions of TC development world-

wide: the northwestern Pacific (NWP), the northeastern

Pacific (NEP), the southwestern Pacific (SWP), theNorth

Atlantic (ATL), the north Indian Ocean (NIO), and the

southern Indian Ocean (SIO) (Fig. 1a). Operational

centers worldwide have developed separate statistical–

dynamical TC intensity forecast models for various TC

basins. The Statistical Hurricane Intensity Prediction

FIG. 1. (a)Map of TC tracks andmaximumwind speed (color) over the 1979–2012 period. The boxes indicate the

various TC-prone basins considered in the present study [northwestern Pacific (NWP), northeastern Pacific (NEP),

southwestern Pacific (SWP), Atlantic (ATL), southern Indian Ocean (SIO), and northern Indian Ocean (NIO)].

The total number of TCs over the 1979–2012 period is also indicated for each basin. Mean absolute error (MAE) as

a function of lead time for (b) the regionally trained MLR model and (c) persistence for each basin. Error bars on

(b) provide the 95% confidence interval estimated from a bootstrap method.
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Scheme (SHIPS) was initially developed for theAtlantic

basin, based on a multiple linear regression (MLR)

technique, which relates predictors to the TC in-

tensity change (DeMaria and Kaplan 1994, 1999;

DeMaria et al. 2005). Knaff et al. (2005) later adapted this

model for the northwestern Pacific [Statistical Typhoon

Intensity Prediction Scheme (STIPS)]. Knaff and Sampson

(2009) developed the Southern Hemisphere Statistical

Typhoon Intensity Prediction Scheme or SH-STIPS jointly

for the southwestern Pacific and southern Indian Ocean

basins. Finally, Kotal et al. (2008) adapted STIPS to

northern Indian Ocean TCs.

Neetu et al. (2017) recently developed a statistical-

dynamical hindcast scheme similar to those above (i.e.,

using an MLR technique) separately for each TC-prone

basin, but based on the same set of predictors and da-

tasets for all basins. This set of TC hindcast schemes has

mean absolute error (MAE; Fig. 1b) comparable to that

of SHIPS, STIPS, and SH-STIPS, with a 20%–40%

MAE improvement relative to persistence (Fig. 1c),

except in the ATL and NIO (10%–25%; Neetu et al.

2017). A large fraction of this MAE improvement

(60%–80%) arises from accounting for the initial TC

characteristics (i.e., its intensity at and intensity deriva-

tive at and before the beginning of the forecast; Neetu

et al. 2017). The environmental parameters that yield

the most skill globally are vertical wind shear followed

by maximum potential intensity, but with individual

contributions that strongly depend on the basin. Neetu

et al. (2017) also demonstrated that statistical TC in-

tensity forecasts poorly predict intensity changes of

moderate TCs in all basins, with 2–4 times more skillful

hindcasts for category 3 and above TCs.

The TC intensity statistical forecasts described above

use linear schemes (i.e., they assume a linear relation-

ship between the predictor and the TC intensification

rate). There are however nonlinear interactions be-

tween TC intensity and environmental parameters,

which are not considered in these models (Tang and

Emanuel 2012; Lin et al. 2017). Tang and Emanuel

(2012) for instance argue that the flux of low-entropy

air into the TC center (or midlevel ventilation index)

is a major environmental parameter affecting TC in-

tensification. This ventilation index was developed

from a theoretical framework, and has a nonlinear

dependence on other environmental parameters, as it is

formulated as the environmental wind shear multiplied

by the nondimensional midlevel entropy deficit divided

by maximum potential intensity. Although SHIPS al-

ready includes elements of the ventilation index, Tang

and Emanuel (2012) suggest that the linear nature of

SHIPS does not properly account for the influence of

the midlevel ventilation on TC intensification, given

that the ventilation index is a nonlinear combination of

SHIPS parameters.

Some studies have introduced a nonlinear scaling

of some predictors (for instance MPI2) in order to

introduce a nonlinear dependence of the cyclone in-

tensity evolution to those predictors (DeMaria and

Kaplan 1999; Knaff et al. 2005). It would be difficult

and time-consuming to test all possible scaling for

each parameter in a linear statistical scheme. Our

strategy is thus to account for the nonlinear rela-

tionships between all selected variables in a more

systematic way in the present study. A relevant op-

tion is to use statistical schemes that are designed to

capture the nonlinear relationships between variables,

without applying any ad hoc scaling on the input pa-

rameters. DeMaria (2009) for instance introduce a lo-

gistical growth equation model, in which the storm

growth is linearly related to vertical shear and vertical

stability of the atmosphere but saturates to yield a

maximum intensity determined by the MPI. This model

is used for the Atlantic and northeast Pacific since 2006,

with a skill increase of up to 15% relative to SHIPS for a

given season, especially for long lead times (DeMaria

2009). Similarly, Lin et al. (2017) used sparse general-

ized additive models, which allow nonlinear transforms

of predictors, to identify and characterize nonlinear ef-

fects of environmental parameters on TC intensification.

These models only marginally increase the skill of ATL

and NWP TC intensity prediction relative to a linear

regression approach.

Artificial neural networks (ANN; e.g., Rumelhart

et al. 1986; Fine 1999) and support vector machines

(SVM; e.g., Cortes and Vapnik 1995) are two popular

statistical nonlinear modeling tools for nonparametric

predictions used in many fields, andmore specifically for

oceanographic, meteorological, and climatic and cli-

mate impact studies (e.g., Tolman et al. 2005; Lee 2006;

Liu et al. 2010 for ANN and e.g., Elbisy 2015; Aguilar-

Martinez and Hsieh 2009; Descloux et al. 2012 for

SVM). Both schemes have already been used in relation

with TC studies. The ANN and SVM schemes have both

been used for predicting rain under TCs (e.g., Lin et al.

2009; Wei 2012), with more skill for SVM-based models

(Lin et al. 2009). ANN schemes have also been used to

predict TC-induced storm surges (Lee 2009), tropical

cyclogenesis (Hennon et al. 2005), and TC tracks (Ali

et al. 2007; Roy and Kovordányi 2012). Only a couple of

studies havemore specifically used SVMorANN for TC

intensity forecasts focusing on the NWP region. Lin et al.

(2013) showed that the SVM scheme improved NWP TC

intensity forecasts by about 6%–11% over the 2002–09

period, relative to official operational forecasts. Using the

same input parameters as in STIPS (Knaff et al. 2005),
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Sharma et al. (2013) showed that their nonlinear ANN

scheme yielded a 2%–10% skill improvement relative to

STIPS for the 2003–04 TC seasons.

The two papers above have suggested the added value

of using nonlinear TC intensity forecasts. These papers

however focus on the NWP basin using a rather short

dataset (;7 years). In this paper, we investigate benefits

of nonlinearmethods for each individual basin, using the

same approach and set of input parameters for consis-

tency, as well as an extended dataset for more robust

quantitative results. To that end, we will compare global

TC intensity forecasts using the ANN and SVM non-

linear methods to those made with a linear MLR ap-

proach very similar to that in Neetu et al. (2017). More

specifically, we will investigate if nonlinear models

should be trained for each basin individually (as the

MLR), or globally; the skill improvement they yield

and its basin dependency; and whether this skill im-

provement depends on the cyclone characteristics

(intensity, intensifying/decaying phase) as was the case

for the MLR.

We use a very similar MLR to that described in Neetu

et al. (2017) as a reference in the current paper and in-

vestigate whether nonlinear ANN/SVM models built

from the same input parameters bring improvements.

The MLR model, its input parameters, and our skill as-

sessment method are summarized in section 2. Section 3

describes theANNand SVMmodels. Section 4 compares

the performance of these nonlinear models to that of the

linear model. Section 5 provides a summary and discus-

sion of our results.

2. Methods

a. Datasets

Building a TC intensity hindcast scheme requires the

cyclone positions (used for obtaining the surrounding

‘‘environmental parameters’’) and the cyclone intensity,

defined frommaximum 1-min horizontal winds (which is

used for training and verifying the scheme, along with its

time derivative). The International Best Track Archive

for Climate Stewardship (IBTrACS; Knapp et al. 2010)

dataset combines the best track data from several op-

erational centers provides into a single database with TC

locations and intensities in all basins. The Joint Typhoon

Warning Center (JTWC) has the advantage of using the

same track and intensity determinationmethodology for

all basins, and was used wherever it was available (i.e.,

all basins but NEP andATL). For NEP andATL basins,

we use the National Hurricane Center track data, which

uses the same wind-averaging period of 1min as JTWC.

The TC dataset used in this study includes all best track

points whatever their intensity (including tropical storm

and depression stages) and their location (including

extratropical cases). The number of cases at each fore-

cast interval is provided in Table 1, for each TC basin

and globally.

As detailed in section 2b, the TC intensity hindcast is

based on documented relations between environmental

parameters and the cyclone evolution (e.g., vertical

shear in the atmosphere tends to damp cyclones). We

use the 1979–2012, 0.758 3 0.758, 6-hourly European

Centre for Medium-RangeWeather Forecasts (ECMWF)

interim reanalysis (ERA-Interim; Dee et al. 2011) data to

determine the atmospheric environmental parameters and

Sea Surface Temperature (which is used to estimate MPI)

along the cyclone tracks. Globally 2362 TCs occurred

during this 34-yr period.

b. Linear hindcast model (MLR)

The environmental and the storm characteristic pa-

rameters that were used for building our statistical TC

intensity hindcasts are listed in Table 2. The choice of

these parameters closely follows that in previous studies

(Knaff et al. 2005; Knaff and Sampson 2009; Sharma

et al. 2013; Neetu et al. 2017). The predictors repre-

senting the storm characteristics are the TC maximum

wind speed at the initial time of forecast (VMAX), its

square (VMAX2) and its change over the period of

previous 12 h (PER). The environmental parameters

along the cyclone track are the maximum potential in-

tensity (MPI) and its square (MPI2), vertical wind shear

(SHRD), vertical zonal wind shear (USHR), tropo-

spheric relative humidity (RHHI), upper-tropospheric

TABLE 1. Number of cases at each forecast interval for the individual basins and the total dataset used in the present study.

Basin/lead time 12 h 24 h 36 h 48 h 60 h 72 h 84 h 96 h 108 h 120 h

NWP 10 151 9437 8735 8037 7378 6740 6128 5549 5004 4481

NEP 4577 4176 3790 3416 3057 2719 2406 2108 1845 1609

SWP 2746 2530 2317 2111 1919 1739 1564 1400 1246 1108

NIO 1129 992 863 744 637 539 448 370 302 246

SIO 4068 3788 3514 3242 2972 2709 2456 2219 1996 1785

ATL 5329 4860 4420 4005 3626 3279 2971 2688 2417 2164

ALL 28 000 25 783 23 639 21 555 19 589 17 725 15 973 14 334 12 810 11 393
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temperature (T200), boundary layer equivalent po-

tential temperature (E925), and low-level vorticity

(Z850). We do not use any predictor such as the ocean

heat content (Leipper and Volgenau 1972) to represent

the effect of the interactions with the ocean on the

cyclone intensity evolution, as Neetu et al. (2017).

Hindcasts over a shorter period over which reliable

estimates of the oceanic state are available due to the

availability of satellite altimetry (1993–2012) and in-

cluding the ocean heat content as a predictor however

give very similar results to those presented in the cur-

rent paper (not shown).

Following Neetu et al. (2017), MPI is derived empir-

ically for each TC basin, with the same empirical rela-

tions generally used in operational models. We use

an exponential relation between MPI and sea surface

temperature in the NWP, SWP, ATL and SIO basins

and a linear relation in the NEP and NIO, in agreement

with the previous literature (DeMaria et al. 2005; Knaff

et al. 2005; Knaff and Sampson 2009; Kotal et al. 2008;

Neetu et al. 2017). To account for the inhibiting effect of

strong environmental vertical wind shear on the TC in-

tensity, we use the average 200–850-hPa level zonal and

total wind shear (USHR and SHRD), averaged over an

annular region between 200 and 800 km away from

the TC center. Other environmental parameters that

affect the TC intensity include relative humidity

(RHHI) at midtropospheric level (averaged between

300 and 500 hPa), upper-level temperature (T200 at

200hPa), and lower-level equivalent potential temperature

(E925 at 925 hPa). RHHI, T200 and E925 are also av-

eraged over an annular region between 200 and 800 km

from the TC center. We also use relative vorticity at

lower levels (Z850, 850 hPa), averaged within 1000 km

from the TC center, as in Knaff et al. (2005) and Knaff

and Sampson (2009). The environmental variables

above are also averaged in time, from the beginning of

the hindcast to the lead time for which the TC intensity

is estimated.

TC intensity changes from the initial forecast time

(DELV, see Table 2) at 12-h intervals up to 120-h lead

time are the dependent variables (predictands) in our

statistical schemes. Our linear statistical MLR model is

similar to that of Neetu et al. (2017) and uses a multiple

linear regression technique to relate DELV (the pre-

dictand) to all the predictors in Table 2. The data are

partitioned into two groups, with 80% of the data being

used for training the model and the remaining 20% for

testing purposes (computing skill scores). Entire TC

tracks are attributed to either the training or testing

dataset when randomly generating those datasets. This

procedure is repeated 50 times to generate 50 different

randomly selected training and testing sets. All skill

measures (see section 2c) in the current study are ob-

tained by averaging the skill of these 50 models. This

also allows 95% confidence intervals on the skill, using

Monte Carlo techniques.

Neetu et al. (2017) demonstrated that this MLR was

most skillful when trained separately for individual TC

basins. In the current study, we either train the MLR

(and the two nonlinear schemes) individually on each

basin (‘‘regionally trained’’) or globally considering all

basins together (‘‘globally trained’’).

c. Skill assessment

The model performance is assessed using MAE as in

many similar studies (Knaff et al. 2005; Knaff and

Sampson 2009; Sharma et al. 2013; Neetu et al. 2017).

TheMAE is defined as the average absolute value of the

difference between the predicted TC intensity and the

actual TC intensity in the IBTrACS database, across all

TCs in the testing database. To ease the comparison

between various models, we define the skill as the per-

centage of improvement in MAE of one model relative

to a reference model:

Skill(%)5 1003 (MAE
ref

2 MAE
Model

)/MAE
ref
.

Such a skill is of course dependent on the reference used.

For instance, in this paper, we aim at estimating the

added value of nonlinear schemes (ANN and SVM)

relative to theMLRmodel. In such a case, theMLRwill

be used as the referencemodel. But we can also estimate

TABLE 2. List of environmental parameters used as predictors of

the TC intensity in the current study. Variables in italics (VMAX2

and MPI2) are used only in the multiple linear regression (MLR)

model but not in the artificial neural network (ANN) and support

vector machine (SVM) models. Variables marked with a * are es-

timated from an area average between 200 and 800 km of the cy-

clone position. Variables marked with a ** are estimated from an

area average within 1000 km of the cyclone position. The variables

marked with a # are time averaged between the initial and the

forecast time. DELV is the predictand.

Serial No. Predictor Description

1 VMAX Initial intensity

2 VMAX2 Initial intensity squared

3 PER Intensity change during previous 12 h

4 MPI# Maximum potential intensity

5 MPI2# Maximum potential intensity squared

6 SHRD*# 200–850-hPa wind shear magnitude

7 USHR*# 200–850-hPa zonal wind shear magnitude

8 RHHI*# 500–300-hPa average relative humidity

9 T200*# 200-hPa temperature

10 E925*# 925-hPa equivalent potential temperature

11 Z850**# 850-hPa vorticity

12 DELV Intensity change from the initial

forecast time
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the performance of a globally trainedmodel relative to a

regionally trained model. Finally, in order to estimate

the additional value of environmental parameters, we

have built purely statistical hindcast models (hereafter

‘‘baseline’’ model, as in DeMaria et al. 2007; Neetu et al.

2017) that only use the initial cyclone characteristics as

predictors (i.e., VMAX, VMAX2, and PER for the

MLR model).

3. Development of nonlinear TC intensity
hindcasts

The previous section introduced the linear model

(MLR) that we will take as a reference in the current

study. In this section, we describe the nonlinear schemes

that we will evaluate: the ANN (section 3a) and the

SVM (section 3b). Since nonlinear schemes are sup-

posed to naturally capture nonlinear dependencies be-

tween predictors and the predictand, nonlinear input

parameters (VMAX2 and MPI2) were not included in

these nonlinear schemes.

a. ANN scheme

Artificial neural networks are deep-learning algo-

rithms that are used to solve artificial intelligence

problems including forecasting and prediction. They

can approximate any function (Hornik 1991) and

are hence well suited to model nonlinear processes.

Typically, the neural network consists of interconnected

nodes called neurons, arranged in layers. Each input

neuron transmits a linear function (multiplied by a

weight with a bias removed) of the input data (predic-

tors) and transmits the signal to next layer (hidden

neurons). The weighted sum of inputs is transformed

by a nonlinear activation function in the hidden neuron’s

layer. That process is repeated in each of the following

hidden layers and the last neuron layer returns an output

(predictand). The ‘‘training dataset’’ is used to deter-

mine the values of the weigths and biases that minimizes

an optimization function (e.g., mean squared error be-

tween the computed output and correct outputs).

Our ANN model uses one input layer, one hidden

layer, and one output layer. It is based on a hyperbolic

tangent activation function. The input layer contains the

same number of neurons as there are inputs parameters

(i.e., predictors) while the output layer consists of a

single neuron that predicts the TC intensification rate

at a given lead time. A back-propagation learning al-

gorithm (Reed and Marks 1999) was used to estimate

the biases and weights during the training of the ANN

model. Mean squared difference between the output

and observations is a nonlinear function of the weights

and biases, which has several local minima, where the

model solution can be trapped. Another problem of

nonlinear modeling is overfitting (i.e., when the model

performs almost perfectly on the training dataset but

is unable to generalize to new situations). To avoid

overfitting on our ANN scheme, we use a technique

called early stopping. For this, ANN requires three

disjoint datasets for training, validation, and testing.

The weights and biases (i.e., the parameters that define

the neural network) are obtained during the training

step, but the iterative procedure is stopped once errors

relative to the validation dataset starts increasing.

Finally, the testing dataset allows the computation of a

skill score on a completely independent dataset to that

used during the training/validation. In the following,

the training dataset consistently uses a random selec-

tion of 60% of the TCs in the full database, while the

remaining 40% are split into 20% for validation and

20% for testing purposes. We follow the same proce-

dure as for theMLR and repeat this procedure 50 times

with different randomly selected training, validation

and testing realizations. We obtain the ANN param-

eters (weights and biases) values through an ensem-

ble average of those 50 realizations. This procedure

minimizes the problems of being trapped in a local

minimum while solving the nonlinear problem.

More hidden layers generally improve the perfor-

mance of the neural network but increase the risk of

artificially overfitting. We have built ANN models with

1–10 hidden neuron layers, in order to determine the

optimal number of layers for our problem. Figure 2a,

displays the average training and testing MAE as a

function of the number of hidden neurons. While the

MAE in the training dataset monotonically decreases

with the increasing number of neurons, it reaches a

plateau or even slightly increases beyond about 5–7

neurons for the testing dataset. The ANN architecture

therefore uses 7 neurons in the hidden layer throughout

the paper, a number similar to that used in Sharma et al.

(2013) study (5 neurons). This ANN architecture hence

uses 70 adjustable parameters (i.e., weights) compared

to 11 for theMLR. As discussed in Ingrassia andMorlini

(2007), the equivalent number of degrees of freedom in

the ANN is however much smaller than the number of

parameters and does not depend on the number of input

variables.

b. SVM scheme

SVM is a supervised learning method that stems

from statistical learning theory (Vapnik 2000). SVMs

were initially developed for classification purposes in

the early 1990s, and later on used for regression

problems (Vapnik 1995). The SVM technique re-

quires the choice of a kernel function that maps
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predictors into a higher-dimensional space where

they relate linearly to the predictand. The properties

of this kernel function are generally dependent on a

small number of hyperparameters, that have to be

set properly for an optimal performance of the SVM

algorithm.

SVM only requires two disjoint sets of data for

training and testing. As for the MLR, 80% (20%) of the

TCs were used for training (testing). As for the ANN

and MLR schemes, SVM models were constructed

using 50 randomly selected training/testing datasets

and the reported performance is the average over these

50 runs. We chose a radial basis kernel function

(Scholkopf et al. 1997) because this widely adopted

function (Keerthi and Lin 2003) often outperforms

other kernel functions (Ding et al. 2012) and requires a

limited number of hyperparameters to be set. The

SVM performance depends on the choice of these hy-

perparameters. To illustrate this aspect, Fig. 2b shows

the sensitivity of the SVM predictive skill for different

values of the most sensitive hyperparameter (i.e., a

smoothing parameter that controls the width of the

kernel function and minimizes overfitting). While the

MAE monotonically decreases with an increase of

this hyperparameter for the training dataset, it only

decreases for values up to 10 for the testing dataset.

Further increasing the value of this parameter results

in a marginal MAE increase for testing, which deviate

from the MAE for training, indicating that there is

overfitting in this range. This parameter was therefore

fixed to 10. The SVM predictive skills are much less

sensitive to the choice of the other hyperparameters

(not shown).

4. Results

As described in sections 2 and 3, we have developed

three TC intensity hindcast schemes (MLR, ANN, and

SVM), including two nonlinear ones (ANN and SVM).

These schemes are constructed in a very consistent way,

with identical input parameters (Table 2; except that

the ANN and SVM scheme do not use the VMAX2 and

MPI2 input parameters). All these schemes are also

constructed using 80% of the TC database (with 60%

for training and 20% for validation for ANN), and we

show the average skill of 50 models trained with ran-

dom choices of the trainingand testing databases. This

allows a fair comparison between the three schemes.

(Note that we also tested including the quadratic

terms in Table 2 in the linear model as one alternative

to using a fully nonlinear scheme, but that the ANN

and SVM schemes clearly outperform this approach,

not shown).

Neetu et al. (2017) demonstrated that training an

MLR scheme individually for each basin performs

better than a globally trained model. This may however

not be the case for ANN and SVM. Figure 3 illustrates

the benefits of training models globally relative to a

regional training (see section 2c) for the three schemes.

Regionally trained MLR models slightly outperform

globally trained MLR models (;1%–5% on average

over all basins; Fig. 3a). This superior performance is

seen in all Northern Hemisphere TC-prone basins, but

not for Southern Hemisphere TCs. It is particularly

large for the NIO at long leads (;20%) but this result

may not be very reliable given the small amount of long-

lived TCs (and TCs in general) in the NIO, and hence

the small dataset used to validate the MLR regional

model at these extended range (Table 1).

The superior performance of regionally trained models

does not hold for nonlinear schemes. Globally trained

models behave similarly or slightly outperform the re-

gionally trained ones for both nonlinear schemes. The

globally averaged skill improvement for the globally

trained ANN model ranges between ;0% and ;3%

(Fig. 3b), with strong regional variations. This im-

provement is larger for the SWP, NIO and SIO basins

(;5%–10%), while differences between regional and

FIG. 2. Globally averaged MAE (kt) for training (blue) and

testing (red) datasets at 60-h lead time for (a) the ANN scheme as

function of number of neurons and (b) the SVM scheme as a

function of the optimization parameter value (see text for details).

The MAE was estimated from the average of 50 independent runs

(see text for details). Error bars indicate the 95% confidence in-

terval estimated from a bootstrap method. On the basis of this

figure, the ANN is built using 7 neurons in the hidden layer and the

SVM uses an optimization parameter of 10.
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globally trained ANN are rather modest for the NWP,

NEP, and ATL basins The globally trained SVMmodel

also slightly overcomes the regionally trained model,

with an improvement of up to 2% globally (Fig. 3c). The

regional dependency of this improvement is similar to

that of the ANN, with the largest improvement in the

SWP, NIO, and SIO (;2%–13%). In contrast, the skill

is reduced for the NEP. Overall, the globally trained

SVM and ANN perform better than their regionally

trained counterparts, in particular in basins with the

least cyclones (SWP, NIO, SIO; Fig. 1a). This suggests

that the globally trained nonlinear schemes can use

data from other basins to improve forecasts in basins

with a small training sample. In contrast, the MLR

scheme performs better when trained specifically for

each basin. In the following, we will thus compare

globally trained nonlinear models (which perform

best) to the best MLR models (i.e., the regionally

trained ones).

The added value of using nonlinear models is then

evaluated in Fig. 4 by computing the skill improvement

of the globally trainedANNand SVMmodels relative to

regionally trained MLR models (see section 2c). Using

nonlinear models systematically improves the skill

relative to the MLR at all lead times and in all basins

(Figs. 4a,b), except at 108 h for the NIO in the case of

ANN. Comparing light color bars on Figs. 4a and 4b

also indicates that this improvement is systematically

larger for SVM than for ANN. The globally averaged

skill improvement relative to theMLR ranges between

4% and 7% for ANN (light color bars on Fig. 4a) and

between 8% and 12% for SVM (light color bars in

Fig. 4b). The additional skill yielded by nonlinear

schemes is relatively uniform across TC basins (light

color bars in Figs. 4a,b). There is thus a clear benefit of

using nonlinear models for TC intensity forecasts, in

any TC basin (except the NIO at long lead times

for ANN).

Neetu et al. (2017) showed that the TC initial char-

acteristics contributed to;60%–80%of the overall skill

in linear models. We will now investigate if this also

holds true for our two nonlinear schemes, by comparing

the performance of schemes using all predictors to

‘‘baseline models’’ using only the TC initial charac-

teristics (see section 2c). Comparing dark and light

colored bars in Fig. 4a reveals that the overall im-

provement brought by ANN and SVM predominantly

arises from a better handling of TC environmental

parameters, with a far weaker globally averaged im-

provement when only accounting for TC initial char-

acteristics compared to the improvement when also

accounting for environmental parameters. The overall

improvement arising from a better handling of TC

initial characteristics is however slightly larger for the

SVM than for ANN model.

Figure 5 allows investigating if the respective contri-

bution of individual parameters is similar for our two

nonlinear schemes, by comparing the schemes using all

predictors to schemes obtained by excluding each of the

environmental parameters. In broad agreement with

Neetu et al. (2017), SHRD (;3% contribution, globally)

and MPI (;2%) are the environmental parameters that

contribute most to the MLR skill globally (Fig. 5a),

with very variable contributions depending on the basin.

No single variable clearly dominates the performance

of nonlinear schemes, and environmental parameters

generally all contribute more to the performance than in

the MLR. Only two parameters (SHRD and MPI) in-

crease the model performance by more than 2% glob-

ally in the MLR, while four variables reach or exceed

FIG. 3. Percentage MAE improvement of globally trained over

regionally trained models for (a) MLR, (b) ANN, and (c) SVM

schemes at 24-, 60-, and 108-h lead times, for each basin and

globally averaged. Error bars indicate the 95% confidence interval

estimated from a bootstrap method.
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that threshold for the nonlinear schemes (SHRD, MPI,

T200, and E925). SHRD remains the most important

environmental parameter globally in the ANN scheme

(;3.5%), closely followed by MPI, RHHI, T200, and

E925 (all around 2%). E925 is the most important en-

vironmental parameter globally in the SVM scheme

(;5%), followed by SHRD, MPI, and T200 (all around

3%). The contribution of each predictor also varies

considerably basin-wise for nonlinear schemes, but

more parameters tend to contribute to the model

performance than for the MLR. This suggests that

nonlinear schemes are able to extract more infor-

mation from environmental predictors than linear

schemes.

Neetu et al. (2017) also demonstrated that an MLR

model built considering climatological values for the

input environmental parameters performs very similarly

to a model constructed from real-time values. While this

result implies that the practical implementation of op-

eration TC intensity forecasts can considerably be sim-

plified, it also suggests that the MLR technique only

extracts little information from the environmental pa-

rameters. To investigate whether nonlinear schemes

extract more information, we further compare the per-

formance of experiments using real-time environmental

predictors over ones using climatological values (Fig. 6).

As in Neetu et al. (2017), Fig. 6a illustrates that the

MLR model using real-time predictors does not add

much to the model performance (1%–2%), with a

slightly larger improvement for Southern Hemisphere

TCs (up to 10% for SIO). The use of real-time pre-

dictors in nonlinear models results in a larger and more

systematic improvement, in all basins and for all lead

times (Figs. 6b,c). The globally averaged added value

ranges between 5% and 8% for both ANN and SVM

(Figs. 6b,c), with a particularly large improvement for

Southern Hemisphere TCs (7%–17%). The basin-wise

dependency of the added value brought by real-time

environmental parameters is quite similar to that of

MLR, but it generally larger (Figs. 6b,c versus Fig. 6a).

This suggests that ANN and SVM are able to better

capture the influence of the nonseasonal variations of

atmospheric parameters on the TC intensification rate.

Neetu et al. (2017) also demonstrated that MLR

hindcasts are 3–4 times more skillful for strong than for

moderate TCs. We followed the definition of Neetu

et al. (2017) and divided the predictands into two subsets

based on the TC intensity at hindcast time. Best track

points associated with an intensity smaller than 96kt

(category 2 or below on the Saffir–Simpson scale) are

referred to as ‘‘moderate’’ (;63% of the dataset),

while those exceeding 96 kt (categories 3–5) are con-

sidered as ‘‘strong’’ (;37% of the dataset). As dis-

cussed in Neetu et al. (2017) for the MLR, nonlinear

models predict intensity changes of strong TCs better

than those of moderate ones (not shown). Figures 7a

and 7b show the SVM and ANN global skill im-

provement relative to the regionally trained MLR

schemes. The ANN scheme has a higher skill than the

MLR, but this skill improvement does not particularly

depend on whether the cyclone is strong or not. In

contrast, the SVM scheme tends to yield a larger skill

increase for moderate TCs (21% at 108 h) than for

strong TCs (13% at 108 h). The SVM scheme hence

partially overcomes the weaker MLR performance for

moderate TCs.

FIG. 4. Percentage of skill improvement for (a) globally trained ANN and (b) SVM relative to regionally trained MLR for baseline

models (i.e., only TC initial characteristics, dark color bars) and full models (i.e., including also environmental parameters along the TC

track, light color bars) at 24-, 60-, and 108-h lead times, for each basin and globally averaged. Error bars indicate the 95% confidence

interval estimated from a bootstrap method.
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Lee et al. (2016) did show that linear models tend to

have a lower skill for predicting decaying TCs than for

intensifying TCs. We hence tested the skill sensitivity to

whether the TC is intensifying or decaying. To do so, we

divided the predictands into two subsets based on the

sign of the TC intensification rate at the beginning of

the hindcast. Linear models tend to have a higher skill

for intensifying (;40% skill improvement relative to

persistence at 24 h) than for decaying TCs (;30%; not

shown). Figures 7c and 7d shows the SVM and ANN

global skill improvement relative to the regionally

trained MLR schemes: nonlinear schemes more spe-

cifically outperform linear schemes for decaying TCs.

This is particularly striking for the SVM scheme, with a

skill improvement of ;7%–10% relative to the MLR

for the intensifying phase and 16%–22% for the de-

caying phase. The SVM in fact yields a similar skill

improvement for intensifying or decaying TC relative to

performance (46% at 24h; not shown) (i.e., it corrects

the tendency of the MLR to perform less well for

decaying TCs).

5. Conclusions and discussion

Our results indicate that nonlinear schemes (ANN

and SVM) systematically improve the skill of TC hindcasts

FIG. 6. Added value of using real-time rather than climatological

environmental atmospheric parameters for (a) regionally trained

MLR, (b) globally trained ANN, and (c) globally trained SVM

models, at 24-, 60-, and 108-h lead times, for each basin and globally

averaged. This added value is measured as the percentage of skill

improvement when using real-time environmental atmospheric

parameters against climatological ones in each model. Error bars

indicate the 95% confidence interval estimated from a bootstrap

technique.

FIG. 5. Respective contributions of each predictor to the overall

skill for (a) regionally trainedMLR, (b) globally trainedANN, and

(c) globally trained SVM for each basin and globally. These con-

tributions are estimated as the percentage of skill reduction at 60-h

lead time when excluding all the predictors one by one within each

model framework. Error bars indicate the 95% confidence interval

estimated from a bootstrap technique. In the MLR scheme, the

VMAX2 (MPI2) predictor is also removed when testing the impact

of VMAX (MPI).
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relative to the widely used linear models (MLR) by

5%–15%, in all TC-prone basins, for all lead times and

all TC categories (except for the NIO at long lead times

in the ANN model). These results hence demonstrate

that accounting for the nonlinear relationship between

input parameters and the TC intensity greatly benefits

the hindcast skill of statistical–dynamical forecasts.

In addition, the comparison of the ANN and SVM

schemes reveals a better performance of SVM, with

10%–15% skill improvement over the MLR globally

versus 6%–11% for ANN). The SVM scheme also

corrects the tendency for a lower linear scheme skill in

predicting moderate (category 2 or below) and de-

caying TCs intensity evolution. This improved per-

formance of SVM likely results from two desirable

mathematical properties of this approach. Contrary to

ANN, SVM transforms the nonlinear optimization

problem into a linear one, hence avoiding the multiple

minima issue and providing a more robust estimate

of the global solution. It also uses a more robust

error norm, with error rates and model complexity

minimized simultaneously, while only the error rate is

minimized once the model architecture has been de-

signed for ANN. This usually results in SVM per-

forming better than ANN when moving from the

training to the testing dataset (Bisgin et al. 2018).

Our results echo those of the few other studies that

compared the performance of linear and nonlinear

schemes (DeMaria 2009; Lin et al. 2013; Sharma et al.

2013). For the 2006/07 cyclonic seasons, the nonlinear

logistic equation growth model of DeMaria (2009)

yields a skill increase from 0% to 15% in the northeast

FIG. 7. Globally averaged percentage of skill improvement relative to regionally trained MLR for (a) moderate

(i.e., ,96 kt: category 2 and below) and strong TCs (i.e., .96 kt: category 3 or more) and for (b) intensifying

(DELV. 0) and decaying TCs (DELV, 0) for globally trainedANN (blue) and SVM (green) schemes at 24-, 60-,

and 108-h lead times. Error bars provide the 95% confidence interval estimated from a bootstrap method.
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Pacific and from 0% to 10% in the Atlantic relative to

SHIPS, especially at long lead times, with a simpler set

of input parameters. Lin et al. (2013) found an im-

provement of 5%–10%when comparing their nonlinear

SVM scheme to operational MLR forecasts in the

northwest Pacific over the 2002–09 period. Our results

for the NWP indicate an even larger improvement

(;8%–16%; see Fig. 4b). However, Lin et al. (2013) did

not use the same set of input parameters as the opera-

tional forecast, as we do, which makes a quantitative

comparison difficult. Sharma et al. (2013) on the other

hand used the same parameters as the linear STIPS

model (Knaff et al. 2005) and found a 3%–10% skill

improvement for their nonlinear ANN scheme at all

lead times for the 2003–04 TC seasons in the NWP. We

find a similar improvement (5%–11%, Fig. 4a) over the

longer 1979–2012 period. By applying nonlinear TC in-

tensity forecasting methods to all TC basins globally, the

present study extends previous results obtained over a

limited set of basins (NWP andATL) and limited period

(;7 years vs to 34 years here), and demonstrates the

added value of using nonlinear schemes for TC intensity

prediction for all basins, lead time, and TC intensity.

This improvement arises from the nonlinear relation-

ship between the environmental parameters and inten-

sity of the cyclone, which are more easily captured by

nonlinear schemes.

Sensitivity experiments using environmental pre-

dictors calculated from climatological data (rather

than real-time values) indicate that nonlinear schemes

make a far better use of the nonseasonal variations of

these environmental predictors. Accounting for these

real-time variations indeed yield a far larger improve-

ment (5%–8% for ANN and SVM, globally) than the

linear scheme (;1%–3%).

Finally, our results also demonstrate that the SVM

scheme is particularly efficient at improving the hindcast

skill of moderate TCs (category 2 and below), which

were particularly poor for linear models (Neetu et al.

2017). Similarly, the SVM scheme corrects the tendency

of linear models to have a lower skill for decaying

than for intensifying TCs (Lee et al. 2016). This larger

improvement for moderate TCs (which represent

63% of TCs worldwide) and decaying TCs is a strong

incentive for using SVM TC intensity prediction

schemes operationally.

Our results indicate that nonlinear schemes have a

strong potential to improve statistical TC intensity

forecasts, especially SVM schemes. The best TC in-

tensity forecasts have improved by ;8%–15% over

the last decade, both in dynamical and linear statistical-

dynamical models (DeMaria et al. 2014; Emanuel and

Zhang 2016). The skill gains from using nonlinear schemes

are thus comparable to the TC intensity forecast skill gain

over a decade. While we expect a skill degradation for

operational application, due to use of forecasted track and

environment, rather than reanalyzed environmental pa-

rameters along the observed track, the TC intensity skill

improvement expected from the present results are suffi-

ciently large to motivate more trials in operational mode.

Finally, the good performance of global training for

nonlinear schemes also has interesting applications.

The first is that a single system can be built and applied

to various basins, in contrast with current statistical–

dynamical schemes, which are generally built for a

single or a couple of TC basins. This technique also

offers great hope in basins such as the northern Indian

Ocean, where the limited number of TCs prevents an

efficient training of MLRs, yielding poor skill. The

ability of the nonlinear schemes to be trained globally

takes advantages of the numerous cyclones in other

basins, yielding a skill improvement of up to 10% rel-

ative to the MLR at 108-h lead time in the Northern

IndianOcean for the SVM scheme (Fig. 4b). This offers

great promise in this basin that just represents 5% of

the TCs globally, but almost 80% of the casualties they

cause (Needham et al. 2015).
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