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Abstract 

Numerous articles have been published showing the interest to delineate tumours using 

fluorodeoxyglucose positron emission tomography/computed tomography images in radiotherapy 

planning. This imaging is used to identify tumour tissues with increased glucose metabolism compared 

to healthy surrounding tissues. This volume corresponds to the metabolic tumour volume. Despite 

extensive research on metabolic tumour volume segmentation methods, there is currently no 

consensus on the optimal segmentation method to use. In this review, the main methods proposed in 

the literature are presented, as well as their advantages and disadvantages in the context of 

radiotherapy. 
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Résumé 

De nombreuses publications font état de l’intérêt d’utiliser l’imagerie par tomographie par émission de 

positons–scanographie au fluorodésoxyglucose pour la délinéation du volume cible tumoral dans la 
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planification des traitements par radiothérapie. Elle est utilisée pour identifier les tissus tumoraux 

ayant un métabolisme glucidique accru par rapport aux tissus sains avoisinants. Ce volume correspond 

au volume tumoral métabolique. Malgré des recherches approfondies sur les méthodes de 

segmentation du volume tumoral métabolique, il n'existe pas actuellement de consensus sur la 

méthode optimale de segmentation à utiliser. Dans cette revue, les principales méthodes proposées 

dans la littérature sont présentées, ainsi que leurs avantages et inconvénients dans le contexte de la 

radiothérapie. 

Mots clés 

Délinéation, TEP FDG, Volume tumoral métabolique 

1. 1. Introduction 

Segmentation is a process of partitioning an image into a set of volumes of interest (functional, 

anatomical or anatomical-pathological) or extracting one, in particular. Computed tomography (CT) is 

the most commonly used imaging modality to define the gross tumour volume in radiotherapy. 

However, studies from the literature have shown the adding value of combining positron emission 

tomography (PET) imaging with (18F)-fluorodeoxyglucose (FDG) with CT [1]. FDG-PET is used to 

identify tumour tissues with increased glucose metabolism, considered as positive tissues, compared to 

surrounding healthy tissues. This volume corresponds to the metabolic tumour volume. For example, 

Ashamalla et al. reported that metabolic tumour volume defined using PET and CT images had better 

interobserver reproducibility in lung cancer than gross tumour volume delineated on CT alone [2]. 

Thus, metabolic tumour volume delineation resulted in a clinically significant change in gross tumour 

volume in 52% of patients.  

Although many studies have shown the contribution of metabolic tumour volume measurement in 

predicting treatment response and tumour delineation for radiotherapy treatment planning, there is no 

consensus on the optimal method to delineate metabolic tumour volume in FDG-PET imaging [1,3]. 

This is due to the fact that there is a significant partial volume effect in PET imaging responsible for a 

blurry edge at the tumour. This is illustrated in Figure 1 representing a theoretical slice of a phantom 

with spheres of different volumes filled with the same concentration of FDG. The corresponding PET 

image shows that the two smallest spheres appear to contain a lower FDG concentration than the 

others (Figure 1b). In addition, on the plot of the standard uptake value profile passing through a 

sphere, it can be seen (see Figure 1.d) that the edge of the sphere is not clearly defined and that it is 

difficult to know exactly where it is located. This is characterized by an area of a few voxels of 

thickness for which it is not known whether they belong to the tumour or to healthy tissues. In 

addition, glucose metabolism in the vicinity of the tumour is highly dependent on its environment. In 

particular, it may be of the same order of magnitude than the lesion for some healthy tissues. In 

radiotherapy, it is not uncommon to have hypoxic or necrotic parts within the tumour characterized by 
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significant variations in FDG uptake complicating the segmentation task, as shown in Figure 2. All 

these factors, as well as the physiological movements responsible for additional blurring in the images, 

make the task complex. 

The different metabolic tumour volume segmentation methods proposed in the literature are presented, 

as well as their advantages and disadvantages. Given the difficulty of solving the problem, many 

delineation algorithms have been proposed in the literature [1,3]. They are generally classified into 

three main approaches: 

• the contour-based approach looking for sharp variations in intensity in the image, characterizing 

the presence of boundaries between regions;  

• the region-based approach to locate homogeneous areas in the image, showing the presence of a 

region;  

• the classifier-based approach, corresponding to classification of voxels aiming to define for each 

voxel to which region it belongs.  

Since glucose metabolism differs from organ to organ, metabolic tumour volume segmentation 

methods first define a volume of interest, also called a volume of work. Usually this volume 

corresponds to a cube, defined manually, encompassing the tumour. Then the segmentation method is 

applied in this volume. As a result, some methods are not reproducible because they are sensitive to 

this volume of work.  

2. Contour-based approaches 

2.1. Threshold-based methods 

In thresholding methods, the volume of work is divided into two categories of voxels. Those with an 

standard uptake value above the threshold are attributed to the tumour, and those below are considered 

to belong to healthy tissues. The main advantage of these methods is their simplicity of use and their 

speed of execution. In addition, they immediately lead to the definition of a single closed contour. 

Several methods have been proposed in the literature to define the optimal threshold value. 

2.1.1. Fixed absolute threshold 

Fixed absolute thresholds of standard uptake value have been proposed in the literature to delineate 

metabolic tumour volume. The commonly used value is 2.5 [4]. This value was chosen because it 

would correspond to a differential diagnosis between malignant and benign pulmonary nodules [5], 

but it does not find its justification in image processing and generally leads to a delineation very far 

from the truth [4].   
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2.1.2. Fixed relative threshold 

Fixed relative thresholds, defined as a percentage of the maximum value of standard uptake in the 

tumour (SUVmax), are also commonly used to delineate the metabolic tumour volume. In one of the 

first studies conducted on the delineation of high uptake in FDG-PET imaging, Erdi et al found, on 

phantom, that relative thresholds of 36 to 44% allowed the accurate measurement of the sphere 

volume of different sizes for different contrasts [6]. As a result, the 42% value proposed by Erdi et al. 

is generally used in the literature. For the sake of simplicity, some authors have rounded it down to 

40%. 

Other studies have shown that the use of a fixed relative threshold of 42% is appropriate when the 

structure is sufficiently homogeneous (in the case of a phantom), static, large and well contrasted. On 

the other side, it quickly reaches its limits for heterogeneous or small lesions, of low contrast or in 

movement [4,7]. A value of 20% was recommended for metabolic tumour volume delineation for lung 

tumours in the absence of respiratory gating [8]. The spreading and therefore the decrease in signal 

intensity caused by respiratory movements does not allow the 42% value recommended for static 

tumour to be used. In fact, a single threshold seems impossible given a movement of different 

breathing amplitude between patients, also depending on the location of the lung tumour. 

2.1.3. Adaptative threshold 

Figure 3 shows an example of curves showing the optimal threshold value to be applied depending on 

the sphere size and the contrast between the sphere and the background of a phantom. It can be seen 

that this threshold depends on these two characteristics. As a result, thresholding methods more 

complex than a fixed relative threshold value have been proposed in the literature to adapt the 

threshold to be applied on a case-by-case basis according to certain characteristics of the lesion such as 

its volume, global or local contrast, mean standard uptake value, etc. [6,9,10]. 

The principle of defining the optimal threshold to be applied, is generally divided into two distinct 

steps: the calibration phase of the method, then the clinical use. The calibration phase consists in 

defining mathematical expressions to calculate the optimal threshold from preliminary phantom 

studies. These expressions are then used clinically for the delineation of the lesion on patient’s data. 

We have also shown that the calibration phase can be performed from clinical data [11]. 

Initial calibration of the method, followed by regular quality control, are common approaches in 

radiotherapy, but are not appreciated in diagnostic imaging. This partly explains the low use of these 

methods. In addition, the application of a threshold may exclude cold regions within heterogeneous 

tumour uptake, or may inadvertently include healthy tissues with a significant glucose metabolism. As 

a result, more advanced algorithms have been developed. 
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2.2. Gradient-based methods 

These methods look for sharp variations in intensity in the image, characterized by strong gradients or 

slopes between standard uptake values of neighbouring voxels [12,13]. These methods have several 

major disadvantages. They are sensitive to PET image reconstruction parameters, noise and uptake 

heterogeneities. It is generally difficult to obtain closed contours. Therefore, they must be associated 

with extensive image processing that greatly determines the performances of the algorithm and the 

contour obtained. 

2.3. Active contour methods 

In order to overcome the difficulty of obtaining closed contours with gradient-based methods, 

approaches based on deformable models have been proposed in image processing [14]. These methods 

are also called active contours or "snakes". They aim at providing closed contours from the very 

beginning. The basic principle is to choose an initial closed contour, using for example a thresholding 

method, and to deform it from its initial position to an end position. Like a snake, the contour is 

deformed to better fit the edges of the tumour. The deformation is controlled by a function that takes 

into account different image characteristics. 

The main disadvantage of these methods is that they remain sensitive to their initialization. Their 

convergence towards the final form can be slow. Active contours have been used in many image 

processing applications, particularly in CT imaging, by being adaptable to complex structures such as 

anatomical ones through the addition of deformation constraints. They seem less adapted to PET 

images. However, we can quote the method proposed by Abdoli et al. [15]. 

3. Region-based approaches 

3.1. Seeded region growing methods 

The seeded region growing algorithms start from an initial voxel called seed, chosen within the region 

to be segmented and seek to make it growing by gradually aggregating voxels according to a criterion. 

The neighbouring voxels of the seed are successively examined and if they verify the aggregation 

criterion then they are included in the region and become new seeds. Otherwise, they are rejected. This 

iterative process is repeated until there are no more voxels that meet the aggregation criterion.  

The proposed algorithms differ according to the method of definition of the initial seed (number and 

size of the seed, manual or automatic initialization) and the aggregation criterion (directions travelled, 

discriminant values). The latter are often based on a local criterion based on the homogeneity of the 

voxel intensity. It is generally expressed as an intensity range in which the intensity of the voxel 

studied must lie. 
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As with thresholding methods, these algorithms are fast. However, they do not take into account the 

hypoxic and necrotic areas within the tumour. The use of these methods for the segmentation of FDG 

positive tissues in PET imaging has been poorly reported in the literature. However, we can quote 

[16]. 

3.2. Random walk algorithms 

In this method, the user or algorithm defines several seeds in each of the regions of interest (here the 

lesion and surrounding healthy tissues). For each of the other voxels in the volume of work, the 

algorithm answers the following question: what is the probability that a random walker leaving this 

voxel will first reach one of the seeds of each region? The walker is also constrained, making it even 

more difficult for him to move in a direction corresponding to a significant gap between grey levels. 

Then the voxel is assigned to the most likely region [17].  

We have shown that this algorithm is robust to metabolic tumour volume segmentation in lesions with 

very heterogeneous FDG uptake [18].  

4. Classifier-based approaches 

Given the partial results of the previous methods, many authors have focused on approaches with a 

very different paradigm, based on the classification of voxels, also call pattern recognition methods. 

Given the very large number of methods proposed and the complexity of the algorithms, the 

exhaustive list of methods and their detailed description is beyond the scope of this literature review. It 

is possible to refer to the following articles [1,3].  

The segmentation methods presented above analyse the data from a strictly image point of view since 

the elements are contours (cf. § 2. Contour-based approaches) or regions (cf. § 3. Region-based 

approaches). Here, we are interested in each voxel individually and try to determine to which region it 

belongs. More formally, it is a problem of classifying individuals (voxels) among a set of classes 

(volumes of interest). Each volume of interest is defined by characteristics. The goal is then for each 

voxel from the volume of work to study its own characteristics and compare them with the 

characteristics of volumes of interest to determine to which region it most likely belongs based on its 

degree of similarity. At the end of this pattern recognition process, each voxel is assigned a label 

corresponding to its volume of interest of belonging. 

The process can be separated into four complementary axes, making the originality of the method: 

• the definition of characteristic parameters of the voxel. In general, we are only interested in its 

intensity (here standard uptake value); 
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• the number of volumes of interest. In general, it is assumed that there are two volumes of 

interest [19,20,21], but it may be useful to define others, such as a volume of interest with 

voxels that are difficult to classify [22]; 

• the definition of the characteristic parameters of volumes of interest. In most cases, this is the 

mean value and variance of standard uptake values from volumes of interest; 

• the construction of decision rules making it possible to define for each voxel its membership of 

a volume of interest according to three mechanisms: assignment, rejection and non-decision. 

This is the voxel labelling phase. This step is most often based on a theoretical foundation, 

including probability theory, fuzzy theory and belief function theory [19-22].  

The principle of the methods described above does not take into account essential information when 

segmenting the image. Indeed, the voxels of a volume of interest are not randomly distributed in the 

image. On the contrary, they are connected. Several methods can be used to take this contextual 

information into account [20,21,22]. 

The advantage of these methods is that they are more robust than thresholding methods to the presence 

of noise and heterogeneity in the image. However, they can be slower and their diffusion in clinics 

remains very marginal. 

5. Discussion and conclusion 

Many methods for segmentation of FDG PET positive tissues have been proposed in the literature. 

Unfortunately, there is no consensus on the most accurate and robust method. 

Threshold methods are widely used because of their speed of execution, ease of use and availability on 

PET image processing stations and treatment planning systems. A fixed relative threshold value of 

42% or 40% is often proposed. While it is interesting to use, it should be applied with great caution for 

small tumours, low contrasts (standard uptake value below 3), or in the presence of uptake 

heterogeneity within the lesion, as well as for lung locations in case of significant respiratory 

movement of the tumour. As a result, methods using a mathematical adjustment of the optimal 

threshold value have been proposed in the literature. Those based on iterative approaches to 

determining the optimal threshold value are preferred, as they take into account the characteristics of 

the patient’s data. Their main disadvantage is the requirement for a calibration phase specific to each 

PET device and PET data reconstruction parameters. 

In order to overcome these limitations, much more sophisticated methods have been proposed, mainly 

based on voxel classification algorithms including contextual information on the neighbourhood of 

voxels in the same region. Unfortunately, these methods are not widely available on PET image 

processing stations or on treatment planning systems. 
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Figure legends 

Figure 1. Tumour delineation for radiotherapy by fluorodeoxyglucose positron emission tomography. 

a) Schematic slice of a cylindrical phantom containing spheres of different diameters filled with the 

same concentration of fluorodeoxyglucose. b) Corresponding positron emission tomography image. c) 

Theoretical profile corresponding to the line in a). d) The same profile corresponding to the positron 

emission tomography image b).  

Figure 2. Tumour delineation for radiotherapy by fluorodeoxyglucose positron emission tomography: 

transverse thoracic PET/TDM slice showing a lesion with a very high heterogeneity of 

fluorodeoxyglucose uptake.  

Figure 3. Tumour delineation for radiotherapy by fluorodeoxyglucose positron emission tomography: 

example of optimal relative threshold values to be applied, as well as the corresponding calibration 

curves to optimize the delineation of different spheres of different volumes and five contrasts between 

the background and the spheres.  
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