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FLUID DYNAMIC LIMIT OF BOLTZMANN EQUATION FOR GRANULAR
HARD–SPHERES IN A NEARLY ELASTIC REGIME – LIMITE HYDRODYNAMIQUE

DE L’ÉQUATION DE BOLTZMANN POUR DES GAZ GRANULAIRES DANS UN
RÉGIME QUASI-ÉLASTIQUE

RICARDO ALONSO, BERTRAND LODS, AND ISABELLE TRISTANI
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Abstract. In this paper, we provide the �rst rigorous derivation of hydrodynamic equations from
the Boltzmann equation for inelastic hard spheres with small inelasticity. The hydrodynamic sys-
tem that we obtain is an incompressible Navier-Stokes-Fourier system with self-consistent forcing
terms and, to our knowledge, it is thus the �rst hydrodynamic system that properly describes rapid
granular �ows consistently with the kinetic formulation. To this end, we write our Boltzmann
equation in a non dimensional form using the dimensionless Knudsen number which is intended
to be sent to 0. There are several di�culties in such derivation, the �rst one coming from the fact
that the original Boltzmann equation is free-cooling and, thus, requires a self-similar change of
variables to introduce an homogeneous steady state. Such a homogeneous state is not explicit and
is heavy-tailed, which is a major obstacle to adapting energy estimates. Additionally, a central
challenge is to understand the relation between the restitution coe�cient, which quanti�es the
energy loss at the microscopic level, and the Knudsen number. This is achieved by identifying the
correct nearly elastic regime to capture nontrivial hydrodynamic behavior. We are, then, able to
prove exponential stability uniformly with respect to the Knudsen number for solutions of the
rescaled Boltzmann equation in a close to equilibrium regime. Finally, we prove that solutions to
the Boltzmann equation converge in a speci�c weak sense towards a hydrodynamic limit which
depends on time and space variables only through macroscopic quantities. Such macroscopic
quantities are solutions to a suitable modi�cation of the incompressible Navier-Stokes-Fourier
system which appears to be new in this context.

French translation. Dans cet article, nous fournissons la première dérivation rigoureuse d’équations
hydrodynamiques à partir de l’équation de Boltzmann pour les sphères dures inélastiques avec
faible inélasticité. Le système hydrodynamique que nous obtenons est un système de Navier-
Stokes-Fourier incompressible avec des termes de forçage autoconsistants et, à notre connaissance,
est donc le premier système hydrodynamique qui décrit correctement les écoulements granulaires
rapides conformément à la formulation cinétique. Pour parvenir à ce résultat, nous écrivons
l’équation de Boltzmann sous une forme adimensionnelle en utilisant le nombre de Knudsen qui
est destiné à tendre vers 0. Cette dérivation présente plusieurs di�cultés, la première provenant
du fait que l’équation de Boltzmann originale dissipe l’énergie cinétique et le refroidissement libre
du gaz nécessite un changement de variables auto-similaire pour introduire un état d’équilibre
(spatialement homogène). Un tel état homogène n’est pas explicite et présente une queue lourde, ce
qui constitue un obstacle majeur à l’adaptation des estimations d’énergie. En outre, comprendre la
relation entre le coe�cient de restitution, qui quanti�e la perte d’énergie au niveau microscopique,
et le nombre de Knudsen représente une importante di�culté. Ceci est réalisé en identi�ant le bon
régime quasi élastique pour capturer un comportement hydrodynamique non trivial. Nous sommes
alors en mesure de prouver la stabilité exponentielle uniformément par rapport au nombre de
Knudsen pour les solutions de l’équation de Boltzmann remise à l’échelle dans un régime proche
de l’équilibre. En�n, nous prouvons que les solutions de l’équation de Boltzmann convergent dans
un sens faible spéci�que vers une limite hydrodynamique qui ne dépend des variables de temps et
d’espace qu’à travers des quantités macroscopiques. Ces quantités macroscopiques sont solutions
d’une modi�cation appropriée du système de Navier-Stokes-Fourier incompressible qui semble
être nouveau dans ce contexte.
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Shorter Abstract. The paper provides the �rst rigorous derivation of hydrodynamic equations
from the Boltzmann equation for inelastic hard spheres and obtain a new system of hydrodynamic
equations describing granular �ows. One of the main issue is to identify the correct relation
between the restitution coe�cient (which quanti�es the rate of energy loss at the microscopic
level) and the Knudsen number which allows us to obtain non trivial hydrodynamic behavior. In
such a regime, we construct strong solutions to the inelastic Boltzmann equation, near thermal
equilibrium and prove that such solutions converge, in a speci�c weak sense, towards some hy-
drodynamic limit that depends on time and space variables only through macroscopic quantities
that satisfy a suitable modi�cation of the incompressible Navier-Stokes-Fourier system.

French translation. Nous obtenons dans ce papier la première dérivation rigoureuse d’équations
hydrodynamiques à partir de l’équation de Boltzmann pour des sphères dures inélastiques et
en déduisons un nouveau système d’équations hydrodynamiques décrivant les écoulements
granulaires. L’une des principales questions est d’identi�er la relation correcte – entre le coe�cient
de restitution (qui quanti�e le taux de perte d’énergie au niveau microscopique) et le nombre
de Knudsen – qui nous permet d’obtenir un comportement hydrodynamique non trivial. Dans
un tel régime, nous construisons des solutions fortes à l’équation de Boltzmann inélastique,
près de l’équilibre thermique et prouvons que de telles solutions convergent, dans un sens faible
spéci�que, vers une certaine limite hydrodynamique qui dépend des variables de temps et d’espace
uniquement à travers des quantités macroscopiques qui satisfont une modi�cation appropriée du
système incompressible de Navier-Stokes-Fourier.

1. Introduction

The derivation of hydrodynamic models from suitable nonlinear (and possibly non conser-
vative) kinetic equations is a challenging problem which has attracted a lot of attention in the
recent years. Besides the well-documented literature dealing with the Boltzmann equation (see
Section 1.6 hereafter), a large variety of new kinetic models and limiting processes have been
considered, spanning from high friction regimes for kinetic models of swarwing (see e.g. Karper
et al. (2015); Figalli & Kang (2019) for the Cucker-Smale model) to the reaction-di�usion limit for
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Fitzhugh-Nagumo kinetic equations Crevat et al. (2019). For �uid-kinetic systems, the literature
is even more important, we mention simply here the works Goudon et al. (2004a,b) dealing with
light or �ne particles regimes for the Vlasov-Navier-Stokes system and refer to Han-Kwan &
Michel (2021) for the more recent advances on the subject. We also mention the challenging study
of gas of charged particles submitted to electro-magnetic forces (Vlasov-Maxwell-Boltzmann
system) for which several incompressible �uid limits have been derived recently in the monograph
Arsénio and Saint-Raymond (2019).

We consider in the present paper the paradigmatic example of non conservative kinetic
equations given by the Boltzmann equation for inelastic hard spheres. In a regime of small
inelasticity, we derive in a suitable hydrodynamic limit an incompressible Navier-Stokes-Fourier
system with self-consistent forcing terms. This provides, to the best of our knowledge, the �rst
rigorous derivation of hydrodynamic system from kinetic granular �ows in physical dimension
d > 3.

1.1. Multiscale descriptions of granular gases. Granular materials are ubiquitous in nature
and understanding the behaviour of granular matter is a relevant challenge from both the physics
and mathematics viewpoints. Various descriptions of granular matter have been proposed in the
literature, see Garzó (2019). An especially relevant one consists in viewing granular systems as
clusters of a large number of discrete macroscopic particles (with size exceeding 1 µm, signi�cantly
larger than the one of a typical particle described in classical kinetic theory) su�ering dissipative
interactions. One speaks then of rapid granular �ows or gaseous granular matter. If the number
of particles is large enough, it is then common to adopt a kinetic modelling based upon suitable
modi�cation of the Boltzmann equation. As usual in kinetic theory, it is then particularly relevant
to deduce from this kinetic description the �uid behaviour of the system. This means, roughly
speaking, that we look at the granular gas at a scale larger than the mesoscopic one and aim to
capture the hydrodynamical features of it through the evolution of macroscopic quantities like
density, bulk velocity and temperature of the gas which satisfy suitable hydrodynamics equations.

One of the main objects of the present work is to make a �rst rigorous link between
these two co-existing descriptions by deriving a suitable modi�cation of incompressible
Navier-Stokes equation from the Boltzmann equation for inelastic hard-spheres as the
Knudsen number goes to zero.

Recall that the Knudsen number ε is proportional to the mean free path between collisions
and in order to derive hydrodynamic equations from the Boltzmann equation, the usual strategy
consists, roughly speaking, in performing a perturbation analysis in the limit ε→ 0 (meaning
that the mean free path is negligible when compared to the typical physical scale length). We
point out that these questions are perfectly understood in the elastic case (molecular gases) for
which rigorous results on the hydrodynamic limits of the Boltzmann equation have been obtained,
we refer to the next Section 1.6 for more details and to Saint-Raymond (2009a) for an up-to-date
review.
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The picture in the context of granular gases is quite di�erent. In fact, a satisfying hydrodynamic
equation that properly describes rapid granular �ows is still a controversial issue among the
physics community. The continuous loss of kinetic energy makes granular gases an open system as
far as thermodynamics is concerned. Moreover, no non-trivial steady states exist in granular gases
without an external energy supply which makes granular gases a prototype of non-equilibrium
systems. This is an important obstacle in the derivation of hydrodynamical equations from
the kinetic description since it is expected that equilibrium states play the role of the typical
hydrodynamic solution where time-space dependence of the single-particle distribution function
F (t, x, v) occurs only through suitable hydrodynamic �elds like density %(t, x), bulk velocity
u(t, x), and temperature θ(t, x). An additional di�culty is related to the size of particles and scale
separation. Recall that granular gases involve macroscopic particles whose size is much larger
than the one described by the usual Boltzmann equation with elastic interactions referred to as
molecular gases. As the hydrodynamic description occurs on large time scales (compared to the
mean free time) and on large spatial scales (compared to the mean free path) the mesoscopic –
continuum scale separation is problematic to justify in full generality for granular gases. We refer
to (Garzó, 2019, Section 3.1, p. 102) for more details on this point and observe here that the main
concern is related to the time scale induced by the evolution of the temperature (see (1.13) herafter).
In particular, as observed in Garzó (2019), this problem can only be answered by ensuring that the
d+ 2 hydrodynamic modes associated to density, velocity and temperature decay more slowly
than the remaining kinetic excitations at large times. This is the only way that the hydrodynamic
excitations emerge as the dominant dynamics. All these physically grounded obstacles make the
derivation of hydrodynamic equations from the Boltzmann equation associated to granular gases
a reputedly challenging open problem. Quoting Brey & Dufty (2005):

“the context of the hydrodynamic equations remains uncertain. What are the relevant
space and time scales? How much inelasticity can be described in this way?”

The present paper is, to the best of our knowledge, the �rst rigorous answer to these relevant
problems, at least in dimension d > 3. We already mentioned that the key point in our analysis
is to identify the correct regime which allows to answer these questions: the nearly elastic one.
In this regime the energy dissipation rate in the systems happens in a controlled fashion since
the inelasticity parameter is compensated accordingly to the number of collisions per time unit.
This process mimics viscoelasticity as particle collisions become more elastic as the collision
dissipation mechanism increases in the limit ε → 0 (see Assumption 1.1 below). In this way,
we are able to consider a re-scaling of the kinetic equation in which a peculiar intermediate
asymptotic emerges and prevents the total cooling of the granular gas.

Other regimes can be considered depending on the rate at which kinetic energy is dissipated;
for example, an interesting regime is the mono-kinetic one which considers the extreme case of
in�nite energy dissipation rate. In this way, the limit is formally described by enforcing a Dirac
mass solution in the kinetic equation yielding the pressureless Euler system (corresponding to
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sticky particles). Such a regime has been rigorously addressed in the one-dimensional framework
in the interesting contribution Jabin & Rey (2017). It is an open question to extend such analysis
to higher dimensions since the approach of Jabin & Rey (2017) uses the so-called Bony functional
which is a tool speci�cally tailored for 1D kinetic equations.

1.2. The Boltzmann equation for granular gases. We consider here the (freely cooling)
Boltzmann equation which provides a statistical description of identical smooth hard spheres
su�ering binary and inelastic collisions:

∂tF (t, x, v) + v ·∇xF (t, x, v) = Qα(F, F ) (1.1)

supplemented with initial condition F (0, x, v) = Fin(x, v), where F (t, x, v) is the density of
granular particles having position x ∈ Td and velocity v ∈ Rd at time t > 0 and d > 3. We
consider here for simplicity the case of �at torus

Td` = Rd/(2π `Z)d (1.2)

for some typical length-scale ` > 0. This corresponds to periodic boundary conditions:

F (t, x+ 2π `ei, v) = F (t, x, v) , ∀ i = 1, . . . , d

where ei is the i-th vector of the canonical basis of Rd. The collision operator Qα is de�ned in
weak form asˆ

Rd
Qα(g, f)(v)ψ(v) dv =

1

2

ˆ
Rd×Rd

f(v) g(v∗) |v − v∗|Aα[ψ](v, v∗) dv∗ dv , (1.3)

where

Aα[ψ](v, v∗) =

ˆ
Sd−1

(ψ(v′) + ψ(v′∗)− ψ(v)− ψ(v∗))b(σ · û) dσ , (1.4)

and the post-collisional velocities (v′, v′∗) are given by

v′ = v +
1 + α

4
(|u|σ − u) , v′∗ = v∗ −

1 + α

4
(|u|σ − u) ,

where u := v − v∗ , û :=
u

|u|
.

(1.5)

Here, dσ denotes the Lebesgue measure on Sd−1 and the angular part b of the collision kernel
appearing in (1.4) is a non-negative measurable mapping integrable over Sd−1. There is no loss of
generality assuming ˆ

Sd−1

b(σ · ẑ) dσ = 1 , ∀ ẑ ∈ Sd−1 . (1.6)

Additional technical assumptions on the angular kernel b( · ) will be needed in the sequel. Namely,
in the rest of the paper, we suppose that the two following conditions are satis�ed.
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• The mapping σ ∈ Sd−1 7→ b(σ · ẑ) belongs to L2(Sd−1) for any ẑ ∈ Sd−1, i.e.
ˆ 1

−1
b2(s)

(
1− s2

) d−3
2 ds <∞ , (1.7)

which is useful to get estimates on the di�erence between Qα and Q1 (see Lemma 2.1).
• The following holds

ˆ 1

−1
b(s)

[
(1− s)

d−6
4 (1 + s)

d−3
2 + (1 + s)

d−6
4 (1− s)

d−3
2

]
ds <∞ , (1.8)

we mention that this integral needs to be �nite to get bounds on the bilinear operator Qα
on L2

v (see Theorem B.1) as well as for deriving smoothness of the so-called Burnett
functions (see Lemma A.3).

It is worth mentioning that in the physical case of hard spheres in dimension 3, b is constant
and is thus included in our assumptions since (1.7) and (1.8) hold true.

The fundamental distinction between the classical elastic Boltzmann equation and that asso-
ciated to granular gases lies in the role of the parameter α ∈ (0, 1), the coe�cient of restitution.
This coe�cient is given by the ratio between the magnitude of the normal component (along the
line of separation between the centers of the two spheres at contact) of the relative velocity after
and before the collision (see Section 2 for the detailed microscopic velocities). The case α = 1 cor-
responds to perfectly elastic collisions where kinetic energy is conserved. However, when α < 1,
part of the kinetic energy of the relative motion is lost since

|v′|2 + |v′∗|2 − |v|2 − |v∗|2 = −1− α2

4
|u|2 (1− σ · û) 6 0 (1.9)

where we recall that u = v − v∗. It is assumed in this work that α is independent of the relative
velocity u (refer to Alonso (2009), Alonso & Lods (2014), and Alonso et al. (2021) for the viscoelastic
restitution coe�cient case). Notice that the microscopic description (1.5) preserves the momentum

v′ + v′∗ = v + v∗ .

Let us introduce the macroscopic density and bulk velocity respectively de�ned by

R(t) :=

ˆ
Rd×Td`

F (t, x, v) dv dx and U(t) :=

ˆ
Rd×Td`

vF (t, x, v) dv dx .

These quantities are preserved over time, namely:

d

dt
R(t) =

d

dt
U(t) = 0 .

Consequently, there is no loss of generality in assuming that

R(t) = R(0) = 1 , U(t) = U(0) = 0 , ∀ t > 0 .
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As already mentioned, the main contrast between elastic and inelastic gases is that in the latter
the granular temperature

T (t) :=
1

|Td` |

ˆ
Rd×Td`

|v|2F (t, x, v) dv dx

is constantly decreasing
d

dt
T (t) = −(1− α2)D(F (t), F (t)) 6 0 , ∀ t > 0 .

HereD(g, g) denotes the normalised energy dissipation associated toQα, see Mischler & Mouhot
(2006), given for suitable f, g by

D(f, g) :=
γb
4

ˆ
Td`

dx

|Td` |

ˆ
Rd×Rd

f(x, v∗)g(x, v)|v − v∗|3 dv dv∗ (1.10)

with

γb :=

ˆ
Sd−1

1− σ · û
2

b(σ · û) dσ = |Sd−2|
ˆ π

0
b(cos θ) (sin θ)d−2 sin2

(
θ

2

)
dθ.

In fact, it is possible to show that
T (t) −−−→

t→∞
0

which expresses the total cooling of granular gases. Determining the exact dissipation rate of the
granular temperature is an important question known as Ha�’s law, see Ha� (1983).

1.3. Navier-Stokes scaling. To capture some hydrodynamic behaviour of the gas, we need to
write the above equation in nondimensional form introducing the dimensionless Knudsen number

ε :=
mean free path

spatial length-scale
which is assumed to be small. We introduce then a rescaling of time and space to capture the
hydrodynamic limit and introduce the particle density

Fε(t, x, v) = F

(
t

ε2
,
x

ε
, v

)
, ∀ t > 0 . (1.11)

In this case, we choose for simplicity ` = ε in (1.2) which ensures now that Fε is de�ned on
R+×Td×Rd with Td = Td1. From now on, we assume for simplicity that the torus Td is equipped
with the normalized Lebesgue measure, i.e. |Td| = 1. It is well-know that, in the classical elastic
case, this scaling leads to the incompressible Navier-Stokes, however, other scalings are possible
that yield di�erent hydrodynamic models. Under such a scaling, the typical number of collisions
per particle per time unit is ε−2, more speci�cally, Fε satis�es the rescaled Boltzmann equation

ε2∂tFε(t, x, v) + ε v ·∇xFε(t, x, v) = Qα(Fε, Fε) , (x, v) ∈ Td × Rd , (1.12a)
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supplemented with initial condition

Fε(0, x, v) = F εin(x, v) = Fin

(x
ε
, v
)
. (1.12b)

Conservation of mass and density is preserved under this scaling, consequently, we assume that

Rε(t) :=

ˆ
Rd×Td

Fε(t, x, v) dv dx = 1 , Uε(t) :=

ˆ
Rd×Td

Fε(t, x, v)v dv dx = 0 , ∀ t > 0 ,

and, setting now

Tε(t) :=

ˆ
Rd×Td

|v|2Fε(t, x, v) dv dx , ∀ t > 0 , ∀ ε > 0 ,

the cooling of the granular gas is now given by the equation
d

dt
Tε(t) = −1− α2

ε2
D(Fε(t), Fε(t)) , ∀ t > 0 , (1.13)

where we recall that D is de�ned in (1.10).

1.4. Self-similar variable and homogeneous cooling state. Various forcing terms have been
added to (1.12a) depending on the underlying physics. Forcing terms prevent the total cooling of
the gas (heated bath, thermal bath, see Villani (2006) for details) since they act as an energy supply
source to the system and induce the existence of a non-trivial steady state. These are, however,
systems di�erent from the free-cooling Boltzmann equation (1.12a) that we aim to investigate
here.

To understand better this free-cooling scenario, it is still possible to introduce an intermediate
asymptotics and a steady state to work with. This is done by performing a self-similar change of
variables

Fε(t, x, v) = Vε(t)
dfε
(
τε(t), x, Vε(t)v

)
, (1.14a)

with
τε(t) :=

1

cε
log(1 + cε t) , Vε(t) := (1 + cε t) , t > 0, cε > 0 . (1.14b)

With the special choice

cε :=
1− α
ε2

, (1.14c)

we can prove that fε satis�es

ε2∂tfε(t, x, v) + εv ·∇xfε(t, x, v) + (1− α)∇v · (vfε(t, x, v)) = Qα(fε, fε) , (1.15)

with initial condition
fε(0, x, v) = F εin(x, v) . (1.16)

The underlying drift term (1− α)∇v · (vf(t, x, v)) acts as an energy supply which prevents the
total cooling down of the gas. Indeed, it has been shown in a series of papers (Mischler et al. (2006);
Mischler & Mouhot (2006, 2009)) that there exists a spatially homogeneous steady stateGα to (1.15)
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which is unique for α ∈ (α0, 1) for an explicit threshold value α0 ∈ (0, 1) 1. More speci�cally,
for α ∈ (α0, 1), there exists a unique solution Gα to the spatially homogeneous steady equation

(1− α)∇v · (vGα(v)) = Qα(Gα, Gα) with
ˆ
Rd
Gα(v)

(
1

v

)
dv =

(
1

0

)
. (1.17)

Moreover, there exists some constant C > 0 independent of α such that

‖Gα −M‖L1
v(〈v〉2) 6 C(1− α) (1.18)

whereM is the Maxwellian distribution

M(v) := (2πϑ1)−
d
2 exp

(
−|v|

2

2ϑ1

)
, v ∈ Rd , (1.19)

for some explicit temperature ϑ1 > 0. The Maxwellian distributionM(v) is a steady solution
for α = 1 and its prescribed temperature ϑ1 (which ensures (1.18) to hold) will play a role in the
rest of the analysis.

Notice also that the equation in self-similar variables (1.15) preserves mass and vanishing
momentum. Indeed, a simple computation based on (1.3) gives that

d

dt

ˆ
Rd×Td

fε(t, x, v)v dv dx =
1− α
ε2

ˆ
Rd×Td

fε(t, x, v)v dv dx .

From now on, we will always assume that
ˆ
Td×Rd

fε(0, x, v)

 1

v

|v|2

 dv dx =

ˆ
Td×Rd

F in
ε (x, v)

 1

v

|v|2

 dv dx =

 1

0

Eε

 (1.20a)

with Eε > 0 and
Eε − dϑ1

ε
−−−→
ε→0

0 . (1.20b)

The choice of prescribing as initial energy some constant Eε > 0 satisfying ε−1(Eε − dϑ1)→ 0

as ε→ 0 for our problem is natural because dϑ1 is the energy of the MaxwellianM introduced
in (1.19) and as we shall see later on, the restitution coe�cient α is intended to tend to 1 as ε goes
to 0 in our analysis (see Assumption 1.1).

Using assumption (1.20a) and the fact that Gα has mass 1 and vanishing momentum, it holdsˆ
Rd×Td

fε(t, x, v)

(
1

v

)
dv dx =

(
1

0

)
, ∀ t > 0 .

Three main questions are addressed in this work regarding the solution to (1.15):
1Notice that the results of Mischler & Mouhot (2006, 2009) are stated under restrictive assumptions on the collision

kernel b( · ) essentially needed for moment control of the solution to the Boltzmann equation for granular gases.
Thanks to a general version of the Povzner lemma (see Alonso & Lods (2010, 2013a)), those results are valid under the
assumptions (1.7) – (1.8), see Alonso & Lods (2013a) for details.
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(Q1) First, we aim to prove the existence and uniqueness of solutions to (1.15) in a close to
equilibrium setting, i.e. solutions which are de�ned globally in time and such that

sup
t>0
‖fε(t)−Gα‖ 6 δ (1.21)

for some positive and explicit δ > 0 in a suitable norm ‖ · ‖ of a functional space to be identi-
�ed. The close-to-equilibrium setting is quite relevant for very small Knudsen numbers given
the large number of collisions per unit time which keeps the system thermodynamically
relaxed.

(Q2) More importantly (though closely related), the scope here is to provide estimates on the
constructed solutions fε which are uniform with respect to ε. This means that, in the previous
point, δ > 0 is independent of ε. In fact, we are able to prove exponential time decay for the
di�erence ‖fε(t)−Gα‖.

(Q3) Finally, we aim to prove that, as ε → 0, the solution fε(t) converges towards some
hydrodynamic solution which depends on (t, x) only through macroscopic quantities
(%(t, x), u(t, x), θ(t, x)) which are solutions to a suitable modi�cation of the incompressible
Navier-Stokes system.

The central underlying assumption in the previous program is the following relation between the
restitution coe�cient and the Knudsen number.

Assumption 1.1. The restitution coe�cient α( · ) is a continuously decreasing function of the
Knudsen number ε satisfying the scaling behaviour

α(ε) = 1− ε2(λ0 + η(ε)) (1.22)

with λ0 > 0 and some function η( · ) that tends to 0 as ε goes to 0. We also assume that there
exists ε0 > 0 such that η( · ) is positive on (0, ε0) (which in particular implies that ε−2(1−α(ε)) > 0

for ε ∈ (0, ε0)).

As mentioned before, in this regime the energy dissipation rate is controlled along time by
mimicking a viscoelastic property in the granular gas which is at contrast to other regimes such
as the mono-kinetic limit. In viscoelastic models, nearly elastic regimes emerges naturally on
large-time scale, see Bobylev et al. (2000); Alonso & Lods (2014); Alonso et al. (2021) for details.

Because ε→ 0, Assumption 1.1 means that the limit produces a model of the cumulative e�ect
of nearly elastic collisions in the hydrodynamic regime. Two situations are of interest in our
analysis

Case 1: If λ0 = 0 the cumulative e�ect of the inelasticity is too weak in the hydrodynamic scale
and the expected model is the classical Navier-Stokes equation.

Case 2: If 0 < λ0 <∞, the cumulative e�ect is visible in the hydrodynamic scale and we expect
a model di�erent from the Navier-Stokes equation accounting for that. As we mentioned,
we require λ0 to be relatively small compared to some explicit quantities completely
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determined by the mass and energy of the initial datum, say, 0 < λ0 � 1 with some
explicit upper bounds on λ0.

We wish to emphasize here that, without Assumption 1.1, it appears hopeless to resort to any
kind of linearized technique, which is somehow at the basis of the Navier-Stokes scaling. Indeed,
even in the spatially homogeneous case, the asymptotic behaviour of the Boltzmann equation is
not clearly understood far from the elastic case (see the discussion in the introduction of Mischler
& Mouhot (2009)). We strongly believe that we captured with Assumption 1.1 the correct regime
that brings together the delicate balance between inelasticity and Knudsen number adapted to
the hydrodynamic asymptotics for the constant restitution coe�cient case. We also remark that
it is very likely that the more adapted model of viscoelastic hard spheres will display naturally
such balance and enjoy the nearly inelastic regime in the long-time dynamic (see Alonso & Lods
(2014); Alonso et al. (2021) for more details).

1.5. Main results. The main results are both concerned with the solutions to (1.15). The �rst one
is the following Cauchy theorem regarding the existence and uniqueness of close-to-equilibrium
solutions to (1.15). A precise statement is given in Theorem 5.1 in Section 5.

Theorem 1.2. Under Assumption 1.1, one can construct two suitable Banach spaces E1 ⊂ E such
that, for ε, λ0 and η0 su�ciently small with respect to the initial mass and energy, if

‖F εin −Gα(ε)‖E 6 ε η0

then the inelastic Boltzmann equation (1.15) with initial condition (1.16) has a unique solution

fε ∈ C
(
[0,∞); E

)
∩ L1

(
[0,∞); E1

)
satisfying, for any r ∈ (0, 1)∥∥fε(t)−Gα(ε)

∥∥
E 6 C(r)εη0 exp (−(1− r)λε t) , ∀ t > 0

for some positive constant C(r) depending on r but not on ε and with λε ∼
ε→0

λ0 + η(ε) where λ0

and η( · ) have been introduced in Assumption 1.1.

Remark 1.3. It is worth pointing out that the close-to-equilibrium solutions we construct are shown
to decay with an exponential rate as close as we want to λε ∼ 1−α(ε)

ε2
. The rate of decay can thus be

made uniform with respect to the Knudsen number ε if λ0 > 0 in Assumption 1.1 and if λ0 = 0, we
obtain a rate of decay as close as we want to η(ε), we thus obtain a uniform bound in time but not a
uniform rate of decay.

Theorem 1.2 completely answers queries (Q1) and (Q2) where the functional spaces E1 ⊂ E
are chosen to be L1

vL
2
x-based Sobolev spaces

E = L1
vWm,2

x (〈v〉q) , E1 = L1
vWm,2

x (〈v〉q+1)

for suitable choice of m, q. Exact notations for the functional spaces are introduced in Section 1.8.
We already point out here the fact that we do not assume any kind of regularity in the velocity
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variable v except the mere integrability (no derivative in v are assumed in the spaces E1 ⊂ E).
The close-to-equilibrium solutions we construct are shown to decay with a rate that can be made
uniform with respect to the Knudsen number ε. Recall here that, since Assumption 1.1 is met, the
homogeneous cooling state depends on ε and Gα(ε) →M as ε→ 0.

The estimates on the solution fε provided by Theorem 1.2 are enough to answer (Q3) in the
following (we refer to Section 6 for a more accurate statement provided by Theorem 6.1).

Theorem 1.4. Under the assumptions of Theorem 1.2, set

fε(t, x, v) = Gα(ε) + ε hε(t, x, v) ,

with hε(0, x, v) = hεin(x, v) = ε−1
(
F εin −Gα(ε)

)
. For a suitable class of "well-prepared" initial

datum hεin (see Theorem 6.1 for a precise de�nition) and any T > 0, the family {hε}ε converges in
some weak sense to a limit h = h(t, x, v) which is such that

h(t, x, v) =

(
%(t, x) + u(t, x) · v +

1

2
θ(t, x)(|v|2 − dϑ1)

)
M(v) , (1.23)

where (%, u, θ) = (%(t, x), u(t, x), θ(t, x)) are suitable solutions to the following incompressible
Navier-Stokes-Fourier system with forcing

∂tu− ν
ϑ1

∆xu+ ϑ1 u ·∇x u+∇xp = λ0u ,

∂t θ − γ
ϑ21

∆xθ+ϑ1 u ·∇xθ =
λ0 c̄

2(d+ 2)

√
ϑ1 θ ,

divxu = 0 , %+ ϑ1 θ = 0 ,

(1.24)

subject to initial conditions (%in, uin, θin) (entirely determined by the limiting behaviour of hεin as
ε→ 0). The viscosity ν > 0 and heat conductivity γ > 0 are explicit and λ0 > 0 is the parameter
appearing in (1.22). The parameter c̄ > 0 is depending on the collision kernel b( · ).

Remark 1.5. The data that we consider here are actually quite general. Indeed, the assumption
that we make only tells that the macroscopic projection of hin

ε converges towards some macroscopic
distribution and we do not make any assumption on the macroscopic quantities of this distribution
(see (6.1)). Namely, we do not suppose that the divergence free and the Boussinesq relations are
satis�ed by (%0, u0, θ0), oscillations induced by acoustic waves that could be created by such a lack
of assumption is actually absorbed in our notion of weak convergence, the precise notion of which
being very peculiar and strongly related to the a priori estimates used for the proof of Theorem 1.2
(see Theorem 6.3 for more details on the type of convergence).

Remark 1.6. Whenever Assumption 1.1 is not in force, the well-posedness as well as the hydro-
dynamic limit obtained in Theorems 1.2 and 1.4 are open questions to the best of our knowledge.
Actually, even in the spatially homogeneous case, some small inelasticity assumption is necessary to
prove the uniqueness of the homogeneous cooling state as well as its stability (see Mischler & Mouhot
(2009)). This is in particular due to the absence of H-theorem for granular gases which does provide



14 RICARDO ALONSO, BERTRAND LODS, AND ISABELLE TRISTANI

any general nonlinear mechanism driving the solutions towards its equilibrium state like it happens
in the elastic case.

It is classical for incompressible Navier-Stokes equations, see (Majda & Bertozzi, 2002, Sec-
tion 1.8, Chapter I), that the pressure term p acts as a Lagrange multiplier due to the constraint
divxu = 0 and it is recovered (up to a constant) from the knowledge of (%, u, θ).

We point out that the above incompressible Navier-Stokes-Fourier system (6.4) with the self-
consistent forcing terms on the right-hand-side is a new system of hydrodynamic equations that,
to our knowledge, has never been rigorously derived earlier to describe granular �ows. We also
notice that the last two identities in (6.4) give respectively the incompressibility condition and a
strong Boussinesq relation (see the discussion in Section 6). It is important to point out that in
the case λ0 = 0, one recovers the classical incompressible Navier-Stokes-Fourier system derived
from elastic Boltzmann equation, see Saint-Raymond (2009a). This proves continuity with respect
to the restitution coe�cient α.

Moreover, in both cases λ0 = 0 or λ0 > 0, the limiting system (6.4) is conservative (for all
quantities %(t, x), u(t, x), θ(t, x) as soon as the initial bulk velocity is vanishing) which illustrates
the perfect balance of the self-similar scaling in the hydrodynamic limit.

We �nally mention that Theorem 1.4 together with the relations (1.14) provide also a quite
precise description of the hydrodynamic behaviour of the original problem (1.12a) in physical
variables. In this framework, the aforementioned Case 2 for which λ0 > 0 enjoys some special
features for which uniform-in-time error estimates can be obtained. Turning back to the original
problem (1.12a) not only gives a precise answer to Ha�’s law (with an explicit cooling rate of the
granular temperature Tε(t)) but also describes the cooling rate of the local temperature of the gas.
Precisely, one can deduce the following

Theorem 1.7 (Ha�’s law: local and global). Let Assumption 1.1 be in force with

λ0 > 0.

We consider a solutionFε(t, x, v) to (1.12a) as constructed in Theorem 1.2 for ε0, λ0 and η0 su�ciently
small and de�ne the local temperature of the gas Tε(t, x) and the global temperature Tε(t) as

Tε(t, x) =

ˆ
Rd
Fε(t, x, v)|v|2dv x ∈ Td, Tε(t) =

1∣∣Td∣∣
ˆ
Td
Tε(t, x)dx, t > 0.

Then, Tε(t) ≈ dϑ1
(1+λ0t)2

, for t� 1
λ0
, and there exist C0, C1 > 0 such that

C0

(1 + λ0t)
2 6 Tε(t, x) 6

C1

(1 + λ0t)
2 , ∀ε ∈ (0, ε0)

for any t > 0 and x ∈ Td.

We point out that the time-decay of the temperature for granular gases has been deduced,
under some heuristic considerations, in Ha� (1983) and an algebraic decay of the order (1 + t)−2
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has been established. This is known as Ha�’s law for the cooling of granular gases. A rigorous
proof of such a decay has been established in the spatially homogeneous setting in Mischler &
Mouhot (2009) in a regime of relative small inelasticity (i.e. assuming α > α0 for some explicit
value of α0 ∈ (0, 1) and for an initial datum Fin ∈ Lp(Rd) (p > 1). This result has been extended
by the �rst two authors in Alonso & Lods (2013b) to consider initial datum with �nite entropy.
For the physically relevant model of visco-elastic hard-spheres, Ha�’s law predicts a di�erent
decay and has been proved rigorously in the spatially homogeneous setting in Alonso & Lods
(2010). To our knowledge, the above result is the �rst result applying to spatially inhomogeneous
setting and it shows that the decay of the global temperature predicted by Ha�’s law is actually
accurate also for the local temperature: in the perturbative setting considered here, Ha�’s law
occurs somehow uniformly with respect to the spatial variable x ∈ Td. We refer to Section 7 for a
more detailed discussion.

Let us summarize here the main original features of this paper:
• We identify the correct regime of weak inelasticity (Assumption 1.1) which, with a novel

use of self-similarity techniques, allows to balance uniformly, in terms of the Knudsen
number, the in-and-out �uxes of energy and allows to exploits fully the non Gaussian
steady state in the spatially inhomogeneous setting.
• In order to derive exploitable hypocoercivity and energy estimates, we craft a very �ne

analysis of the collision operator Qα and, in particular, provides a sharp quanti�cation of
the nearly elastic limit ‖Qα(f, g)−Q1(f, g)‖ in terms of α. Several existing results have
to be re�ned drastically in order to be able to capture precise smallness estimates of the
linearized collision operators.
• We introduce a sophisticated argumentation (including some non standard Gronwall

Lemma) exploiting fully the interplay between linear and nonlinear estimates. This
approach leads to uniform estimates for the nonlinear spatially inhomogeneous inelastic
Boltzmann model in terms of the Knudsen number as well as some long-time decay of the
solutions to (1.27).
• We bring a precise quanti�cation of the macroscopic observables in the hydrodynamic limit

yielding �rst to a modi�ed Navier-Stokes-Fourier system and also to a rigorous derivation
of both the global and local versions of Ha�’s law in the spatially inhomogeneous setting.

The reader will experience a self-contained and detailed presentation including the material
corresponding to the full derivation of the modi�ed Navier-Stokes-Fourier system and the relevant
estimates for the Boltzmann collision operator.

1.6. Hydrodynamic limits in the elastic case. The derivation of hydrodynamic limits from the
elastic Boltzmann equation is an important problem which received a lot of attention and its origin
can be traced back at least to D. Hilbert exposition of its 6th problem at the 1900 International
Congress of Mathematicians. We refer the reader to Saint-Raymond (2009a); Golse (2014) for an
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up-to-date description of the mathematically relevant results in the �eld. Roughly speaking three
main approaches are adopted for the rigorous derivation of hydrodynamic limits.
A) Many of the early mathematical justi�cations of hydrodynamic limits of the Boltzmann equa-

tion are based on (truncated) asymptotic expansions of the solution around some hydrodynamic
solution

Fε(t, x, v) = F0(t, x, v)

(
1 +

∑
n

εnFn(t, x, v)

)
(1.25)

where, typically

F0(t, x, v) =
%(t, x)

(2πθ(t, x))
d
2

exp

(
−|v − u(t, x)|2

2θ(t, x)

)
(1.26)

is a local Maxwellian associated to the macroscopic �elds which is required to satisfy the
limiting �uid dynamic equation. This approach (or a variant of it based upon Chapman-Enskog
expansion) leads to the �rst rigorous justi�cation of the compressible Euler limit up to the �rst
singular time for the solution of the Euler system in Ca�isch (1980) (see also Lachowicz (1987)
for more general initial data and a study of initial layers). In the same way, a justi�cation
of the incompressible Navier-Stokes limit has been obtained in De Masi et al. (1989). This
approach deals mainly with strong solutions for both the kinetic and �uid equations.

B) Another important line of research concerns weak solutions and a whole program on this
topic has been introduced in Bardos et al. (1991, 1993). The goal is to prove the convergence
of the renormalized solutions to the Boltzmann equation (as obtained in Di Perna & Lions
(1990)) towards weak solutions to the compressible Euler system or to the incompressible

Navier-Stokes equations. This program has been continued exhaustively and the convergence
have been obtained in several important results (see Golse & Saint-Raymond (2004, 2009);
Jiang & Masmoudi (2017); Levermore & Masmoudi (2010); Lions & Masmoudi (2001a,b) to
mention just a few). We remark that, in the notion of renormalized solutions for the classical
Boltzmann equation, a crucial role is played by the entropy dissipation (H-theorem) which
asserts that the entropy of solutions to the Boltzmann equation is non increasing

d

dt

ˆ
Rd×Td

Fε logFε(t, x, v) dv dx 6 0 .

This a priori estimate is fully exploited in the construction of renormalized solutions to the
classical Boltzmann equation and is also fundamental in some justi�cation arguments for the
Euler limit, see Saint-Raymond (2009b).

C) A third line of research deals with strong solutions close to equilibrium and exploits a careful
spectral analysis of the linearized Boltzmann equation. Strong solutions to the Boltzmann
equation close to equilibrium have been obtained in a weightedL2-framework in the work Ukai
(1974) and the local-in-time convergence of these solutions towards solution to the compressible
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Euler equations have been derived in Nishida (1978). For the limiting incompressible Navier-
Stokes solution, a similar result have been carried out in Bardos & Ukai (1991) for smooth
global solutions in R3 with a small initial velocity �eld. The smallness assumption has been
recently removed in Gallagher & Tristani (2020) allowing to treat also non global in time
solutions to the Navier-Stokes equation. These results as well as Briant et al. (2019) exploit
a very careful description of the spectrum of the linearized Boltzmann equation derived in
Ellis & Pinsky (1975). We notice that they are framed in the space L2(M−1) where the
linearized Boltzmann operator is self-adjoint and coercive. The fact that the analysis of Ellis &
Pinsky (1975) has been extended recently in Gervais (2021) to larger functional spaces of the
type L2

v(〈 · 〉q) opens the gate to some re�nements of several of the aforementioned results.
We also mention here the work Jiang et al. (2018) which deals with an energy method in
L2(M−1) spaces (see also Guo et al. (2010); Guo (2016) and Rachid (2021)) in order to prove
the strong convergence of the solutions to the Boltzmann equation towards the incompressible
Navier-Stokes equation without resorting to the work of Ellis & Pinsky (1975). We also refer
to Gervais & Lods (2023) for a recent uni�ed and spectral approach to the hydrodynamic
limits for strong solutions of various kinetic equations.

We mention �nally that the works Briant et al. (2019), Carrapatoso et al. (2022) and Gervais (2022)
were the main inspirations to answer questions (Q1)-(Q2). Indeed, in Briant et al. (2019) and
in Gervais (2022), estimates on the elastic Boltzmann equation in Sobolev spaces with polynomial
weight are obtained uniformly with respect to the Knudsen number ε. On the other hand, the work
Carrapatoso et al. (2022) introduces the main hypocoercivity estimates without derivative in the
velocity variables which play a fundamental role in our analysis. To answer question (Q3), we
will resort to ideas introduced in the theory of renormalized solutions Bardos et al. (1991, 1993);
Golse & Saint-Raymond (2004) that we adapt to the notions of solutions we are dealing with here.
We notice here already that we cannot resort to the work of Ellis & Pinsky (1975) and need to
carefully exploit the properties of the solutions as constructed in Theorem 1.2.

1.7. The challenge of hydrodynamic limits for granular gases. There are several reasons
which make the derivation of hydrodynamic limits for granular gases a challenging question at
the physical level. In regard of the mathematical aspects of the hydrodynamical limit, several
hurdles stand on way when trying to adapt the aforementioned approaches:

I) With respect to the strategy given in A), the main di�culty lies in the identi�cation of the
typical hydrodynamic solution. Such solution is such that the time-space dependence of the
one-particle distribution function F (t, x, v) occurs only through suitable hydrodynamic
�elds like density %(t, x), bulk velocity u(t, x), and temperature θ(t, x). This is the role
played by the Maxwellian F0 in (1.26) whenever α = 1 and one wonders if the homogeneous
cooling state Gα plays this role here. This is indeed the case up to �rst order capturing the
fat tails of inelastic distributions, yet surprisingly, a suitable Maxwellian plays the role of the
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hydrodynamic solution in the ε-order correction. This Gaussian behaviour emerges in the
hydrodynamic limit because of the near elastic regime that we treat here.2

II) The direction promoted in B) appears for the moment out of reach in the context of granular
gases. Renormalized solutions in the context of the inelastic Boltzmann equation (1.27) have
not been obtained due to the lack of an H-Theorem for granular gases. It is unclear if the
classical entropy (or a suitable modi�cation of it) remains bounded in general for granular
gases.

III) Homogeneous cooling states Gα are not explicit, this is a technical di�culty when adapting
the approach of Ellis & Pinsky (1975) for the spectral analysis of the linearized inelastic
Boltzmann equation in the spatial Fourier variable. Partial interesting results have been
obtained in Rey (2013) (devoted to di�usively heated granular gases) but they do not give a
complete asymptotic expansion of eigenvalues and eigenfunctions up to the order leading to
the Navier-Stokes asymptotic. We mention that obtaining an analogue of the work Ellis &
Pinsky (1975) for granular gases would allow, in particular, to quantify the convergence rate
towards the limiting model as in the recent work Gallagher & Tristani (2020).

IV) A major obstacle to adapt energy estimates and spectral approach lies in the choice of
functional spaces. While the linearized Boltzmann operator associated to elastic interactions
is self-adjoint and coercive in the weightedL2-spaceL2

v(M−1), there is no such “self-adjoint”
space for the inelastic case. This yields technical di�culties in the study of the spectral
analysis of the linearized operator which is still actually missing. Moreover, the energy
estimates of Guo et al. (2010); Guo (2016); Jiang & Masmoudi (2017); Jiang et al. (2018)
are essentially based upon the coercivity of the linearized operator. For granular gases, it
seems that one needs to face the problem directly in a L1

v-setting. Points III) and IV) make
the approach C) di�cult to directly adapt.

1.8. Notations and de�nitions. We �rst introduce some useful notations for function spaces.
For any nonnegative weight function m : Rd → R+ (notice that all the weights we consider
here will depend only on velocity, i.e. m = m(v)), we de�ne LqvLpx(m), 1 6 p, q 6 +∞, as the
Lebesgue space associated to the norm

‖h‖LqvLpx(m) = ‖‖h( · , v)‖Lpxm(v)‖Lqv .

We also consider the standard higher-order Sobolev generalizationsWσ,q
v Ws,p

x (m) for any σ, s ∈ N
de�ned by the norm

‖h‖Wσ,q
v Ws,p

x (m) =
∑

06s′6s, 06σ′6σ,
s′+σ′6max(s,σ)

‖‖∇s′x∇σ
′
v h( · , v)‖Lpxm(v)‖Lqv .

2See the interesting discussion in Villani (2006), especially the Section 2.8 entitled “What Is the Trouble with
Non-Gaussianity”
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This de�nition reduces to the usual weighted Sobolev space Ws,p
x,v(m) when q = p and σ = s. For

m ≡ 1, we simply denote the associated spaces by LqvLpx and Wσ,q
v Ws,p

x .
We consider in the sequel the general weight

$s(v) := (1 + |v|2)
s
2 , ∀ v ∈ Rd , ∀ s > 0 .

For any z ∈ Rd, z 6= 0, we will denote by ẑ = z
|z| the associated unit vector. For two tensors

A = (Ai,j), B = (Bi,j) ∈Md(R), we denote by A : B the scalar (A : B) =
∑

i,j Ai,jBi,j ∈ R
as the trace of the matrix product AB whereas, for a vector function w = w(x) ∈ Rd, the tensor
(∂xiwj)i,j is denoted as ∇xw. We also write (DivxA)i =

∑
j ∂xjAi,j(x).

Throughout the paper, forA,B > 0, we will indicateA . B orA 6 CB whenever there is
a positive constantC > 0 depending only on �xed numbers (but never on the parameters α and ε)
such thatA 6 CB. Notice also that we shall use the same notation C for positive constants that
may change from line to line.

1.9. Strategy of the proof. The strategy used to prove the main results Theorems 1.2 and 1.4
yields to several intermediate results of independent interest. The approach is perturbative in
essence since we are dealing with close-to-equilibrium solutions to (1.15). This means that, in the
study of (1.15), we introduce the �uctuation hε around the equilibrium Gα de�ned through

fε(t, x, v) = Gα(v) + ε hε(t, x, v) ,

and hε satis�es
∂thε(t, x, v) +

1

ε
v ·∇xhε(t, x, v)− 1

ε2
Lαhε(t, x, v) =

1

ε
Qα(hε, hε)(t, x, v) ,

hε(0, x, v) = hin
ε (x, v) ,

(1.27)

where Lα is the linearized collision operator (local in the x-variable) de�ned as

Lαh(x, v) := Lα(h)(x, v)− (1− α)∇v · (vh(x, v)) , (1.28)

with
Lα(h) := 2Q̃α(Gα, h) , (1.29)

where we set
Q̃α(f, g) :=

1

2
{Qα(f, g) +Qα(g, f)} . (1.30)

We also denote by L1 the linearized operator around G1 =M, that is,

L1(h) = L1(h) = Q1(M, h) +Q1(h,M) . (1.31)

It is also worth noticing that assumption (1.20a) and (1.17) result inˆ
Td×Rd

hin
ε (x, v)

(
1

v

)
dv dx =

(
0

0

)
.
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Moreover, equation (1.27) preserves mass and vanishing momentum since, if hε solves (1.27), then
one formally has

d

dt

ˆ
Td×Rd

hε(t, x, v)v dv dx = −
ˆ
Td×Rd

hε(t, x, v)v dv dx . (1.32)

Consequently, there is no loss of generality assuming thatˆ
Td×Rd

hε(t, x, v)

(
1

v

)
dv dx =

(
0

0

)
, ∀ t > 0 . (1.33)

Notice that under this assumption, the hypothesis made on the energy of the initial data
in (1.20a) implies that ˆ

Td×Rd
hin
ε (x, v) |v|2 dv dx −−−→

ε→0
0 . (1.34)

Indeed, using (1.20a) and Assumption 1.1 combined with (1.18), we obtain
ˆ
Td×Rd

hin
ε (x, v)|v|2 dv dx =

1

ε

ˆ
Td×Rd

(
F in
ε (x, v)−Gα(ε)(v)

)
|v|2 dv dx

=
Eε − dϑ1

ε
+

1

ε

ˆ
Td×Rd

(
M(v)−Gα(ε)(v)

)
|v|2 dv dx −−−→

ε→0
0 .

The above basic estimate and limit is illustrating the two-levels features of the perturbative
strategy we adopt to prove Theorem 1.2: F in

ε stays close to the equilibrium (close-to-equilibrium
perturbation) but this comes from the fact that Gα(ε) is close toM (nearly elastic regime).

Our approach is indeed perturbative in two aspects: �rst, as already said, we are considering
close-to-equilibrium solutions (i.e. �uctuations around the homogeneous cooling states) and
second, we consider a nearly elastic regime (i.e. �uctuations around the classical/elastic Boltzmann
equation). This means in particular that we shall enforce in (1.15) the elastic Boltzmann operator
(at both the linearized and nonlinear levels) and will treat, up to some extent, the various inelastic
operators as source terms which can be controlled in the limit ε→ 0 thanks to Assumption 1.1.
Let us try to make this basic idea more precise.

First, our approach requires a very �ne analysis of the full linearized operator appearing
in (1.27):

Gα,εh := −ε−1v ·∇xh+ ε−2Lαh

but we wish to insist on the fact that our approach is not directly related to a description of the
spectral properties of Gα,ε. We treat Gα,ε as a perturbation of the elastic linearized operator G1,ε.
However, such a perturbation does not fall into the realm of the classical perturbation theory of
unbounded operators as described in Kato (1980). Typically, the domain of Gα,ε is much smaller
than the one of G1,ε (because of the drift term in velocity) and the relative bound between G1,ε

and Gα,ε does not converges to zero in the elastic limit α→ 1. It is one of the reasons why it is
not easy to deduce the spectral properties of Gα,ε from those of G1,ε (which are well-understood,
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see for instance Briant et al. (2019)) and we rather adopt an alternative approach based upon a
combination the enlargement methods introduced in Gualdani et al. (2017) and L2-hypocoercivity
methods (see Villani (2009); Carrapatoso et al. (2022)). Indeed, �rst borrowing ideas from Gualdani
et al. (2017); Tristani (2016), we can split Gα,ε as

Gα,ε = Aε + Bα,ε

where Aε is a regularizing operator in the velocity variable and Bα,ε is a suitable dissipative
operator. We refer to Section 2 for details and insist on the fact that, to capture the dissipativity
properties of the operator Bα,ε, a very �ne analysis of the collision operators Qα and Lα is
needed with particular emphasis of the quanti�cation of the elastic limitQα → Q1 and Lα → L1

as α→ 1 in various functional spaces. Besides this splitting, we also can write

Gα,ε = G1,ε + (Gα,ε − G1,ε)

and exploits the hypocoercivity properties of G1,ε, hoping the reminder term Gα,ε − G1,ε will not
make them degenerate too much. To do so, and because of the additional derivative in the velocity
variable (appearing now in the di�erence Gα,ε − G1,ε), we device new hypocoercivity estimates
for G1,α. We refer to Section 3 for a detailed description of the method and result but just mention
here that, even though it seems possible to adapt the result of Briant (2015) in Sobolev spaces
in v, we rather adopt a strategy based upon L2-hypocoercivity working in the space

H := L2
vWm,2

x (M−
1
2 ) , m >

d

2
(1.35)

on which we build a norm ||| · |||H with associated inner product 〈〈 · , · 〉〉H equivalent to the standard
norm ‖ · ‖H for which

〈〈 G1,εh, h 〉〉H . −
1

ε2
‖(Id− π0)h‖2H1

− ‖h‖2H1

where π0 is the spectral projection associated to the zero eigenvalue of L1 (see Section 3 for
details) andH1 is de�ned in (3.1) and is such thatH1 ↪→ H.

With this at hands, in order to prove Theorem 1.2 several a priori estimates for the solutions
to (1.15) are required. This is done in Section 4. The crucial point in the analysis lies in the
splitting of (1.15) into a system of two equations mimicking a spectral enlargement method from
a PDE perspective (see the Section 2.3 of Mischler & Mouhot (2016) and Briant et al. (2019) for
pioneering ideas on such a splitting). More precisely, the splitting performed in Sections 4 and 5
amounts to look for a solution of (1.27) of the form

hε(t) = h0
ε(t) + h1

ε(t)



22 RICARDO ALONSO, BERTRAND LODS, AND ISABELLE TRISTANI

where h0 = h0
ε and h1 = h1

ε(t) are the solutions to the following system of equations (in order to
lighten the notations, in this whole section, we shall omit the dependence on ε for h, h0 and h1):

∂th
0 = Bα(ε),εh

0 + ε−2
[
Lα(ε)h

1 − L1h
1
]

+ (1− α(ε))ε−2a3$2 (Id−P0)h1

+ε−1
[
Qα(ε)(h

0, h0) +Qα(ε)(h
0, h1) +Qα(ε)(h

1, h0) + π0Qα(ε)(h
1, h1)

]
,

h0(0, x, v) = hεin(x, v) ∈ E
(1.36)

where a3 is some positive constant allowing to control the drift term (see Lemma 3.3) and the
projectors π0, P0 are the spectral projectors associated to L1 and G1,α respectively (see Eqs. (3.2)-
(3.4) for a precise de�nition) and

∂th
1 = G1,εh

1 + (1− α(ε))ε−2
[
−divv

(
vh1
)
− a3$2 (Id−P0)h1

]
+ ε−1 (Id− π0)Qα(ε)(h

1, h1) +Aεh0 ,

h1(0, x, v) = 0 ∈ H .
(1.37)

Tailoring the splitting of (1.27) into two equations (1.36)-(1.37) is actually one of the most
di�cult part of this work and some comments are in order.

• First, notice that as in Briant et al. (2019), we can analyze the equation on h1 in the most
convenient functional space since we have put 0 as initial data for h1. It is then natural to
study the equation on h1 in the Hilbert spaceH since the elastic linearized operator G1,ε

is well-understood in this type of space (see Proposition 3.1). It is worth mentioning
that in Briant et al. (2019), the equation on h1 is posed in Wm,2

x,v (M−
1
2 ) whereas we

study it in the space H with no derivative in velocity. It is made possible by our above
L2-hypocoercivity results.
• Similarly as in Briant et al. (2019), we have put the nice dissipative part of the linearized

equation on h0 in the equation on h0 (namely Bα(ε),εh
0) while we have put Aεh0 in the

equation on h1. We are able to do this thanks to the regularizing properties ofAε (namely
Aε ∈ B(E ,H)).

We already mentioned a �rst di�erence with the study by Briant et al. (2019) in the �rst item
concerning the space in which we study the equation on h1. If we compare our splitting to the one
in Briant et al. (2019), it is also much more complicated because of the additional terms coming
from the inelasticity of our equation. Let us present and explain those di�erences.

• First, notice that we can keep the drift term on h1 in the equation on h1 because when
performing energy estimates inH, it only induces the appearance of bounded terms in h1

that are small and terms with a loss of weight (see Lemma 3.3) but no terms with a loss of
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derivative in velocity. This loss of weight is counterbalanced by the introduction of the
term −a3$2 (Id−P0)h1.
• The term a3$2 (Id−P0)h1 has thus to be added to the equation on h0 but it turns

out to be harmless when estimated in the functional space E because of the continuous
embeddingH into E2 where E2 is de�ned as

E2 := L2
vWm,2

x ($q+2κ+3) , κ >
d

2

and acts as an intermediate space which allows somehow to make the link between the
L1
v-space E and the L2

v-spaceH.
• Since we only put the elastic linearized collision operator on h1 in the equation on h1,

it still remains to deal with the di�erence (1 − α(ε))ε−2(Lα − L1). Notice that some
crucial point is that we are able to obtain estimates on this term with no loss of derivative
in velocity in the functional space E thanks to Lemma 2.4 and we can handle this term
still thanks to the embeddingH ↪→ E2.
• Finally, concerning the nonlinear term ε−1Qα(ε)(h

1, h1), it is split into two parts. We
only keep the microscopic part of this term, namely ε−1 (Id− π0)Qα(ε)(h

1, h1) in
the equation on h1 because this term can be handled thanks to the nice hypocoerciv-
ity estimates satis�ed by G1,ε in H (see Proposition 3.1 and Lemma 3.4) (as the term
ε−1Q1(h1, h1) = ε−1 (Id− π0)Q1(h1, h1) was treated in Briant et al. (2019)). The re-
maining part ε−1π0Qα(ε)(h

1, h1) is then added to the equation on h0 and does not induce
any di�culty because the projector π0 regularizes as necessary in velocity and because
Bα(ε),ε is −ε−2-dissipative in E .

The physical meaning of the above decomposition is not clear to us but appears to be a
convenient tool to enforce the energy method we adopt here. Notice that, in the framework of
strong solutions in the elastic case, some other kinds of splitting have been considered (see Gervais
(2022); Gervais & Lods (2023)). They have a clearer physical meaning since they are related to the
decomposition of the solution f ε to the kinetic equation into several pieces (kinetic, macroscopic,
dispersive terms) which all have a precise meaning. This is made possible thanks to a suitable
mild reformulation of both the Boltzmann equations and Navier-Stokes-Fourier system and a
�ne spectral analysis of the linearized operator, see Gallagher & Tristani (2020); Bardos & Ukai
(1991).

As mentioned earlier, because of the above considerations, we are able to seek h1
ε(t) in the

above Hilbert spaceH and prove bounds of the type

sup
t>0

(
‖h1

ε(t)‖2H +

ˆ t

0
‖h1

ε(τ)‖2H1
dτ
)
. ‖hεin‖E + ‖hεin‖2E

whereH1 is de�ned in (3.1). It is important to point out already that Aε is regularizing only in
the velocity variable but not in the x-variable. Therefore, no gain of integrability can be deduced
from the action of Aε. Therefore, since we look for h1

ε ∈ H, we need to look for h0
ε in a space
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based on L2
x. The velocity regularization properties of Aε allow then to look for

h0
ε(t) ∈ L1

vWm,2
x ($q) , ∀ t > 0 .

This is the role of Section 4.
In Section 5, we prove Theorem 1.2 introducing a suitable iterative scheme based upon the

coupling
(
h0
ε(t), h

1
ε(t)
)
. We show in practice that the coupled system of kinetic equations satis�ed

by h0 and h1 is well-posed. It is fair to say that the bounds for h0
ε and h1

ε given in Sections 4 and 5
play the role of suitable energy estimates as the ones established in the purely Hilbert setting
Guo et al. (2010); Guo (2016); Jiang et al. (2018). In particular, these bounds are su�cient to
deduce a very peculiar type of weak convergence of hε(t) towards an element in the kernel of the
linearized operator L1, in particular, the limit of hε is necessarily of the form (6.3). The notion
of weak convergence we use here fully exploits the splitting hε = h0

ε + h1
ε where we prove that

h0
ε converges to 0 strongly in L1((0, T );L1

vW
m,2
x ($q)) whereas h1

ε converges to h weakly in
L2((0, T ) ; L2

vW
m,2
x (M−

1
2 )).

Finally, in Section 6, the regularity of (%, u, θ) obtained via a simple use of Ascoli-Arzela
Theorem and the identi�cation of the limiting equations these macroscopic �elds satisfy is
presented. With the notion of weak convergence at hand presented above, the approach is
simpler but reminiscent of the program established in Bardos et al. (1991, 1993). In particular,
we can adapt some of the main ideas of Golse & Saint-Raymond (2004) regarding the delicate
convergence of nonlinear convection terms. Detailed computations are included to make the
paper as much self-contained as possible also because, even in the classical “elastic” case, it is
di�cult to �nd a full proof of the convergence towards hydrodynamic limit for the weak solutions
we consider here. For such solutions, details of proof are scattered in the literature and full proof
of the convergence of nonlinear terms is sometimes only sketched where most of the full detailed
proofs are dealing with the more delicate case of renormalized solutions Golse & Saint-Raymond
(2004, 2009); Levermore & Masmoudi (2010). In our framework, the terms involving the quadratic
operator Qα(hε, hε) are treated as source terms which converge in distributions to zero whereas
the drift term and the dissipation of energy function D are the objects responsible for the terms
in the right-side of the Navier-Stokes system (6.4). We also observe that the derivation of the
strong Boussinesq relation is not as straightforward as in the elastic case. Actually, the classical
Boussinesq relation

∇ (%(t, x) + ϑ1θ(t, x)) = 0

is established as in the elastic case. In the elastic case, this relation implies the strong form
of Boussinesq relation mainly because the two functions %(t, x) and θ(t, x) have zero spatial
averages. This cannot be deduced directly in the granular context due to the dissipation of energy.

1.10. Organization of the paper. The paper is divided into 7 Sections and three Appendices. In
the following Section 2, we collect several very �ne results regarding the collision operators Lα

andQα quantifying the di�erences ‖Qα−Q1‖ and ‖Lα−L1‖ in terms of 1−α for various norms.
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We also introduce in Section 2 the splitting of the operator Gα,ε = Aε +Bα,ε. As mentioned, even
if our �nal goal is to study the collision operator in spaces built on L1

v-spaces with polynomial
weights, we shall also need to resort to estimates of Lα in L2

v-spaces. Section 3 is devoted to the
hypocoercivity method for the operator G1,ε and its various consequences. In Section 4, we derive
the fundamental a priori estimates on the close-to-equilibrium solutions to (1.27). It is the most
technical part of the work and fully exploits the above splitting (1.36)–(1.37). Section 5 gives the
proof of Theorem 1.2 whereas Section 6 gives the full proof of the hydrodynamic limit (Theorem
1.4). In Section 7, we give an informal presentation of the consequences of our analysis on the
problem in original physical variables. In Appendix A, we collect some well-known properties
useful for the hydrodynamic limit as well as some technical proofs used in Section 6. Finally,
Appendix B gives the proof of several technical results of Section 2.
Acknowledgements. RA gratefully acknowledges the support from O Conselho Nacional de De-
senvolvimento Cientí�co e Tecnológico, Bolsa de Produtividade em Pesquisa - CNPq (303325/2019-
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2. Summary of useful results about the collision operator

2.1. Strong and weak forms of inelastic Boltzmann collision operators. In this section,
we collect several results about the Boltzmann collision operator Qα for granular gases. Before
entering the details of the technical result, we brie�y reminds the main physical features of
inelastic interactions and the role of the coe�cient of normal restitution yielding naturally to the
n-representation of the collision operator.

As indicated in the Introduction, the Boltzmann equation for granular gases is a well-accepted
model that describes collisions in a system composed by a large number of granular particles
which are assumed to be hard-spheres with equal unitary mass and that undertake inelastic
collisions. If v and v∗ denote the velocities of two particles before collision, their respective
velocities v′ and v′∗ after collision are such that the normal relative velocity is dissipative during
impact according to the law (

u′ ·n
)

= −α
(
u ·n

)
. (2.1)

The unitary vector n ∈ Sd−1 determines the impact direction, that is, n stands for the unit vector
that points from the v-particle center to the v∗-particle center at the moment of impact while

u = v − v∗ , u′ = v′ − v′∗ ,
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denote respectively the relative velocity before and after collision. The velocities after collision v′
and v′∗ are given, in virtue of (2.1) and the conservation of momentum, by

v′ = v − 1 + α

2

(
u ·n

)
n , v′∗ = v∗ +

1 + α

2

(
u ·n

)
n . (2.2)

In particular, the energy relation induced by the collision mechanism can be written as

|v′|2 + |v′∗|2 = |v|2 + |v∗|2 −
1− α2

2

(
u ·n

)2
6 |v|2 + |v∗|2 . (2.3)

In particular, for α ∈ (0, 1) and in contrast with elastic interactions, the collision mechanism
(v, v∗)→ (v′, v′∗) is not reversible. This means that the pre-collisional velocities (′v,′v∗) (resulting
in (v, v∗) after collision) di�er here from the post-collisional ones and can be introduced through
the relation

′v = v − 1 + α

2α

(
u ·n

)
n , ′v∗ = v∗ +

1 + α

2α

(
u ·n

)
n , (2.4)

where of course (2.1) reads now
(
u ·n

)
= −α

(′
u ·n

)
with ′u = ′v − ′v∗. Notice that the Jacobian

of the transformation (2.2) is given by ∣∣∣∣∂(v′, v′∗)

∂(v, v∗)

∣∣∣∣ = α .

With such a representation, for a given pair of distributions f = f(v) and g = g(v) and a
given collision kernel B0(u, n), the Boltzmann collision operator associated to B0 is de�ned as
the di�erence of two nonnegative operators (gain and loss operators respectively)

QB0,α

(
g, f
)

= Q+
B0,α

(
g, f
)
−Q−B0,α

(
g, f
)
,

with 
Q+
B0,α

(
g, f
)
(v) =

1

α

ˆ
Rd×Sd−1

B0(′u, n)f(′v)g(′v∗) dv∗ dn ,

Q−B0,α

(
g, f
)
(v) = f(v)

ˆ
Rd×Sd−1

B0(u, n)g(v∗) dv∗ dn , ′u = ′v − ′v∗ .
(2.5)

We will assume that the collision kernel B0 = B0(z, n) for z ∈ Rd \ {0}, n ∈ Sd−1 is of the form

B0(z,m) = Φ
(
|z|
)
b0
(
ẑ ·n

)
, ẑ :=

z

|z|
,

where Φ( · ) and b0( · ) are suitable nonnegative functions known as kinetic potential and angular
kernel respectively where b0( · ) is an even function. For any �xed vector ẑ, the angular kernel
de�nes a measure on the sphere through the mapping n ∈ Sd−1 7→ b0

(
ẑ ·n

)
∈ [0,∞]. Observing

that

|′u|2 =
|u|2

α2

(
α2 + (1− α2)(û ·n)2

)
,

(
u ·n

)
= −α

(′
u ·n

)
,
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we deduce easily that

B0(′u, n) = Φ

(
|u|
α

√
α2 + (1− α2)(û ·n)2

)
b0

(
û ·n√

α2 + (1− α2)(û ·n)2

)
.

In this representation, the weak form of QB0,α is given byˆ
Rd
QB0,α(f, g)(v)ψ(v) dv =

ˆ
Rd×Rd×Sd−1

B0(u, n)f(v)g(v∗)
[
ψ(v′)− ψ(v)

]
dv dv∗ dn

=
1

2

ˆ
Rd×Rd×Sd−1

B0(u, n)f(v)g(v∗)
[
ψ(v′) + ψ(v′∗)− ψ(v)− ψ(v∗)

]
dv dv∗ dn

(2.6)

for any test function ψ = ψ(v).

The above representation captures the main physical features of inelastic interactions but, for
mathematical purposes, it is more convenient to adopt an equivalent representation (the so-called
σ-representation) by setting, for a given pair of velocities (v, v∗) and for n ∈ Sd−1,

σ = û− 2 (û ·n)n ∈ Sd−1 ,

where we recall that û = u
|u| . Such a description provides an alternative parametrization of

the unit sphere Sd−1 in which the unit vector σ points in the post-collisional relative velocity
direction in the case of elastic collisions. In this case, the impact velocity reads

|u · n| = |u| |û ·n| = |u|
√

1− û ·σ
2

.

In this representation, the post-collisional velocities (v′, v′∗) are given by

v′ = v +
1 + α

4
(|u|σ − u) , v′∗ = v∗ −

1 + α

4
(|u|σ − u) . (2.7)

Moreover, using the following formula, valid for any continuous function F (see (Bobylev , 2020,
Lemma 2.1.1) for a proof in dimension d = 3),

|z|d−2

ˆ
Sd−1

F

(
z − |z|σ

2

)
dσ = 2d−1

ˆ
Sd−1

|z ·n|d−2F ((z ·n)n) dn , ∀ z ∈ Rd \ {0} ,

(2.8)
one sees that the above weak form (2.6) translates intoˆ

Rd
QB0,α(g, f)(v)ψ(v) dv =

ˆ
Rd×Rd×Sd−1

f(v)g(v∗)
(
ψ(v′)− ψ(v)

)
B(u, σ) dσ dv∗ dv

=
1

2

ˆ
Rd×Rd×Sd−1

f(v)g(v∗)

(
ψ(v′) + ψ(v′∗)− ψ(v)− ψ(v∗)

)
B(u, σ) dσ dv∗ dv

(2.9)
for any test function ψ = ψ(v) where

B(z, σ) = Φ(|z|)b (ẑ ·σ) , ∀ z ∈ Rd \ {0} , ∀σ ∈ Sd−1 , (2.10)
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and b( · ) is related to b0( · ) through the relation b0
(
û ·n

)
= 2d−1|û ·n|d−2b(û ·σ), i.e.

b(s) = 21−d
(

1− s
2

) 2−d
2

b0

(√
1− s

2

)
, s ∈ (−1, 1) . (2.11)

Notice that (2.8) implies in particular that the change of variable n ∈ Sd−1 7→ σ = û−2(û ·n)n ∈
Sd−1 is such that

dσ = 2d−1|û ·n|d−2 dn = 2d−1

(
1− û ·σ

2

) d−2
2

dn

and, using the strong n-representation formula (2.5) together with the expression of B0(′u, n)

and (2.11), tedious computations show that the strong form of the Boltzmann operator in this
σ-representation is given by QB0,α = Q+

B0,α
−Q−B0,α

where
Q+
B0,α

(g, f)(v) =

ˆ
Rd×Sd−1

f(′v)g(′v∗)B
+
α (u, σ) dσ dv∗

Q−B0,α
(g, f)(v) = f(v)

ˆ
Rd×Sd−1

g(v∗)B(u, σ) dσ dv∗

(2.12)

where, for σ ∈ Sd−1, ′v and ′v∗ denote the pre-collisional velocities

′v :=
v + v∗

2
− 1− α

4α
u +

1 + α

4α
|u|σ , ′v∗ :=

v + v∗
2

+
1− α

4α
u − 1 + α

4α
|u|σ ,

and

B+
α (u, σ) :=

1

α

(
2

1 + α2 − (1− α2)(û ·σ)

) d−2
2

Φ

(
|u|√
2α

√
1 + α2 − (1− α2)(û ·σ)

)
b

(
(1 + α2)(û ·σ)− (1− α2)

1 + α2 − (1− α2)(û ·σ)

)
.

We also refer to Appendix A of Carlen et al. (2009) for derivation of such an expression in
dimension d = 3.

A particularly relevant model is the one of hard-spheres corresponding to Φ(|u|) = |u| which
is the model investigated in the core of the paper and, in that case, we simply denote the collision
operator QB0,α by Qα omitting the dependence with respect to the variable b( · ) which will
always be assumed to satisfy (1.6)–(1.7)–(1.8). In such a case

B+
α (u, σ) =

|u|
α2
bα(û ·σ)

with bα(s) :=

[
2

1 + α2 − (1− α2)s

] d−3
2

b

(
(1 + α2)s− (1− α2)

1 + α2 − (1− α2)s

)
, ∀ s ∈ (−1, 1) .

(2.13)



FLUID DYNAMIC LIMIT OF BOLTZMANN EQUATION FOR GRANULAR HARD–SPHERES 29

2.2. Estimates on the di�erence between inelastic and elastic collisions. Our main technical
contribution in this section is the careful (quantitative) study of the di�erences betweenQα −Q1

and the linearized counterpart Lα−L1. We improve here signi�cantly previous estimates obtained
in Alonso et al. (2010); Alonso & Gamba (2011); Mischler & Mouhot (2009).

2.2.1. Estimates onQα−Q1. Notice �rst that in all the sequel, we will need quantitative estimates
for the bilinear operator Qα(f, g) and Q1(f, g) in several di�erent functional spaces. We refer to
Alonso et al. (2010); Alonso & Gamba (2011); Mischler & Mouhot (2009) for precise statements
(see also Theorem B.1, Lemma B.3 and Corollary B.4). A fundamental role in our analysis will be
played by the fact that, in some suitable sense, Qα is close to the elastic operator Q1 for α ' 1.

Let us begin with the following crucial result which justi�es the optimal scaling (1.22) and opti-
mise the rate of convergence previously derived in (Mischler & Mouhot, 2009, Proposition 3.1 (iii))
in a di�erent functional framework than ours. It is worth mentioning that due to the lack of sym-
metry in the two entries of the Boltzmann collision operator for inelastic collision, it is not trivial to
show that one can choose the entry on which the additional derivative is carried when estimating
Q1(f, g) − Qα(f, g). In the following lemma, we prove that it is possible in a L2

v- framework
thanks to a Bouchut-Desvillettes estimate (which is available only in the L2

v-framework).

Lemma 2.1. Let a = max{d− 1, 2} and q > 0. For any κ > d
2 and any α ∈ (0, 1],

‖Qα(f, g)−Q1(f, g)‖L2
v($q) + ‖Qα(g, f)−Q1(g, f)‖L2

v($q)

.
1− α
αa

‖f‖L2
v($q+κ+3) ‖g‖W1,2

v ($q+κ+3)
. (2.14)

As a consequence, for any ` > d
2 , we have:

‖Qα(f, g)−Q1(f, g)‖
L2
vW

`,2
x ($q)

+ ‖Qα(g, f)−Q1(g, f)‖
L2
vW

`,2
x ($q)

.
1− α
αa

‖f‖
L2
vW

`,2
x ($q+κ+3)

‖g‖W1,2
v W`,2

x ($q+κ+3)
. (2.15)

Proof. Step 1. The �rst part of the proof is dedicated to the estimate onQα(g, f)−Q1(g, f). Since

‖Qα(g, f)−Q1(g, f)‖L2
v($q)

= sup
‖ϕ‖

L2
v($q)

61

ˆ
Rd

[Qα(g, f)−Q1(g, f)]ϕdv

one needs to estimate, for some test function ϕ ∈ L2
v($q) the integral

I =

ˆ
Rd

[
Qα(g, f)(v)−Q1(g, f)(v)

]
ϕ(v) dv
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by some suitable L2
v norms of ϕ, f, g and ∇g, the function g being the only one to carry the

additional derivative. Using the representation (2.9)-(2.7) in the hard-spheres case, one sees that

I =

ˆ
Rd×Rd×Sd−1

g(v − u)f(v)|u|×

×

(
ϕ

(
v +

1 + α

4
(|u|σ − u)

)
− ϕ

(
v +

1

2
(|u|σ − u)

))
b(û ·σ) dσ dudv .

Setting now w = 1+α
2 u, one can split I = I1 + I2 with

I1 =

[( 2

1 + α

)d+1
− 1

]ˆ
Rd×Rd×Sd−1

g

(
v − 2

1 + α
u

)
f(v)ϕ(v′1) |u| b(û ·σ) dσ dudv ,

I2 =

ˆ
Rd×Rd×Sd−1

(
g

(
v − 2

1 + α
u

)
− g(v − u)

)
f(v)ϕ(v′1) |u| b(û ·σ) dσ dudv .

For the �rst term, thanks to the mean-value theorem, one notices that∣∣∣∣∣
(

2

1 + α

)d+1

− 1

∣∣∣∣∣ . 1− α , ∀α ∈ (0, 1)

so that

|I1| . (1− α)

ˆ
Rd×Rd××Sd−1

∣∣∣∣g(v − 2

1 + α
u

)∣∣∣∣ |f(v)||ϕ(v′1)| |u| b(û ·σ) dσ dudv

and, performing back the change of variable w = 1+α
2 u one sees that

|I1| . (1− α)

(
1 + α

2

)d+1 ˆ
Rd×Rd×Sd−1

|g (v − u)| |f(v)||ϕ(v′α)| |u| b(û ·σ) dσ dudv

. (1− α)

ˆ
Rd
Q+
α (|g|, |f |)(v)|ϕ(v)| dv .

Then, thanks to classical Boltzmann estimates (see Theorem B.1), it holds that∣∣I1

∣∣ . (1− α)
(
‖g‖L1

v($q+1)‖f‖L2
v($q+1) + ‖g‖L2

v($q+1)‖f‖L1
v($q+1)

)
‖ϕ‖L2

v($q)

Since ‖〈 · 〉−2κ‖L1(Rd) <∞ for κ > d
2 , one can estimate the L1-norms with L2 ones as

|I1| .
(
‖g‖L2

v($q+κ+1)‖f‖L2
v($q+1) + ‖g‖L2

v($q+κ+1)‖f‖L2
v($q+κ+1)

)
‖ϕ‖L2

v($q) (2.16)

for κ > d
2 .

For the second term one uses Taylor formula:

g

(
v − 2

1 + α
u

)
− g(v − u) = −1− α

1 + α
u ·
ˆ 1

0
∇g(w̃t) dt

where
w̃t = v −

( 2

1 + α
− 1− α

1 + α
t
)
u , ∀ t ∈ (0, 1) . (2.17)
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Thus,

∣∣I2

∣∣ 6 (1− α)

ˆ 1

0

ˆ
Rd×Rd×Sd−1

∣∣∣∇g(v − ( 2

1 + α
− 1− α

1 + α
t
)
u
)∣∣∣∣∣f(v)ϕ(v′1)
∣∣ |u|2 b(û ·σ) dσ dudv .

Since 2
1+α −

1−α
1+α t > 1, it holds that, thanks to classical Boltzmann estimates (see again Theo-

rem B.1),∣∣I2

∣∣ . (1− α)
(
‖∇g‖L1

v($q+2)‖f‖L2
v($q+2) + ‖∇g‖L2

v($q+2)‖f‖L1
v($q+2)

)
‖ϕ‖L2

v($q) .

Combining the estimates for I1 and I2, we deduce that

‖Q1(g, f)−Qα(g, f)‖L2
v($q)

. (1− α)‖g‖W1,2
v ($q+κ+2)

‖f‖L2
v($q+κ+2) , κ >

d

2
.

Step 2. We now deal with Qα(f, g)−Q1(f, g) and as already mentioned, it is not trivial to show
that we can still impose that g is carrying the additional derivative. To prove such an estimate in
ourL2

v($q) framework, we shall resort to a method reminiscent to Bouchut-Desvillettes estimates
and use the weak σ-representation. We need to estimate

J =

ˆ
Rd

[
Qα(f, g)(v)−Q1(f, g)(v)

]
ϕ(v) dv

=

ˆ
Rd×Rd×Sd−1

f(v − u)g(v)|u|×

×

(
ϕ

(
v +

1 + α

4
(|u|σ − u)

)
− ϕ

(
v +

1

2
(|u|σ − u)

))
b(û ·σ) dσ dudv .

Here again, thanks to the change of variable w = 1+α
2 u, one splits J = J1 + J2 where, as before

(notice that the estimate (2.16) for I1 does not involve derivatives), one has

|J1| .
(
‖f‖L2

v($q+κ+1)‖g‖L2
v($q+1) + ‖f‖L2

v($q+κ+1)‖g‖L2
v($q+κ+1)

)
‖ϕ‖L2

v($q)

whereas

J2 =

ˆ
Rd×Rd×Sd−1

(
f

(
v − 2

1 + α
u

)
− f(v − u)

)
g(v)ϕ(v′1) |u| b(û ·σ) dσ dudv .

Again, we use Taylor formula as before to get

J2 = −1− α
1 + α

ˆ 1

0
dt

ˆ
Rd×Rd×Sd−1

u ·∇f(w̃t) g(v)ϕ(v′1) |u| b(û ·σ) dσ dudv

where w̃t has been de�ned in (2.17). Integrating by parts in the variable v, we deduce that

J2 =
1− α
1 + α

ˆ 1

0
dt

ˆ
Sd−1

dσ

ˆ
Rd

dv

ˆ
Rd
f(w̃t)∇v ·

(
u|u|g(v)ϕ(v′1)b(û ·σ)

)
du
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i.e.

J2 =
1− α
1 + α

ˆ 1

0
dt

ˆ
Sd−1

dσ

ˆ
Rd

dv

ˆ
Rd
f(w̃t) (u ·∇vg(v)) |u|b(û ·σ) du

+
1− α
1 + α

ˆ 1

0
dt

ˆ
Sd−1

dσ

ˆ
Rd

dv

ˆ
Rd
f(w̃t)g(v)

(
u ·∇vϕ(v′1)

)
|u|b(û ·σ) du = J1

2 + J2
2 .

Clearly, as for I2, one has∣∣J1
2

∣∣ . (1− α)
(
‖∇vg‖L1

v($q+2)‖f‖L2
v($q+2) + ‖∇vg‖L2

v($q+2)‖f‖L1
v($q+2)

)
‖ϕ‖L2($q) .

For the second term, one performs, for a �xed t ∈ (0, 1), the change of variable

u 7→ u∗ = βtu , βt :=
2

1 + α
− 1− α

1 + α
t

from which v′1 = v − 1
2βt

(|u∗|σ − u∗) and

J2
2 =

1− α
1 + α

ˆ 1

0
β−d−2
t dt

ˆ
Sd−1

dσ

ˆ
Rd

dv

ˆ
Rd
f(v − u∗)g(v)

(
u∗ ·∇vϕ

(
v − 1

2βt
(|u∗|σ − u∗)

))
|u∗|b(û∗ ·σ) du∗ .

We introduce et ∈ (0, 1) such that
1

2βt
=

1 + et
4

i.e. et :=
2α+ (1− α)t

2− (1− α)t
, et ∈ (0, 1)

and therefore

J2
2 =

1− α
1 + α

ˆ 1

0
β−d−2
t dt

ˆ
Sd−1

dσ

ˆ
Rd

dv

ˆ
Rd
f(v − u)g(v)

(
u ·∇vϕ

(
v′et
))
|u|b(û ·σ) du

=
1− α
1 + α

ˆ 1

0
β−d−2
t dt

ˆ
Rd

dvQ+
B,et

(f, g) ·∇vϕ

where, for any t ∈ (0, 1), QB,et is the (vector valued) Boltzmann collision operator associated
with the restitution coe�cient et and kernel B(u, σ) := u |u| b(û ·σ) . Thus, using an additional
integration by parts,

J2
2 = −1− α

1 + α

ˆ 1

0
β−d−2
t dt

ˆ
Rd

(
∇v ·Q+

B,et
(f, g)

)
ϕdv .

Now, from Bouchut-Desvillettes estimates for Q+
B,et

, see Bouchut & Desvillettes (1998) and
(Mischler & Mouhot, 2006, Theorem 2.5) for a proof in the inelastic case 3, one has, for any

3Notice here we need simply to adapt the proof of (Mischler & Mouhot, 2006, Theorem 2.5) with, at the beginning
of the proof F (v, v∗) = f(v)g(v∗)(v − v∗)|v − v∗| instead of F (v, v∗) = f(v)g(v∗)|v − v∗| which explains the
additional moments $q+3 instead of $q+2 as in the op.cit.



FLUID DYNAMIC LIMIT OF BOLTZMANN EQUATION FOR GRANULAR HARD–SPHERES 33

t ∈ (0, 1),

‖Q+
B,et

(f, g)‖
W
d−1
2 ,2

v ($q)
. ‖g‖L2

v($q+3)‖f‖L2
v($q+3) + ‖g‖L1

v($q+3)‖f‖L1
v($q+3)

where the multiplicative constant depends on ‖b‖L2(Sd−1) but not on the restitution coe�cient
and, thus, not on t. Since d > 3, this implies that

‖∇v ·Q+
B,et

(f, g)‖L2
v($q) . ‖g‖L2

v($q+3)‖f‖L2
v($q+3) + ‖g‖L1

v($q+3)‖f‖L1
v($q+3)

and, since supt∈(0,1) β
−1
t 6 1, we deduce that

J2
2 . (1− α)‖ϕ‖L2

v($q)

[
‖g‖L2

v($q+3)‖f‖L2
v($q+3) + ‖g‖L1

v($q+3)‖f‖L1
v($q+3)

]
which, controlling the L1 norms with L2 ones (with higher moments) as in the �rst part, yields

J . (1− α)‖ϕ‖L2
v($q) ‖g‖W1,2

v ($q+κ+3)
‖f‖L2

v($q+κ+3)

which proves the desired estimate (2.14).
Step 3. The estimate (2.15) can be deduced easily from (2.14) using Fubini theorem and the fact
that W`,2

x is an algebra since ` > d
2 . �

In our analysis, we will also need an estimate on the di�erence between Lα and L1 (see
Lemma 2.5) with no loss of regularity and with a “minimal” loss in weight (i.e. an estimate in
the graph norm), even if the rate is not anymore optimal (notice that this type of estimate can
obviously not being deduced from the previous lemma). To this end, we here state a lemma which
is in the spirit of (Mischler & Mouhot, 2009, Proposition 3.2) except from the fact that one of the
argument is �xed to be the MaxwellianM. Note that (Mischler & Mouhot, 2009, Proposition 3.2)
gives an estimate of this type on the di�erence betweenQα andQ1 for general arguments but the
proof heavily relies on the exponential weights they consider. It turns out that we can not adapt
easily the proof of (Mischler & Mouhot, 2009, Proposition 3.2) for polynomial weights. However,
by using decay properties ofM, we are able, to get an estimate on Qα(M, · )−Q1(M, · ) and
its symmetric, which is enough for our purpose. The proof is reminiscent of the proof of (Mischler
& Mouhot, 2009, Proposition 3.2) and (Alonso & Lods , 2013a, Theorem 3.11) but we face some
additional di�culties due to the polynomial weight.

Lemma 2.2. Let q > 0. There exist some explicit p ∈ (0, 1) and α1 ∈ (0, 1) such that

‖Qα(M, f)−Q1(M, f)‖L1
v($q)

+ ‖Qα(f,M)−Q1(f,M)‖L1
v($q) . (1− α)p ‖f‖L1

v($q+1) , α ∈ [α1, 1] .

Proof. We only prove the �rst estimate on Q1( · ,M)−Qα( · ,M), the other one can be treated
exactly in the same way. Notice �rst that

Qα(f,M)−Q1(f,M) = Q+
α (f,M)−Q+

1 (f,M) .
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As in the proofs of (Mischler & Mouhot, 2009, Proposition 3.2) and (Alonso & Lods , 2013a,
Theorem 3.11), we set w := v + v∗ and ŵ := w/|w| and de�ne χ ∈ [0, π/2] through |cosχ| :=
|ŵ ·σ|. Let δ ∈ (0, 1) and R > 1 be �xed and let ηδ ∈W1,∞(−1, 1) such that ηδ(s) = ηδ(−s) for
any s ∈ (0, 1) and

ηδ(s) =

{
1 if s ∈ (−1 + 2δ, 1− 2δ)

0 if s /∈ (−1 + δ, 1− δ)

with moreover

0 6 ηδ(s) 6 1 and |η′δ(s)| 6
3

δ
, ∀ s ∈ (−1, 1) .

Let us de�ne also ΘR(r) = Θ(r/R) with Θ(x) = 1 on [0, 1], Θ(x) = 1 − x for x ∈ [1, 2] and
Θ(x) = 0 on [2,∞). We de�ne the set

A(δ) := {σ ∈ Sd−1; sin2 χ > δ}

we split Q+
α into

Q+
α = Q+,r

α +Q+,l
α +Q+,a

α

where the collision operatorsQ+,i
α for i = l, r, a, are de�ned in weak form by (2.9) with associated

collision kernels de�ned as

Br(u, σ) := ηδ(û ·σ ) ΘR(u) |u|b(û ·σ), Bl(u, σ) := 1A(δ)(σ) (1−ΘR(|u|)) |u|b(û ·σ)

and
Ba(u, σ) := |u|b(û ·σ)

(
(1− ηδ(û ·σ )) ΘR(|u|) + (1−ΘR(|u|)) 1Ac(δ)

)
.

This splitting corresponds to a splitting for small angles (corresponding to the kernel Ba), large
velocities (corresponding to Bl) and the reminder term (corresponding to Br). The treatment of
small angles and of the truncated operator is similar to the one of (Mischler & Mouhot, 2009,
Proposition 3.2) and we only recall the results obtained therein:

‖Q+,a
α (f,M)‖L1

v($q) . δ‖f‖L1
v($q+1) , α ∈ (0, 1] , R ∈ (1,∞)

and

‖Q+,r
α (f,M)−Q+,r

1 (f,M)‖L1
v($q) . (1− α)

(
R2

δ
+
R

δ3

)
‖f‖L1

v($q) .

Let us now handle the case of large relative velocities. To this end, we estimate ‖Q+,l
α (f,M)‖L1

v($q)

by duality and thanks to (2.9)

‖Q+,l
α (f,M)‖L1

v($q) = sup
‖ϕ‖∞61

ˆ
Rd×Rd×Sd−1

Bl(u, σ)M(v)f(v∗)ϕ(v′)$q(v
′) dv dv∗ dσ .
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Choosing, ϕ = ϕ(v) ∈ L∞(Rd), one writes

Iϕ :=

ˆ
Rd×Rd×Sd−1

Bl(u, σ)M(v)f(v∗)ϕ(v′)$q(v
′) dv dv∗ dσ

=

ˆ
Rd×Rd

f(v∗) (1−ΘR(|u|)) |u|M(v) dv dv∗

ˆ
A(δ)

b(û ·σ)ϕ(v′)$q(v
′) dσ

where, by de�nition of ΘR,

(1−ΘR(|u|)) |u| 6 |u|
2

2R
6
|u′|2

2α2R
.

1

α2R
〈v′〉2〈v′∗〉2

noticing that |u′|2 = |u|2
2

(
1 + α2 + (1− α2)û ·σ

)
> α2|u|2. Therefore,

|Iϕ| .
‖ϕ‖∞
α2R

ˆ
Rd×Rd×Sd−1

|f(v∗)|1A(δ)(σ)b(û ·σ)$q+2(v′)〈v′∗〉2M(v) dv dv∗ dσ . (2.18)

For σ ∈ A(δ) and δ > 81−α
1+α , one has

|v|2 > δ

16
(|v′|2 + |v′∗|2) . (2.19)

It is somehow easier to see this using the pre-collisional velocities. Indeed, observe �rst that the
set A(δ) is invariant under the change of pre-post collisional change of variables and remark that

′v = v − 1 + α

4α
(u− |u|σ) =

w

2
− 1

2

[
1− α

2α
u− 1 + α

2α
|u|σ

]
.

Using now that, when sin2 χ > δ, then |ŵ ·σ| 6
√

1− δ 6 1− δ
2 , we have

|′v|2 > 1

4
(|w|2 + |u|2)− 1 + α

4α
|w||u|

(
1− δ

2

)
− 1− α

4α
(|v|2 − |v∗|2)

> |v|2
(

1

2
− 1 + α

4α

(
1− δ

2

)
− 1− α

4α

)
+ |v∗|2

(
1

2
− 1 + α

4α

(
1− δ

2

)
+

1− α
4α

)
> δ

1 + α

8α
|v∗|2 +

(
δ

1 + α

8α
− 1− α

2α

)
|v|2.

Then, if δ > 81−α
1+α , we get:

|′v|2 > δ1 + α

16α
(|v|2 + |v∗|2) >

δ

16
(|v|2 + |v∗|2) ,

which is of course equivalent to (2.19). As a consequence, sinceM(v) . exp
(
− |v|

2

4ϑ1

)
M

1
2 (v),

one deduces that

M(v)〈v′∗〉2$q+2(v′) . e
−δ |v

′|2
64ϑ1$q+2(v′)e

−δ |v
′
∗|

2

64ϑ1 〈v′∗〉2M
1
2 (v) .

1

δ
q+4
2

M
1
2 (v) . (2.20)
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Combining this with (2.18) we deduce that, for δ > 81−α
1+α ,

|Iϕ| .
‖ϕ‖∞
α2Rδ

q+4
2

ˆ
Rd×Rd×Sd−1

|f(v∗)|M
1
2 (v)b(û ·σ)dvdv∗dσ

which of course results in

‖Q+,l
α

(
f,M

)
‖L1

v($q) = sup
‖ϕ‖∞61

Iϕ .
1

α2Rδ
q+4
2

‖f‖L1
v

since b ∈ L1(Sd−1). Gathering the previous estimates, we obtain if δ > 81−α
1+α and α far away

from zero:

‖Qα(f,M)−Q1(f,M)‖L1
v($q) .

(
δ + (1− α)

(
R2

δ
+
R

δ3

)
+

1

Rδ
q+4
2

)
‖f‖L1

v($q+1) .

Picking now δ = (1− α)p for some p ∈ (0, 1) (so that the condition δ > 81−α
1+α will be satis�ed

for α close enough to 1) and R = (1− α)−p−
q+4
2
p = (1− α)−p

q+6
2 , we then obtain for α close

enough to 1 that

‖Qα(f,M)−Q1(f,M)‖L1
v($q)

.
(

(1− α)p + (1− α)1−p(q+7) + (1− α)1−p q+12
2

)
‖f‖L1

v($q+1) ,

and, with p = 1
q+8 , 1− p(q + 7) = p and

‖Qα(f,M)−Q1(f,M)‖L1
v($q) .

(
(1− α)p + (1− α)

q+4
2
p
)
‖f‖L1

v($q+1)

. (1− α)p‖f‖L1
v($q+1) .

This proves the result. �

Estimates on Gα − M. We now investigate the rate of convergence of the equilibrium Gα
towardsM as α goes to 1. An optimal convergence rate in L1-spaces is given in (Mischler &
Mouhot, 2009, Step 2, proof of Lemma 4.4): there exists α2 > 0 such that

‖Gα −M‖L1
v(〈 · 〉m) . (1− α) , α ∈ [α2, 1] , (2.21)

for m(v) = exp(a |v|), a > 0 small enough. We need to extend this optimal rate of convergence
to the Sobolev spaces Ljv($q) for j = 1, 2 we shall consider.

Lemma 2.3. Let q > 0 be given. There exists some explicit α3 ∈ (0, 1) such that

‖Gα −M‖L1
v($q) + ‖Gα −M‖L2

v($q+1) . (1− α) , α ∈ [α3, 1] .

Proof. We start with the L2
v-case. To this end, we slightly modify here a strategy adopted in

Alonso & Lods (2013a) which consists in combining a nonlinear estimate for ‖Gα −M‖L2
v($q)

together with non-quantitative convergence. We �x q > 0, κ > d
2 and we divide the proof into

three steps:
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Step 1: non quantitative convergence. Let us prove that

‖Gα −M‖L2
v($q+κ+1) −−−→

α→1
0 . (2.22)

We argue here as in (Alonso & Lods , 2013a, Theorem 4.1). We sketch only the main steps. First,
from (Mischler & Mouhot, 2009, Proposition 2.1), there is α > 0 such that for any k > 0 and
any r > 0,

sup
α∈(α,1)

‖Gα‖Wk,2
v ($r)

<∞ .

Then, there is a sequence (αn)n converging to 1 such that (Gαn)n converges weakly in the space
L2
v($q+κ+1) to some limit Ḡ (notice that, a priori, the limit function Ḡ depends on the choice

of q). Using the pointwise decay of (Gα)α and compact embedding for Sobolev spaces, this
convergence is actually strong, i.e. limn ‖Gαn − Ḡ‖L2

v($q+κ+1) = 0. According to (2.21), one
necessarily has Ḡ =M and one deduces easily that whole net (Gα)α is converging toM. This
proves (2.22).
Step 2: nonlinear estimate. We �rst consider the MaxwellianMα with same mass, momentum and
energy of Gα and we consider the linearized elastic collision operator around that Maxwellian

L := Q1( · ,Mα) +Q1(Mα, · ) .

One simply notices that, since Q1(Mα,Mα) = 0,

L(Gα) = Q1(Gα −Mα,Mα −Gα) +Qα(Gα, Gα) +

[
Q1(Gα, Gα)−Qα(Gα, Gα)

]
= Q1(Gα −Mα,Mα −Gα)− (1− α)∇v · (vGα) +

[
Q1(Gα, Gα)−Qα(Gα, Gα)

]
.

Therefore, using classical estimates for Q1 (see Theorem B.1 and Lemma B.3) and considering
κ > d

2 , α > ᾱ,

‖L(Gα)‖L2
v($q) 6 ‖Q1(Gα −Mα,Mα −Gα)‖L2

v($q)

+ (1− α) ‖Gα‖W1,2
v ($q+1)

+ ‖Q1(Gα, Gα)−Qα(Gα, Gα)‖L2
v($q)

. ‖Gα −Mα‖L2
v($q+1)‖Gα −Mα‖L2

v($q+κ+1) + (1− α)‖Gα‖W1,2
v ($q+1)

+ (1− α) ‖Gα‖L2
v($q+κ+3)‖Gα‖W1,2

v ($q+κ+3)

where we used Lemma 2.1 for estimating the di�erence Q1(Gα, Gα) − Qα(Gα, Gα). Since
supα ‖Gα‖W1,2

v ($q+κ+3)
<∞, we obtain that there is a positive constant C > 0 such that

‖L(Gα)‖L2
v($q) 6 C(1− α) + C‖Gα −Mα‖L2

v($q+1)‖Gα −Mα‖L2
v($q+κ+1) .

We can write L(Gα) = L(Gα −Mα) and, as Gα −Mα has zero mass, momentum and energy,
there is a positive constant c > 0 (that can be taken independent of α) such that

‖L(Gα −Mα)‖L2
v($q) > c‖Gα −Mα‖L2

v($q+1) .
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The constant c > 0 is actually the norm of the inverse of L on the subspace of functions with
zero mass, momentum and energy; recall that this inverse maps L2($q) into D(L) = L2

v($q+1).
Therefore, with C̃ := C/c

‖Gα −Mα‖L2
v($q+1)

6 C̃(1− α) + C̃‖Gα −Mα‖L2
v($q+1)‖Gα −Mα‖L2

v($q+κ+1) , α ∈ [α, 1] .
(2.23)

Step 4: conclusion in L2
v . Setting

ϑα :=
1

d

ˆ
Rd
|v|2Mα(v) dv =

1

d

ˆ
Rd
|v|2Gα(v) dv ,

one sees easily from (2.21) that |ϑ1 − ϑα| . 1−α and then, one can check without di�culty that

‖Mα −M‖L2
v($q+κ+1) . 1− α , α ∈ [α2, 1] . (2.24)

Thanks to (2.22), there exists α3 ∈ [max(α2, α), 1) such that

C̃‖Gα −Mα‖L2
v($q+κ+1) 6

1

2
, α ∈ [α3, 1]

where C̃ is the positive constant in (2.23). Then, (2.23) reads simply as

‖Gα −Mα‖L2
v($q+1) 6 2C̃(1− α) , α ∈ [α3, 1] ,

and, using (2.24), we end up with

‖Gα −M‖L2
v($q+1) . 1− α , α ∈ [α3, 1] ,

which gives also a quantitative lower bound on α3.
Step 5: estimate in L1

v . The estimate on the L1
v($q)-norm of Gα −M can be obtained straight-

forwardly by using the previous result in L2
v-spaces and Cauchy-Schwarz inequality. �

2.2.2. Estimates on Lα − L1. We �rst provide an estimate on Lα − L1 (where we recall that Lα
is de�ned in (1.29)) in an L2

v-framework which comes from Lemmas 2.1 and 2.3.

Lemma 2.4. Consider q > 0. For any κ > d
2 , there exists some explicit α4 ∈ (0, 1) such that for

any h ∈ L2
v($q+κ+3),

‖Lαh− L1h‖L2
v($q) . (1− α) ‖h‖L2

v($q+κ+3) , α ∈ [α4, 1] . (2.25)

As a consequence, for any ` > 0, there holds

‖Lαh− L1h‖L2
vW

`,2
x ($q)

. (1− α) ‖h‖
L2
vW

`,2
x ($q+κ+3)

, α ∈ [α4, 1] . (2.26)

Proof. Notice �rst that

Lαh− L1h = Qα(h,Gα −M) +Qα(Gα −M, h)

+
[
Qα(h,M)−Q1(h,M)

]
+
[
Qα(M, h)−Q1(M, h)

]
. (2.27)
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From Theorem B.1,

‖Q+
α (g, f)‖L2

v($q) + ‖Q+
α (f, g)‖L2

v($q) . ‖f‖L1
v($q+1) ‖g‖L2

v($q+1)

where we recall thatQ+
α is the gain part of the operatorQα. On the other hand, using Lemma B.3,

we have that for κ > d
2 ,

‖Q−α (g, f)‖L2
v($q) . ‖f‖L2

v($q+1)‖g‖L2
v($κ+1)

where Q−α is the loss part of the operator Qα. One deduces that

‖Qα(h,Gα −M)‖L2
v($q) + ‖Qα(Gα −M, h)‖L2

v($q)

. ‖h‖L2
v($q+1)

(
‖Gα −M‖L1

v($q+1) + ‖Gα −M‖L2
v($κ+1)

)
+ ‖h‖L2

v($κ+1)‖Gα −M‖L2
v($q+1) .

Then from Lemma 2.1, for any κ > d
2 , we have:

‖Qα(h,M)−Q1(h,M)‖L2
v($q) + ‖Qα(M, h)−Q1(M, h)‖L2

v($q)

.
1− α
αa
‖M‖W1,2

v ($q+κ+3)
‖h‖L2

v($q+κ+3)

where a = max(d− 1, 2). One can then conclude that (2.25) holds true thanks to Lemma 2.3. �

We will need also to derive an estimate for Lα − L1 in its graph norm in a L1
v-framework, at

the price of loosing the sharp convergence rate (1− α).

Lemma 2.5. For any q > 0, there exists some explicit α5 ∈ (0, 1) such that

‖Lαh− L1h‖L1
v($q) . (1− α)p ‖h‖L1

v($q+1) , α ∈ [α5, 1] , (2.28)

where p is de�ned in Lemma 2.2. As a consequence, there holds

‖Lαh− L1h‖L1
vL

2
x($q) . (1− α)

p
2 ‖h‖L1

vL
2
x($q+1) , α ∈ [α5, 1] . (2.29)

Proof. Recall (see Theorem B.1 and Lemma B.3) that for any α ∈ (0, 1],

‖Q±α (g, f)‖L1
v($q) . ‖g‖L1

v($q+1) ‖f‖L1
v($q+1) , ∀ f, g ∈ L1

v($q+1) . (2.30)

Using the decomposition (2.27) and choosing α5 ∈ [max(α1, α3), 1) (where α1 is de�ned in
Lemma 2.2 and α3 in Lemma 2.3), the proof of (2.29) is then a direct consequence of (2.30) and
Lemma 2.2 which give

‖Lαh− L1h‖L1
v($q) . ‖h‖L1

v($q+1) ‖Gα −M‖L1
v($q+1) + (1− α)p ‖h‖L1

v($q+1) .

Let us prove (2.29). On the one hand, the L1
vL

1
x($q)-norm of Lαh − L1h is estimated using

Fubini theorem and (2.28):

‖Lαh− L1h‖L1
vL

1
x($q) . (1− α)p ‖h‖L1

vL
1
x($q+1) .
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On the other hand, using (2.30) and the fact that Q±α are local in x, one can show that

‖Lαh− L1h‖L1
vL
∞
x ($q) . ‖h‖L1

vL
∞
x ($q+1) .

We obtain (2.29) by interpolation. �

2.3. Decomposition of Lα. Let us now recall the following decomposition of Lα de�ned
in (1.28) introduced in Gualdani et al. (2017); Tristani (2016) (see also Alonso et al. (2017) for
proofs adapted to the case of a general collision kernel b). For any δ ∈ (0, 1), we consider the
cuto� function 0 6 Θδ = Θδ(ξ, ξ∗, σ) ∈ C∞(Rd × Rd × Sd−1), assumed to be bounded by 1,
which equals 1 on

Jδ :=
{

(ξ, ξ∗, σ) ∈ Rd × Rd × Sd−1
∣∣∣ |ξ| 6 δ−1 , 2δ 6 |ξ − ξ∗| 6 δ−1 , |cos θ| 6 1− 2δ

}
,

and whose support is included in J δ
2

(where cos θ = 〈 ξ−ξ∗|ξ−ξ∗| , σ〉). We then set

L S,δ
1 h(ξ) =

ˆ
Rd×Sd−1

[
M(ξ′∗)h(ξ′) +M(ξ′)h(ξ′∗)−M(ξ)h(ξ∗)

]
× |ξ − ξ∗| b(cos θ) Θδ(ξ, ξ∗, σ) dξ∗ dσ ,

L R,δ
1 h(ξ) =

ˆ
Rd×Sd−1

[
M(ξ′∗)h(ξ′) +M(ξ′)h(ξ′∗)−M(ξ)h(ξ∗)

]
× |ξ − ξ∗| b(cos θ) (1−Θδ(ξ, ξ, σ)) dξ∗ dσ ,

so that L1h = L S,δ
1 h+ L R,δ

1 h− hΣM where using (1.6), ΣM denotes the mapping

ΣM(ξ) :=

ˆ
Rd
M(ξ∗)|ξ − ξ∗| dξ∗ , ∀ ξ ∈ Rd . (2.31)

Recall that there exist σ0 > 0 and σ1 > 0 such that

σ0$1(ξ) 6 ΣM(ξ) 6 σ1$1(ξ) , ∀ ξ ∈ Rd . (2.32)

Introduce
A(δ)(h) := L S,δ

1 (h) and B(δ)
1 (h) := L R,δ

1 − ΣM

so that L1 = A(δ) + B(δ)
1 . Let us now recall the known dissipitavity results for the elastic

Boltzmann operator in L1
vL

2
x-based Sobolev spaces, see (Gualdani et al., 2017, Lemmas 4.12, 4.14

& Lemma 4.16):

Lemma 2.6. For any k ∈ N and δ > 0, there are two positive constants Ck,δ > 0 and Rδ > 0 such
that supp

(
A(δ)f

)
⊂ B(0, Rδ) and

‖A(δ)f‖Wk,2
v (Rd)

6 Ck,δ‖f‖L1
v($1) , ∀ f ∈ L1

v($1) . (2.33)
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Moreover, the following holds: for any q > 2 and any δ ∈ (0, 1) it holds
ˆ
Rd
‖h( · , v)‖−1

L2
x

(ˆ
Td

(
B(δ)

1 h(x, v)
)
h(x, v) dx

)
$q(v) dv

6 (Λq(δ)− 1) ‖h‖L1
vL

2
x($qΣM) (2.34)

where Λq : (0, 1)→ R+ is some explicit function such that limδ→0 Λq(δ) = 4
q+2 .

Remark 2.7. Notice that this lemma comes from Gualdani et al. (2017) but the constants involved
in the �nal estimates are not the same as in Lemma 4.14 of Gualdani et al. (2017) where it seems that
some multiplicative constants coming from (2.32) have been omitted in some computations of their
proof.

This leads to the following decomposition of Lα:

Lα = B(δ)
α +A(δ) where B(δ)

α := B(δ)
1 + [Lα −L1] . (2.35)

2.4. The complete inelastic linearized operator. The complete linearized operator is given by

Gα,εh = ε−2Lα(h)− ε−1v ·∇xh , ∀α ∈ (0, 1] .

With the previous decomposition of Lα, we have that

Gα,ε = A(δ)
ε + B(δ)

α,ε

where
A(δ)
ε := ε−2A(δ) , B(δ)

α,ε := ε−2B(δ)
α − ε−1v ·∇x .

One has the following properties of B(δ)
α,ε in L1

vL
2
x-based spaces.

Proposition 2.8. For any ` > 0 and q > 2, there exist α†q > 0, δ†q > 0 and νq > 0 such that for
any ε ∈ (0, 1],

B(δ)
α,ε + ε−2νq is dissipative in L1

vW`,2
x ($q)

for any α ∈ (α†q, 1) and δ ∈ (0, δ†q).

Remark 2.9. Let us be more precise on the estimate of dissipativity we obtain in L1
vL

2
x($q) for

further use: for any ε ∈ (0, 1], any α ∈ (α†q, 1) and any δ ∈ (0, δ†q), we haveˆ
Rd
‖h( · , v)‖−1

L2
x

(ˆ
Td
B(δ)
α,ε(h)(x, v)h(x, v) dx

)
$q(v) dv 6 −ε−2νq‖h‖L1

vL
2
x($q+1) .

Proof. Notice that derivatives with respect to the x-variable commute with the operator B(δ)
α,ε

and this allows to prove the result, without loss of generality, in the special case ` = 0. We �rst
introduce the following notations:

Pα := Lα − L1 , Tα := −(1− α)∇v · (v · ) .
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We then write B(δ)
α,ε(h) =

∑3
i=0Ci(h) with

C0(h) := ε−2B(δ)
1 h , C1(h) := −ε−1v ·∇xh ,

C2(h) := ε−2Pαh , C3(h) := ε−2Tαh ,

and correspondingly (with obvious notations),
ˆ
Rd
‖h( · , v)‖−1

L2
x

(ˆ
Td
B(δ)
α,ε(h)(x, v)h(x, v) dx

)
$q(v) dv =:

3∑
i=0

Ii(h) .

First, I1(h) = 0 sinceˆ
Td

(v ·∇xh(x, v))h(x, v) dx =
1

2

ˆ
Td
v ·∇xh2(x, v) dx = 0 .

According to (2.34), by taking δ small enough so that Λq(δ) < 1 (which is possible since q > 2),
we have

I0(h) 6 ε−2σ0 (Λq(δ)− 1) ‖h‖L1
vL

2
x($q+1) .

Moreover, it follows from Cauchy-Schwarz inequality and (2.29) that there exists C > 0 such that
for any α ∈ [α5, 1],

I2(h) 6 ε−2

ˆ
Rd
‖Pαh( · , v)‖L2

x
$q(v) dv 6 ε−2C(1− α)

p
2 ‖h‖L1

vL
2
x($q+1) .

Finally, for I3, one can computeˆ
Rd
‖h( · , v)‖−1

L2
x

ˆ
Td
∇v · (vh(x, v))h(x, v) dx$q(v) dv

= d

ˆ
Rd
‖h( · , v)‖L2

x
$q(v) dv +

1

2

ˆ
Rd
‖h( · , v)‖−1

L2
x

ˆ
Td
v ·∇vh2(x, v) dx$q(v) dv

= d

ˆ
Rd
‖h( · , v)‖L2

x
$q(v) dv +

1

2

ˆ
Rd
‖h( · , v)‖−1

L2
x
v ·∇v‖h( · , v)‖2L2

x
$q(v) dv

= −
ˆ
Rd
‖h( · , v)‖L2

x
v ·∇v$q(v) dv .

Since v ·∇v$q(v) = q$q(v)− q$q−2(v) we get

I3(h) 6 q(1− α)ε−2‖h‖L1
vL

2
x($q+1) . (2.36)

Gathering the previous estimates, one obtains

I :=

ˆ
Rd
‖h( · , v)‖−1

L2
x

(ˆ
Td
B(δ)
α,ε(h)(x, v)h(x, v) dx

)
$q(v) dv

6 ε−2
(
C(1− α)

p
2 + σ0(Λq(δ)− 1) + q(1− α)

)
‖h‖L1

vL
2
x($q+1) .

(2.37)
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Recalling that limδ→0(Λq(δ)−1) = − q−2
q+2 < 0, we can pick δ†q small enough and thenα†q ∈ (α5, 1)

close enough to 1 so that

νq := − inf
{
C(1− α)

p
2 + σ0(Λq(δ)− 1) + q(1− α) ; α ∈ (α†q, 1), δ ∈ (0, δ†q)

}
> 0

and get the result. �

3. Hypocoercive norm for the elastic problem

We establish here some hypocoercivity result for the elastic linearized operator G1,ε. For ε = 1,
hypocoercivity results have been established notably in Mouhot & Neumann (2006) with the
so-called H1-hypocoercivity method. For ε ∈ (0, 1), it is important to deduce hypocoercivity
results with optimal dependency on ε (see Section 4 where the hypocoercivity estimate below
will be crucially used). The results of Briant (2015) extend the ones by Mouhot & Neumann (2006)
and provide estimate in Sobolev spaces like W`,2

x,v(M−
1
2 ) for ε ∈ (0, 1) with ` > 1 but in our

subsequent analysis, it is important to use a space which does not involve any derivative in the
v-variable, we work therefore in the spaces

H := L2
vWm,2

x (M−
1
2 ) , H1 := L2

vWm,2
x (M−

1
2 〈 · 〉

1
2 ) , m >

d

2
. (3.1)

Notice that all the results of this section except Lemma 3.4 would be true in L2
vW

`,2
v with ` ∈ N,

we only state our results inH because we will use them only in this framework. In order to prove
our result in the functional spaceH, we use the L2-hypocoercivity method. Let us mention that
recent L2-hypocoercivity results have been obtained in Bernou et al. (2021) (to which we refer
for references on hypocoercivity methods in general) for various linearized kinetic equations in
bounded domains with general Maxwell boundary conditions. For the Landau equation on the
torus, similar results have been obtained in Carrapatoso et al. (2022) and our result is an easy
adaptation of (Bernou et al. , 2021, Theorem 5.1) and (Carrapatoso et al., 2022, Proposition 3.2).

Before stating our result, we recall the expression for the spectral projection π0 onto the kernel
Ker(L1) of the linearized collision operator L1 seen as an operator acting in velocity only on the
space L2

v(M−
1
2 ):

π0(g) :=

d+2∑
i=1

(ˆ
Rd
gΨi dv

)
ΨiM , (3.2)

where

Ψ1(v) := 1 , Ψi(v) :=
vi−1√
ϑ1

(i = 2, . . . , d+1) , and Ψd+2(v) :=
1

ϑ1

√
2d

(|v|2−dϑ1) .

(3.3)
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Note also (see for example Briant (2015)) that the spectral projection P0 onto the kernel of G1,ε

is given by

P0(g) :=

d+2∑
i=1

(ˆ
Td×Rd

gΨi dx dv

)
ΨiM (3.4)

and so the di�erence with respect to the spectral projection π0 is that an additional spatial
integration is performed.

Proposition 3.1. On the spaceH de�ned in (3.1), there exists a norm ||| · |||H with associated inner
product 〈〈 · , · 〉〉H equivalent to the standard norm ‖ · ‖H for which there exist a1 > 0 and a2 > 0

such that
〈〈 G1,εh, h 〉〉H 6 −

a1

ε2
‖(Id− π0)h‖2H1

− a1‖h‖2H1
− a2|||h|||2H (3.5)

holds true for any h = (Id−P0)h ∈ D(G1,ε) ⊂ H where π0 (resp. P0) is de�ned in (3.2)
(resp. (3.4)).

Remark 3.2. Remark that the equivalent norm ||| · |||H actually depends on ε (see (3.17)) but we do
not mention this dependency in our notation because this norm is equivalent to the usual one ‖ · ‖H
uniformly in ε ∈ (0, 1). In particular, there exists CH > 0 independent of ε ∈ (0, 1) such that

CH‖h‖H 6 |||h|||H 6 C
−1
H ‖h‖H , ∀h ∈ H . (3.6)

Proof. The proof follows closely the one in (Carrapatoso et al., 2022, Appendix A) and we provide
only the main steps and main changes.
Step 1. In this �rst step, we provide tools that are useful to carry out our proof. We set

L2
0(Td) :=

{
φ ∈ L2

x(Td) ;

ˆ
Td
φ(x) dx = 0

}
.

Then, for any φ ∈ L2
0(Td) there is a unique solution f ∈W2,2

x (Td) ∩ L2
0(Td) to the equation

−∆xf = φ , x ∈ Td .

We denote then by (−∆x)−1 the bounded operator

(−∆x)−1 : φ ∈ L2
0(Td) 7→ f ∈W2,2

x (Td) ∩ L2
0(Td) .

In particular, (−∆x)−1 ∈ B(L2
0(Td) , W1,2

x (Td) ∩ L2
0(Td)) .

For any f ∈ L2
x,v(M−

1
2 ) we introduce the following notation

f⊥ := (Id− π0) f (3.7)

where π0 is the spectral projection π0 onto the kernel Ker(L1) of the linearized collision op-
erator L1 de�ned in (3.2). As in Section 6, it will be more convenient to adopt the equivalent
de�nition of π0:

π0f(x, v) =

(
%[f ](x) + u[f ](x) · v +

1

2
θ[f ](x)(|v|2 − dϑ1)

)
M(v) , (3.8)
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where

%[f ] :=

ˆ
Rd
f( · , v) dv , u[f ] =

1

ϑ1

ˆ
Rd
v f( · , v) dv ∈ Rd ,

and θ[f ] is de�ned through

%[f ] + ϑ1θ[f ] =
1

dϑ1

ˆ
Rd
|v|2f( · , v) dv .

For general f ∈ L2
x,v(M−

1
2 ), the splitting f = f⊥ + π0f implies that

‖f‖2
L2
x,v(M−

1
2 )

= ‖f⊥‖2
L2
x,v(M−

1
2 )

+ ‖%[f ]‖2L2
x

+ ‖u[f ]‖2L2
x

+ ‖θ[f ]‖2L2
x
. (3.9)

Notice that, for f ∈ D(G1,ε) ∩ Range(Id−P0), one has P0f =
´
Td π0f dx = 0 so that

%[f ], uk[f ], θ[f ] ∈ L2
0(Td) , ∀ k = 1, . . . , d .

In particular, (−∆x)−1 %[f ], (−∆x)−1 uk[f ] and (−∆x)−1 θ[f ] are well-de�ned and∥∥∥(−∆x)−1 %[f ]
∥∥∥
W2,2
x

. ‖%[f ]‖L2
x
. ‖f‖

L2
x,v(M−

1
2 )
,∥∥∥(−∆x)−1 uk[f ]

∥∥∥
W2,2
x

. ‖uk[f ]‖L2
x
. ‖f‖

L2
x,v(M−

1
2 )

and
∥∥∥(−∆x)−1 θ[f ]

∥∥∥
W2,2
x

. ‖θ[f ]‖L2
x
. ‖f‖

L2
x,v(M−

1
2 )
.

(3.10)

We introduce here the following notations, for any k, ` ∈ {1, . . . , d} and any f ∈ H, we set

ψk[f ](x) :=
2

dϑ2
1

ˆ
Rd
bk(v)f(x, v) dv =

1

dϑ2
1

ˆ
Rd
vk
(
|v|2 − (d+ 2)ϑ1

)
f(x, v) dv , (3.11)

where
b(v) :=

1

2

(
|v|2 − (d+ 2)ϑ1

)
v , v ∈ Rd (3.12)

and
Θk`[f ](x) :=

ˆ
Rd
pk`(v)f(x, v)M(v) dv , x ∈ Td (3.13)

with

pk`(v) :=


1

(d+ 4)ϑ1
vkv`|v|2 if k 6= ` ,

d− 1

2
ϑ1 + v2

k −
1

2
|v|2 if k = ` .

One observes easily that

Θk`[f ] = Θk`[f
⊥] if k 6= ` , while Θkk[f ] = Θkk[f

⊥]− d− 1

2
ϑ2

1θ[f ] . (3.14)
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Notice that, since bk and pk` are polynomial function, a simple use of Cauchy-Schwarz inequality
shows that

‖ψk[f ]‖L2
x

+ ‖Θk`[f ]‖L2
x
. ‖f‖

L2
x,v(M−

1
2 )
. (3.15)

In particular, using (3.14), we deduce that

‖Θk`[f ]‖L2
x
. ‖θ[f ]‖L2

x
+ ‖f⊥‖

L2
x,v(M−

1
2 )
. (3.16)

We now have the tools needed to develop the proof of Proposition 3.1.
Step 2. Since spatial derivatives commute with G1,ε, the crucial point is actually to de�ne the
equivalent inner product and norm on the space

H := L2
x,v(M−

1
2 )

with usual inner product 〈 · , · 〉
L2
x,v(M−

1
2 )

and norm ‖ · ‖
L2
x,v(M−

1
2 )

while, on the space L2
x(Td)

the inner product is denoted 〈 · , · 〉L2
x
.

We de�ne the following inner product 〈〈 · , · 〉〉H on L2
x,v(M−

1
2 ) as follows: if P0f = P0g = 0,

then we de�ne
〈〈f, g〉〉H := 〈f, g〉

L2
x,v(M−

1
2 )

+ εη1

d∑
k=1

(
〈∂xk (−∆x)−1 θ[f ],ψk[g]〉L2

x
+ 〈∂xk (−∆x)−1 θ[g] , ψk[f ]〉L2

x

)

+ εη2

d∑
k,`=1

(
〈∂x` (−∆x)−1 uk[f ] , Θk`[g]〉L2

x
+ 〈∂x` (−∆x)−1 uk[g] , Θk`[f ]〉L2

x

)

+ εη3

d∑
k=1

(
〈∂xk (−∆x)−1 %[f ] , uk[g]〉L2

x
+ 〈∂xk (−∆x)−1 %[g] , uk[f ]〉L2

x

)
(3.17)

for some suitable constants 0 < η3 < η2 < η1 < 1 to be chosen, otherwise, we simply de�ne

〈〈f, g〉〉H := 〈f, g〉
L2
x,v(M−

1
2 )
.

It is worth mentioning that in the rest of the paper, the only useful part of the de�nition is the �rst
one, that is (3.17). The associated norm is denoted by ||| · |||H . Since ∇x (−∆x)−1 is a bounded
operator on L2

x, one deduces easily from (3.10) and (3.15) that

‖f‖2
L2
x,v(M−

1
2 )
6 |||f |||2H . ‖f‖

2

L2
x,v(M−

1
2 )

+ ε‖f‖2
L2
x,v(M−

1
2 )
. ‖f‖2

L2
x,v(M−

1
2 )

for ε ∈ (0, 1). Therefore, the norms ||| · |||H and ‖ · ‖
L2
x,v(M−

1
2 )

are equivalent uniformly with

respect to ε.
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For h ∈ D(G1,ε) ∩ Range(Id−P0) ⊂ H given, we compute 〈〈G1,εh, h〉〉H as

〈〈G1,εh, h〉〉H = 〈G1,εh, h〉L2
x,v

+ εη1(I1 + I2) + εη2

2∑
k,`=1

(Jk,`1 + Jk,`2 ) + εη3(R1 + R2)

where

I1 := 〈∇x (−∆x)−1 θ[G1,εh],ψ[h]〉L2
x
, I2 := 〈∇x (−∆x)−1 θ[h] , ψ[G1,εh]〉L2

x
,

Jk,`1 := 〈∂x` (−∆x)−1 uk[G1,εh] , Θk`[h]〉L2
x
, Jk,`2 := 〈∂x` (−∆x)−1 uk[h] , Θk`[G1,εh]〉L2

x

and

R1 := 〈∇x (−∆x)−1 %[G1,εh], u[h]〉L2
x
, R2 := 〈∇x (−∆x)−1 %[h], u[G1,εh]〉L2

x
.

We compute and estimate all these terms in succession. First, recalling that

G1,εh =
1

ε2
L1h−

1

ε
v ·∇xh

and using that L1 is self-adjoint and coercive on H : there exists a0 > 0 such that

〈L1f, f〉
L2
x,v(M−

1
2 )
6 −a0‖ (Id− π0) f‖2

L2
x,v(M−

1
2 〈 · 〉 12 )

,

for any f ∈ D(G1,ε) ⊂ H such that P0f = 0 (see Briant (2015) for instance), we deduce �rst
that

〈G1,εh, h〉
L2
x,v(M−

1
2 )
6 −a0

ε2
‖h⊥‖2

L2
x,v(M−

1
2 〈 · 〉 12 )

(3.18)

where we recall that h⊥ = h− π0h.
As far as I1, I2 are concerned, one has the following technical computations, in the spirit of

(Carrapatoso et al., 2022, Proposition 3.2):

θ[G1,εh] = −1

ε
∇x ·ψ[h]− 2

dε
∇x ·u[h] ,

while

ψk[G1,εh] =
1

ε2
ψk

[
L1h

⊥
]

+
d+ 2

dε
ϑ1∂xkθ[h]− 1

ε

2

dϑ2
1

d∑
j=1

∂xj

ˆ
Rd
vkbj(v)h⊥ dv

With this, arguing as in (Carrapatoso et al., 2022, Proof of Proposition 3.2), we deduce �rst that∥∥∥∇x (−∆x)−1 θ[G1,εh]
∥∥∥
L2
x

.
1

ε

(
‖u[h]‖L2

x
+ ‖ψ[h]‖L2

x

)
and then, thanks to (3.15) and the fact that ψ[h] = ψ[h⊥], we get that

|I1| .
1

ε

(
‖u[h]‖L2

x
+ ‖h⊥‖

L2
x,v(M−

1
2 )

)
‖h⊥‖

L2
x,v(M−

1
2 )
.
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Similarly, using the expression of ψk[G1,εh], we can split I2 as I2 = I21 + I22 + I23 with

I21 :=
1

ε2
〈∇x (−∆x)−1 θ[h] , ψ[L1h

⊥]〉L2
x
, I22 :=

d+ 1

dε
ϑ1〈∇x (−∆x)−1 θ[h] , ∇xθ[h]〉L2

x

and

I23 := −1

ε

2

dϑ2
1

d∑
j=1

〈
∇x (−∆x)−1 θ[h] , ∂xj

ˆ
Rd
vkbj(v)h⊥ dv

〉
L2
x

.

Since L1 is self-adjoint on L2
v(M−

1
2 ), one has from (3.11)

ψ[L1h
⊥] =

2

dϑ2
1

ˆ
Rd
b(v)M(v)L1(h⊥)M−1(v) dv =

2

dϑ2
1

ˆ
Rd

L1(bM)h⊥M−1 dv

and ‖ψ[L1h
⊥]‖L2

x
. ‖h⊥‖

L2
x,v(M−

1
2 )

from which

|I21| .
1

ε2
‖θ[h]‖L2

x
‖h⊥‖

L2
x,v(M−

1
2 )
.

By a simple integration by parts, one has

I22 = −1

ε

d+ 2

d
ϑ1〈∆x (−∆x)−1 θ[h], θ[h]〉L2

x
= −1

ε

d+ 2

d
ϑ1‖θ[h]‖2L2

x
.

Finally, I23 is estimated thanks to Cauchy-Schwarz inequality as in Carrapatoso et al. (2022) to
deduce that

|I23| .
1

ε
‖θ[h]‖L2

x
‖h⊥‖

L2
x,v(M−

1
2 )
.

Combining all this estimates, we deduce from Young’s inequality as in (Carrapatoso et al., 2022,
Eq. (A.8)) that there exist K0, C0 > 0 such that

I1 + I2 6 −
K0

ε2
‖θ[h]‖2L2

x
+
C0

ε
‖u[h]‖L2

x
‖h⊥‖

L2
x,v(M−

1
2 )

+
C0

ε3
‖h⊥‖2

L2
x,v(M−

1
2 )
. (3.19)

To estimate Jk,`1 and Jk,`2 we �rst observe that

uk[G1,εh] = −1

ε
ϑ1∂xk (%[h] + ϑ1θ[h])− 1

ε

d∑
j=1

∂xj

ˆ
Rd
vkvjh

⊥ dv ,

Θk`[G1,εh] =
1

ε2
Θk`[L1h

⊥]− 1

ε
Θk`[v ·∇xπ0h]− 1

ε
Θk`[v ·∇xh⊥]

(3.20)

where

Θk`[v ·∇xπ0h] =


ϑ2

1 (∂xku`[h] + ∂x`uk[h]) if ` 6= k ,

ϑ2
1

(
∂xkuk[h]−

∑
j 6=k ∂xjuj [h]

)
if ` = k .
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With these technical calculations, we can argue as in Carrapatoso et al. (2022) and �rst observe
that, using an integration by parts and (3.20)

‖∇x (−∆x)−1 uk[G1,εh]‖L2
x

=
〈
uk[G1,ε[h], (−∆x)−1 uk[G1,εh]

〉
.

1

ε

(
‖%[h]‖L2

x
+ ‖θ[h]‖L2

x
+ ‖h⊥‖

L2
x,v(M−

1
2 )

)
which, thanks to (3.16) easily gives

|Jk,`1 | .
1

ε

(
‖%[h]‖L2

x
+ ‖θ[h]‖L2

x
+ ‖h⊥‖

L2
x,v(M−

1
2 )

)(
‖θ[h]‖L2

x
+ ‖h⊥‖

L2
x,v(M−

1
2 )

)
.

For the term Jk,`2 , we use the expression of Θk`[G1,εh] in (3.20) to deduce that Jk,`2 = Jk,`21 +

Jk,`22 + Jk,`23 where

Jk,`21 :=
1

ε2

〈
∂x` (−∆x)−1 uk[h] , Θk`[L1h

⊥]
〉
L2
x

,

Jk,`23 :=
1

ε

〈
∂x` (−∆x)−1 uk[h] , Θk`[v ·∇xh⊥]

〉
L2
x

and
Jk,`22 :=

1

ε

〈
∂x` (−∆x)−1 uk[h] , Θk`[v ·∇xπ0h]

〉
L2
x

.

One has then easily thanks to Cauchy-Schwarz inequality that

Jk,`21 .
1

ε2
‖u[h]‖L2

x
‖h⊥‖

L2
x,v(M−

1
2 )
, Jk,`23 .

1

ε
‖u[h]‖L2

x
‖h⊥‖

L2
x,v(M−

1
2 )

while, arguing as in Carrapatoso et al. (2022) ans using integration by parts we see that

J22 :=

d∑
k,`=1

Jk,`22 = −ϑ
2
1

ε

d∑
k=1

‖uk[h]‖2L2
x

= −ϑ
2
1

ε
‖u[h]‖L2

x
.

Gathering all these estimates, we obtain, as in (Carrapatoso et al., 2022, Eq. (A.16)) and using
Young’s inequality again that there exist positive constants K1, C1 > 0 such that

d∑
k,`=1

(
Jk,`1 + Jk,`2

)
6 −K1

ε2
‖u[h]‖2L2

x
+
C1

ε
‖%[h]‖L2

x
‖θ[h]‖L2

x
+
C1

ε
‖%[h]‖L2

x
‖h⊥‖

L2
x,v(M−

1
2 )

+
C1

ε
‖θ[h]‖2L2

x
+
C1

ε3
‖h⊥‖2

L2
x,v(M−

1
2 )
. (3.21)

Let us now estimate the last term R1 +R2. We begin with observing that

%[G1,εh] = −1

ε
∇x ·u[h]
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so that

R1 = 〈∇x (−∆x)−1 %[G1,εh] , u[h]〉L2
x
. ‖ (−∆x)−1 %[G1,εh]‖L2

x
‖u[h]‖L2

x
.

1

ε
‖u[h]‖2L2

x
.

Using the expression of uk[G1,εh] in (3.20) again we can split R2 as R2 = R21 +R22 +R23 with

R21 := −1

ε
ϑ1

〈
∇x (−∆x)−1 %[h],∇x%[h]

〉
, R22 := −1

ε
ϑ2

1

〈
∇x (−∆x)−1 %[h],∇xθ[h]

〉
and

R23 := −1

ε

d∑
j,k=1

〈
∂xk (−∆x)−1 %[h] , ∂xj

ˆ
Rd
vkvjh

⊥ dv

〉
.

Clearly, an integration by parts gives

R21 = −1

ε
ϑ1

〈
−∆x (−∆x)−1 %[h], %[h]

〉
L2
x

= −1

ε
ϑ1‖%[h]‖2L2

x

whereas, easily, R22 . 1
ε‖%[h]‖L2

x
‖θ[h]‖L2

x
and

R23 .
1

ε

∥∥∥∇2
x (−∆x)−1 %[h]

∥∥∥
L2
x

∥∥∥∥ˆ
Rd
v ⊗ vh⊥ dv

∥∥∥∥
L2
x

.
1

ε
‖%[h]‖L2

x
‖h⊥‖

L2
x,v(M−

1
2 )
.

Using Young’s inequality after gathering these estimates, we deduce that there are K2, C2 > 0

such that

R1 +R2 6 −
K2

ε
‖%[h]‖2L2

x
+
C2

ε
‖u[h]‖L2

x
+
C2

ε
‖θ[h]‖2L2

x
+
C2

ε
‖h⊥‖

L2
x,v(M−

1
2 )
. (3.22)

One sees now that Eqs. (3.18) – (3.19) – (3.21) – (3.22) correspond respectively to Eqs. (A2)–
(A8)–(A16)–(A18) of (Carrapatoso et al., 2022, Proof of Prop. 3.2). Therefore, as in Step 5 of the op.
cit., we can choose 0 < η3 � η2 � η1 � 1 small enough and a1, a2 > 0 such that

〈〈G1,εh, h〉〉H 6 −
a1

ε2
‖(Id− π0)h‖2H1

− a1‖h‖2H1
− a2|||h|||2H

where we used (3.9). This proves the desired hypocoercivity in H = L2
x,v(M−

1
2 ). One extends it

without di�culty toH = L2
vW

m,2
x (M−

1
2 ) by introducing

〈〈f, g〉〉H =
∑
|j|6m

〈〈∂jxf, ∂jxg〉〉H (3.23)

and by observing that G1,ε commutes with x-derivatives. �

The following result ensures that multiplication by polynomials and the drift term behave
nicely with respect to this hypocoercive norm:

Lemma 3.3. The inner product 〈〈 · , · 〉〉H associated to the norm ||| · |||H onH constructed in Proposi-
tion 3.1 is such that there exists a3 > 0, C > 0 (independent of ε) such that

−〈〈 divv (vh) , h 〉〉H 6 a3〈〈$2h, h〉〉H + Cε‖h‖2H
for any h ∈ L2

vW
m,2
x (〈 · 〉M−

1
2 ).
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Proof. As in the proof of Proposition 3.1, it is enough to show the result in the space H =

L2
x,v(M−

1
2 ) with inner product 〈〈 · , · 〉〉H de�ned in (3.17) since here againx-derivatives commutes

with the operator T0 : h 7→ T0h = −∇v · (vh). From the de�nition (3.17), we need to estimate
carefully 〈T0h, h〉

L2
x,v(M−

1
2 )

as well as ‖%[T0h]‖L2
x
, ‖u[T0h]‖L2

x
, ‖θ[T0h]‖L2

x
, ‖ψk[T0h]‖L2

x
and

‖Θk`[T0h]‖L2
x
. Since

〈T0h, h〉
L2
x,v(M−

1
2 )

= −
ˆ
Td

dx

ˆ
Rd
∇v · (vh(x, v))h(x, v)M−1(v) dv

= −d
ˆ
Td

dx

ˆ
Rd
h2(x, v)M−1(v) dv +

1

2

ˆ
Td

dx

ˆ
Rd
h2(x, v)∇v · (vM−1(v)) dv

= −d
2

ˆ
Td

dx

ˆ
Rd
h2(x, v)M−1(v) dv +

1

2

ˆ
Td

dx

ˆ
Rd
h2(x, v)v ·∇vM−1(v) dv .

Since v ·∇vM−1(v) = 1
ϑ1
|v|2M−1(v) = 1

ϑ1
$2(v)M−1(v)− 1

ϑ1
M−1(v) we deduce that

〈T0h, h〉
L2
x,v(M−

1
2 )

= −1 + dϑ1

2ϑ1
‖h‖2

L2
x,v(M−

1
2 )

+
1

2ϑ1
〈$2h, h〉

L2
x,v(M−

1
2 )
. (3.24)

Now, by simple integration by parts

%[T0h] = 0 , u[T0h] = u[h] , θ[T0h] =
2

ϑ1
%[h] + 2θ[h]

while

ψk[T0h] = 3ψk[h] + 2
d+ 2

dϑ2
1

uk[h] and Θk`[T0h] = Θ̃k`[h] :=

ˆ
Rd
p̃k`(v)h(x, v)M(v) dv

with

p̃k`(v) :=

{
− 1
ϑ1
|v|2pk`(v) + 4pk`(v) , if k 6= ` ,

− 1
ϑ1
|v|2pkk(v) + 2pkk(v)− (d− 1)ϑ1 if k = ` .

In particular, Θk`[T0h] shares the same properties of Θk`[h]. Since ∇x (−∆x)−1 is a bounded
operator in H , one thus checks easily that (3.10) and (3.15) yield

〈〈T0h, h〉〉H − 〈T0h, h〉
L2
x,v(M−

1
2 )
. ε‖h‖2

L2
x,v(M−

1
2 )
.

Combining this to (3.24) gives the existence of C > 0 such that

〈〈T0h, h〉〉H 6
1

2ϑ1
〈$2h, h〉

L2
x,v(M−

1
2 )

+ Cε‖h‖2
L2
x,v(M−

1
2 )
.

Using the same kind of arguments, we deduce now that

〈$2h, h〉
L2
x,v(M−

1
2 )
− 〈〈$2h, h〉〉H . ε‖h‖2

L2
x,v(M−

1
2 )
.

Therefore,
〈〈T0h, h〉〉H 6

1

2ϑ1
〈〈$2h, h〉〉H + Cε‖h‖2

L2
x,v(M−

1
2 )
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which is the desired estimate with a3 := 1
2ϑ1

. �

We end this Section with the following useful estimate, in the spirit of (Briant , 2015, Theo-
rem 2.4) (see also (Briant et al., 2019, Theorem 4.7)):

Lemma 3.4. The inner product 〈〈 · , · 〉〉H associated to the norm ||| · |||H onH constructed in Proposi-
tion 3.1 is such that for any h1, h2 ∈ H1, g ∈ H1∩Range(Id−P0),

〈〈(Id− π0)Qα(ε)(h1, h2), g〉〉H . (‖h1‖H1‖h2‖H + ‖h1‖H‖h2‖H1) ‖(Id− π0) g‖H1

+ ε‖h1‖H‖h2‖H‖π0g‖H . (3.25)

Proof. The proof is based on Lemma B.5 and we recall that, thanks to (3.17) and (3.23), 〈〈 · , · 〉〉H
is de�ned as:

〈〈f, g〉〉H = 〈f, g〉
L2
vW

m,2
x (M−

1
2 )

+ εη1

d∑
k=1

(
〈∂xk (−∆x)−1 θ[f ],ψk[g]〉Wm,2

x
+ 〈∂xk (−∆x)−1 θ[g] , ψk[f ]〉Wm,2

x

)

+ εη2

d∑
k,`=1

(
〈∂x` (−∆x)−1 uk[f ] , Θk`[g]〉Wm,2

x
+ 〈∂x` (−∆x)−1 uk[g] , Θk`[f ]〉Wm,2

x

)

+ εη3

d∑
k=1

(
〈∂xk (−∆x)−1 %[f ] , uk[g]〉Wm,2

x
+ 〈∂xk (−∆x)−1 %[g] , uk[f ]〉Wm,2

x

)
(3.26)

for f , g ∈ Range(Id−P0). In the rest of the proof, we apply this to

f := (Id− π0)Qα(h1, h2) ,

and one observes that θ[f ] = uk[f ] = %[f ] = 0. Splitting g = g⊥ + π0g, in the same way
θ[g⊥] = uk[g

⊥] = %[g⊥] = 0 so that

〈〈(Id− π0)Qα(h1, h2), g〉〉H = 〈〈(Id− π0)Qα(h1, h2),π0g〉〉H

+
〈

(Id− π0)Qα(h1, h2), g⊥
〉
H

where, moreover,

〈(Id− π0)Qα(h1, h2),π0g〉H = 0 ,
〈

(Id− π0)Qα(h1, h2), g⊥
〉
H

=
〈
Qα(h1, h2), g⊥

〉
H
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since (Id− π0) and π0 are orthogonal projections on L2
v(M−

1
2 ). With (3.26), we deduce that

〈〈(Id− π0)Qα(h1, h2), g〉〉H =
〈
Qα(h1, h2), g⊥

〉
H

+ εη1

d∑
k=1

〈∂xk (−∆x)−1 θ[g] , ψk[f ]〉Wm,2
x

+ εη2

d∑
k,`=1

〈∂x` (−∆x)−1 uk[g] , Θk`[f ]〉Wm,2
x

where we used the fact that θ[π0g] = θ[g], uk[π0g] = uk[g]. Notice that we can easily adapt the
bounds (3.15) to deduce that

‖ψk[f ]‖L2
x

+ ‖Θk`[f ]‖L2
x
. ‖f‖

L2
x,v(M−

1
2 〈 · 〉−1)

. (3.27)

With such a bound and using and the fact that∇x (−∆x)−1 is a bounded operator on Wm,2
x , we

deduce easily that

〈〈(Id− π0)Qα(h1, h2), g〉〉H .
〈
Qα(h1, h2), g⊥

〉
H

+ ε
(
‖u[g]‖Wm,2

x
+ ‖θ[g]‖Wm,2

x

)
‖f‖H−1

where we introduced
H−1 := L2

vWm,2
x (M−

1
2 〈 · 〉−1) .

According to (B.2) and using that Id− π0 is bounded inH−1, this implies that

〈〈(Id− π0)Qα(h1, h2), g〉〉H . (‖h1‖H‖h2‖H1 + ‖h1‖H1‖h2‖H) ‖g⊥‖H1

+ ε
(
‖u[g]‖Wm,2

x
+ ‖θ[g]‖Wm,2

x

)
‖Qα(h1, h2)‖H−1

.

Adapting easily the proof of (B.4), one sees that ‖Qα(h1, h2)‖H−1
. ‖h1‖H‖h2‖H and one

deduces that

〈〈(Id− π0)Qα(h1, h2), g〉〉H . (‖h1‖H‖h2‖H1 + ‖h1‖H1‖h2‖H) ‖g⊥‖H1

+ ε
(
‖u[g]‖Wm,2

x
+ ‖θ[g]‖Wm,2

x

)
‖h1‖H‖h2‖H

where, obviously, ‖u[g]‖Wm,2
x

+ ‖θ[g]‖Wm,2
x
. ‖π0g‖H. This gives the result. �

4. Nonlinear analysis

We now apply the results obtained so far to the study of Eq. (1.27) under Assumption 1.1. Let
us de�ne the functional space E in which we are going to carry out our analysis:

E := L1
vWm,2

x ($q) with m >
d

2
and q > 3 (4.1)
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and recall that Hilbert spaces H and H1 are de�ned in (3.1). We also recall here thatM is the
steady state of L1 de�ned in (1.19) while H is a Hilbert space on which the elastic Boltzmann
equation is well-understood (see Subsection 3). We also de�ne the following functional spaces

E1 := L1
vWm,2

x ($q+1) , E2 := L2
vWm,2

x ($q+2κ+3) , (4.2)

where m and q have been �xed in (4.1) and κ > d
2 is �xed.

Notice here that we impose here the condition m > d
2 in order to ensure that the embedding

Wm,2
x (Td) ↪→ L∞x (Td) is continuous, which allows us to treat nonlinear terms thanks to the

underlying Banach algebra structure. Notice also that our analysis is based on the fact that
Aε ∈ B(E ,H) and on the following continuous embeddings:

H ↪→ E2 ↪→ E1 ↪→ E .

SinceAε has no regularisation e�ect on the spatial variable, we are forced to have the same number
of spatial derivates in the spaces E andH. Taking q > 3 allows us to control the dissipation of
kinetic energy D(f, f) de�ned in (1.10).

For the rest of the paper, we �x δ ∈ (0, δ†q) (with q �xed in (4.1) and δ†q de�ned in Proposition 2.8)
and ε1 ∈ (0, ε0) (where ε0 is de�ned in Assumption 1.1) such that α(ε) ∈ (0, α†q) for any
ε ∈ (0, ε1) (where α†q is de�ned in Proposition 2.8). It in particular implies that the conclusions
of Proposition 2.8 and Remark 2.9 are satis�ed for Bα(ε),ε := B(δ)

α(ε),ε in the functional space E
de�ned in (4.1) for any ε ∈ (0, ε1). In order to lighten the notations, we also denote Gε := Gα(ε),ε.

4.1. Splitting of the equation. As said in the Introduction, we adapt the approach of Briant
et al. (2019) and decompose the solution h = hε of (1.27) into

h(t, x, v) = h0(t, x, v) + h1(t, x, v)

where h0 = h0
ε ∈ E and h1 = h1

ε ∈ H are the solutions to the following system of equations (in
order to lighten the notations, in this whole section, we shall omit the dependence on ε for h, h0

and h1):
∂th

0 = Bα(ε),εh
0 + ε−2

[
Lα(ε)h

1 − L1h
1
]

+ (1− α(ε))ε−2a3$2 (Id−P0)h1

+ε−1
[
Qα(ε)(h

0, h0) +Qα(ε)(h
0, h1) +Qα(ε)(h

1, h0) + π0Qα(ε)(h
1, h1)

]
,

h0(0, x, v) = hεin(x, v) ∈ E
(4.3)
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where a3 is de�ned in Lemma 3.3, the projectors π0, P0 in (3.2)-(3.4) and
∂th

1 = G1,εh
1 + (1− α(ε))ε−2

[
−divv

(
vh1
)
− a3$2 (Id−P0)h1

]
+ ε−1 (Id− π0)Qα(ε)(h

1, h1) +Aεh0 ,

h1(0, x, v) = 0 ∈ H .
(4.4)

Since

Gεh1 = G1,εh
1 − (1− α(ε))ε−2divv

(
vh1
)

+ (1− α(ε))ε−2
[
Lα(ε)h

1 − L1h
1
]

while
Gεh0 = Bα(ε),εh

0 +Aεh0 ,

one checks easily that h = h0 + h1 satis�es

∂th = Gεh+ ε−1Qα(ε)(h, h) , h(0, x, v) = hεin(x, v) ∈ E (4.5)

which is exactly (1.27). Comments about the splitting of (1.27) into two equations (4.3)-(4.4) are
given in the Introduction.

Before starting the analysis of equations (4.3) and (4.4), we recall that h satis�es (see (1.33))ˆ
Td×Rd

h(t, x, v)

(
1

v

)
dv dx =

(
0

0

)
. (4.6)

Recalling the de�nition of P0 in (3.4), since the part of the projection related to the dissipation of
energy will play a particular role in our analysis, we de�ne

P0h :=

d+1∑
i=1

(ˆ
Td×Rd

hΨi dv dx

)
ΨiM , Π0h :=

(ˆ
Td×Rd

hΨd+2 dv dx

)
Ψd+2M . (4.7)

Of course, from (3.4), one has P0 = P0 −Π0. Recall also that the eigenfunctions Ψj are such thatˆ
Rd

Ψi(v)Ψj(v)M(v) dv = δi,j , ∀ i, j = 1, . . . , d+ 2 ,

which in particular implies that, in the Hilbert spaceH4, one has Id−P0 = P⊥0 .
The rest of the section is dedicated to the proof of a priori estimates on h0 and h1. To this end,

during the rest of the section, we assume that h0 ∈ E , h1 ∈ H are solutions to (4.3)-(4.4) and that
there exists ∆0 6 1 such that

sup
t>0

(
‖h0(t)‖E + ‖h1(t)‖H

)
6 ∆0 . (4.8)

Mention also that the multiplicative constants involved in the forthcoming estimates of this
section may depend on ∆0 6 1. We will only mention it when necessary.

4Recall here that, on the space L2
v(M−

1
2 ) the inner product is 〈f, g〉 =

´
Rd f(v)g(v)M−1(v) dv.
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4.2. Estimating h0. For the part of the solution h0(t) in E , we have the following estimate:

Proposition 4.1. Let µ0 ∈ (0, νq) (see Proposition 2.8 and Remark 2.9 for the de�nition of νq). Then,
there exists an explicit ε2 ∈ (0, ε1) such that for any ε ∈ (0, ε2) and any t > 0,

‖h0(t)‖E . ‖h(0)‖E e−
µ0
ε2
t +

1− α(ε)

ε2

ˆ t

0
e−

µ0
ε2

(t−s)‖h1(s)‖H ds . (4.9)

As a consequence, for any ε ∈ (0, ε2) and any t > 0, there holds

‖h0(t)‖2E . ‖h(0)‖2E e
− 2µ0

ε2
t +

(1− α(ε))2

ε2

ˆ t

0
e−

µ0
ε2

(t−s)‖h1(s)‖2H ds . (4.10)

Proof. From the de�nition of ε1 and Remark 2.9, for any ε ∈ (0, ε1), we have:

d

dt
‖h0(t)‖E 6 −

νq
ε2
‖h0(t)‖E1 +

1

ε

(
‖Qα(ε)(h

0(t), h0(t))‖E + ‖Qα(ε)(h
0(t), h1(t))‖E

+ ‖Qα(ε)(h
1(t), h0(t))‖E +

∥∥π0Qα(ε)(h
1(t), h1(t))

∥∥
E

)
+

1

ε2

∥∥Lα(ε)h
1(t)− L1h

1(t)
∥∥
E+a3

1− α(ε)

ε2
‖$2 (Id−P0)h1(t)‖E .

Using classical estimates for Qα(ε) and Q1 (see Corollary B.4), there exists C > 0 such that

‖Qα(ε)(h
0(t), h0(t))‖E + ‖Qα(ε)(h

0(t), h1(t))‖E

+ ‖Qα(ε)(h
1(t), h0(t))‖E 6 C

(
‖h0(t)‖E + ‖h1(t)‖E1

)
‖h0(t)‖E1 .

Thanks to Cauchy-Schwarz inequality and Lemma 2.4,

1

ε2

∥∥Lα(ε)h
1(t)− L1h

1(t)
∥∥
E 6

1

ε2

∥∥Lα(ε)h
1(t)− L1h

1(t)
∥∥
L2
vW

m,2
x ($q+κ)

6 C
1− α(ε)

ε2
‖h1(t)‖E2

(notice that such estimate is exactly what motivated the de�nition of E2). From the conservation
of mass and momentum, one deduces from (3.2) that

π0Qα(ε)(h
1(t), h1(t)) = Ψd+2M

ˆ
Rd
Qα(ε)(h

1(t), h1(t))(w)Ψd+2(w) dw.

Consequently, as in (1.10),

π0Qα(ε)(h
1(t), h1(t)) = Ψd+2M

γb(1− α2(ε))

4ϑ1

√
2d

ˆ
Rd×Rd

h1(t, x, w)h1(t, x, v∗)|w − v∗|3 dw dv∗
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from which one deduces easily that there is C > 0 such that

‖π0Qα(ε)(h
1(t), h1(t))‖E 6 C (1− α(ε))

(ˆ
Rd
‖h1(t, · , v∗)‖Wm,2

x
〈v∗〉3 dv∗

)2

6 C (1− α(ε)) ‖h1(t)‖2E1

where we used that Wm,2
x (Td) is a Banach algebra since m > d

2 . Since moreover, we clearly have

‖$2 (Id−P0)h1(t)‖E 6 C‖h1(t)‖E2 ,

using thatH ↪→ E2 ↪→ E1, we are able to conclude that there exists C > 0 such that

d

dt
‖h0(t)‖E 6 −

1

ε2

(
νq − εC

(
‖h0(t)‖E + ‖h1(t)‖H

))
‖h0(t)‖E1

+ C
1− α(ε)

ε2
‖h1(t)‖H + C

1− α(ε)

ε
‖h1(t)‖2H .

For µ0 ∈ (0, νq), we pick ε2 ∈ (0, ε1] as νq − ε2C ∆0 > µ0. Consequently, using that
ε2‖h1(t)‖2H 6 ε2∆0‖h1(t)‖H . ‖h1(t)‖H, we obtain that for any ε ∈ (0, ε2) and any t > 0,

d

dt
‖h0(t)‖E 6 −

µ0

ε2
‖h0(t)‖E1 + C

1− α(ε)

ε2
‖h1(t)‖H + C

1− α(ε)

ε
‖h1(t)‖2H

6 −µ0

ε2
‖h0(t)‖E1 + C

1− α(ε)

ε2
‖h1(t)‖H

(4.11)

which gives (4.9) after integration and using the fact that h0(0) = h(0). To prove (4.10), we use
the fact that by Cauchy-Schwarz inequality, for any nonnegative mapping t 7→ ζ(t) and any
β > 0, we have that for any r ∈ (0, 1),(ˆ t

0
e−β (t−s)ζ(s) ds

)2

6

(ˆ t

0
e−2rβ (t−s) ds

)(ˆ t

0
e−2(1−r)β (t−s)ζ(s)2 ds

)
6

1

2rβ

ˆ t

0
e−2(1−r)β (t−s)ζ(s)2 ds , ∀ t > 0 .

(4.12)

This inequality applied with r = 1
2 gives the result. �

4.3. Estimating P0h
1. Let us point out that getting estimates on h1 is trickier than in Briant et al.

(2019), indeed, in the latter paper, the idea was to estimate separately P0h
1 and (Id−P0)h1 where

P0 is the projector onto Ker(G1,ε) de�ned by (3.4) and thanks to the properties of conservation
of mass, momentum and energy of the whole equation, one could write that P0h = 0 so that
P0h

1 = −P0h
0 and directly get an estimate on P0h

1 from the one on h0. In our case, the energy
is no longer preserved which induces additional di�culties. However, we keep the same strategy
and start by estimating P0h

1. To this end, we begin with two observations. The �rst one is related
to P0h

1 where P0 is de�ned in (4.7):



58 RICARDO ALONSO, BERTRAND LODS, AND ISABELLE TRISTANI

Lemma 4.2. For any t > 0, there holds

‖P0h
1(t)‖E . ‖h0(t)‖E .

Proof. Note that total mass and vanishing momentum conservation yields for i = 1, . . . , d+ 1,ˆ
Td×Rd

h0(t, x, v)Ψi(v) dv dx+

ˆ
Td×Rd

h1(t, x, v)Ψi(v) dv dx = 0 .

Thus, for any i = 1, . . . , d+ 1,∣∣∣∣ ˆ
Td×Rd

h1(t, x, v)Ψi(v) dv dx

∣∣∣∣ =

∣∣∣∣ˆ
Td×Rd

h0(t, x, v)Ψi(v) dv dx

∣∣∣∣ 6 max

(
1,

1√
ϑ1

)
‖h0(t)‖E

thanks to Cauchy-Schwarz inequality and since |Ψi(v)| 6 max
(
1, 1√

ϑ1

)
$q(v) for any i =

1, . . . , d+ 1. The �nal estimate for the projection follows from the previous inequality and (4.7)
since maxi=1,...,d+1 ‖ΨiM‖E <∞. �

A second observation regards the action of Π0 on the linearized operator Gε.

Lemma 4.3. One has for any t > 0,

Π0 [Gεh(t)] =
1− α(ε)

ε2
(−1 + rε) Π0h(t) + sε(t)Ψd+2M (4.13)

where we recall that h is a solution to (4.5) andΨd+2 is de�ned in (3.3). Moreover, rε ∈ R (independent
of t) and sε(t) ∈ R are such that for any t > 0,

|rε| . 1− α(ε) , |sε(t)| .
1− α(ε)

ε2
‖(Id−P0)h(t)‖L1

x,v($3) . (4.14)

Proof. The proof is by direct inspection. One �rst recalls that

Π0h =
1

ϑ1

√
2d

(ˆ
Rd×Td

h
(
|v|2 − dϑ1

)
dv dx

)
Ψd+2M ,

=
1

ϑ1

√
2d

(ˆ
Rd×Td

h |v|2 dv dx

)
Ψd+2M .

Notice that since
ˆ
Td×Rd

Gεhdv dx = 0 =

ˆ
Td×Rd

G1,εh|v|2 dv dx, one has

Π0 [Gεh(t)] =
1

ε2

1

ϑ1

√
2d

(ˆ
Td×Rd

Lα(ε)h(t, x, v)|v|2 dv dx

)
Ψd+2M

=
1

ε2

1

ϑ1

√
2d

(ˆ
Td×Rd

(
Lα(ε)h(t, x, v)− (1− α(ε))∇v · (vh(t, x, v))

)
|v|2 dv dx

)
Ψd+2M

=
1

ε2

1

ϑ1

√
2d

(ˆ
Td×Rd

(
Lα(ε)h(t, x, v) + 2(1− α(ε))h(t, x, v))

)
|v|2 dv dx

)
Ψd+2M .
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Now, as in (1.10), one can check that
ˆ
Td×Rd

Lα(ε)h(t, x, v)|v|2 dv dx = −1− α2(ε)

2
γb

ˆ
Td×Rd×Rd

h(t, x, v)Gα(ε)(v∗)|v−v∗|3 dv∗ dv dx

which, writing �rst h = Π0h+ (Id−Π0)h and then Gα(ε) =M+ (Gα(ε) −M) gives

Π0 [Gεh(t)] = aεΠ0h+ sε(t)Ψd+2M

where

aε :=
1

ε2

{
2(1− α(ε))− 1− α2(ε)

ϑ1

√
2d

γb
2

ˆ
Rd×Rd

Ψd+2(v)M(v)M(v∗)|v − v∗|3 dv∗ dv

− 1− α2(ε)

ϑ1

√
2d

γb
2

ˆ
Rd×Rd

Ψd+2(v)M(v)
[
Gα(ε)(v∗)−M(v∗)

]
|v − v∗|3 dv∗ dv

}
and

sε(t) := − 1

ε2

1− α2(ε)

ϑ1

√
2d

γb
2

(ˆ
Td×Rd×Rd

[Id−Π0]h(t, x, v)Gα(ε)(v∗)|v − v∗|3 dv∗ dv dx

)
.

One has (see (Mischler & Mouhot, 2009, Lemma 5.19, Eq. (5.10)))

1

ϑ1

√
2d

γb
2

ˆ
Rd×Rd

Ψd+2(v)M(v)M(v∗)|v − v∗|3 dv dv∗ =
3

2

which results easily in

aε =
1− α(ε)

ε2

{
2− 3

2
(1 + α(ε))

− 1 + α(ε)

ϑ1

√
2d

γb
2

ˆ
Rd×Rd

Ψd+2(v)M(v)
[
Gα(ε)(v∗)−M(v∗)

]
|v − v∗|3 dv∗ dv

}
.

Writing simply 1 + α(ε) = 2− (1− α(ε)), one sees that

aε =
1− α(ε)

ε2
(−1 + rε) ,

with

|rε| 6
3

2
(1− α(ε)) +

γb

ϑ1

√
2d
‖Ψd+2M‖L1

v($3)

∥∥Gα(ε) −M
∥∥
L1
v($3)

. 1− α(ε)

thanks to Lemma 2.3. The bound on sε(t) is also obvious since, for solutionh to (1.27), conservation
of mass and vanishing momentum implies that Π0h(t) = P0h(t). We thus obtain the desired
result. �
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In all the sequel, we will denote

λε :=
1− α(ε)

ε2
(1− rε) ∼

ε→0

1− α(ε)

ε2
∼
ε→0

λ0 + η(ε) (4.15)

where λ0 and η are de�ned in Assumption 1.1. Notice that this assumption implies that λε > 0

for ε small enough so that there exists ε3 ∈ (0, ε2) (where ε2 is de�ned in Proposition 4.1) such
that

0 <
λε
2
6

1− α(ε)

ε2
6 2λε , ∀ ε ∈ (0, ε3) . (4.16)

We are now able to derive a nice estimate on P0h
1:

Lemma 4.4. We have that for any ε ∈ (0, ε3) and any t > 0,

‖P0h
1(t)‖H . ‖h0(t)‖E + ‖h(0)‖Ee−λεt + ελε

ˆ t

0
e−λε(t−s)‖h1(s)‖H ds

+ λε

ˆ t

0
e−λε(t−s)

(∥∥h0(s)
∥∥
E +

∥∥(Id−P0)h1(s)
∥∥
H

)
ds . (4.17)

Proof. Due to the properties of preservation of mass and vanishing momentum of our equation,
we have P0h = 0 (where P0 has been de�ned in (4.7)) which implies that P0h

1 = −P0h
0.

Consequently, we easily get an estimate on P0h
1 using that P0 ∈ B(E ,H):

‖P0h
1(t)‖H . ‖h0(t)‖E . (4.18)

It remains to estimate Π0h
1. To this end, we �rst notice that

Π0h
1 = P0h

1 − P0h
1 = P0h−P0h

0 − P0h
1 = Π0h−P0h

0 − P0h
1

where we used that P0h = Π0h due to the conservation of mass and vanishing momentum so,
using (5.1) with the fact that P0 ∈ B(E ,H) and (4.18), we only need to estimate Π0h to get an
estimate on Π0h

1. To this end, we start by computing the evolution of Π0h. We recall that the
equation for h is given by

∂th = Gεh+
1

ε
Qα(ε)(h, h)

and that Π0 has been de�ned in (4.7). Thus, applying the projection Π0 and using (4.13)-(4.15)

∂t
(
Π0h

)
= −λεΠ0h+ sε(t)Ψd+2M+

1

ε
Π0Qα(ε)(h, h) ,

so that

Π0h(t) = Π0h(0) e−λε t +

ˆ t

0
e−λε (t−s)

(
1

ε
Π0Qα(ε)(h(s), h(s)) + sε(s)Ψd+2M

)
ds . (4.19)

Notice that, according to (4.7), Π0Qα(ε) is explicit with∥∥Π0Qα(ε)(h(s), h(s))
∥∥
H =

1

ϑ1

√
2d

(1− α2(ε))
∣∣∣D(h(s), h(s))

∣∣∣∥∥Ψd+2M
∥∥
H ,
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where we recall that D(g, g) denotes the normalized energy dissipation associated toQα, namely,

D(g, g) =
γb
4

ˆ
Td

dx

ˆ
Rd×Rd

g(x, v)g(x, v∗)|v − v∗|3 dv∗ dv

where γb independent of α, see (1.10). Now, one clearly has

|D(h(s), h(s))| .
ˆ
Td

[ˆ
Rd
$3(v)|h(s, x, v)| dv

]2

dx

and, using Minkowski’s integral inequality, we deduce that

|D(h(s), h(s))| .

[ˆ
Rd
$3(v)

(ˆ
Td
|h(s, x, v)|2 dx

) 1
2

dv

]2

. ‖h(s)‖2L1
vL

2
x($3) .

Therefore, ∥∥Π0Qα(ε)(h(s), h(s))
∥∥
H . (1− α(ε))‖h(s)‖2E

because q > 3. Thus, applying the ‖ · ‖H-norm in (4.19), one obtains

∥∥Π0h(t)
∥∥
H . ‖Π0h(0)‖H e−λε t +

1− α(ε)

ε

ˆ t

0
e−λε(t−s)‖h(s)‖2E ds

+ λε

ˆ t

0
e−λε(t−s) ‖(Id−P0)h(s)‖E ds (4.20)

where we used (4.14) to estimate ‖sε(s)Ψd+2M‖H. We obtain the desired estimate using that
Π0 ∈ B(E ,H), (4.16) and (4.8). �

We make more precise our estimates of P0h
1(t) in the following proposition:

Proposition 4.5. There exists an explicit ε4 ∈ (0, ε3) such that for any ε ∈ (0, ε4) and any t > 0,
there holds

‖P0h
1(t)‖H . ‖h(0)‖Ee−λεt + λε

ˆ t

0
e−

µ0
ε2

(t−s)‖h1(s)‖H ds

+ ελε

ˆ t

0
e−λε(t−s)‖h1(s)‖H ds+ λε

ˆ t

0
e−λε(t−s)‖(Id−P0)h1(s)‖H ds .

(4.21)

In particular, for any r ∈ (0, 1), any ε ∈ (0, ε4) and any t > 0, there holds

‖P0h
1(t)‖2H . ‖h(0)‖2Ee−2λεt +

ε2λε
r

ˆ t

0
e−2(1−r)λε(t−s)‖h1(s)‖2H ds

+
λε
r

ˆ t

0
e−2(1−r)λε(t−s)

∥∥(Id−P0)h1(s)
∥∥2

H ds , (4.22)

where the multiplicative constant involved in the previous inequality does not depend on r.
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Proof. We insert the bound for ‖h0(t)‖E obtained in (4.9) combined with (4.16) in the estimate of
Lemma 4.4, for any ε ∈ (0, ε3) and any t > 0, we have:

‖P0h
1(t)‖H . ‖h(0)‖E

(
e−

µ0
ε2
t + e−λεt

)
+ λε

ˆ t

0
e−

µ0
ε2

(t−s)‖h1(s)‖H ds

+ ελε

ˆ t

0
e−λε(t−s)‖h1(s)‖H ds+ λε

ˆ t

0
e−λε(t−s)‖(Id−P0)h1(s)‖H ds

+ λε

ˆ t

0
e−λε(t−s)e−

µ0
ε2
s ds‖h(0)‖E + λ2

ε

ˆ t

0
e−λε(t−s)

ˆ s

0
e−

µ0
ε2

(s−τ)‖h1(τ)‖H dτ ds . (4.23)

We now choose ε4 ∈ (0, ε3) such that µ0 > 2ε2λε for ε ∈ (0, ε4). We also remark that for any
β1 > β2 > 0 and nonnegative mapping t 7→ ζ(t)

ˆ t

0
e−β2(t−s) ds

ˆ s

0
e−β1(s−τ)ζ(τ) dτ = e−β2 t

ˆ t

0
eβ1τζ(τ) dτ

ˆ t

τ
e−(β1−β2)s ds

6
1

β1 − β2

ˆ t

0
e−β2(t−τ)ζ(τ) dτ .

(4.24)

Using this estimate with β1 = ε−2µ0 and β2 = λε to bound the last term in (4.23) and keeping
only the dominant terms, we obtain the wanted estimate (4.21). Concerning (4.22), using (4.12),
we get

‖P0h
1(t)‖2H . ‖h(0)‖2Ee−2λεt + (ε λε)

2

ˆ t

0
e−

µ0
ε2

(t−s)‖h1(s)‖2H ds

+
ε2λε
r

ˆ t

0
e−2(1−r)λε(t−s)‖h1(s)‖2H ds

+
λε
r

ˆ t

0
e−2(1−r)λε(t−s)

∥∥(Id−P0)h1(s)
∥∥2

H ds ,

which provides the wanted result by keeping only the dominant terms. �

4.4. Estimating the complement (Id−P0)h1. Let us focus on an estimate on P⊥0 h
1(t) with

P⊥0 := Id−P0, the orthogonal projection onto (Ker(G1,ε))
⊥ in the Hilbert space L2

x,v(M−
1
2 ).

The same notation for the operator G1,ε in the spaces E andH is used. Let us highlight the fact that
we can proceed in a similar way as in Briant et al. (2019) to estimate P⊥0 h

1. More precisely, one
crucial point in their estimate of P⊥0 h

1 was that π0Q1(h1, h1) = 0 where π0 is de�ned in (3.2).
In order to mimic this approach, we have only put (Id− π0)Qα(h1, h1) in our equation (4.4) so
that π0(Id− π0)Qα(h1, h1) = 0. Notice that due to the dissipation of energy, we do not have
anymore that π0Qα(h1, h1) = 0 for α 6= 1, which is why the splitting of Qα(h1, h1) into two
parts in (4.3)-(4.4) is so important. Using Proposition 3.1 together with Lemmas 3.3 and 3.4, we
are able to obtain some nice estimate on P⊥0 h

1.
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Lemma 4.6. With the notations of Proposition 3.1, assume that ∆0 de�ned in (4.8) is small enough
so that

µ̃1 := 2a1 − c1∆2
0 > 0 (4.25)

where c1 > 0 is a universal constant de�ned in (4.30). Then, for any ε ∈ (0, ε4) (where ε4 is de�ned
in Proposition 4.5) and any t > 0, there holds

‖(Id−P0)h1(t)‖2H

. (λε + ∆0)

ˆ t

0
e−µ1(t−s)‖h1(s)‖2H ds+

1

ε2

ˆ t

0
e−µ1(t−s)‖h1(s)‖H ‖h0(s)‖E ds (4.26)

where µ1 := C2
Hµ̃1 with CH is the constant appearing in (3.6) related to the equivalence between to

||| · |||H and ‖ · ‖H.

Proof. Set Ψ(t) := P⊥0 h
1(t) for any t > 0. We start by recalling that h1(0) = 0 so that Ψ(0) = 0.

One checks from (4.4) that

∂tΨ = G1,εΨ + P⊥0
(
ε−1 (Id− π0)Qα(ε)(h

1, h1) +Aεh0
)

− (1− α(ε))ε−2P⊥0
(
∇v ·

(
vh1
))
−a3(1− α(ε))ε−2P⊥0 ($2Ψ) .

(4.27)

One observes then that

P⊥0 (Id− π0)Qα(ε)(h
1, h1) = (Id− π0)Qα(ε)(h

1, h1)

since P0π0 = P0 while,

P⊥0
(
∇v ·

(
vh1
))

= ∇v · (vΨ)−P0∇v ·
(
vh1
)

+∇v ·
(
vP0h

1
)

and P⊥0 ($2Ψ) = $2Ψ−P0($2Ψ) .We recall that, according to Proposition 3.1, there is a norm
||| · |||H which is equivalent to ‖ · ‖H independently of ε and which allows us to write nice energy
estimates with respect to the associated inner product 〈〈 · , · 〉〉H. From (4.27), we have

1

2

d

dt
|||Ψ(t)|||2H = 〈〈G1,εΨ(t),Ψ(t)〉〉H + ε−1〈〈(Id− π0)Qα(ε)(h

1(t), h1(t)),Ψ(t)〉〉H

1− α(ε)

ε2

(
− 〈〈∇v · (vΨ(t)),Ψ(t)〉〉H − a3〈〈$2Ψ(t),Ψ(t)〉〉H

)
− 1− α(ε)

ε2
〈〈P0∇v ·

(
vh1
)
−∇v ·

(
vP0h

1
)

+a3P0($2Ψ),Ψ(t)〉〉H

+ 〈〈P⊥0 Aεh0(t),Ψ(t)〉〉H =: I1 + I2 + I3 + I4 + I5 .

We estimate each of the terms independently. First, according to Proposition 3.1,

I1 6 −
a1

ε2
‖ (Id− π0) Ψ(t)‖2H1

− a1‖Ψ(t)‖2H1

while, according to Lemma 3.3,

I3 6 Cε
−1(1− α(ε))‖Ψ(t)‖2H 6 Cε−2(1− α(ε))‖h1(t)‖2H .



64 RICARDO ALONSO, BERTRAND LODS, AND ISABELLE TRISTANI

We deduce from Lemma 3.4 that there is C > 0 such that

I2 = ε−1〈〈(Id− π0)Qα(ε)(h
1(t), h1(t)),Ψ(t)〉〉H

6 Cε−1‖h1(t)‖H1‖h1(t)‖H ‖ (Id− π0) Ψ(t)‖H1

+ C‖h1(t)‖2H ‖π0Ψ(t)‖H .

According to Young’s inequality,

I2 6
η

ε2
‖(Id− π0) Ψ(t)‖2H1

+
C2

4η
‖h1(t)‖2H‖h1(t)‖2H1

+ C‖h1(t)‖3H , η > 0 . (4.28)

Obviously, since ||| · |||H and ‖ · ‖H are equivalent norms, there is C > 0 such that

I5 6 C‖Ψ(t)‖H ‖P⊥0 Aεh0(t)‖H 6
C

ε2
‖h1(t)‖H‖h0(t)‖E

where we used the regularization properties ofA (see Lemma 2.6) to get the last inequality. Finally,
using the regularizing properties of P0, it is easy to see that

I4 6 C
1− α(ε)

ε2
‖h1(t)‖2H .

Therefore, choosing η 6 a1 in (4.28), one sees that there is some positive constant c0 > 0 such
that

d

dt
|||Ψ(t)|||2H 6 −2a1‖Ψ(t)‖2H1

+ c0‖h1(t)‖2H
(
‖h1(t)‖2H1

+ ‖h1(t)‖H
)

+ c0
1− α(ε)

ε2
‖h1(t)‖2H +

c0

ε2
‖h1(t)‖H ‖h0(t)‖E . (4.29)

Writing h1 = P0h
1 + Ψ, we obtain

‖h1(t)‖2H
(
‖h1(t)‖2H1

+ ‖h1(t)‖H
)
. ‖h1(t)‖2H

(
‖P0h

1(t)‖2H1
+ ‖Ψ(t)‖2H1

+ ‖h1(t)‖H
)

. ‖h1(t)‖2H
(
‖Ψ(t)‖2H1

+ ‖h1(t)‖2H + ‖h1(t)‖H
)

from which we deduce that there exists c1 > 0 such that

c0‖h1(t)‖2H
(
‖h1(t)‖2H1

+ ‖h1(t)‖H
)
6 c1∆2

0‖Ψ(t)‖2H1
+ c1∆0‖h1(t)‖2H (4.30)

where we used (4.8) and the fact that we assumed ∆0 6 1. Therefore, assuming that ∆0 is small
enough so that µ̃1 := 2a1 − c1∆2

0 > 0, we deduce that

d

dt
|||Ψ(t)|||2H 6 −µ̃1 ‖Ψ(t)‖2H1

+c1∆0‖h1(t)‖2H

+ c0
1− α(ε)

ε2
‖h1(t)‖2H +

c0

ε2
‖h1(t)‖H ‖h0(t)‖E , ∀ t > 0 .
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Using (4.16), we deduce that there exists c2 > 0 such that
d

dt
|||Ψ(t)|||2H 6 −µ̃1 ‖Ψ(t)‖2H1

+ c2(λε + ∆0)‖h1(t)‖2H +
c2

ε2
‖h1(t)‖H ‖h0(t)‖E ,

from which we get the desired estimate (4.26) after integration of the previous di�erential in-
equality recalling that h1(0) = 0 and ‖Ψ(t)‖H1 > ‖Ψ(t)‖H > CH|||Ψ(t)|||H. �

To complete the estimate of ‖(Id−P0)h1(t)‖2H we need to estimate the last integral in (4.26):

Lemma 4.7. With the notation of Lemma 4.6, there is an explicit ε5 ∈ (0, ε4) such that for any
ε ∈ (0, ε5) and any t > 0,

1

ε2

ˆ t

0
e−µ1(t−s)‖h1(s)‖H ‖h0(s)‖E ds . ‖h(0)‖Ee−µ1 t + λε

ˆ t

0
e−µ1(t−s)‖h1(s)‖2H ds .

Proof. We use the estimate of ‖h0(s)‖E provided in (4.9) combined with (4.16) which gives

ε−2

ˆ t

0
e−µ1(t−s)‖h1(s)‖H ‖h0(s)‖E ds . I1 + I2

with
I1 = ε−2

ˆ t

0
e−µ1(t−s)‖h1(s)‖H ‖h(0)‖Ee−

µ0
ε2
s ds ,

I2 = ε−2λε

ˆ t

0
e−µ1(t−s)‖h1(s)‖H ds

ˆ s

0
e−

µ0
ε2

(s−τ)‖h1(τ)‖H dτ .

Choosing ε5 such that µ0 − ε2
5µ1 >

µ0
2 and using (4.8), we obtain:

I1 . ε
−2‖h(0)‖Ee−µ1t

ˆ t

0
e−

µ0
2ε2

s ds . ‖h(0)‖Ee−µ1t .

Concerning I2, using Young’s inequality, we have that

I2 . λε

ˆ t

0
e−µ1(t−s)‖h1(s)‖2H ds

+ ε−4λε

ˆ t

0
e−µ1(t−s) ds

(ˆ s

0
e−

µ0
ε2

(s−τ)‖h1(τ)‖H dτ

)2

,

and, using (4.12) with r = 1
2 , we get that

I2 . λε

ˆ t

0
e−µ1(t−s)‖h1(s)‖2H ds+ ε−2λε

ˆ t

0
e−µ1(t−s) ds

ˆ s

0
e−

µ0
ε2

(s−τ)‖h1(τ)‖2H dτ .

To estimate the second integral, we remark that

ε−2λε

ˆ t

0
e−µ1(t−s) ds

ˆ s

0
e−

µ0
ε2

(s−τ)‖h1(τ)‖2H dτ

= ε−2λε

ˆ t

0
e−µ1(t−τ)‖h1(τ)‖2Hdτ

ˆ t

τ
e
−
(
µ0
ε2
−µ1

)
(s−τ)

ds
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and using that µ0
ε2
− µ1 >

µ0
2ε2

for ε ∈ (0, ε5), we obtain

ε−2λε

ˆ t

0
e−µ1(t−s) ds

ˆ s

0
e−

µ0
ε2

(s−τ)‖h1(τ)‖2H dτ . λε

ˆ t

0
e−µ1(t−τ)‖h1(τ)‖2H dτ .

Combining these estimates yields the wanted result. �

We deduce from the previous the following main estimate for ‖(Id−P0)h1(t)‖H:

Proposition 4.8. Under the Assumptions of Lemma 4.6, for any ε ∈ (0, ε5) (where ε5 is de�ned in
Lemma 4.7) and any t > 0,

‖(Id−P0)h1(t)‖2H . ‖h(0)‖Ee−µ1t + (λε + ∆0)

ˆ t

0
e−µ1(t−s)‖h1(s)‖2H ds . (4.31)

In particular, there exist ε6 ∈ (0, ε5) and λ6 > 0 such that if λ0 ∈ [0, λ6) (where λ0 is de�ned in
Asssumption 1.1), for any r ∈ (0, 1), any ε ∈ (0, ε6) and any t > 0,

ˆ t

0
e−2(1−r)λε(t−s)‖(Id−P0)h1(s)‖2H ds

. ‖h(0)‖Ee−2(1−r)λεt + (λε + ∆0)

ˆ t

0
e−2(1−r)λε(t−s)‖h1(s)‖2H ds (4.32)

where the multiplicative constant involved in the previous inequality does not depend on r.

Proof. Inserting the estimate obtained in Lemma 4.7 into (4.26) allows to get directly (4.31).
Using (4.24) twice, we deduce then easily (4.32) from (4.31) after integration by choosing λ6

and ε6 small enough such that µ1 > 4λε for any ε ∈ (0, ε6) and any λ0 ∈ [0, λ6) and thus
µ1 − 2(1− r)λε > µ1 − 2λε >

µ1
2 for ε ∈ (0, ε6). �

4.5. Final a priori estimates. We deduce from the above the following estimate on h1:

Proposition 4.9. Under the assumptions of Lemma 4.6, for any t > 0, ε ∈ (0, ε6), λ0 ∈ [0, λ6)

(where ε6 and λ6 are de�ned in Proposition 4.8) and r ∈ (0, 1),

‖h1(t)‖2H .
1

r

(
‖h(0)‖E + ‖h(0)‖2E

)
e−2(1−r)λεt

+
λε
r

(
ε2 + λε + ∆0

) ˆ t

0
e−2(1−r)λε(t−s)‖h1(s)‖2H ds

+ (λε + ∆0)

ˆ t

0
e−µ1(t−s)‖h1(s)‖2H ds . (4.33)
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Proof. We gather estimates (4.31) and (4.22) (combined with (4.32)) to obtain

‖h1(t)‖2H . ‖h(0)‖Ee−µ1t + (λε + ∆0)

ˆ t

0
e−µ1(t−s)‖h1(s)‖2H ds

+ ‖h(0)‖2Ee−2λεt +
ε2λε
r

ˆ t

0
e−2(1−r)λε(t−s)‖h1(s)‖2H ds

+
λε
r
‖h(0)‖Ee−2(1−r)λεt +

λε
r

(λε + ∆0)

ˆ t

0
e−2(1−r)λε(t−s)‖h1(s)‖2H ds . (4.34)

For ε ∈ (0, ε6), µ1 > 2λε (and thus λε . 1). Then, using that r < 1, we are able to obtain the
wanted result. �

By a re�ned Gronwall type argument, we are able to derive from this the following decay rate
for ‖h1(t)‖H:

Corollary 4.10. Let r ∈ (0, 1). There exist εr ∈ (0, ε6), λr ∈ (0, λ6) (where ε6 and λ6 are de�ned
in Proposition 4.9), ∆0,r > 0 and Cr > 0 depending on r such that for any ε ∈ (0, εr), λ0 ∈ [0, λr)

(where λ0 is de�ned in Assumption 1.1), ∆0 ∈ (0,∆0,r) (where ∆0 is de�ned in (4.8)) and any t > 0,
there holds

‖h1(t)‖2H 6 Cr
(
‖h(0)‖E + ‖h(0)‖2E

)
exp (−2(1− r)λε t) . (4.35)

Proof. Let r ∈ (0, 1), set r′ := r
2 and

x(t) := e2(1−r′)λεt‖h1(t)‖2H , t > 0 .

In order to lighten the notations of the coming proof, we also introduce the following notations:

K0 := ‖h(0)‖E + ‖h(0)‖2E (4.36)

and

K1 := K1(r′, ε, λε,∆0) =
λε
r′
(
ε2 + λε + ∆0

)
, K2 := K2(λε,∆0) = λε + ∆0 ,

and

µ2 := µ2(r, ε) = µ1 − 2(1− r′)λε > 0.

Inequality (4.33) applied with r′ instead of r implies that there exists a universal constant C > 0

such that

x(t) 6 C
K0

r′
+ CK1

ˆ t

0
x(s) ds+ CK2e

−µ2t
ˆ t

0
eµ2sx(s) ds =: y(t) .
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It implies that

y′(t) = C(K1 +K2)x(t)− µ2CK2e
−µ2t
ˆ t

0
eµ2sx(s) ds

= C(K1 +K2)x(t)− µ2

(
y(t)− CK0

r′
− CK1

ˆ t

0
x(s) ds

)
6 − (µ2 − C(K1 +K2))y(t) + µ2C

K0

r′
+ µ2CK1

ˆ t

0
y(s) ds .

Taking now εr, λr and ∆0,r small enough so that µ2 − C(K1 + K2) > µ1
2 for any ε ∈ (0, εr),

λ0 ∈ [0, λr) and ∆0 ∈ (0,∆0,r), we can deduce that

d

dt

(
e
µ1
2
ty(t)

)
6 e

µ1
2
t

(
µ2C
K0

r′
+ µ2CK1

ˆ t

0
y(s) ds

)
.

Integrating in time the last inequality (notice that y(0) = C K0
r′ ) yields

e
µ1
2
ty(t) 6 C

K0

r′
+ µ2C

K0

r′

ˆ t

0
e
µ1
2
s ds+ µ2CK1

ˆ t

0
e
µ1
2
sds

ˆ s

0
y(τ) dτ .

Using that ˆ t

0
e
µ1
2
s

ˆ s

0
y(τ) dτ ds =

ˆ t

0
y(τ)dτ

ˆ t

τ
e
µ1
2
s ds 6

2

µ1
e
µ1
2
t

ˆ t

0
y(τ) dτ ,

we can conclude that

y(t) .
K0

r′
+K1

ˆ t

0
y(s) ds .

From the standard Gronwall inequality, we deduce that for any t > 0,

x(t) = e2(1−r′)λεt‖h1(t)‖2H 6 y(t) .
K0

r′
eK1t .

Up to reducing the values of εr, λr, ∆0,r, we can furthermore assume that ε2 + λε + ∆0 6 r2

2

which in particular implies that K1 − 2(1− r′)λε 6 −2(1− r)λε so that

‖h1(t)‖2H .
K0

r
e−2(1−r)λεt , ∀ t > 0

which is the desired estimate. �

We are now able to state the main result of this section which provides a result of decay for
the solution h to (1.27):

Theorem 4.11. Let r ∈ (0, 1). There exist εr > 0, λr > 0, ∆0,r > 0 and Cr > 0 such that for any
ε ∈ (0, εr), λ0 ∈ [0, λr), ∆0 ∈ (0,∆0,r) and any t > 0,

‖h(t)‖2E 6 Cr
(
‖h(0)‖E + ‖h(0)‖2E

)
exp (−2(1− r)λεt) .
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Proof. The result is obtained by gathering estimates (4.10) (combined with (4.16)) and (4.35) and
keeping only the dominant terms. �

We also point out the gain of decay in h in the following lemma.

Lemma 4.12. Under the same conditions of Theorem 4.11, it follows that
ˆ t

0
‖h(τ)‖E1 dτ 6 Cr

(√
‖h(0)‖E + ‖h(0)‖E

)
min

{
1 + t, 1 +

1

λε

}
, ∀ t > 0 .

In particular, ‖h( · )‖E1 is integrable and exists a.e. in (0, T ) for any T > 0.

Proof. After performing time integration of equation (4.11) in [0, t] one �nds that

‖h0(t)‖E +
µ0

ε2

ˆ t

0
‖h0(s)‖E1 ds

. ‖h(0)‖E + λε

ˆ t

0
‖h1(s)‖H ds .

√
‖h(0)‖E + ‖h(0)‖E , ∀ t > 0 , (4.37)

where we used (4.35) in the latter inequality. Using the continuous embeddingH ↪→ E1 and (4.35)
once more, we obtain
ˆ t

0
‖h(s)‖E1 ds .

ˆ t

0
‖h0(s)‖E1 ds+

ˆ t

0
‖h1(s)‖H ds

. ε2
(√
‖h(0)‖E + ‖h(0)‖E

)
+ Cr

(√
‖h(0)‖E + ‖h(0)‖E

)ˆ t

0
e−

1−r
2
λεs ds ,

which gives the result. �

Remark 4.13. Of course, for a �xed ε > 0, one can replace min
{

1 + t, 1 + 1
λε

}
by 1 + 1

λε
and the

above estimate shows that h(t) = hε(t) ∈ L1([0,∞), E1). However, in the case in which λ0 = 0

then the bound is not uniform with respect to ε. In practice, two situations occur according to the
value of λ0 in Assumption 1.1:

a) If λ0 > 0, then the family {hε(t)}ε>0 is bounded in L1([0,∞), E1),

b) If λ0 = 0 then for any T > 0, the family {hε(t)}ε>0 is bounded in L1([0, T ], E1).

5. Cauchy Theory

We assume that Assumption 1.1 is satis�ed. The scope of this Section is to prove the well-
posedness of the system (4.3)-(4.4) thanks to the a priori estimates derived in the previous section.
We namely aim to prove the following precise version of Theorem 1.2 (reformulated in terms of
the variable hε) and we shall use the functional spaces introduced in (3.1), (4.1), (4.2).
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Theorem 5.1. Let r ∈ (0, 1). There exists a triple (εr, λr, η0) of positive constants that depend on
the mass and energy of F εin,m and q, (εr and λr additionally depending on r whereas η0 is not) such
that, for ε ∈ (0, εr), λ0 ∈ [0, λr), if

‖hεin‖E 6 η0

then the inelastic Boltzmann equation (1.27) has a unique solutionhε ∈ C
(
[0,∞); E

)
∩L1

(
[0,∞); E1

)
satisfying

‖hε(t)‖E 6 C(r, η0) exp (−(1− r)λεt) ,

and
ˆ t

0
‖hε(t)‖E1 dτ 6 C(r, η0) min

{
1 + t, 1 +

1

λε

}
, ∀ t > 0 ,

for some positive constant C(r, η0) > 0 independent of ε and where we recall that λε ∼
ε→0

1−α(ε)
ε2

is

de�ned in (4.15).

Remark 5.2. Under the same assumptions, we can actually prove the following estimates (which
will be useful in what follows) on h0

ε and h
1
ε that are respectively solutions to (4.3) and (4.4). Let

T > 0, then

‖h0
ε‖L∞((0,T ) ; E) . 1 and ‖h0

ε‖L1((0,T ) ; E1) . ε
2 (5.1)

as well as

‖h1
ε‖L∞((0,T ) ;H) . 1 and ‖h1

ε‖L2((0,T ) ;H1) . 1 (5.2)

where we recall that the spacesH andH1 are de�ned in (3.1). Notice that in the previous inequalities,
the multiplicative constants only involve quantities related to the initial data of the problem and are
independent of ε.

As in Section 4, we shall consider δ and ε small enough so that the conclusions of Proposition 2.8
and Remark 2.9 are satis�ed in the functional space E and we denote Bε = B(δ)

α(ε),ε as well as
Gε = Gα(ε),ε.

5.1. Iteration scheme. Let us follow the iteration scheme of (Tristani, 2016, Section 3) with
suitable modi�cations. We are seeking to approximate the solution to the inelastic Boltzmann
equation using the iteration scheme

∂thn+1(t) = Gεhn+1(t) + ε−1Qα(ε)(hn(t), hn(t)) , n > 1 ,

∂th1(t) = Gεh1(t) ,

hn(0) = h(0) ∈ E , n > 1 ,

(5.3)

where the initial perturbation h(0) has zero mass and momentum. This is done using the decom-
position of previous section. More precisely, writing hn = h0

n + h1
n we consider solutions with



FLUID DYNAMIC LIMIT OF BOLTZMANN EQUATION FOR GRANULAR HARD–SPHERES 71

the coupled system

∂th
0
n+1 = Bεh0

n+1 + ε−1Qα(ε)(h
0
n, h

0
n) + ε−1

[
Qα(ε)(h

0
n, h

1
n) +Qα(ε)(h

1
n, h

0
n)
]

+ε−2
[
Lα(ε)h

1
n+1 − L1h

1
n+1

]
+ ε−1π0Qα(ε)(h

1
n, h

1
n)

+ (1− α)ε−2a3$2 (Id−P0)h1
n+1 ,

h0
n+1(0) = h0(0) = hεin ∈ E ,

(5.4)

and
∂th

1
n+1 = G1,εh

1
n+1 + ε−1 (Id− π0)Qα(ε)(h

1
n, h

1
n)

− (1− α(ε))ε−2
[
divv

(
vh1

n+1

)
+ a3$2 (Id−P0)h1

n+1

]
+Aεh0

n+1 ,

h1
n+1(0) = h1(0) = 0 ∈ H ,

(5.5)
where a3 > 0 is de�ned in Lemma 3.3. Motivated by the a priori estimates of Section 4, we
introduce the following norms

|||g|||0 := sup
t>0

(
‖g(t)‖E + ε−2

ˆ t

0
‖g(τ)‖E1 dτ

)
, g ∈ C([0,∞), E) ,

and

|||g|||1 := sup
t>0

(
‖g(t)‖2H +

ˆ t

0
‖g(τ)‖2H1

dτ
) 1

2
, g ∈ C([0,∞),H) ,

where we recall that E , E1,H andH1 are de�ned in (4.1), (3.1) and (4.2).
Notice that

(
C([0,∞), E) ; ||| · |||0

)
and

(
C([0,∞),H) ; ||| · |||1

)
are Banach spaces. In particular,

the space
B := C([0,∞), E)× C([0,∞),H)

endowed with the norm

|||(g, h)||| := |||g|||0 + |||h|||1 for (g, h) ∈ B ,

is a Banach space. De�ne then

X0 :=
{
h0 ∈ C

(
[0,∞); E

) ∣∣∣ ∣∣∣∣∣∣h0
∣∣∣∣∣∣

0
6 C

√
K0

}
,

X1 :=
{
h1 ∈ C

(
[0,∞);H

) ∣∣∣ ∣∣∣∣∣∣h1
∣∣∣∣∣∣

1
6 C

√
K0

}
, (5.6)

for some positive constant C > 0 which can be explicitly estimated from the subsequent com-
putations and where we recall that K0 has been de�ned in (4.36) by K0 = ‖h(0)‖E + ‖h(0)‖2E .
The system (5.4)-(5.5) is a simpli�ed coupled version of the system (4.3)-(4.4) with all nonlinear
terms as sources. Notice however that the coupling between h0

n+1 and h1
n+1 in the system makes
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it nonlinear. However, because Gε is the generator of a C0-semigroup in E , equation (5.3) is
well-posed and

hn+1(t) = Vε(t)h(0) + ε−1

ˆ t

0
Vε(t− s)Qα(ε)(hn(s), hn(s)) ds

where {Vε(t) ; t > 0} is the C0-semigroup in E generated by Gε. With this at hands, substitute
in (5.4) the term h1

n+1 by hn+1 − h0
n+1 and look at hn+1(t) as an additional source term. In the

same way for (5.5), the system (5.4)-(5.5) becomes linear (in terms of h0
n+1 and h1

n+1) and admits,
for any n ∈ N, a unique solution. One can use a slight modi�cation of the ideas of Section 4 to
check that the iteration scheme is stable, that is, the mapping(

h0
n, h

1
n

)
∈ X0 ×X1 7→

(
h0
n+1, h

1
n+1

)
∈ X0 ×X1

is well de�ned. Indeed, existence of the scheme is guaranteed by the linear theory as the iteration
scheme is based on the linear equation. Moreover, note that (5.3) preserves the conservation laws:
mass conservation and vanishing momentum, which were essential for the a priori estimates
related to P0h

1. Thus, proceeding as in Theorem 4.11 with r = 1
2 for example, stability holds

true under the conditions of the a priori estimates, that is, for ε ∈
(
0, ε 1

2

)
, λ0 ∈

[
0, λ 1

2

)
and

sup
t>0

(
‖h1

n(t)‖H + ‖h0
n(t)‖E

)
6 C

√
K0 6 ∆0, 1

2
, n ∈ N .

This latter condition is possible by taking K0 smaller than a threshold depending only on the
initial mass and energy Eε

K0 6
(

∆0, 1
2
/C
)2

=: K†0 .

We leave the details to the reader and focus in the next subsections on the convergence of
the scheme. For the rest of the section, we also set λ† := λ 1

2
and choose ε† ∈ (0, ε 1

2
) such

that νq > 2ε2C2
Ha1 where νq , CH and a1 are respectively de�ned in Proposition 2.8, (3.6) and

Proposition 3.5 (this condition will be useful in the proof of Lemma 5.5).

5.2. Estimating ‖h0
n+1 − h0

n‖E and ‖h1
n+1 − h1

n‖H. To prove the convergence of the scheme,
we de�ne for n ∈ N

d0
n+1 := h0

n+1 − h0
n , d1

n+1 := h1
n+1 − h1

n .

Then, one deduces from (5.4) and (5.5)
∂td

0
n+1 = Bεd0

n+1 + ε−2
[
Lα(ε)d

1
n+1 − L1d

1
n+1

]
+ (1− α)ε−2a3$2 (Id−P0) d1

n+1 + ε−1F0
n ,

d0
n+1(0) = 0 ,

(5.7)
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and
∂td

1
n+1 = G1,εd

1
n+1−(1− α(ε))ε−2

[
divv

(
vd1

n+1

)
+ a3$2 (Id−P0) d1

n+1

]
+Aεd0

n+1 + ε−1F1
n ,

d1
n+1(0) = 0 .

(5.8)

The sources F in, for i ∈ {0, 1}, correspond to the bilinear terms and depend only on the previous
iterations {hin, hin−1}, for i ∈ {0, 1} and n > 2 (see (5.11) and (5.13) for the precise expression).
We introduce

Ψ1
n(t) := ‖h0

n(t)‖E1 + ‖h0
n−1(t)‖E1 ,

Ψ∞n (t) := ‖h0
n(t)‖E + ‖h0

n−1(t)‖E + ‖h1
n(t)‖H + ‖h1

n−1(t)‖H ,

which satisfy

sup
t>0

(
Ψ∞n (t) + ε−2

ˆ t

0
Ψ1
n(τ) dτ

)
6 C

√
K0 , n > 2 , (5.9)

for h0
n, h

0
n−1 ∈ X0, and h1

n, h
1
n−1 ∈ X1. Consequently, the following estimate for d0

n+1 follows
under suitable modi�cations of the arguments leading to Proposition 4.1.

Lemma 5.3. Let ε ∈ (0, ε†), λ0 ∈ [0, λ†) and K0 6 K†0. For any t > 0, we have that

‖d0
n+1(t)‖E . λε

ˆ t

0
e−

νq

ε2
(t−s)‖d1

n+1(s)‖H ds

+ ε−1

ˆ t

0
e−

νq

ε2
(t−s)Ψ1

n(s)
(
‖d0

n(s)‖E + ‖d1
n(s)‖H

)
ds

+

ˆ t

0
e−

νq

ε2
(t−s)Ψ∞n (s)

(
ε−1‖d0

n(s)‖E1 + ελε‖d1
n(s)‖H

)
ds

(5.10)

where we recall that νq is de�ned in Proposition 2.8 and Remark 2.9.

Proof. As in the proof of Proposition 4.1, we use the fact here that ε−2νq +Bε is dissipative so that

d

dt
‖d0

n+1(t)‖E 6 −
νq
ε2
‖d0

n+1(t)‖E1 + ε−1‖F0
n(t)‖E + ε−2

∥∥Lα(ε)d
1
n+1(t)− L1d

1
n+1(t)

∥∥
E

+
1− α(ε)

ε2
a3

∥∥$2 (Id−P0) d1
n+1(t)

∥∥
E

6 −νq
ε2
‖d0

n+1(t)‖E1 + ε−1‖F0
n(t)‖E + Cλε‖d1

n+1(t)‖H .

We need to estimate ‖F0
n(t)‖E . One has,

F0
n = Qα(ε)(d

0
n, h

0
n) +Qα(ε)(h

0
n−1, d

0
n) + 2Q̃α(ε)(d

0
n, h

1
n) + 2Q̃α(ε)(h

0
n−1, d

1
n)

+ π0Qα(ε)(d
1
n, h

1
n) + π0Qα(ε)(h

1
n−1, d

1
n)

(5.11)
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where we used the notation Q̃α introduced in (1.30). Using (1.10) and using that Wm,2
x is a Banach

algebra, we have

‖π0Qα(ε)(f, g)‖E . (1− α(ε))‖f‖
L1
vW

m,2
x ($3)

‖g‖
L1
vW

m,2
x ($3)

.

Therefore, using that q > 3 and using Corollary B.4:

‖F0
n‖E . ‖d0

n‖E1
(
‖h0

n‖E + ‖h0
n−1‖E

)
+ ‖d0

n‖E
(
‖h0

n‖E1 + ‖h0
n−1‖E1

)
+ ‖d0

n‖E‖h1
n‖E1 + ‖d0

n‖E1‖h1
n‖E + ‖d1

n‖E1 ‖h0
n−1‖E

+ ‖d1
n‖E ‖h0

n−1‖E1 + ε2λε‖d1
n‖E1

(
‖h1

n‖E1 + ‖h1
n−1‖E1

)
where we used that 1− α(ε) . ε2λε. Using that ‖ · ‖E1 . ‖ · ‖H, we get

‖F0
n‖E . ‖d0

n‖E1Ψ∞n +
(
‖d0

n‖E + ‖d1
n‖H

)
Ψ1
n + ε2λε‖d1

n‖HΨ∞n .

This leads to the desired estimate. �

We now focus on P0d
1
n+1 in the following lemma:

Lemma 5.4. Let ε ∈ (0, ε†), λ0 ∈ [0, λ†) and K0 6 K†0. For any t > 0, we have that

‖P0d
1
n+1(t)‖H . λε

ˆ t

0
e−

νq

ε2
(t−s)‖d1

n+1(s)‖H ds

+ ε−1

ˆ t

0
e−

νq

ε2
(t−s)Ψ1

n(s)
(
‖d0

n(s)‖E + ‖d1
n(s)‖H

)
ds

+

ˆ t

0
e−

νq

ε2
(t−s)Ψ∞n (s)

(
ε−1‖d0

n(s)‖E1 + ελε‖d1
n(s)‖H

)
ds

+ ελε

ˆ t

0
e−λε(t−s)Ψ∞n (s)

(
‖d0

n(s)‖E + ‖d1
n(s)‖H

)
ds

+λε

ˆ t

0
e−λε(t−s)

(
‖d0

n+1(s)‖E + ‖P⊥0 d1
n+1(s)‖H

)
ds .

Proof. Since the di�erence hn+1 − hn = d0
n+1 + d1

n+1 has zero mass and momentum, one can
follow the line of proof of Lemma 4.4 to deduce that

‖P0d
1
n+1(t)‖H . ‖d0

n+1(t)‖E + ελε

ˆ t

0
e−λε(t−s)Ψ∞n (s)

(
‖d0

n(s)‖E + ‖d1
n(s)‖H

)
ds

+λε

ˆ t

0
e−λε(t−s)

(
‖d0

n+1(s)‖E + ‖P⊥0 d1
n+1(s)‖E

)
ds .

Consequently, plugging (5.10) in the right side yields the wanted result. �

Let us focus on estimating P⊥0 d
1
n+1(t). To do so, we introduce the functions Φ1

n and Φ∞n
de�ned by

Φ1
n(t) := ‖h1

n(t)‖2H1
+ ‖h1

n−1(t)‖2H1
and Φ∞n (t) := ‖h1

n(t)‖2H + ‖h1
n−1(t)‖2H
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which satisfy

sup
t>0

(
Φ∞n (t) +

ˆ t

0
Φ1
n(τ) dτ

)
6 CK0 , n > 2 . (5.12)

One has the following lemma.

Lemma 5.5. Let ε ∈ (0, ε†), λ0 ∈ [0, λ†) and K0 6 K†0. For any t > 0, we have that

‖P⊥0 d1
n+1(t)‖2H .

ˆ t

0
e−ν(t−s)Φ1

n(s)‖d1
n(s)‖2H ds

+

ˆ t

0
e−ν(t−s)Φ∞n (s)‖d1

n(s)‖2H1
ds+ λε

ˆ t

0
e−ν(t−s)‖d1

n+1(s)‖2H ds

+ ε−1

(
sup
s>0
‖d1

n+1(s)‖H
)ˆ t

0
e−ν(t−τ) Ψ1

n(τ)
(
‖d0

n(τ)‖E + ‖d1
n(τ)‖H

)
dτ

+

(
sup
s>0
‖d1

n+1(s)‖H
)ˆ t

0
e−ν(t−τ) Ψ∞n (τ)

(
ε−1‖d0

n(τ)‖E + ε λε‖d1
n(τ)‖H

)
dτ

where ν > 0 is de�ned in the proof.

Proof. One deduces from (5.8) that P⊥0 d
1
n+1(t) is such that

∂tP
⊥
0 d

1
n+1(t) = G1,εP

⊥
0 d

1
n+1(t)− 1− α(ε)

ε2

[
P⊥0

(
divv

(
vd1

n+1

))
+ a3P

⊥
0

(
$2P

⊥
0 d

1
n+1

)]
+ P⊥0 Aεd0

n+1(t) + ε−1P⊥0 F1
n

where
F1
n := (Id− π0)

[
Q1(d1

n, h
1
n) +Q1(h1

n−1, d
1
n)
]
. (5.13)

Following the argument leading to inequality (4.29), one deduces �rst that, recalling that ||| · |||H
is the hypocoercivity norm introduced in Proposition 3.1 and 〈〈 · , · 〉〉H is the associated inner
product that there exists a positive constant c0 > 0 such that

1

2

d

dt

∣∣∣∣∣∣∣∣∣P⊥0 d1
n+1(t)

∣∣∣∣∣∣∣∣∣2
H
6 −a1

ε2

∥∥∥(Id− π0) P⊥0 d
1
n+1(t)

∥∥∥2

H1

− a1‖P⊥0 d1
n+1(t)‖2H1

+
c0

ε2

∥∥d1
n+1(t)

∥∥
H ‖d

0
n+1(t)‖E + c0

1− α(ε)

ε2
‖d1

n+1(t)‖2H

+ c0ε
−1‖d1

n(t)‖H1

(
‖h1

n(t)‖H + ‖h1
n−1(t)‖H

) ∥∥∥(Id− π0) P⊥0 d
1
n+1(t)

∥∥∥
H1

+ c0ε
−1‖d1

n(t)‖H
(
‖h1

n(t)‖H1 + ‖h1
n−1(t)‖H1

) ∥∥∥(Id− π0) P⊥0 d
1
n+1(t)

∥∥∥
H1

+ c0

∥∥∥π0P
⊥
0 d

1
n+1(t)

∥∥∥
H
‖d1

n(t)‖H
(
‖h1

n(t)‖H + ‖h1
n−1(t)‖H

)
.
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There exists c1 > 0 such that

c0

∥∥∥π0P
⊥
0 d

1
n+1(t)

∥∥∥
H
‖d1

n(t)‖H
(
‖h1

n(t)‖H + ‖h1
n−1(t)‖H

)
6 c1‖P⊥0 d1

n+1(t)‖H1 ‖d1
n(t)‖H

(
‖h1

n(t)‖H + ‖h1
n−1(t)‖H

)
6

a1

2
‖P⊥0 d1

n+1(t)‖2H1
+

2c2
1

a1
Φ∞n (t)‖d1

n(t)‖2H

while, using again Young’s inequality as in (4.28), one deduces that, for any η > 0,

c0ε
−1‖d1

n(t)‖H1

(
‖h1

n(t)‖H + ‖h1
n−1(t)‖H

) ∥∥∥(Id− π0) P⊥0 d
1
n+1(t)

∥∥∥
H1

+ c0ε
−1‖d1

n(t)‖H
(
‖h1

n(t)‖H1 + ‖h1
n−1(t)‖H1

) ∥∥∥(Id− π0) P⊥0 d
1
n+1(t)

∥∥∥
H1

6 c0
η

ε2

∥∥∥(Id− π0) P⊥0 d
1
n+1(t)

∥∥∥2

H1

+
c0

4η

(
‖d1

n(t)‖2H1
Φ∞n (t) + ‖d1

n(t)‖2HΦ1
n(t)

)2
.

Picking η small enough so that c0η 6 a1 and, arguing as in the estimates leading to (4.29), this
provides the existence of c2 > 0 such that

1

2

d

dt

∣∣∣∣∣∣∣∣∣P⊥0 d1
n+1(t)

∣∣∣∣∣∣∣∣∣2
H
6 −a1

2
‖P⊥0 d1

n+1(t)‖2H1
+ c2Φ∞n (t)‖d1

n(t)‖2H1
+ c2Φ1

n(t)‖d1
n(t)‖2H

+ c2
1− α(ε)

ε2
‖d1

n+1(t)‖2H +
c2

ε2
‖d1

n+1(t)‖H ‖d0
n+1(t)‖E . (5.14)

Setting ν := C2
Ha1 (similarly as in Lemma 4.6), we deduce after integration that

‖P⊥0 d1
n+1(t)‖2H .

ˆ t

0
e−ν(t−s)Φ1

n(s)‖d1
n(s)‖2H ds+

ˆ t

0
e−ν(t−s)Φ∞n (s)‖d1

n(s)‖2H1
ds

+λε

ˆ t

0
e−ν(t−s)‖d1

n+1(s)‖2H ds

+
1

ε2

ˆ t

0
e−ν(t−s)‖d1

n+1(s)‖H ‖d0
n+1(s)‖E ds . (5.15)

The latter term in the right side of (5.15) can be estimated using (5.10):

1

ε2

ˆ t

0
e−ν(t−s)‖d1

n+1(s)‖H ‖d0
n+1(s)‖E ds .

3∑
i=1

Ti ,
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with

T1 :=
λε
ε2

ˆ t

0
e−ν(t−s)‖d1

n+1(s)‖H
(ˆ s

0
e−

νq

ε2
(s−τ)‖d1

n+1(τ)‖H dτ

)
ds,

T2 := ε−3

ˆ t

0
e−ν(t−s)‖d1

n+1(s)‖H
[ˆ s

0
e−

νq

ε2
(s−τ)Ψ1

n(τ)
(
‖d0

n(τ)‖E + ‖d1
n(τ)‖H

)
dτ

]
ds

T3 := ε−2

ˆ t

0
e−ν(t−s)‖d1

n+1(s)‖H
[ˆ s

0
e−

νq

ε2
(s−τ)Ψ∞n (τ)

(
ε−1‖d0

n(τ)‖E1 + ελε‖d1
n(τ)‖H

)
dτ

]
ds .

It is easy to check, using (4.24) and the fact that νq > 2ε2ν for ε < ε†, that

T2 . ε
−1

(
sup
s>0
‖d1

n+1(s)‖H
) ˆ t

0
e−ν(t−τ) Ψ1

n(τ)
(
‖d0

n(τ)‖E + ‖d1
n(τ)‖H

)
dτ

and

T3 .

(
sup
s>0
‖d1

n+1(s)‖H
) ˆ t

0
e−ν(t−τ) Ψ∞n (τ)

(
ε−1‖d0

n(τ)‖E1 + ε λε‖d1
n(τ)‖H

)
dτ.

The estimate for T1 is a bit more involved. Thanks to Cauchy-Schwarz inequality one �rst has

T1 6
λε
ε2

(ˆ t

0
e−ν(t−s)‖d1

n+1(s)‖2H ds

) 1
2
(ˆ t

0
e−ν(t−s)Y 2(s) ds

) 1
2

where

Y (s) :=

ˆ s

0
e−

νq

ε2
(s−τ)‖d1

n+1(τ)‖H dτ, s ∈ (0, t).

Thanks to (4.12) applied with r = 1
2 ,

Y 2(s) . ε2

ˆ s

0
e−

νq

ε2
(s−τ)‖d1

n+1(τ)‖2H dτ

and, using now (4.24) and the fact that νq > 2ε2ν,
ˆ t

0
e−ν(t−s)Y 2(s) ds . ε2

ˆ t

0
e−ν(t−s) ds

ˆ s

0
e−

νq

ε2
(s−τ)‖d1

n+1(τ)‖2H dτ

. ε4

ˆ t

0
e−ν(t−s)‖d1

n+1(s)‖2H ds .

We deduce �nally that

T1 . λε

ˆ t

0
e−ν(t−s)‖d1

n+1(s)‖2H ds

and this, together with the estimates for T2 and T3, gives the desired conclusion. �
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Introducing now the quantities

Ξ0
n := sup

t>0

(
‖d0

n(t)‖E + ε−2

ˆ t

0
‖d0

n(τ)‖E1 dτ
)
,

Ξ1
n := sup

t>0

(
‖d1

n(t)‖2H +

ˆ t

0
‖d1

n(τ)‖2H1
dτ
) 1

2
, n > 2 ,

we can gather the three previous lemmas and use (5.9) to obtain the following result.

Proposition 5.6. Let ε ∈ (0, ε†), λ0 ∈ [0, λ†) and K0 6 K†0. For any t > 0, we have that

‖d0
n+1(t)‖E . ε2λε Ξ1

n+1 + ε
√
K0

(
Ξ0
n + Ξ1

n

)
, (5.16)

while

‖d1
n+1(t)‖H.

√
λε + ε Ξ1

n+1 +
√
εK0 Ξ0

n +
√
K0 Ξ1

n . (5.17)

Proof. First, we claim that

‖P⊥0 d1
n+1(t)‖H.

√
λε + ε Ξ1

n+1 +
√
εK0 Ξ0

n +
√
K0 Ξ1

n , (5.18)

Indeed, from Lemma 5.5, we have that

‖P⊥0 d1
n+1(t)‖2H . λε

[
Ξ1
n+1

]2
+
[
Ξ1
n

]2(ˆ t

0
Φ1
n(s) ds+ sup

s>0
Φ∞n (s)

)
+ ε−1Ξ1

n+1

(
Ξ0
n + Ξ1

n

) ˆ t

0
Ψ1
n(τ) dτ

+ Ξ1
n+1

(
sup
s>0

Ψ∞n (s)

)(
εΞ0

n + ελεΞ
1
n

)
.

We can thus invoke (5.9) and (5.12) to deduce that

‖P⊥0 d1
n+1(t)‖2H . K0

[
Ξ1
n

]2
+ λε

[
Ξ1
n+1

]2
+ ε
√
K0

(
Ξ0
n + Ξ1

n

)
Ξ1
n+1

where we used that ελε . ε. From Young’s inequality, we deduce that

‖P⊥0 d1
n+1(t)‖2H . (λε + ε)

[
Ξ1
n+1

]2
+K0

[
Ξ1
n

]2
+ εK0

[
Ξ0
n

]2
,

which proves (5.18). Then, we have that

‖P0d
1
n+1(t)‖H .

√
λε + εΞ1

n+1 +
√
εK0 Ξ0

n +
√
K0Ξ

1
n . (5.19)

This inequality is a consequence of Lemma 5.4 combined with (5.9), (5.16) and (5.18). In the same
way, the estimate (5.16) is easily deduced from Lemma 5.3. To end the proof, it remains to prove
that �

We slightly modify here the proof of Lemma 5.3 and Lemma 5.5 to get the following:
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Proposition 5.7. Let ε ∈ (0, ε†), λ0 ∈ [0, λ†) and K0 6 K†0. For any t > 0, we have that

1

ε2

ˆ t

0
‖d0

n+1(s)‖E1 ds . λε Ξ1
n+1 + ε

√
K0

(
Ξ0
n + Ξ1

n

)
, (5.20)

and (ˆ t

0
‖d1

n+1(τ)‖2H1
dτ

) 1
2

.
√
λε + εΞ1

n+1 +
√
εK0 Ξ0

n +
√
K0Ξ

1
n . (5.21)

Proof. To prove (5.20), we follow the argument that led to Lemma 5.3 and recall that

d

dt
‖d0

n+1(t)‖E 6 −
νq
ε2
‖d0

n+1(t)‖E1 + ε−1‖F0
n(t)‖E + Cλε‖d1

n+1(t)‖H .

After integration over [0, t], using that d0
n+1(0) = 0, we get that

‖d0
n+1(t)‖E +

1

ε2

ˆ t

0
‖d0

n+1(s)‖E1 ds . ε−1

ˆ t

0
‖F0

n(s)‖E ds+ λε

ˆ t

0
‖d1

n+1(s)‖H ds ,

and, recalling that F0
n is given by (5.11), we estimate ‖F0

n(s)‖E as in the proof of Lemma 5.3 to
obtain that

1

ε2

ˆ t

0
‖d0

n+1(s)‖E1 ds . λε

ˆ t

0
‖d1

n+1(s)‖H ds+ ε−1

ˆ t

0
Ψ1
n(s)

(
‖d0

n(s)‖E + ‖d1
n(s)‖H

)
ds

+

ˆ t

0
Ψ∞n (s)

(
ε−1‖d0

n(s)‖E1 + ελε‖d1
n(s)‖H

)
ds .

This yields (5.20). In the same way, we adapt the proof of Lemma 5.5 and, according to (5.14), we
have

d

dt

∣∣∣∣∣∣∣∣∣P⊥0 d1
n+1(t)

∣∣∣∣∣∣∣∣∣2
H

+
ν

2

∣∣∣∣∣∣∣∣∣P⊥0 d1
n+1(t)

∣∣∣∣∣∣∣∣∣2
H

6 −a1

2
‖P⊥0 d1

n+1(t)‖2H1
+ CΦ∞n (t)‖d1

n(t)‖2H1
+ CΦ1

n(t)‖d1
n(t)‖2H ,

+ Cλε‖d1
n+1(t)‖2H +

C

ε2
‖d1

n+1(t)‖H‖d0
n+1(t)‖E ,

which, after integration, gives
ˆ t

0
e−

ν
2

(t−τ)‖P⊥0 d1
n+1(τ)‖2H1

dτ .
ˆ t

0
e−

ν
2

(t−s)Φ1
n(s)‖d1

n(s)‖2H ds

+ λε

ˆ t

0
e−

ν
2

(t−s)‖d1
n+1(s)‖2Hds

+

ˆ t

0
e−

ν
2

(t−s)Φ∞n (s)‖d1
n(s)‖2H1

ds+
1

ε2

ˆ t

0
e−

ν
2

(t−s)‖d1
n+1(s)‖H ‖d0

n+1(s)‖E ds .
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This estimate is similar to (5.15) and therefore we can resume both the proofs of Lemma 5.5 and
Proposition 5.6 to obtain that(ˆ t

0
‖P⊥0 d1

n+1(τ)‖2H1
dτ

) 1
2

.
√
λε + εΞ1

n+1 +
√
εK0 Ξ0

n +
√
K0Ξ

1
n .

Using Lemma 5.4 combined with (5.9), (5.16) and (5.17), we also obtain that(ˆ t

0
‖P0d

1
n+1(τ)‖2H1

dτ

) 1
2

.
√
λε + εΞ1

n+1 +
√
εK0 Ξ0

n +
√
K0Ξ

1
n .

Adding these two estimates, one deduces (5.21). �

5.3. Convergence of the iteration scheme. We are now in position to conclude our analysis
by proving the convergence of the iteration scheme. Suitably adding (5.16) and (5.20) and taking
the supremum in time, one has that

Ξ0
n+1 . λε Ξ1

n+1 + ε
√
K0

(
Ξ0
n + Ξ1

n

)
. (5.22)

Similarly, adding (5.17) and (5.21) and taking the supremum in time it holds that

Ξ1
n+1 .

√
λε + ε Ξ1

n+1 +
√
εK0 Ξ0

n +
√
K0 Ξ1

n . (5.23)

Let us de�ne En := Ξ0
n + Ξ1

n, for n > 2. Adding the estimates (5.22) and (5.23), we conclude that
there exists C > 0 such that En+1 6 C

√
λε + εEn+1 + C

√
K0 En. Thus, choosing ε su�ciently

small such that C
√
λε + ε 6 1

2 , we get that En+1 6 1
2C
√
K0 En from which

En+1 6

(
C

2

√
K0

)n−1

E2 , ∀n > 2 .

Choosing K0 6 K†0 < 4C−2 so that

θ :=
C

2

√
K†0 < 1

we deduce that, in the Banach space (B, ||| · |||), one has for m > n > 1,∣∣∣∣∣∣(h0
m, h

1
m)− (h0

n, h
1
n)
∣∣∣∣∣∣ 6 m−1∑

i=n

Ei+1 6 E2
θn−1

1− θ
.

Whence the sequence
{

(h0
n, h

1
n)
}
n
⊂ X0 × X1 ⊂ B is a Cauchy sequence and it converges in

(B, ||| · |||) to a limit (h0, h1) ∈ X0 × X1. Of course, such limit satis�es equations (4.3) and (4.4).
Thus, h = h0 +h1 is a solution to the inelastic Boltzmann problem (1.27). Such solution is unique
in the class of functions that we consider since, at essence, we proved that the problem is a
contraction on X0 ×X1. This completes the proof of the existence part of Theorem 5.1 recalling
that fε = Gα(ε) + εhε. If one wants to obtain the rates that are stated in the Theorem, one has to
be more careful in the previous proof and keep track of every rate at each step. We chose not to
do it in order to lighten the proof and also because the proof would be completely similar.
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Remark 5.8. We point out that, as observed by an anonymous referee, our construction and �xed
point argument give the uniqueness of solutions to (1.27) only for the class of solutions h ∈ X0 that
can be written as a sum h = h0 + h1 with (h0, h1) ∈ X0 ×X1. Strictly speaking, other solutions in
X0 could exist. However, uniqueness of general solutions to the spatially inhomogeneous Boltzmann
equation (with a forcing term given by a Laplace operator) has been established in Tristani (2016)
(for any choice of ε > 0). The argument of Tristani (2016) can be easily adapted to deal with the
forcing term given by the drift term as considered in (1.27). Therefore, in the functional space X0,
uniqueness of solutions to (1.27) holds true.

6. Hydrodynamic limit

In this section, we modify a bit the assumptions made on the functional spaces E , E1, E2 de�ned
in (4.1)-(4.2), we shall consider m and q satisfying

m >
d

2
and q > 5

but keep the same notations E , E1 and E2. We also denote by (ε†, λ†, η0) the threshold values such
that the conclusions of Theorem 5.1 and Remark 5.2 are satis�ed in those functional spaces. The
estimates on the solution hε provided by Theorem 5.1 and Remark 5.2 are enough to prove that
the solution hε(t) converges towards some hydrodynamic solution h which depends on (t, x)

only through macroscopic quantities (%(t, x), u(t, x), θ(t, x)) which are solutions to a suitable
modi�cation of the incompressible Navier-Stokes system. This is done under an additional
assumption on the initial datum, namely (6.1), that is lightly restrictive as explained in Remark 1.5.
Before stating our main convergence result, we introduce the notation

W` :=
(
W`,2
x

(
Td
))d+2

, ` ∈ N .

We prove here the following precised version of Theorem 1.4 presented in the Introduction:

Theorem 6.1. We suppose that the assumptions of Theorem 5.1 are satis�ed. We assume furthermore
that there exists (%0, u0, θ0) ∈ Wm such that

‖π0h
ε
in − h0‖E −−−→ε→0

0 , (6.1)

where we recall that π0 is the projection onto the kernel of L1 de�ned in (3.2) and

h0(x, v) :=

(
%0(x) + u0(x) · v +

1

2
θ0(x)(|v|2 − dϑ1)

)
M(v) . (6.2)

Then, for any T > 0, the family of solutions {hε}ε constructed in Theorem 5.1 converges in some
weak sense to a limit h = h(t, x, v) which is such that

h(t, x, v) =

(
%(t, x) + u(t, x) · v +

1

2
θ(t, x)(|v|2 − dϑ1)

)
M(v) , (6.3)
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where
(%, u, θ) ∈ C ([0, T ] ; Wm−1) ∩ L2 ((0, T ) ; Wm)

is solution to the following incompressible Navier-Stokes-Fourier system with forcing
∂tu− ν

ϑ1
∆xu+ ϑ1 u ·∇x u+∇xp = λ0u ,

∂t θ − γ
ϑ21

∆xθ + ϑ1 u ·∇xθ =
λ0 c̄

2(d+ 2)

√
ϑ1 θ ,

divxu = 0 , %+ ϑ1 θ = 0 ,

(6.4)

subject to initial conditions (%in, uin, θin) de�ned by

uin := Pu0 , θin :=
d

d+ 2
θ0 −

2

(d+ 2)ϑ1
%0 , %in := −ϑ1θin , (6.5)

where P is the Leray projection on divergence-free vector �elds and (%0, u0, θ0) have been introduced
in (6.2). The viscosity ν > 0 and heat conductivity γ > 0 are explicit and λ0 > 0 is the parameter
appearing in Assumption 1.1. The parameter c̄ > 0 is depending on the collision kernel b( · ).

In what follows, we shall consider {hε}ε a family of solutions to (1.27) constructed in this
theorem that splits as hε = h0

ε + h1
ε with h0

ε and h1
ε de�ned in Section 4 (notice that in this last

section, we will once again specify that h = hε, h0 = h0
ε and h1 = h1

ε depend on ε). We also
�x T > 0 for the rest of the section. Finally, mention that to lighten notations, we will write α
for α(ε) but recall that α = α(ε) satis�es Assumption 1.1.

6.1. Compactness and convergence. One can prove the following estimate for time-averages of
the microscopic part of hε, namely on (Id−π0)hε, which in particular tells that this microscopic
part vanishes in the limit ε→ 0:

Lemma 6.2. For any 0 6 t1 6 t2 6 T , there holds:ˆ t2

t1

‖(Id− π0)hε(τ)‖E dτ . ε
√
t2 − t1 , (6.6)

where we recall that π0 is the projection onto the kernel of L1 de�ned in (3.2).

Proof. We �rst remark that
ˆ t2

t1

‖(Id− π0)hε(τ)‖E dτ .

(ˆ t2

t1

‖(Id− π0)h0
ε(τ)‖2E dτ

) 1
2 √

t2 − t1

+

(ˆ t2

t1

‖(Id− π0)h1
ε(τ)‖2H1

dτ

) 1
2 √

t2 − t1.

The �rst term is estimated thanks to (5.1), which gives:ˆ t2

t1

‖(Id− π0)h0
ε(τ)‖2E dτ . ‖(Id− π0)h0

ε‖L∞((0,T ) ; E)‖(Id− π0)h0
ε‖L1((0,T ) ; E1) . ε

2.
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Concerning the second one, we perform similar computations as in the proof of Lemma 4.6. We
recall that h1

ε solves (4.4) and consider ||| · |||H an hypocoercive norm onH (see Proposition 3.1).
We then have, with Ψ(t) = (Id−P0)h1

ε(t),

1

2

d

dt
|||Ψ(t)|||2H 6 −

a1

2ε2
‖(Id− π0)Ψ(t)‖2H1

− a1‖Ψ(t)‖2H1

+ C‖h1
ε(t)‖2H

(
‖h1

ε(t)‖2H1
+ ‖h1

ε(t)‖H + 1
)

+
C

ε2
‖h0

ε(t)‖E‖h1
ε(t)‖H

from which we deduce that

1

ε2

ˆ t2

t1

‖(Id− π0)Ψ(τ)‖2H1
dτ . ‖h1

ε(t1)‖2H

+

ˆ t2

t1

‖h1
ε(τ)‖2H

(
‖h1

ε(τ)‖2H1
+ ‖h1(τ)‖H + 1

)
dτ +

1

ε2

ˆ t2

t1

‖h0
ε(τ)‖E‖h1

ε(τ)‖H dτ . 1

where we used the fact that the norm ||| · |||H is equivalent to the usual one ‖ · ‖H uniformly in ε
as well as (5.1) and (5.2) to get the last estimate. Now, since π0P0 = P0, one has

(Id− π0)h1
ε = (Id− π0)Ψ(t)

and one deduces that ˆ t2

t1

‖(Id− π0)h1
ε(τ)‖2H1

dτ . ε2

and this allows to conclude to the wanted estimate. �

We deduce the following convergence result (whose proof is immediate using estimates (5.1), (5.2)
together with (6.6)):

Theorem 6.3. There exists h = π0(h) ∈ L2 ((0, T );H) such that up to extraction of a subsequence,
one has 

{
h0
ε

}
ε
converges to 0 strongly in L1((0, T ) ; E1) ,{

h1
ε

}
ε
converges to h weakly in L2 ((0, T ) ;H) .

(6.7)

In particular, there exist

% ∈ L2
(

(0, T ) ;Wm,2
x (Td)

)
, u ∈ L2

(
(0, T ) ;

(
Wm,2
x (Td)

)d)
,

θ ∈ L2
(

(0, T ) ;Wm,2
x (Td)

)
,

such that

h(t, x, v) =

(
%(t, x) + u(t, x) · v +

1

2
θ(t, x)(|v|2 − dϑ1)

)
M(v) (6.8)

whereM is the Maxwellian distribution introduced in (1.19).
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Remark 6.4. The convergence (6.7) can be made even more precise since from Lemma 6.2, we also
have {

(Id− π0)h1
ε

}
ε
converges strongly to 0 in L2 ((0, T ) ;H) .

This means somehow that the only part of hε which prevents the strong convergence towards h
is
{
π0h

1
ε

}
ε
.

Remark 6.5. Notice that the hydrodynamic quantites (%, u, θ) in (6.8) can be expressed in terms
of h through the following equalities:

%(t, x) =

ˆ
Rd
h(t, x, v) dv , u(t, x) =

1

ϑ1

ˆ
Rd
h(t, x, v)v dv ,

θ(t, x) =

ˆ
Rd
h(t, x, v)

|v|2 − dϑ1

ϑ2
1d

dv . (6.9)

Because of Theorem 6.3 and for simplicity sake, from here on, we will write that our sequences
converge even if it is true up to an extraction. We now aim to fully characterise the limit h
obtained in Theorem 6.3. To do so, we are going to identify the limit equations satis�ed by the
macroscopic quantities (%, u, θ) in (6.8) following the same lines as in the elastic case and more
precisely the same path of Bardos et al. (1993); Golse & Saint-Raymond (2004) exploiting the fact
that the mode of convergence in Theorem 6.3 is stronger than the one of Bardos et al. (1993);
Golse & Saint-Raymond (2004). The regime of weak inelasticity is central in the analysis. The
main idea is to write equations satis�ed by averages in velocity of hε and to study the convergence
of each term. To this end, we begin by a result about convergence of velocity averages of hε and
in what follows, we will use the following notation: for g = g(x, v),

〈g〉 :=

ˆ
Rd
g( · , v) dv

which is now a function of the spatial variable only.

Lemma 6.6. Let {hε}ε be converging to h in the sense of Theorem 6.3. Then, for any function
ψ = ψ(v) such that |ψ(v)| .$q(v) , one has〈

ψ hε

〉
−−−→
ε→0

〈
ψ h
〉

in D ′t,x . (6.10)

Proof. Let ψ be such that |ψ(v)| .$q(v) and let ϕ = ϕ(t, x) ∈ C∞c ((0, T )× Td) be given. One
computes

Iε :=

ˆ T

0
dt

ˆ
Td
ϕ(t, x)

(〈
ψ hε

〉
−
〈
ψ h
〉)

dx = I0
ε + I1

ε

where

I0
ε :=

ˆ T

0
dt

ˆ
Td
ϕ(t, x)

〈
ψ h0

ε

〉
dx , I1

ε :=

ˆ T

0
dt

ˆ
Td
ϕ(t, x)

(〈
ψ h1

ε

〉
−
〈
ψ h
〉)

dx .
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Because |I0
ε | . ‖ϕ‖L∞t,x

´ T
0 ‖h

0
ε(t)‖L1

x,v($q) dt . ‖ϕ‖L∞t,x
´ T

0 ‖h
0
ε(t)‖L1

vL
2
x($q) dt, we deduce

from (6.7) that limε→0 I
0
ε = 0. In the same way, one has

I1
ε =

ˆ T

0
dt

ˆ
Td×Rd

(ψ(v)M(v)ϕ(t, x))
(
h1
ε(t, x, v)− h(t, x, v)

)
dxM−1(v) dv

and, since we have

(t, x, v) 7−→ ψ(v)M(v)ϕ(t, x) ∈ L2((0, T );H) , (6.11)

we deduce from (6.7) that limε→0 I
1
ε = 0. This proves (6.10). �

6.2. Incompressibility condition and Boussinesq relation. Using Lemma 6.6, we are able
to obtain a �rst result about the incompressibility of u and to give a �rst version of Boussinesq
relation on % and θ.

Lemma 6.7. With the notations of Theorem 6.3, the limit h given by (6.8) satis�es on (0, T )× Td
the incompressibility condition

divxu = 0 , (6.12)
as well as Boussinesq relation

∇x (%+ ϑ1θ) = 0 . (6.13)
As a consequence, introducing for almost every t ∈ (0, T ),

E(t) :=

ˆ
Td
θ(t, x) dx , (6.14)

one has strengthened Boussinesq relation: for almost every (t, x) ∈ (0, T )× Td,

%(t, x) + ϑ1 (θ(t, x)− E(t)) = 0 . (6.15)

Proof. Set

%ε(t, x) :=

ˆ
Rd
hε(t, x, v) dv , uε(t, x) :=

1

ϑ1

ˆ
Rd
v hε(t, x, v) dv ,

and, multiplying (1.27) with 1 and v and integrating in velocity, we get

ε∂t%ε + ϑ1divx (uε) = 0 , (6.16)

ε ∂tuε + Divx (Jε) =
1− α
ε

uε , (6.17)

where Jε = Jε(t, x) denotes the tensor

Jε(t, x) :=
1

ϑ1

ˆ
Rd
v ⊗ v hε(t, x, v) dv ,

since both Lα and Qα conserve mass and momentum. The proof of (6.12) is straightforward
since ε∂t%ε → 0 and divx(uε) → divxu in the distribution sense from Lemma 6.6. Let us give
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the detail for the sake of completeness. Multiplying (6.16) with a function ϕ ∈ C∞c ((0, T )× Td)
and integrating over (0, T )× Td, we get that

−ϑ1

ˆ T

0
dt

ˆ
Td
∇xϕ(t, x) ·uε(t, x) dx = ε

ˆ T

0
dt

ˆ
Td
%ε(t, x)∂tϕ(t, x) dx ,

which, taking the limit ε→ 0 and because %ε → % and uε → u in D ′t,x, yields
ˆ T

0
dt

ˆ
Td
∇xϕ(t, x) ·u(t, x) dx = 0 , ∀ϕ ∈ C∞c ((0, T )× Td) .

Since u(t, x) ∈ L2((0, T ) ; (Wm,2
x (Td)d)), the incompressibility condition (6.12) holds true. In

the same way, for any i = 1, . . . , d and ϕ ∈ C∞c ((0, T )× Td), noticing that

lim
ε→0

ε

ˆ T

0
uiε ∂tϕ(t, x) dx = lim

ε→0

1− α
ε

ˆ T

0
dt

ˆ
Td
uiε(t, x)ϕ(t, x) dx = 0 ,

we get that

0 = lim
ε→0

d∑
j=1

ˆ T

0
dt

ˆ
Td
J i,jε (t, x)∂xjϕ(t, x) dx =

d∑
j=1

ˆ T

0
dt

ˆ
Td
J i,j0 (t, x)∂xjϕ(t, x) dx ,

where

J i,j0 (t, x) :=
1

ϑ1

ˆ
Rd
vi vj h(t, x, v) dv = (%(t, x) + ϑ1θ(t, x)) δij , ∀ i, j = 1, . . . , d .

Therefore, for any i = 1, . . . , d,
ˆ T

0
dt

ˆ
Td

(%(t, x) + ϑ1θ(t, x)) ∂xiϕ(t, x) dx = 0 , ∀ϕ ∈ C∞c ((0, T )× Td) .

As before, this gives the Boussinesq relation (6.13). To show that Boussinesq relation can be
strengthened, one notices thatˆ

Td
%ε(t, x) dx −−−→

ε→0

ˆ
Td
%(t, x) dx in D ′t

from which we deduce, from the conservation of mass for (6.18), that for almost every t > 0,ˆ
Td
%(t, x) dx = 0 .

With the de�nition of E in (4.1), this implies that for almost every t > 0,ˆ
Td

(%(t, x) + ϑ1 (θ(t, x)− E(t))) dx = 0 ,

and, this combined with (6.13) yields the strengthened form (6.15). �
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Remark 6.8. Notice here that the derivation of the strong Boussinesq relation % + ϑ1θ = 0 is
not as straightforward as in the elastic case. In the elastic case, the classical Boussinesq relation
∇x(%+ ϑ1θ) = 0 implies the strong form of Boussinesq because the two functions % and θ have zero
spatial averages. This cannot be deduced directly in the granular context due to the dissipation of
energy and we will see later on how to obtain it (see Proposition 6.19).

6.3. Local conservation laws. We are now going to write a system of local conservation laws
and the �rst step is to study the limit of some of the terms of this system thanks to Lemma 6.6.

Recall (1.27):

ε∂thε + v ·∇xhε + ε−1(1− α)∇v · (vhε) = ε−1Lαhε +Qα(hε, hε) , (6.18)

under the scaling hypothesis that α = 1− λ0ε
2 + o(ε2), λ0 > 0 (see Assumption 1.1). Multiply-

ing (6.18) respectively with 1, v, |v|2/2, we observe that the quantities〈
hε

〉
,
〈
vhε

〉
,
〈1

2
|v|2
〉
,
〈1

2
|v|2v hε

〉
and

〈
v ⊗ v hε

〉
are important. As in the classical elastic case, we write〈

v ⊗ v hε
〉

=
〈
Ahε

〉
+ pεId

where we de�ne pε and the traceless tensorA as

pε :=
〈1

d
|v|2 hε

〉
and A = A(v) := v ⊗ v − 1

d
|v|2Id . (6.19)

Properties of this tensor are established in Appendix A. In a more precise way, one obtains, after
integrating (6.18) against 1, vi, |v|

2

2 ,

∂t

〈
hε

〉
+

1

ε
divx

〈
v hε

〉
= 0 , (6.20a)

∂t

〈
v hε

〉
+

1

ε
Divx

〈
Ahε

〉
+

1

ε
∇xpε =

1− α
ε2

〈
v hε

〉
, (6.20b)

∂t

〈1

2
|v|2hε

〉
+

1

ε
divx

〈1

2
|v|2v hε

〉
=

1

ε3
Jα(fε, fε) +

2(1− α)

ε2

〈1

2
|v|2hε

〉
, (6.20c)

where we recall that fε = Gα + εhε and where

Jα(f, f) :=

ˆ
Rd

[Qα(f, f)−Qα(Gα, Gα)] |v|2 dv .
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Notice that, using (6.9) as well as Lemma 6.6 and Lemma 6.7,

divx

〈
v hε

〉
−−−→
ε→0

ϑ1divxu = 0 ,
〈1

2
|v|2hε

〉
−−−→
ε→0

dϑ1

2
(%+ ϑ1θ) ,

∇xpε −−−→
ε→0

1

d
∇x
〈
|v|2h

〉
= ϑ1∇x(%+ ϑ1θ) = 0 ,〈

Ahε

〉
−−−→
ε→0

〈
Ah

〉
= 0 ,〈1

2
|v|2vj hε

〉
−−−→
ε→0

〈1

2
|v|2vj h

〉
=

1

2
uj

〈
|v|2v2

jM
〉

=
d+ 2

2
ϑ2

1uj , ∀ j = 1, . . . , d ,

where all the limits hold in D ′t,x and where
〈
Ah
〉

= 0 because h ∈ Ker(L1) (see Lemma A.1).
Moreover, under the scaling of Assumption 1.1,

1− α
ε2

〈
v hε

〉
−−−→
ε→0

ϑ1λ0u in D ′t,x .

The limit of ε−3Jα(fε, fε) is handled in the following lemma.

Lemma 6.9. It holds that
1

ε3
Jα(fε, fε) −−−→

ε→0
J0 in D ′t,x ,

where

J0(t, x) := −λ0 c̄ ϑ
3
2
1

(
%(t, x) +

3

4
ϑ1 θ(t, x)

)
, (t, x) ∈ (0, T )× Td

for some positive constant c̄ depending only on the angular kernel b( · ) and d. In particular,

J0(t, x) = −λ0 c̄ ϑ
5
2
1

(
E(t)− 1

4
θ(t, x)

)
, (t, x) ∈ (0, T )× Td

where E is de�ned in (4.1).

Proof. We recall, see (1.10), thatˆ
Rd
|v|2Qα(g, f) dv = −(1− α2)

γb
4

ˆ
Rd×Rd

f(v)g(v∗) |v − v∗|3 dv dv∗ .

Thus, for fε = Gα + ε hε, we obtain

1

ε3
Jα(fε, fε) = −γb

4

1− α2

ε2

(ˆ
Rd×Rd

[hε(v)Gα(v∗) + hε(v∗)Gα(v)] |v − v∗|3 dv dv∗

+ ε

ˆ
Rd×Rd

hε(v)hε(v∗)|v − v∗|3 dv dv∗

)
. (6.21)

Recall that limε→0
1−α
ε2

= λ0. It is clear from Minkowski’s integral inequality that the Wm,2
x (Td)

norm of the last term in the right-side is controlled by ‖hε‖2E . Theorem 5.1 implies that the
last term in (6.21) is converging to 0 in L1((0, T );Wm,2

x (Td)). One handles the �rst term in the
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right-side using Theorem 6.3 and the fact that Gα →M strongly from Lemma 2.3. Details are
left to the reader. We then easily obtain the convergence of ε−3Jα(fε, fε) towards

J0 := −λ0 γb

ˆ
Rd×Rd

h(t, x, v)M(v∗)|v − v∗|3 dv dv∗ .

The expression of J0 is then obtained by direct inspection from (6.8) with

c̄ := γb a, a :=
2
√

2

(2π)
d
2

ˆ
Rd

exp

(
−1

2
|v|2
)
|v|3 dv ,

where
ˆ
Rd×Rd

M(v)M(v∗)|v − v∗|3 dv dv∗ = ϑ
3
2
1 a ,

ˆ
Rd×Rd

M(v)M(v∗)|v|2|v − v∗|3 dv dv∗ =
2d+ 3

2
ϑ

5
2
1 a .

We refer to (Mischler & Mouhot, 2009, Lemma A.1) for these identities. The second part of the
lemma follows from the strengthened Boussinesq relation (6.15). �

6.4. About the equations of motion and temperature. As in Bardos et al. (1993); Golse &
Saint-Raymond (2004), in order to investigate the limiting behaviour of the system (6.20) as ε→ 0,
we need to investigate the limit in the distributional sense of

1

ε
Divx

〈
Ahε

〉
= −1

ε
Divx

〈
φL1hε

〉
(6.22)

and
1

ε
divx

〈
bhε

〉
= −1

ε
divx

〈
ψL1hε

〉
(6.23)

where we recall that b is de�ned through (3.12):

b(v) =
1

2

(
|v|2 − (d+ 2)ϑ1

)
v , v ∈ Rd

and where the Burnett functions φ and ψ are de�ned in Lemma A.1 and we used that L1 is
selfadjoint in L2

v(M−
1
2 ).

Since the limiting vector-�eld u is divergence-free from Lemma 6.7, it turns out enough to
investigate only the limit of PDivx

〈
ε−1Ahε

〉
where we recall that P is the Leray projection on

divergence-free vector �elds5 . We begin with a strong compactness result:

5Recall that, for a vector �eld u, Pu = u−∇∆−1(∇ ·u). On the torus, it can be de�ned via Fourier expansion,
if u =

∑
k∈Zd ake

ik · x, ak ∈ Cd, then Pu =
∑
k∈Zd

(
Idd − k⊗k

|k|2

)
ake

ik · x.
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Lemma 6.10. Introduce for (t, x) ∈ (0, T )× Td:

uε(t, x) := exp

(
−t1− α

ε2

)
Puε(t, x) and θε(t, x) :=

〈1

2

(
|v|2 − (d+ 2)ϑ1

)
hε

〉
.

(6.24)
Then, {∂tuε}ε and {∂tθε}ε are bounded in L1

(
(0, T ) ;Wm,2

x (Td)
)
. Consequently, up to the ex-

traction of a subsequence,
ˆ T

0
‖Puε(t)− u(t)‖Wm−1,2

x (Td)
dt −−−→

ε→0
0 (6.25)

and ˆ T

0
‖θε(t, · )− θ0(t, · )‖Wm−1,2

x (Td)
dt −−−→

ε→0
0 (6.26)

where

θ0(t, x) :=
〈1

2
(|v|2 − (d+ 2)ϑ1)h

〉
=
dϑ1

2
(%(t, x) + ϑ1θ(t, x))− d+ 2

2
ϑ1%(t, x) . (6.27)

In other words, {Puε}ε (resp. {θε}ε) converges strongly to u = Pu (resp. θ0) in the space
L1
(

(0, T ) ;Wm−1,2
x (Td)

)
.

Proof. We begin with the proof of (6.25). We apply the Leray projection P to (6.20b) to eliminate
the pressure gradient term. Then, we have that

∂tuε = − exp

(
−t1− α

ε2

)
P
(

1

ϑ1
Divx

〈1

ε
Ahε

〉)
.

Notice that, since {hε}ε is bounded in L1((0, T ) ; E) by Minkowski’s integral inequality, one has
that

{uε}ε is bounded in L1
(

(0, T ) ;Wm,2
x (Td)

)
.

Moreover, since 〈Ahε〉 = 〈A (Id− π0)hε〉 (see Lemma A.1), we deduce from Lemma 6.2 and
Minkowski’s integral inequality that

sup
ε

ˆ T

0

∥∥∥∥P (Divx

〈1

ε
Ahε

〉)∥∥∥∥
Wm−1,2
x (Td)

dt <∞ .

In particular
{∂tuε}ε is bounded in L1

(
(0, T ) ;Wm−1,2

x (Td)
)
.

Applying (Simon, 1987, Corollary 4) withX = Wm,2
x (Td) andB = Y = Wm−1,2

x (Td) (so that the
embedding ofX intoB is compact by Rellich-Kondrachov Theorem (Taylor, 1996, Proposition 3.4,
p. 330)), we deduce that {uε}ε is relatively compact in L1

(
(0, T );Wm−1,2

x (Td)
)

. The result of
strong convergence follows easily since we already now that Puε converges to u in D ′t,x (see
Lemma 6.6 and recall u = Pu since u is divergence-free).
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The proof of (6.26) is similar. We begin with observing that, multiplying (6.20a) with −d+2
2 ϑ1

and add it to (6.20c), we obtain the evolution of θε:

∂tθε +
1

ε
divx

〈
bhε

〉
=

1

ε3
Jα(fε, fε) +

2(1− α)

ε2

〈1

2
|v|2hε

〉
. (6.28)

Notice that {θε}ε is bounded inL1
(

(0, T ) ;Wm,2
x (Td)

)
while, because 〈bhε〉 = 〈b (Id− π0)hε〉

(see Lemma A.1), we deduce from Lemma 6.2 by Minkowski’s integral inequality that

sup
ε

ˆ T

0

∥∥∥∥divx

〈1

ε
bhε

〉∥∥∥∥
Wm−1,2
x (Td)

dt <∞ .

It is easy to see that the right-hand side of (6.28) is also bounded in L1
(

(0, T ) ;Wm,2
x (Td)

)
so

that {∂tθε}ε is bounded in L1
(

(0, T ) ;Wm−1,2
x (Td)

)
. Using again (Simon, 1987, Corollary 4)

together with Rellich-Kondrachov Theorem, we deduce as before that {θε}ε is relatively compact
in L1

(
(0, T ) ;Wm−1,2

x (Td)
)

. Since we already know that θε converges in the distributional
sense to θ0 (see Lemma 6.6), we get the result of strong convergence. �

Remark 6.11. Notice that if we compare our approach to the elastic case, we have added the
exponential term in the de�nition of uε in order to absorbe the term in the RHS in (6.20b). Notice also
that as in the elastic case, the study of the limit ε→ 0 in the equations satis�ed by uε and θε is more
favorable than the direct study of convergence of (6.20a)-(6.20b)-(6.20c) because compared to (6.20a)-
(6.20b)-(6.20c), the gradient term in (6.20b) has been eliminated thanks to the Leray projector and also
because

〈
Aπ0

〉
= 0 and

〈
bπ0

〉
= 0 from Lemma A.1 so that thanks to Lemma 6.2, we know that

the quantities ε−1Divx

〈
Ahε

〉
and ε−1divx

〈
bhε

〉
are bounded in L1

(
(0, T ) ;Wm−1,2

x (Td)
)
.

We can now give a preliminary result about the problem of convergence for (6.22):

Lemma 6.12. In the distributional sense,

PDivx

(〈1

ε
Ahε

〉
−
〈
φQ1 (π0hε,π0hε)

〉)
−−−→
ε→0

−ν∆xu (6.29)

where ν is de�ned in Lemma A.1.

Proof. When compared to the elastic case, L1hε does not appear in (6.18). We add it, as well as
the quadratic elastic Boltzmann operator when applied to the macroscopic part of hε, by force
and rewrite the latter as

ε∂thε + v ·∇xhε − ε−1L1hε = Q1(π0hε,π0hε)

− ε−1(1− α)divv(vhε) + ε−1 (Lαhε − L1hε) + (Qα −Q1)(π0hε,π0hε)

+ 2Q̃α((Id− π0)hε,π0hε) +Qα((Id− π0)hε, (Id− π0)hε) . (6.30)
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We interpret the last �ve terms as a source term

Sε := −ε−1(1− α)divv(vhε) + ε−1 (Lαhε − L1hε) + (Qα −Q1)(π0hε,π0hε)

+ 2Q̃α((Id− π0)hε,π0hε) +Qα((Id− π0)hε, (Id− π0)hε) =:
5∑
j=1

Sjε . (6.31)

We �rst remark that 〈
φi,j S1

ε

〉
= ε−1(1− α)

〈
hε∇vφi,j · v

〉
.

Using the estimates on∇vφ provided in Lemma A.3 as well as Assumption 1.1, we have that∣∣∣〈φi,j S1
ε

〉∣∣∣ . ε (‖h0
ε‖L∞((0,T ) ; E) + ‖h1

ε‖L∞((0,T ) ;H)

)
. ε (6.32)

where we used (5.1) and (5.2) to get the last inequality.
Let us now prove that ∥∥S2

ε + . . .+ S5
ε

∥∥
L1((0,T ) ;L1

vL
2
x($q−1))

. ε . (6.33)

Regarding S2
ε , we have that

1

ε
‖Lαhε − L1hε‖L1((0,T ) ;L1

vL
2
x($q−1))

6
1

ε

(∥∥Lαh0
ε

∥∥
L1((0,T ) ;L1

vL
2
x($q−1))

+
∥∥L1h

0
ε

∥∥
L1((0,T ) ;L1

vL
2
x($q−1))

)
+

1

ε

∥∥Lαh1
ε − L1h

1
ε

∥∥
L1((0,T ) ;L1

vL
2
x($q−1))

.

Using Corollary B.4, we have that∥∥Lαh0
ε

∥∥
L1((0,T ) ;L1

vL
2
x($q−1))

+
∥∥L1h

0
ε

∥∥
L1((0,T ) ;L1

vL
2
x($q−1))

. ‖h0
ε‖L1((0,T ) ;L1

vL
2
x($q)) . ‖h

0
ε‖L1((0,T ) ; E) . ε

2

where we used (5.1) to get the last inequality. Combining Lemma 2.4 with Cauchy-Schwarz
inequality, Assumption 1.1 and (5.2), we have that∥∥Lαh1

ε − L1h
1
ε

∥∥
L1((0,T ) ;L1

vL
2
x($q−1))

. ε2‖h1
ε‖L1((0,T ) ;H) . ε

2 .

Gathering the two previous inequalities, we obtain that∥∥S2
ε

∥∥
L1((0,T ) ;L1

vL
2
x($q−1))

. ε .

We can handle S3
ε in a similar but simpler way. Using Cauchy-Schwarz inequality, Lemma 2.1,

the regularizing properties of π0 in velocity and Asusmption 1.1, we get that∥∥S3
ε

∥∥
L1((0,T ) ;L1

vL
2
x($q−1))

. ε2‖hε‖L1((0,T ) ; E) . ε
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where we used (5.1)-(5.2) to conclude. The last terms S4
ε and S5

ε are treated similarly. Using
Corollary B.4 and Lemma 6.2 with (5.1)-(5.2), we have that∥∥S4

ε + S5
ε

∥∥
L1((0,T ) ;L1

vL
2
x($q−1))

. ‖(Id− π0)hε‖L1((0,T ) ; E)‖hε‖L∞((0,T ) ; E) . ε .

This ends the proof of (6.33).
Then, multiplying (6.30) by φ and integrating over Rd, we get using (6.22) that, for any i, j =

1, . . . , d,

ε∂t

〈
φi,jhε

〉
+ divx

〈
v φi,jhε

〉
− ε−1

〈
φi,jL1hε

〉
=
〈
φi,j Q1(π0hε,π0hε)

〉
+
〈
φi,j Sε

〉
. (6.34)

According to Lemma 6.6, (6.32) and (6.33), we have that

ε∂t

〈
φi,j hε

〉
−−−→
ε→0

0 , divx

〈
v φi,j hε

〉
−−−→
ε→0

divx

〈
v φi,j h

〉
,

〈
φi,j Sε

〉
−−−→
ε→0

0 ,

where the limits are all meant in the distributional sense. From Lemma A.6 in Appendix A, one
has

〈
v` φ

i,j h
〉

=


ν uj if i 6= j , ` = i ,

ν ui if i 6= j , ` = j ,

−2
dν u` + 2ν uiδi` if i = j ,

0 else .
Therefore, using the incompressibility condition,

divx

〈
v φi,j h

〉
= ν

(
∂xjui + ∂xiuj

)
.

We deduce that in D ′t,x(
1

ε

〈
φi,j L1hε

〉
+
〈
φi,j Q1 (π0hε,π0hε)

〉)
−−−→
ε→0

ν(∂xjui + ∂xiuj) .

Applying the Divx operator, one deduces that in D ′t,x

Divix

(
1

ε

〈
φL1hε

〉
+
〈
φQ1 (π0hε,π0hε)

〉)
−−−→
ε→0

ν∆xui ,

where we use the incompressibility condition to deduce that Divix
(
∂xjui + ∂xiuj

)
= ∆xui. This

proves the result. �

In the same spirit, we have the following which now regards (6.23).

Lemma 6.13. In the distributional sense,
1

ε
divx

〈
bhε

〉
+ divx

〈
ψQ1(π0hε,π0hε

〉
−−−→
ε→0

−d+ 2

2
γ∆xθ (6.35)

where γ is de�ned in Lemma A.1.
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Proof. The proof is similar to the one of Lemma 6.12, remark that multiplying (6.30) by ψi (recall
that ψ is de�ned by (A.1)), it holds that

ε∂t

〈
ψihε

〉
+ divx

〈
v ψihε

〉
− ε−1

〈
ψiL1hε

〉
=
〈
ψiQ1(π0hε,π0hε)

〉
+
〈
ψi Sε

〉
.

It then follows that(
1

ε

〈
ψiL1hε

〉
+
〈
ψiQ1(π0hε,π0hε

〉)
−−−→
ε→0

divx

〈
v ψih

〉
=
d+ 2

2
γ ∂xiθ

thanks to Lemma A.7 in Appendix A, which gives the result. �

To determine the distributional limit of (6.22) and (6.23), it remains to explicit the limit of the
nonlinear terms

PDivx

〈
φQ1(π0hε,π0hε)

〉
and divx

〈
ψQ1(π0hε,π0hε)

〉
respectively. One has the following whose proof is adapted from (Golse & Saint-Raymond , 2004,
Corollary 5.7).

Lemma 6.14. We have

PDivx

〈
φQ1 (π0hε,π0hε)

〉
−−−→
ε→0

ϑ2
1PDivx(u⊗ u) in D ′t,x

and
divx

〈
ψQ1(π0hε,π0hε)

〉
−−−→
ε→0

d+ 2

2
ϑ3

1u ·∇xθ in D ′t,x .

In particular,

PDivx

〈1

ε
Ahε

〉
−−−→
ε→0

−ν∆xu+ ϑ2
1PDivx(u⊗ u) in D ′t,x (6.36)

while
divx

〈1

ε
bhε

〉
−−−→
ε→0

−d+ 2

2

(
γ∆xθ − ϑ3

1u ·∇xθ
)

in D ′t,x (6.37)

where ν and γ are de�ned in Lemma A.1.

Proof. Writing

π0hε =

(
%ε(t, x) + uε(t, x) · v +

1

2
θε(t, x)

(
|v|2 − dϑ1

))
M(v)

we �rst observe that, according to Lemma A.5 and Lemma A.7 in Appendix A,〈
φQ1 (π0hε,π0hε)

〉
= ϑ2

1

[
uε ⊗ uε −

2

d
|uε|2Id

]
and 〈

ψQ1(π0hε,π0hε)
〉

=
d+ 2

2
ϑ3

1 (θε uε) .

Therefore,
PDivx

〈
φQ1 (π0hε,π0hε)

〉
= ϑ2

1PDivx (uε ⊗ uε)
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since Divx
(
|uε|2Id

)
is a gradient term and

divx

〈
ψQ1(π0hε,π0hε)

〉
=
d+ 2

2
ϑ3

1 divx (θε uε) .

We then write uε = Puε + (Id − P)uε. Due to the strong convergence of Puε towards u in
L1
(

(0, T ) ;Wm−1,2
x (Td)

)
(see Lemma 6.10) and the weak convergence of uε (see Lemma 6.6),

we see that

PDivx (uε ⊗ uε − (Id− P)uε ⊗ (Id− P)uε) −−−→
ε→0

PDivx (u⊗ u) in D ′t,x .

So, to prove the �rst part of the Lemma, it remains to prove that

PDivx ((Id− P)uε ⊗ (Id− P)uε) −−−→
ε→0

0 in D ′t,x . (6.38)

Moreover, as in (Golse & Saint-Raymond , 2004, Corollary 5.7), we set

βε :=
1

d ϑ1

〈
|v|2hε

〉
= %ε + ϑ1θε

which is such that θε = 2
(d+2)ϑ1

(
βε + 1

ϑ1
θε

)
and

divx(θεuε) =
2

(d+ 2)ϑ1
divx

(
βεuε +

1

ϑ1
uεθε

)
=

2

(d+ 2)ϑ1
divx (βε (Id− P)uε) +

2

(d+ 2)ϑ1

[
divx

(
βεPuε +

1

ϑ1
uεθε

)]
.

Therefore, using the strong convergence of θε towards θ0 in L1
(

(0, T ) ;Wm−1,2
x (Td)

)
given by

Lemma 6.10 together with the weak convergence of uε to u from Lemma 6.6, we get
2

(d+ 2)ϑ2
1

divx(uεθε) −−−→
ε→0

2

(d+ 2)ϑ2
1

divx(uθ0) in D ′t,x

whereas from the strong convergence of Puε to u with the weak convergence of βε towards
%+ ϑ1θ we get

divx(βεPuε) −−−→
ε→0

divx (u (%+ ϑ1θ)) = 0 in D ′t,x

where we used both the incompressiblity condition (6.12) together with Boussinesq relation (6.13).
Notice that, thanks to (6.12), it holds

2

(d+ 2)ϑ2
1

divx(uθ0) =
2

(d+ 2)ϑ2
1

u ·∇xθ0 = u ·∇xθ

where we used the expression of θ0 together with Bousinesq relation (6.13). This shows that

divx(θεuε)−
2

(d+ 2)ϑ1
divx (βε (Id− P)uε) −−−→

ε→0
u ·∇xθ in D ′t,x
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and, to get the second part of the result, we need to prove that

divx (βε (Id− P)uε) −−−→
ε→0

0 in D ′t,x . (6.39)

Let us now focus on the proof of (6.38) and (6.39). One observes that, Equation (6.20b) reads

ε ∂tuε +∇xβε =
1− α
ε

uε −
1

ϑ1
Divx

〈
Ahε

〉
(6.40)

whereas (6.20c) can be reformulated as

ε∂tβε + divx

〈 1

dϑ1
|v|2v hε

〉
=

2

dϑ1ε2
Jα(fε, fε) +

2(1− α)

ε
βε (6.41)

where we check easily that

divx

〈 1

dϑ1
|v|2v hε

〉
=

2

dϑ1
divx

〈
bhε

〉
+
d+ 2

d
ϑ1divxuε

=
2

dϑ1
divx

〈
bhε

〉
+
d+ 2

d
ϑ1divx (Id− P)uε .

Recall that from Theorem 5.1, hε ∈ L∞ ((0, T ) ; E) so that by Minkowski’s integral inequality,
βε ∈ L∞

(
(0, T ) ;Wm,2

x (Td)
)

and using (Majda & Bertozzi, 2002, Proposition 1.6, p. 33)), we can
write

(Id− P)uε = ∇xUε

with Uε ∈ L∞
(

(0, T ) ;
(
Wm−1,2
x (Td)

)d)
. After applying (Id − P) to (6.40) and reformulat-

ing (6.41), we obtain that Uε and βε satisfy
ε∂t∇xUε +∇xβε = Fε

ε∂tβε + d+2
d ϑ1∆xUε = Gε

(6.42)

with

Fε :=
1− α
ε
∇xUε −

1

ϑ1
(Id− P)Divx

〈
Ahε

〉
Gε := − 2

dϑ1
divx

〈
bhε

〉
+

2

dϑ1ε2
Jα(fε, fε) +

2(1− α)

ε
βε .

From (5.1)-(5.2), Lemmas 6.2, 6.9 and Asssumption 1.1, it is easy to see that

‖Fε‖L1((0,T ) ;Wm−1,2
x (Td))

. ε and ‖Gε‖L1((0,T ) ;Wm−1,2
x (Td))

. ε .

so that both Fε andGε converge strongly to 0 in L1((0, T ) ;L2
x(Td)) and

Uε ∈ L∞((0, T ) ; (W1,2
x (Td))d) , βε ∈ L∞((0, T ) ;L2

x(Td)) .
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Then, according to the compensated compactness argument of Lions & Masmoudi (1999) recalled
in Proposition A.8 in Appendix A, we deduce that (6.38) and (6.39) hold true and this achieves the
proof. The proofs of (6.36) and (6.37) follow then from an application of Lemmas 6.12 and 6.13. �

Coming back to the system of equations (6.20) and with the preliminary results of Section 6.3,
we get the following where we wrote PDivx(u⊗ u) = Divx(u⊗ u) + ϑ−1

1 ∇xp, see (Majda &
Bertozzi, 2002, Proposition 1.6).

Proposition 6.15. The limit velocity u in (6.8) satis�es

∂tu−
ν

ϑ1
∆xu+ ϑ1Divx (u⊗ u) +∇xp = λ0u (6.43)

while the limit temperature θ in (6.8) satis�es

∂tθ −
γ

ϑ2
1

∆xθ+ϑ1 u ·∇xθ =
2

(d+ 2)ϑ2
1

J0 +
2dλ0

d+ 2
E +

2

d+ 2

d

dt
E (6.44)

where we recall that J0 is de�ned in Lemma 6.9 and E is de�ned in (4.1).

Remark 6.16. The viscosity and heat conductivity coe�cients ν and γ are explicit and fully
determined by the elastic linearized collision operator L1 (see Lemma A.1).

Remark 6.17. Notice also that, due to (6.12), Divx(u⊗ u) = (u ·∇x)u and (6.43) is nothing but a
reinforced Navier-Stokes equation associated to a divergence-free source term given by λ0u which
can be interpreted as an energy supply/self-consistent force acting on the hydrodynamical system
because of the self-similar rescaling.

Proof of Proposition 6.15. The proof of (6.43) is a straightforward consequence of the previous
lemma. To investigate the evolution of θ, we recall that θε satis�es (6.28). We notice that

1

ε3
Jα(fε, fε) +

2(1− α)

ε2

〈1

2
|v|2hε

〉
−−−→
ε→0

J0 + dϑ1λ0 (%+ ϑ1θ) ,

whereas

θε −−−→
ε→0

〈1

2
(|v|2 − (d+ 2)ϑ1)h

〉
=
dϑ1

2
(%+ ϑ1θ)−

d+ 2

2
ϑ1% in D ′t,x .

We deduce from (6.37), performing the distributional limit of (6.28), that

dϑ1

2
∂t (%+ ϑ1θ)−

d+ 2

2
ϑ1∂t%−

d+ 2

2
γ∆xθ+

d+ 2

2
ϑ3

1 u ·∇xθ

= J0 + dϑ1λ0 (%+ ϑ1θ) . (6.45)

Using the strengthened Boussinesq relation (6.15), we see that

∂t (%+ ϑ1θ) = ϑ1
d

dt
E and ∂t% = −ϑ1

(
∂tθ −

d

dt
E

)
,

and get the result. �
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6.5. About the initial conditions. Recall that in Theorem 6.3, the convergence of hε to h
given by (6.8) is known to hold only for a subsequence and, in particular, at initial time, di�erent
subsequences could converge towards di�erent initial datum. In such a case, (%, u, θ) could be
di�erent solutions to the same system. In Theorem 6.1, the initial datum is prescribed by ensuring
the convergence of π0h

ε
in towards a single possible limit where π0 is de�ned in (3.2) (recall that

the initial data for (%, u, θ) is de�ned in (6.5)). Using the additional assumption (6.1), we can use
Arzelà-Ascoli theorem to deduce some regularity results (in time) on our hydrodynamic quantities.

Lemma 6.18. Consider the sequences {uε}ε and {θε}ε de�ned in Lemma 6.10. The time-depending
mappings

t ∈ [0, T ] 7−→ ‖uε(t)‖Wm−1,2
x (Td)

and t ∈ [0, T ] 7−→ ‖θε(t)‖Wm−1,2
x (Td)

are Hölder continuous uniformly in ε. As a consequence, the limiting quantities u and θ0 belong to
C([0, T ] ;Wm−1,2

x (Td)).

Proof. Recall that θε is de�ned in (6.24). For any test-function ϕ = ϕ(x) ∈ C∞c (Td) and multi-
index β with |β| 6 m− 1, multiplying (6.28) with ∂βxϕ and integrating in time and space, one
has that for any 0 6 t1 6 t2,

ˆ
Td

[
∂βxθε(t2, x)− ∂βxθε(t1, x)

]
ϕdx

=

ˆ t2

t1

dt

ˆ
Td

divx

〈1

ε
b ∂βxhε

〉
ϕdx+

1

ε3

ˆ t2

t1

dt

ˆ
Td
∂βxJα(fε, fε)ϕdx

+
2(1− α)

ε2

ˆ t2

t1

dt

ˆ
Td

〈1

2
|v|2∂βxhε

〉
ϕdx . (6.46)

Notice that∣∣∣∣ˆ
Td

〈1

2
|v|2∂βxhε

〉
ϕdx

∣∣∣∣ 6 ‖ϕ‖L2
x

∥∥∥∥〈1

2
|v|2∂βxhε

〉∥∥∥∥
L2
x

6 ‖ϕ‖L2
x

∥∥∥∥1

2
|v|2∂βxhε

∥∥∥∥
L1
vL

2
x

thanks to Minkowski’s integral inequality. Clearly, since ε−2(1− α)→ λ0,

2(1− α)

ε2

∣∣∣∣ˆ t2

t1

dt

ˆ
Td

〈1

2
|v|2∂βxhε

〉
ϕdx

∣∣∣∣ . ‖ϕ‖L2

ˆ t2

t1

‖hε‖L1
vW

m−1,2
x ($2)

dt . t2 − t1

from the general estimate in Theorem 5.1. In the same way, since

∂βxJα(fε, fε) = Jα(∂βxfε, fε) + Jα(fε, ∂
β
xfε) ,
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with fε = Gα + ε hε, one deduces again from Theorem 5.1 that∣∣∣∣ˆ t2

t1

dt

ˆ
Td

1

ε3
∂βxJα(fε, fε)ϕdx

∣∣∣∣
. ‖ϕ‖L2

x

ˆ t2

t1

‖hε‖L1
vW

m−1,2
x ($3)

(
1 + ‖hε‖L1

vW
m−1,2
x ($3)

)
dt . t2 − t1 .

Moreover, recalling that
〈
bhε

〉
=
〈
b(Id− π0)hε

〉
(see Lemma A.1) for any t > 0, one deduces

easily from Lemma 6.2 that ∣∣∣∣ˆ t2

t1

1

ε
divx

〈
bhε

〉
dt

∣∣∣∣ . √t2 − t1 .
Since ∂βx commutes with π0 we deduce easily that for any 0 6 |β| 6 m− 1,∣∣∣∣ˆ t2

t1

1

ε
divx

〈
b ∂βxhε

〉
dt

∣∣∣∣ . √t2 − t1 . (6.47)

We conclude with (6.46) that∣∣∣∣ˆ
Td

[
∂βxθε(t2, x)− ∂βxθε(t1, x)

]
ϕdx

∣∣∣∣ . ‖ϕ‖L2
x

√
t2 − t1 .

Since C∞c (Td) is dense in L2(Td), the previous estimate is true for any ϕ ∈ L2(Td) and, taking
the supremum over all ϕ ∈ L2(Td), we deduce that for any 0 6 |β| 6 m− 1,∥∥∥∂βxθε(t2)− ∂βxθε(t1)

∥∥∥
L2
x

.
√
t2 − t1

and, the time-depending mappings t ∈ [0, T ] 7−→ ‖θε(t)‖Wm−1,2
x (Td)

are thus Hölder continuous
uniformly in ε. One can thus apply Arzelà-Ascoli theorem to get that θε converge strongly in
C
(
[0, T ] ;Wm−1,2

x (Td)
)

towards θ0 de�ned in (6.27) that also belong to C
(
[0, T ] ;Wm−1,2

x (Td)
)
.

The proof about uε is similar and we thus skip it. �

6.6. Limit equations. To end the identi�cation of the limit equations, we go back to the strong
Boussinesq equation (6.15) and prove the following result:

Proposition 6.19. It holds that

E(t) = 0 , ∀ t ∈ [0, T ]

where E = E(t) is de�ned in (4.1). Consequently, the limiting temperature θ in (6.8) satis�es

∂t θ −
γ

ϑ2
1

∆xθ + ϑ1 u ·∇xθ =
λ0 c̄

2(d+ 2)

√
ϑ1 θ . (6.48)

where γ is de�ned in Lemma A.1, λ0 in Assumption 1.1 and c̄ in Lemma 6.9. Moreover, the strong
Boussinesq relation holds true:

%+ ϑ1θ = 0 , ∀ (t, x) ∈ [0, T ]× Td . (6.49)
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Proof. Using Lemma 6.9 and averaging in position the equation (6.44), it is easy to prove that
d

dt
E(t) = c̄0E(t)

for some some constant c̄0 ∈ R. Moreover, on the one hand, from (6.5), we have

E(0) =

ˆ
Td
θ(0, x) dx = − 1

ϑ1

ˆ
Td
%(0, x) dx . (6.50)

On the other hand, from the de�nition of θ0 in (6.27), we also have

E(0) =
2

ϑ2
1d

ˆ
Td
θ0(0, x) dx+

2

ϑ1d

ˆ
Td
%(0, x) dx . (6.51)

From Lemma 6.18, we also know that θε converges towards θ0 in C
(
[0, T ] ; Wm−1,2

x (Td)
)
. Con-

sequently, we deduce thatˆ
Td
θ0(0, x) dx = lim

ε→0

ˆ
Td

〈 |v|2 − (d+ 2)ϑ1

2
hε(0, x)

〉
dx = lim

ε→0

ˆ
Td

〈1

2
|v|2hε(0, x)

〉
dx

where we used (1.33) to get the last equality. From (1.34), we deduce thatˆ
Td
θ0(0, x) dx = 0 .

Coming back to (6.50)-(6.51), we deduce that

E(0) = − 1

ϑ1

ˆ
Td
%(0, x) dx =

2

ϑ1d

ˆ
Td
%(0, x) dx

which implies that E(0) = 0. This concludes the proof. �

Gathering the results we obtained in Propositions 6.15 and 6.19, we are able to end the proof
of Theorem 6.1.

7. About the original problem in the physical variables

The above considerations allow us to get a quite precise description of the asymptotic behaviour
for the original physical problem (1.12a) in the case λ0 > 0 by carefully estimating the error
between the solution Fε(t, x, v) to (1.12a) and the solution h(t, x, v) de�ned in (6.3). We keep
the presentation informal, explaining only the main idea allowing to derive both global and local
versions of Ha�’s law for granular gases. We recall here that Ha�’s law as predicted in the seminal
paper Ha� (1983) asserts that the temperature of a freely cooling granular gases of hard-spheres
decays like (1 + t)−2 as t → ∞. It has been proven rigorously in the spatially homogeneous
case in Mischler & Mouhot (2006) (see also Alonso & Lods (2010) for a version of Ha�’s law for
viscoelastic gases in the spatially homogeneous case). We derive here a version of Ha�’s law valid
for small values of ε in the spatially inhomogeneous framework we adopted.

In this section, we work under the conditions of Theorem 5.1. Recall that, if Fε(t, x, v) denotes
the solution to the Boltzmann equation (1.12a) with associated Knudsen number ε, the time-scale
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functions τε(t), Vε(t) that relate the problem in original (physical) variables to its self-similar
counterpart

Fε(t, x, v) = Vε(t)
dfε
(
τε(t), x, Vε(t)v

)
are given by

τε(t) =
1

cε
ln(1 + cε t) , Vε(t) = 1 + cε t , ∀ t > 0 ,

where cε = 1−α(ε)
ε2

(see (1.14)). Recalling that h as de�ned in (6.3) is the weak limit of hε (up to a
suitable subsquence), we introduce the error term eε is given by

eε(t, x, v) := Vε(t)
d
(
hε(τε(t), x, Vε(t)v)− h(τε(t), x, Vε(t)v)

)
.

Under Assumption 1.1, a relevant phenomenon occurs when considering the purely dissipative
case λ0 > 0. In such a case, the term eε(t, x, v) becomes a uniform in time error term. More
precisely, the following error estimate holds.

Lemma 7.1. We suppose λ0 > 0 in Assumption 1.1. Let a ∈ (0, 1). For ε small enough (depending
on a), the following estimate holds up to possibly extracting a subsequence,∣∣〈eε(t), |v|κϕ〉∣∣ 6 C(ϕ, a, η0) (1 + λ0t)

−κ−a , ϕ ∈ C1
v,bL

∞
x , 0 6 κ 6 q − 1 , (7.1)

where we denoted by C1
v,b the set of C1 functions in v that are bounded as well as their �rst derivatives

and recall q > 3 is de�ned in E

Proof. Let a ∈ (0, 1). After a change of variables it follows that, for any test-function ϕ,

〈eε(t), |v|κϕ〉

= Vε(t)
−κ
ˆ
Td×Rd

(
hε(τε(t), x, v)− h(τε(t), x, v)

)
|v|κ
(
ϕ(x, Vε(t)

−1v)− ϕ(x, 0)
)

dv dx

+ Vε(t)
−κ
ˆ
Td×Rd

(
hε(τε(t), x, v)− h(τε(t), x, v)

)
|v|κϕ(x, 0) dv dx

=: I1(t) + I2(t) .

Note that, up to a subsequence, h is the weak−? limit of {hε}ε in L∞
(
(0,∞); E

)
. Thus, for

any t > 0, ‖h‖L∞((t,∞) ; E) 6 lim infε↘0 ‖hε‖L∞((t,∞) ; E). Consequently, for r ∈ (0, 1) such that
1− r > a thanks to Theorem 5.1, it holds that

‖h‖L∞((t,∞) ; E) 6 C(r, η0) e−(1−r)λ0t , ∀ t > 0 . (7.2)

In regard of I1(t), note that∣∣ϕ(x, Vε(t)
−1v)− ϕ(x, 0)

∣∣ 6 Vε(t)−1|v| sup
v

sup
x

∣∣∂vϕ(x, v)
∣∣ = C(ϕ)Vε(t)

−1|v| ,



102 RICARDO ALONSO, BERTRAND LODS, AND ISABELLE TRISTANI

so that the following holds:∣∣I1(t)
∣∣ 6 C(ϕ)Vε(t)

−κ−1‖hε(τε(t))− h(τε(t))‖L1
v,x($κ+1)

6 C(ϕ)Vε(t)
−κ−1‖hε(τε(t))− h(τε(t))‖E

6 C(ϕ, r, η0)Vε(t)
−κ−1

(
e−(1−r)λετε(t) + e−(1−r)λ0τε(t)

)
.

Recalling that λε = cε(1 − rε) with rε → 0 as ε → 0 (see (4.15)), we deduce that for ε small
enough,

e−(1−r)λετε(t) . (1 + cεt)
−a . (1 + λ0t)

−a.

Similarly, for ε small enough, e−(1−r)λ0τε(t) . (1 + λ0t)
−a and Vε(t)−κ−1 . (1 + λ0t)

−κ−1. In
conclusion, we obtain that ∣∣∣I1(t)

∣∣∣ 6 C(ϕ, r, η0)(1 + λ0t)
−κ−1−a .

The term I2(t) is treated similarly and we obtain easily that∣∣∣I2(t)
∣∣∣ 6 C(ϕ, r, η0) (1 + λ0t)

−κ−a

which ends the proof. �

Let us explain how Lemma 7.1 allows to deduce the large time behaviour of Fε in the weak
sense de�ned through (7.1).

Proof of Theorem 1.7. Indeed, recalling the relations (1.14) together with Theorem 1.4 one has

Fε(t, x, v) = Vε(t)
dfε
(
τε(t), x, Vε(t)v

)
= Vε(t)

d
(
Gα(ε)(Vε(t)v) + ε hε(τε(t), x, Vε(t)v)

)
= Vε(t)

d
(
Gα(ε)(Vε(t)v) + εh(τε(t), x, Vε(t)v)

)
+ ε eε(t, x, v) ,

From Lemma 7.1, one can deduce that

Fε(t, x, v) = Vε(t)
d
(
Gα(ε)(Vε(t)v) + ε

(
%(τε(t), x) + u(τε(t), x) · (Vε(t)v)

+
1

2
θ(τε(t), x)(|Vε(t)v|2 − dϑ1)

)
M(Vε(t)v)

)
+ εO

(
(1 + λ0t)

−κ−a
)
,

(7.3)

in the weak sense described in (7.1). In particular, if ϕ = 1 and κ = 2, one �nds from (7.3) an
explicit expression for Ha�’s law. Indeed, the optimal cooling rate of the temperature is described
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by

Tε(t) =
1∣∣Td∣∣
ˆ
Td×Rd

Fε(t, x, v)|v|2 dv dx

=
1

Vε(t)2

( ˆ
Rd
Gα(ε)(v)|v|2 dv +

ε

2
∣∣Td∣∣

ˆ
Rd

(
|v|2 − dϑ1

)
|v|2M(v) dv

ˆ
Td
θ(τε(t), x) dx

+
ε∣∣Td∣∣
ˆ
Rd
|v|2M(v) dv

ˆ
Td
%(τε(t), x) dx

)
+ εO

(
(1 + λ0t)

−2−a
)

≈ dϑ1

(1 + λ0t)2

(
1 +

ε∣∣Td|
(
dϑ1

ˆ
Td
θ(τε(t), x) dx+ 2

ˆ
Td
%(τε(t), x) dx

))
, t� 1

λ0
.

Recalling that the �uctuation hε is such that the average mass and temperature both vanish at all
times, we deduce the precised Ha�’s law

Tε(t) ≈
dϑ1

(1 + λ0t)2
, t� 1

λ0
.

We can actually show that the Ha�’s law holds uniformly locally in space due to the bounded-
ness of the solutions that we treat here. This is not expected in a general context where more
general solutions are considered. Consider 0 6 κ 6 q. Note that

ˆ
Rd
fε(τε(t), x, w)|w|κ dw =

ˆ
Rd
Gα(ε)(w)|w|κ dw + ε

ˆ
Rd
hε(τε(t), x, w)|w|κ dw .

Thanks to Sobolev embedding it holds that∣∣∣∣ sup
x∈Td

ˆ
Rd
hε(τε(t), x, w)|w|κ dv

∣∣∣∣ 6 C‖hε(τε(t))‖E 6 C(η0) .

Therefore, for su�ciently small ε > 0, there exist two positive constants c(η0) and C(η0) such
that

c(η0) 6
ˆ
Rd
fε(τε(t), x, w)|w|κ dw 6 C(η0) , ∀ t > 0 ,

which leads, for the physical problem, to

Vε(t)
−κc(η0) 6

ˆ
Rd
Fε(t, x, v)|v|κ dv 6 Vε(t)

−κC(η0) , ∀ t > 0 .

In particular, this estimate renders a local version of Ha�’s law
ˆ
Rd
Fε(t, x, v)|v|2 dv ∼

(
1 + λ0t

)−2
, ∀ t > 0 , ∀x ∈ Td .

�
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Appendix A. Tools for the Hydrodynamic limit

We collect several tools that are used in Section 6.3 to derive the modi�ed incompressible
Navier-Stokes system. Various known computations regarding the elastic Boltzmann operator are
needed but we also need some new estimates on the so-called Burnett functions φ and ψ de�ned
in the following Lemma (recall that L1 is de�ned in (1.31)):

Lemma A.1. LetA be the traceless tensor de�ned in (6.19) and let b be the vector de�ned in (3.12)).
One has that AM, bM ∈ (Ker(L1))⊥ in L2

v(M−
1
2 ) and there exists two radial functions χi =

χi(|v|), i = 1, 2, such that

φ(v) = χ1(|v|)A(v) ∈Md(R) and ψ(v) = χ2(|v|)b(v) ∈ Rd ,

satisfy
L1(φM) = −AM , L1(ψM) = −bM . (A.1)

Moreover,〈
φi,jL1(φk,`M)

〉
= −ν

(
δikδj` + δi`δjk −

2

d
δijδkl

)
〈
ψiL1(ψjM)

〉
= −d+ 2

2
γ δij , ∀ i, j, k, ` ∈ {1, . . . , d} , (A.2)

with

ν := − 1

(d− 1)(d+ 2)

〈
φ : L1(φM)

〉
> 0 , γ := − 2

d(d+ 2)

〈
ψ ·L1(ψM)

〉
> 0 .

Finally,
|φi,j(v)| .$3(v) , |ψi(v)| .$4(v) , ∀ i, j ∈ {1, . . . , d} .

Proof. The tensorA and the vector b satisfy〈
Ak,`ΨiM

〉
= 0 ,

〈
bΨiM

〉
= 0 , ∀ i = 1, . . . , d+ 2 , ∀ k, ` ∈ {1, . . . , d} , (A.3)

from which we get the �rst part of the result. We refer to Desvillettes & Golse (1994) and Bardos
et al. (1993) for the proof of the second part of the Lemma, just mind that the linearized Boltzmann
operator considered in such references is de�ned as Lg = −M−1L1(M g). We refer to (Bardos
et al. , 1993, Lemma 4.4) for the proof of (A.2). We refer to (Golse & Saint-Raymond , 2005,
Proposition 6.5) for the last estimates on φi,j and ψ. �

Remark A.2. Notice that if ζ = ζ(|v|) is radially symmetric, then〈
ζAi,jM

〉
=
〈
ζ L1(φM)

〉
= 0 , ∀ i, j = 1, . . . , d .

In the case of Maxwell interactions, the above Burnett functions φ and ψ are actually explicit
(see Cercignani (1988) and (Bobylev , 2020, Eqs. (7.3.9) & (7.3.15))) and turn out to be smooth
with a growth of∇vφ and∇vψ similar to that of φ and ψ. In order to evaluate the contribution
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of the drift term in the hydrodynamical limit (see Lemma 6.12), we need also pointwise estimates
on∇vφi,j and∇vψi that we did not �nd in the literature. It is the purpose of the next lemma.

Lemma A.3. If b( · ) satis�es (1.8), then the Burnett functions φi,j and ψi, (i, j = 1, . . . , d) satisfy

|∇vφi,j(v)| .$a(v) , |∇vψi(v)| .$a(v) , ∀ i, j ∈ {1, . . . , d}

for any a > 3 + d
2 .

Proof. We only give the proof of φi,j , the other one being exactly the same. For simplicity, we �x
i, j = 1, . . . , d and only write φ = φi,j andA = Ai,j . The equation satis�ed by φ is

L1(φM) = −AM ,

where L1 is the linealized elastic collision operator. Recall that, since we are dealing here with
elastic interactions, by a simple symmetry argument and replacing b(s) with

b̃(s) = b(s) + b(−s) , ∀ s ∈ (0, 1) ,

there is no loss of generality in assuming that b is supported in the upper half sphere, i.e. b(s) = 0

for s < 0. Before proving that for a > 3 + d
2 ,$−a∇vφ ∈ L∞, we �rst prove that$−a∇vφ ∈ L2

for a > 3 + d
2 . One has

Q−1 (M, φM) = AM+Q+
1 (M, φM) +Q+

1 (φM,M)−Q−1 (φM,M) .

Since we are dealing here with elastic interactions, it holdsM′M′∗ =MM∗ and one can rephrase
the above identity as

φ(v)ΣM(v) = A(v) +

ˆ
Rd×Sd−1

(
φ′ + φ′∗ − φ∗

)
M∗ |u| b(û ·σ) dv∗ dσ ,

where we recall that u = v − v∗ and ΣM is de�ned in (2.31). Taking the gradient of the above
identity, we see that

∇vφ(v) = Σ−1
M(v)

(
∇vA(v) +∇vΓ1[φ](v) +∇vΓ2[φ](v)− Γ0[φ](v)−φ(v)∇vΣM(v)

)
(A.4)

where one introduced

Γ1[φ](v) :=

ˆ
Rd×Sd−1

φ′M∗|u| b(û ·σ) dv∗ dσ, Γ2[φ](v) :=

ˆ
Rd×Sd−1

φ′∗M∗ |u| b(û ·σ) dv∗ dσ ,

and

Γ0[φ](v) :=

ˆ
Rd×Sd−1

φ∗M∗∇v|u|b(û ·σ) dv∗ dσ =

ˆ
Rd×Sd−1

φ∗M∗
u

|u|
b(û ·σ) dv∗ dσ .

Now, recalling that ΣM is such that$1 . ΣM .$1 and |∇vΣM| . 1, one has

‖$−a∇vφ‖L2 . ‖$−a−1∇vA‖L2 + ‖$−a−1∇vΓ1[φ]‖L2

+ ‖$−a−1∇vΓ2[φ]‖L2 + ‖$−a−1Γ0[φ]‖L2 +‖$−a−1φ‖L2 .
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To estimate ∇vΓ1[f ], we transfer the gradient to the MaxwellianM by a suitable change of
variables. More precisely, we express Γ1[φ] as follows, performing the singular change of variables
u 7→ z = u−|u|σ

2 ,

Γ1[φ](v) = 2d−1

ˆ
Rd×Sd−1

φ(v − z)M
(
v − 2z +

|z|
ẑ ·σσ

)
|z|
|ẑ ·σ|b

(
1− 2(ẑ ·σ)2

) dz

|ẑ ·σ|2 dσ ,

where we note that v′ = v− z, v∗ = v− 2z−|u|σ, and |z|2 = |u|2
2 (1− û ·σ) = −|u|z ·σ so that

û ·σ = 1 +
2

|u|
z ·σ = 1− 2(ẑ ·σ)2 , and |u| = − |z|

ẑ ·σ ,

so that the Jacobian of the transformation u 7→ z is

det

(
∂z

∂u

)
= 2−d (1− û ·σ) = 21−d(ẑ ·σ)2 .

Now, perform the change of variables z 7→ w = v − z, we have

Γ1[φ](v) = 2d−1

ˆ
Rd
φ(w)|v − w|dw

ˆ
Sd−1

M

(
−v + 2w +

|v − w|
̂(v − w) ·σ

σ

)
b
(
1− 2( ̂(v − w) ·σ)2

) dσ

| ̂(v − w) ·σ|3
.

We compute the integral with respect to σ using polar coordinates. For �xed vectors w and v we
set cosχ = ̂(v − w) ·σ so that

σ = cosχ ̂(v − w) + sinχ ξ̂ ,

with ξ̂ = ξ̂v−w ∈ Sd−2 is orthogonal to v − w, so that
ˆ
Sd−1

M

(
−v + 2w +

|v − w|
̂(v − w) ·σ

σ

)
b
(
1− 2( ̂(v − w) ·σ)2

) dσ

| ̂(v − w) ·σ|3

=

ˆ
Sd−2

dξ̂

ˆ π
2

0
M
(
w + |v − w| sinχ

cosχ
ξ̂

)
b
(
1− 2 cos2 χ

)
cos3 χ

sinχdχ ,

where we notice that

−v + 2w +
|v − w|
̂(v − w) ·σ

σ = w + |v − w| sinχ
cosχ

ξ̂ .

This gives the equivalent formulation of Γ1[φ]

Γ1[φ](v) = 2d−1

ˆ
Rd
φ(w)|v − w|dw

ˆ
Sd−2

dξ̂×

×
ˆ π

2

0
M
(
w + |v − w| sinχ

cosχ
ξ̂

)
b
(
1− 2 cos2 χ

)
cos3 χ

sinχdχ .
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One checks without di�culty that ∣∣∇v(|v − w| ξ̂v−w)∣∣ . 1 ,

while, since |∇v|v − w| | 6 1,

|∇vΓ1[φ](v)| .
ˆ
Rd
|φ(w)| dw

ˆ
Sd−2

dξ̂

ˆ π
2

0
M
(
w + |v − w| sinχ

cosχ
ξ̂

)
b
(
1− 2 cos2 χ

)
cos3 χ

sinχdχ

+

ˆ
Rd
|φ(w)| |v−w|dw

ˆ
Sd−2

dξ̂

ˆ π
2

0
|∇M|

(
w + |v − w| sinχ

cosχ
ξ̂

)
b
(
1− 2 cos2 χ

)
cos4 χ

sinχdχ .

Performing backwards all the change of variables, one sees that

|∇vΓ1[φ](v)| .
ˆ
Rd×Sd−1

∣∣φ′∣∣M∗ b(û ·σ) dv∗ dσ

+

ˆ
Rd×Sd−1

|φ′| |(∇M)∗| |u|
b(û ·σ)√
1− û ·σ

dv∗ dσ .

Therefore, since$−β(v) .$β(v∗)$−β(v′) for any β > 0 and |u| .$1(v)$1(v∗),

|$−a−1∇vΓ1[φ](v)| .
ˆ
Rd×Sd−1

(|φ|$−a−1)′ (M$a+1)∗ b(û ·σ) dv∗ dσ

+

ˆ
Rd×Sd−1

(|φ|$−a)′ (|∇M|$a+1)∗
b(û ·σ)√
1− û ·σ

dv∗ dσ =: F1(v) + F2(v) .

With the notation of Alonso et al. (2010) and with v′ = v∗ + u+, one sees for instance that the
last integral can be written as

F2(v) :=

ˆ
Rd
G(v∗)P(1, τ−v∗ϕ)(v) dv∗ ,

where G := |∇M|$a+1, ϕ := $−a|φ| and

P(f, g)(v) :=

ˆ
Sd−1

f(u−)g(u+)b(û ·σ) dσ ,

with b(s) := b(s)√
1−s , u− := 1

2(u− |u|σ), u+ = u− u−. Then, by Minkoskwi’s integral inequality

‖F2‖L2 6 ‖G‖L1 sup
v∗
‖P(1, τ−v∗ϕ)‖L2

and, according to (Alonso et al. , 2010, Theorem 5) with p =∞, q = r = 2 and α = 0, one has

‖P(1, τ−v∗ϕ)‖L2 6 C ‖τ−v∗ϕ‖L2 with C .
ˆ 1

0
b(s)

(
1− s2

) d−3
2 (1 + s)−

d
4 ds .

Recalling that b( · ) is supported on the upper half-sphere, one sees then that

‖F2‖L2 .

(ˆ 1

0
b(s)(1− s)

d−4
2 ds

)
‖|∇M|$a+1‖L1 ‖$−aφ‖L2 .
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Arguing in the same way with F1, we deduce that

‖$−a−1∇vΓ1[φ]‖L2

.

(ˆ 1

0
b(s)(1− s)

d−4
2 ds

)
(‖|∇M|$a+1‖L1 + ‖M$a+1‖L1) ‖$−aφ‖L2 .

For the second term∇vΓ2[φ] we use the regular change of variables u 7→ z = u+|u|σ
2 and proceed

identically. We end up with the estimate

|$−a−1∇vΓ2[φ](v)| .
ˆ
Rd×Sd−1

(|φ|$−a−1)′∗ (M$a+1)∗ b(û ·σ) dv∗ dσ

+

ˆ
Rd×Sd−1

(|φ|$−a)′∗ (|∇M|$a+1)∗
b(û ·σ)√
1 + û ·σ

dv∗ dσ =: F̃1(v) + F̃2(v) .

As before, writing now v′∗ = v∗ + u−, one has for instance

F̃2(v) =

ˆ
Rd
G(v∗)P(τ−v∗ϕ, 1)(v) dv∗ ,

with now

P(f, g)(v) =

ˆ
Sd−1

f(u−)g(u+)b̃(û ·σ) dσ , b̃(s) :=
b(s)√
1 + s

.

According to (Alonso et al. , 2010, Theorem 5) with now p = r = 2 and q =∞, α = 0, one has

‖P(τ−v∗ϕ, 1)‖L2 6 C̃ ‖τ−v∗ϕ‖L2 with C̃ .
ˆ 1

0
b̃(s) (1− s)

d−3
2 (1− s)−

d
4 ds .

Therefore, as before using Minkowski’s integral inequality and recalling that b( · ) is supported
on (0, 1), we get

‖F̃2‖L2 .

(ˆ 1

0
b(s) (1− s)

d−6
4 ds

)
‖|∇M|$a+1‖L1‖$−aφ‖L2 .

Consequently,

‖$−a−1∇vΓ2[φ]‖L2

.

(ˆ 1

0
b(s) (1− s)

d−6
4 ds

)
(‖|∇M|$a+1‖L1 + ‖M$a+1‖L1) ‖$−aφ‖L2 .

Collecting the above arguments and estimating Γ0[φ] in a similar fashion, we end up with

‖$−a∇vφ‖L2 . Ca(b) ‖$−aφ‖L2 + ‖$−a−1∇vA‖L2+‖$−a−1φ‖L2 , ∀a > 0 , (A.5)

where

Ca(b) .
ˆ 1

0
b(s)

[
(1− s)

d−6
4 + (1− s)

d−4
2

]
ds .
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Since |∇vA| . $1 and |φ| . $3, one sees that max (‖$−aφ‖L2 , ‖$−a−1∇vA‖L2) < ∞ for
a > 3 + d

2 and

$−a∇vφ ∈ L2(Rd) , ∀ a > 3 +
d

2
.

Now, this control in L2 of the gradient of φ implies a control in L∞ of that same gradient. Indeed,
coming back to (A.4) one has

‖$−a∇vφ‖L∞ . ‖$−a−1∇vA‖L∞ + ‖$−a−1∇vΓ1[φ]‖L∞
+ ‖$−a−1∇vΓ2[φ]‖L∞ + ‖$−a−1Γ0[φ]‖L∞ +‖$−a−1φ‖L∞

where one can write

∇vΓ1[φ](v) =

ˆ
Rd×Sd−1

φ′M∗∇v|u| b(û ·σ) dv∗ dσ + Γ1[∇vφ](v) ,

so that
‖$−a−1∇vΓ1[φ]‖L∞ . ‖$−aΓ0[φ]‖L∞ + ‖$−aΓ1[|∇vφ|]‖L∞ ,

where
|$−a−1Γ1[∇vφ](v)| .

ˆ
Rd

(M$a+1)∗ P(1,$−a|∇vφ|) dv∗ .

Invoking again (Alonso et al. , 2010, Theorem 5) and Cauchy-Schwarz inequality one has then

‖$−a−1Γ1[|∇vφ|]‖L∞ 6 ‖M$a+1‖L2‖P(1,$−a|∇vφ|)‖L2 . Ca(b)‖$−a|∇vφ| ‖L2 ,

where Ca(b) is as before. Using (A.5) for the other terms and sees that, providedˆ 1

0
b(s)

[
(1− s)

d−6
4 + (1− s)

d−4
2

]
ds <∞ (A.6)

one has $−a∇vφ ∈ L∞(Rd) for any a > 3 + d
2 . Notice that, for d > 2, d−4

2 >
d−6

4 so that the
above assumption amounts simply toˆ 1

0
b(s) (1− s)

d−6
4 ds <∞

which holds true since b( · ) satis�es (1.8). �

Remark A.4. It is very likely that the above growth of |∇vφ| .$a with a > 3 + d
2 is not optimal.

In the case of Maxwell interactions the growth is actually

|v ·∇vφ(v)| . |φ(v)| , |v ·∇vψ(v)| . |ψ(v)| .

We refer to Bobylev (2020) for more details.

Lemma A.5. For h given by (6.8), it holds that〈
φQ1(h,h)

〉
= ϑ2

1

(
u⊗ u− 2

d
|u|2Id

)
, ∀ i, j = 1, . . . , d .



110 RICARDO ALONSO, BERTRAND LODS, AND ISABELLE TRISTANI

Proof. As observed in (Cercignani , 1970, Eq. (60)), if gM ∈ Ker(L1) then Q1(gM, gM) =

−1
2L1(g2M). Therefore, with g = %+ u · v + 1

2(|v|2 − 2ϑ1),

Q1(h,h) = −1

2
L1((u · v)2M)− 1

8
θ2L1(|v|4M) + θ u ·L1(

1

2
|v|2vM) (A.7)

One checks that 〈
φi,jL1(|v|4M)

〉
= 0 ,

whereas L1(1
2 |v|

2vM) = L1(bM), from which〈
φi,jL1(

1

2
|v|2vM)

〉
=
〈
bL1(φi,jM)

〉
= −

〈
bAi,jM

〉
= 0 ,

since bAi,j is an even function. Therefore, we obtain that〈
φi,jQ1(h,h)

〉
= −1

2

∑
k,`

uku`

〈
φi,jL1(vkv`M)

〉
=

1

2

∑
k,`

uku`

〈
vkv`A

i,jM
〉
. (A.8)

As for (A.2), one checks that if i 6= j∑
k,`

uku`

〈
vkv`A

i,jM
〉

=
∑

{k,`}={i,j}

uku`

〈
v2
i v

2
jM

〉
= 2uiuj

〈
v2
i v

2
jM

〉
,

whereas, for i = j,∑
k,`

uku`

〈
vkv`A

i,iM
〉

=
d∑

k=1

u2
k

(〈
v2
i v

2
kM

〉
− 1

d

〈
v2
k|v|2M

〉)
.

Notice that a :=
〈
v2
i v

2
jM

〉
is independent of i, j, thus, it is not di�cult to check that

(d− 1)a =
1

d

ˆ
Rd
|v|4Mdv −

ˆ
Rd
v4

1M(v) dv = (d− 1)ϑ2
1 ,

that is, a = ϑ2
1. In the same way, for any k ∈ {1, . . . , d}〈

v2
k|v|2M

〉
=

1

d

〈
|v|4M

〉
= (d+ 2)ϑ2

1 ,

whereas 〈
v2
kv

2
iM

〉
=

 a = ϑ2
1 if k 6= i ,〈

v4
iM

〉
= 3ϑ2

1 if k = i ,

so that,∑
k,`

uku`

〈
vkv`A

i,iM
〉

= ϑ2
1

∑
k 6=i

u2
k + 3ϑ2

1u
2
i −

d+ 2

d
|u|2ϑ2

1 = 2ϑ2
1u

2
i −

2

d
ϑ2

1|u|2 .

Gathering these last computations, we get〈
φi,jQ1((u · v)M, (u · v)M)

〉
= ϑ2

1

(
uiuj −

2

d
|u|2δi,j

)
,
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which, combined with (A.8) gives the result. �

Lemma A.6. Let h be given by (6.8). For any i, j = 1, . . . , d it holds that

〈
v` φ

i,j h
〉

=


ν uj if i 6= j , ` = i ,

ν ui if i 6= j , ` = j ,

−2
dν u` + 2ν uiδi` if i = j ,

0 else.

Proof. Using the fact that χ1 is radial, similar computations to that of Lemma A.5 imply that for
` ∈ {1, . . . , d}, 〈

v` φ
i,j h

〉
=

d∑
k=1

uk

〈
v`vk φ

i,jM
〉

=
d∑

k=1

uk

〈
v`vk φ

i,jM
〉

=
d∑

k=1

uk

(〈
Ak,` φi,jM

〉
+

1

d

〈
|v|2 φi,jM

〉
δk`

)

= −
d∑

k=1

uk

〈
φi,jL1(φk,`M)

〉
,

where we used that L1(φM) = −AM and
〈
|v|2φi,jM

〉
= 0. This gives the result thanks

to (A.2). �

Lemma A.7. Let h be given by (6.8). For any i = 1, . . . , d, it holds that〈
ψiQ1(h,h)

〉
=
d+ 2

2
ϑ3

1 (θ ui) ,

and, if % and θ satis�es Boussinesq relation (6.13), then

divx

〈
ψi h v

〉
= γ

d+ 2

2
∂xiθ .

Proof. On the one hand, using (A.7) it holds that〈
ψiQ1(h,h)

〉
= θ u ·

〈
ψiL1(

1

2
|v|2vM)

〉
= θ u ·

〈
ψi L1(bM)

〉
,

since, ψi being odd, one has
〈
ψiL1((u · v)2M)

〉
=
〈
ψiL1(|v|4M)

〉
= 0. Now,〈

ψi L1(bM)
〉

=
〈
bL1(ψiM)

〉
= −

〈
bM bi

〉
,

and a direct computations show that〈
bjbiM

〉
= − 1

4d

〈 (
|v|2 − (d+ 2)ϑ1

)2 |v|2M〉 δij = −d+ 2

2
ϑ3

1 δij ,
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which gives the expression for
〈
ψiQ1(h,h)

〉
. On the other hand, using symmetry properties,

one checks that 〈
ψih v`

〉
= %
〈
ψiviM

〉
δi` +

1

2
θ
〈
ψi(|v|2 − dϑ1)viM

〉
δi` ,

from which

divx

〈
ψi h v

〉
=
〈
ψiviM

〉
∂xi%+

1

2

〈
ψi
(
|v|2 − dϑ1

)
viM

〉
∂xiθ .

Writing 1
2

〈
ψi(|v|2−dϑ1)viM

〉
=
〈
ψi biM

〉
+ϑ1

〈
ψi viM

〉
and using Boussinesq relation (6.13),

one gets that
divx

〈
ψi h v

〉
=
〈
ψi biM

〉
∂xiθ = γ

d+ 2

2
∂xiθ ,

where the identity
〈
ψi biM

〉
= −

〈
ψiL1(ψiM)

〉
was used together with (A.2). �

To handle the convergence of nonlinear terms, we resort to the following compensated com-
pactness result extracted from Lions & Masmoudi (1999) (see also (Golse & Saint-Raymond , 2004,
Lemma 13.1, Appendix D). The original result in Lions & Masmoudi (1999) is proven in the whole
space but is easily adapted to the case of the torus.

Proposition A.8. Let c 6= 0 and T > 0. Consider two families {φε}ε and {ψε} bounded in
L∞((0, T ) ;L2

x(Td)) and in L∞((0, T ) ; W1,2
x (Td)) respectively, such that

∂t∇xψε +
c2

ε
∇xφε =

1

ε
Fε

∂tφε +
1

ε
∆xψε =

1

ε
Gε

where Fε and Gε converge strongly to 0 in L1((0, T ) ; L2
x(Td)). Then,

PDivx (∇xψε ⊗∇xψε) −−−→
ε→0

0 , divx (φε∇xψε) −−−→
ε→0

0

in the sense of distributions on (0, T )× Td.

Appendix B. Estimates on the collision operator

We �rst recall a crucial estimate on the Boltzmann collision operator established in Theorem 1
of Alonso et al. (2010) (see also Alonso & Gamba (2011)):

Theorem B.1 (Theorem 1, Alonso et al. (2010)). Consider q > 0, r ∈ [1,∞). For any f ∈
Lrv($q+1) and g ∈ L1

v($q+1),

‖Q+
α (f, g)‖Lrv($q) 6 C1‖f‖Lrv($q+1)‖g‖L1

v($q+1) ,

and
‖Q+

α (g, f)‖Lrv($q) 6 C2‖f‖Lrv($q+1) ‖g‖L1
v($q+1)
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with

C1 = C1(r) = 2
q+1
2

+ 1
r

+ d
r′ |Sd−2|

ˆ 1

−1

(
1− s

2

)− d
2r′

b(s)
(
1− s2

) d−3
2 ds

and

C2 = C2(r) = 2
q+1
2

+ 1
r |Sd−2|

ˆ 1

−1

(
1 + s

2
+

(1− α)2

4

1 + s

2

)− d
2r′

b(s)
(
1− s2

) d−3
2 ds

where 1
r + 1

r′ = 1.

Remark B.2. Throughout the paper, we assume b( · ) satis�es assumption (1.8) so that C1(r) <∞
and C2(r) <∞ for any r ∈ [1, 2].

We also recall a classical estimate (whose proof is immediate using Hölder inequality) for the
loss part of the collision operator.

Lemma B.3. Consider q > 0, r ∈ [1, 2] and b such that condition (1.8) is satis�ed. Then, for any
κ′ > d(r−1)

r , any f ∈ Lrv($q+1) and g ∈ Lrv($κ′+1), we have:

‖Q−α (g, f)‖Lrv($q) . ‖g‖Lrv($κ′+1)‖f‖Lrv($q+1) .

From the two previous results, using that the operators Q±α are local in x and that W`,2
x is an

algebra for ` > d
2 , we can deduce the following :

Corollary B.4. Consider q > 0, r ∈ [1, 2), b such that condition (1.8) is satis�ed and ` > d
2 . Then,

for any κ′ > d(r−1)
r , any f ∈ LrvW

`,2
x ($q+1) and g ∈ LrvW

`,2
x ($κ′+1) ∩ L1

vW
`,2
x ($q+1), we

have:

‖Qα(g, f)‖
LrvW

`,2
x ($q)

. ‖f‖
LrvW

`,2
x ($q+1)

(
‖g‖

LrvW
`,2
x ($κ′+1)

+ ‖g‖
L1
vW

`,2
x ($q+1)

)
The proof of Lemma 3.4 is based on the following technical lemma:

Lemma B.5. Consider b such that assumption (1.7) is satis�ed. Then, there exists C > 0 such that
for any f , g and ϕ ∈ L2

v(M−
1
2 〈 · 〉

1
2 ),

〈
Q±α (g, f), ϕ

〉
L2
v(M−

1
2 )
6 C‖ϕ‖

L2
v(M−

1
2 〈 · 〉 12 )

(
‖f‖

L2
v(M−

1
2 〈 · 〉 12 )

‖g‖
L2
v(M−

1
2 )

+ ‖f‖
L2
v(M−

1
2 )
‖g‖

L2
v(M−

1
2 〈 · 〉 12 )

)
. (B.1)

In particular, if f , g and ϕ ∈ H1, it holds〈
Q±α (g, f), ϕ

〉
H 6 C‖ϕ‖H1

(
‖f‖H1‖g‖H + ‖f‖H‖g‖H1

)
(B.2)

where the functional spacesH andH1 are de�ned in (3.1).
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Proof. We use the strong form ofQ±α (g, f) given in (2.12) and prove the result only forQ+
α (g, f),

the proof for Q−α (g, f) = Q−1 (g, f) being simpler and well-known. Notice that (B.1) is dealing
only with spatially homogeneous functions g, f and ϕ. We set

F :=M−
1
2 f , G :=M−

1
2 g , Φ :=M−

1
2ϕ . (B.3)

Given v ∈ Rd, one has

∣∣Q+
α

(
g, f
)
(v)
∣∣ 6 ˆ

Rd×Sd−1

B+
α (u, σ) |f(′v)| |g(′v∗)| dσ dv∗ ,

6
ˆ
Rd×Sd−1

B+
α (u, σ)M

1
2 (′v)M

1
2 (′v∗) |F (′v)| |G(′v∗)|dσ dv∗ ,

where, according to (2.13), B+
α (u, σ) = |u|

α2 bα(û ·σ) with

bα(s) =

[
2

1 + α2 − (1− α2)s

] d−3
2

b

(
(1 + α2)s− (1− α2)

1 + α2 − (1− α2)s

)
, s ∈ (−1, 1) .

Due to the dissipation of kinetic energy, |′v|2 + |′v∗|2 > |v|2 + |v∗|2 which translates into

M
1
2 (′v)M

1
2 (′v∗) 6M

1
2 (v)M

1
2 (v∗)

so that

∣∣Q+
α

(
g, f
)
(v)
∣∣ 6M 1

2 (v)

ˆ
Rd×Sd−1

B+
α (u, σ)M

1
2 (v∗) |F (′v)| |G(′v∗)| dσ dv∗ .

Thanks to Cauchy-Schwarz inequality, we deduce that

∣∣Q+
α

(
g, f
)
(v)
∣∣ 6M 1

2 (v)

(ˆ
Rd×Sd−1

|F (′v)|2 |G(′v∗)|2 dσ dv∗

) 1
2

(ˆ
Rd×Sd−1

(
B+
α (u, σ)

)2M(v∗) dv∗ dσ

) 1
2

Now, for �xed (v, v∗) ∈ Rd × Rd, we compute

ˆ
Sd−1

(B+
α (u, σ))2 dσ =

|u|2

α4
|Sd−2|

ˆ 1

−1

(
1− s2

) d−3
2 b2α(s) ds
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and, performing the change of variable t = (1+α2)s−(1−α2)
1+α2−(1−α2)s

so that s = (1+α2)t+(1−α2)
1+α2+(1−α2)t

and
ds = 4α2

(1+α2+(1−α2)t)2
dt, we get

ˆ 1

−1

(
1− s2

) d−3
2 b2α(s) ds

= 4α2

ˆ 1

−1

(
4α2(1− t2)

(1 + α2 + (1− α2)t)2

) d−3
2
[

1

4α2

(
1 + α2 + (1− α2)t

)]d−3

b2(t)
dt

(1 + α2 + (1− α2)t)2

= (2α)5−d
ˆ 1

−1

(
1− t2

) d−3
2

b2(t) dt

(1 + α2 + (1− α2)t)2
.

In particular, according to assumption (1.7) and since 1 +α2 + (1−α2)t > 2α2, one deduces thatˆ
Sd−1

(B+
α (u, σ))2 dσ 6 2d+4 |u|2

α7+d
|Sd−2|

ˆ 1

−1

(
1− t2

) d−3
2 b2(t) dt = Cb

|u|2

α7+d

from whichˆ
Rd×Sd−1

(
B+
α (u, σ)

)2M(v∗) dv∗ dσ 6 Cb α
−7−d

ˆ
Rd
|v − v∗|2M(v∗) dv∗ . 〈v〉2 .

Therefore ∣∣Q+
α

(
g, f
)
(v)
∣∣ .M 1

2 (v)〈v〉
(ˆ

Rd×Sd−1

|F (′v)|2 |G(′v∗)|2 dσ dv∗

) 1
2

.

Mutiplying by ϕ(v)M−1(v) and integrating over Rd, we get

〈
Q+
α (g, f), ϕ

〉
L2
v(M−

1
2 )
.
ˆ
Rd

Φ(v)〈v〉
(ˆ

Rd×Sd−1

|F (′v)|2 |G(′v∗)|2 dσ dv∗

) 1
2

dv .

Using Cauchy-Schwarz inequality again, we obtain

〈
Q+
α (g, f), ϕ

〉
L2
v(M−

1
2 )
. ‖〈 · 〉

1
2 Φ‖L2

v

(ˆ
Rd
〈v〉 dv

ˆ
Rd×Sd−1

|F (′v)|2 |G(′v∗)|2 dσ dv∗

) 1
2

. ‖〈 · 〉
1
2 Φ‖L2

v

(ˆ
Rd×Rd×Sd−1

〈v′〉 |F (v)|2 |G(v∗)|2 dσ dv∗dv

) 1
2

,

where we used the pre-post collisional change of variable in the last estimate. Since

〈v′〉 . 〈v〉+ 〈v∗〉

we deduce that〈
Q+
α (g, f), ϕ

〉
L2
v(M−

1
2 )
. ‖〈 · 〉

1
2 Φ‖L2

v

(
‖F‖L2

v
‖〈 · 〉

1
2G‖L2

v
+ ‖〈 · 〉

1
2 F‖L2

v
‖G‖L2

v

)
,
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which is exactly (B.1) thanks to (B.3). Notice that (B.1) can be reformulated equivalently as

‖Q±α (g, f)‖
L2
v(M−

1
2 〈 · 〉− 1

2 )
6 C

(
‖f‖

L2
v(M−

1
2 〈 · 〉 12 )

‖g‖
L2
v(M−

1
2 )

+ ‖f‖
L2
v(M−

1
2 )
‖g‖

L2
v(M−

1
2 〈 · 〉 12 )

)
.

For functions f, g depending on x, since W`,2
x (Td) is a Banach algebra for ` > d

2 and Q±α is local
in x, we deduce that (B.2) holds true, or equivalently

‖Q±α (g, f)‖
L2
vW

`,2
x (M−

1
2 〈 · 〉− 1

2 )
6 C

(
‖f‖H1‖g‖H + ‖f‖H‖g‖H1

)
. (B.4)

This achieves the proof. �
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