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HARD-SPHERES IN A NEARLY ELASTIC REGIME - LIMITE HYDRODYNAMIQUE
DE L’EQUATION DE BOLTZMANN POUR DES GAZ GRANULAIRES DANS UN
REGIME QUASI-ELASTIQUE
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ABSTRACT. In this paper, we provide the first rigorous derivation of hydrodynamic equations from
the Boltzmann equation for inelastic hard spheres with small inelasticity. The hydrodynamic sys-
tem that we obtain is an incompressible Navier-Stokes-Fourier system with self-consistent forcing
terms and, to our knowledge, it is thus the first hydrodynamic system that properly describes rapid
granular flows consistently with the kinetic formulation. To this end, we write our Boltzmann
equation in a non dimensional form using the dimensionless Knudsen number which is intended
to be sent to 0. There are several difficulties in such derivation, the first one coming from the fact
that the original Boltzmann equation is free-cooling and, thus, requires a self-similar change of
variables to introduce an homogeneous steady state. Such a homogeneous state is not explicit and
is heavy-tailed, which is a major obstacle to adapting energy estimates. Additionally, a central
challenge is to understand the relation between the restitution coefficient, which quantifies the
energy loss at the microscopic level, and the Knudsen number. This is achieved by identifying the
correct nearly elastic regime to capture nontrivial hydrodynamic behavior. We are, then, able to
prove exponential stability uniformly with respect to the Knudsen number for solutions of the
rescaled Boltzmann equation in a close to equilibrium regime. Finally, we prove that solutions to
the Boltzmann equation converge in a specific weak sense towards a hydrodynamic limit which
depends on time and space variables only through macroscopic quantities. Such macroscopic
quantities are solutions to a suitable modification of the incompressible Navier-Stokes-Fourier
system which appears to be new in this context.

French translation. Dans cet article, nous fournissons la premiére dérivation rigoureuse d’équations
hydrodynamiques a partir de I’équation de Boltzmann pour les spheres dures inélastiques avec
faible inélasticité. Le systéme hydrodynamique que nous obtenons est un systeme de Navier-
Stokes-Fourier incompressible avec des termes de forcage autoconsistants et, a notre connaissance,
est donc le premier systéme hydrodynamique qui décrit correctement les écoulements granulaires
rapides conformément a la formulation cinétique. Pour parvenir a ce résultat, nous écrivons
I’équation de Boltzmann sous une forme adimensionnelle en utilisant le nombre de Knudsen qui
est destiné a tendre vers 0. Cette dérivation présente plusieurs difficultés, la premiére provenant
du fait que I’équation de Boltzmann originale dissipe I’énergie cinétique et le refroidissement libre
du gaz nécessite un changement de variables auto-similaire pour introduire un état d’équilibre
(spatialement homogene). Un tel état homogéne n’est pas explicite et présente une queue lourde, ce
qui constitue un obstacle majeur a I’adaptation des estimations d’énergie. En outre, comprendre la
relation entre le coefficient de restitution, qui quantifie la perte d’énergie au niveau microscopique,
et le nombre de Knudsen représente une importante difficulté. Ceci est réalisé en identifiant le bon
régime quasi élastique pour capturer un comportement hydrodynamique non trivial. Nous sommes
alors en mesure de prouver la stabilité exponentielle uniformément par rapport au nombre de
Knudsen pour les solutions de I’équation de Boltzmann remise a I’échelle dans un régime proche
de I’équilibre. Enfin, nous prouvons que les solutions de ’équation de Boltzmann convergent dans
un sens faible spécifique vers une limite hydrodynamique qui ne dépend des variables de temps et
d’espace qu’a travers des quantités macroscopiques. Ces quantités macroscopiques sont solutions
d’une modification appropriée du systéme de Navier-Stokes-Fourier incompressible qui semble
étre nouveau dans ce contexte.
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SHORTER ABSTRACT. The paper provides the first rigorous derivation of hydrodynamic equations
from the Boltzmann equation for inelastic hard spheres and obtain a new system of hydrodynamic
equations describing granular flows. One of the main issue is to identify the correct relation
between the restitution coefficient (which quantifies the rate of energy loss at the microscopic
level) and the Knudsen number which allows us to obtain non trivial hydrodynamic behavior. In
such a regime, we construct strong solutions to the inelastic Boltzmann equation, near thermal
equilibrium and prove that such solutions converge, in a specific weak sense, towards some hy-
drodynamic limit that depends on time and space variables only through macroscopic quantities
that satisfy a suitable modification of the incompressible Navier-Stokes-Fourier system.

FRENCH TRANSLATION. Nous obtenons dans ce papier la premiére dérivation rigoureuse d’équations
hydrodynamiques a partir de ’équation de Boltzmann pour des sphéres dures inélastiques et
en déduisons un nouveau systeme d’équations hydrodynamiques décrivant les écoulements
granulaires. L’une des principales questions est d’identifier la relation correcte — entre le coefficient
de restitution (qui quantifie le taux de perte d’énergie au niveau microscopique) et le nombre
de Knudsen - qui nous permet d’obtenir un comportement hydrodynamique non trivial. Dans
un tel régime, nous construisons des solutions fortes a I’équation de Boltzmann inélastique,
pres de I’équilibre thermique et prouvons que de telles solutions convergent, dans un sens faible
spécifique, vers une certaine limite hydrodynamique qui dépend des variables de temps et d’espace
uniquement a travers des quantités macroscopiques qui satisfont une modification appropriée du
systéme incompressible de Navier-Stokes-Fourier.

1. INTRODUCTION

The derivation of hydrodynamic models from suitable nonlinear (and possibly non conser-
vative) kinetic equations is a challenging problem which has attracted a lot of attention in the
recent years. Besides the well-documented literature dealing with the Boltzmann equation (see
Section 1.6 hereafter), a large variety of new kinetic models and limiting processes have been
considered, spanning from high friction regimes for kinetic models of swarwing (see e.g. Karper
et al. (2015); Figalli & Kang (2019) for the Cucker-Smale model) to the reaction-diffusion limit for
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Fitzhugh-Nagumo kinetic equations Crevat et al. (2019). For fluid-kinetic systems, the literature
is even more important, we mention simply here the works Goudon et al. (2004a,b) dealing with
light or fine particles regimes for the Vlasov-Navier-Stokes system and refer to Han-Kwan &
Michel (2021) for the more recent advances on the subject. We also mention the challenging study
of gas of charged particles submitted to electro-magnetic forces (Vlasov-Maxwell-Boltzmann
system) for which several incompressible fluid limits have been derived recently in the monograph
Arsénio and Saint-Raymond (2019).

We consider in the present paper the paradigmatic example of non conservative kinetic
equations given by the Boltzmann equation for inelastic hard spheres. In a regime of small
inelasticity, we derive in a suitable hydrodynamic limit an incompressible Navier-Stokes-Fourier
system with self-consistent forcing terms. This provides, to the best of our knowledge, the first

rigorous derivation of hydrodynamic system from kinetic granular flows in physical dimension
d> 3.

1.1. Multiscale descriptions of granular gases. Granular materials are ubiquitous in nature
and understanding the behaviour of granular matter is a relevant challenge from both the physics
and mathematics viewpoints. Various descriptions of granular matter have been proposed in the
literature, see Garzo (2019). An especially relevant one consists in viewing granular systems as
clusters of a large number of discrete macroscopic particles (with size exceeding 1 pum, significantly
larger than the one of a typical particle described in classical kinetic theory) suffering dissipative
interactions. One speaks then of rapid granular flows or gaseous granular matter. If the number
of particles is large enough, it is then common to adopt a kinetic modelling based upon suitable
modification of the Boltzmann equation. As usual in kinetic theory, it is then particularly relevant
to deduce from this kinetic description the fluid behaviour of the system. This means, roughly
speaking, that we look at the granular gas at a scale larger than the mesoscopic one and aim to
capture the hydrodynamical features of it through the evolution of macroscopic quantities like
density, bulk velocity and temperature of the gas which satisfy suitable hydrodynamics equations.

One of the main objects of the present work is to make a first rigorous link between
these two co-existing descriptions by deriving a suitable modification of incompressible
Navier-Stokes equation from the Boltzmann equation for inelastic hard-spheres as the
Knudsen number goes to zero.

Recall that the Knudsen number ¢ is proportional to the mean free path between collisions
and in order to derive hydrodynamic equations from the Boltzmann equation, the usual strategy
consists, roughly speaking, in performing a perturbation analysis in the limit ¢ — 0 (meaning
that the mean free path is negligible when compared to the typical physical scale length). We
point out that these questions are perfectly understood in the elastic case (molecular gases) for
which rigorous results on the hydrodynamic limits of the Boltzmann equation have been obtained,
we refer to the next Section 1.6 for more details and to Saint-Raymond (2009a) for an up-to-date
review.
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The picture in the context of granular gases is quite different. In fact, a satisfying hydrodynamic
equation that properly describes rapid granular flows is still a controversial issue among the
physics community. The continuous loss of kinetic energy makes granular gases an open system as
far as thermodynamics is concerned. Moreover, no non-trivial steady states exist in granular gases
without an external energy supply which makes granular gases a prototype of non-equilibrium
systems. This is an important obstacle in the derivation of hydrodynamical equations from
the kinetic description since it is expected that equilibrium states play the role of the typical
hydrodynamic solution where time-space dependence of the single-particle distribution function
F(t,z,v) occurs only through suitable hydrodynamic fields like density (¢, z), bulk velocity
u(t, x), and temperature (¢, 2:). An additional difficulty is related to the size of particles and scale
separation. Recall that granular gases involve macroscopic particles whose size is much larger
than the one described by the usual Boltzmann equation with elastic interactions referred to as
molecular gases. As the hydrodynamic description occurs on large time scales (compared to the
mean free time) and on large spatial scales (compared to the mean free path) the mesoscopic -
continuum scale separation is problematic to justify in full generality for granular gases. We refer
to (Garzo, 2019, Section 3.1, p. 102) for more details on this point and observe here that the main
concern is related to the time scale induced by the evolution of the temperature (see (1.13) herafter).
In particular, as observed in Garzd (2019), this problem can only be answered by ensuring that the
d + 2 hydrodynamic modes associated to density, velocity and temperature decay more slowly
than the remaining kinetic excitations at large times. This is the only way that the hydrodynamic
excitations emerge as the dominant dynamics. All these physically grounded obstacles make the
derivation of hydrodynamic equations from the Boltzmann equation associated to granular gases
a reputedly challenging open problem. Quoting Brey & Dufty (2005):

“the context of the hydrodynamic equations remains uncertain. What are the relevant
space and time scales? How much inelasticity can be described in this way?”

The present paper is, to the best of our knowledge, the first rigorous answer to these relevant
problems, at least in dimension d > 3. We already mentioned that the key point in our analysis
is to identify the correct regime which allows to answer these questions: the nearly elastic one.
In this regime the energy dissipation rate in the systems happens in a controlled fashion since
the inelasticity parameter is compensated accordingly to the number of collisions per time unit.
This process mimics viscoelasticity as particle collisions become more elastic as the collision
dissipation mechanism increases in the limit ¢ — 0 (see Assumption 1.1 below). In this way,
we are able to consider a re-scaling of the kinetic equation in which a peculiar intermediate
asymptotic emerges and prevents the total cooling of the granular gas.

Other regimes can be considered depending on the rate at which kinetic energy is dissipated,;
for example, an interesting regime is the mono-kinetic one which considers the extreme case of
infinite energy dissipation rate. In this way, the limit is formally described by enforcing a Dirac
mass solution in the kinetic equation yielding the pressureless Euler system (corresponding to
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sticky particles). Such a regime has been rigorously addressed in the one-dimensional framework
in the interesting contribution Jabin & Rey (2017). It is an open question to extend such analysis
to higher dimensions since the approach of Jabin & Rey (2017) uses the so-called Bony functional
which is a tool specifically tailored for 1D kinetic equations.

1.2. The Boltzmann equation for granular gases. We consider here the (freely cooling)
Boltzmann equation which provides a statistical description of identical smooth hard spheres
suffering binary and inelastic collisions:

O F(t,z,v) + v -V F(t,z,v) = Qu(F, F) (1.1)

supplemented with initial condition F'(0,x,v) = Fi,(z,v), where F(t,z,v) is the density of
granular particles having position € T¢ and velocity v € R? at time ¢t > 0 and d > 3. We
consider here for simplicity the case of flat torus

T¢ = RY/ (270 Z)? (1.2)
for some typical length-scale £ > 0. This corresponds to periodic boundary conditions:
F(t,x + 2n le;,v) = F(t,z,v), Vi=1,...,d

where e; is the i-th vector of the canonical basis of R%. The collision operator Q, is defined in
weak form as

1
[ 0ua D@ v de=3 [ f@)gle) o vl Aulul(e v docdv,  13)
Rd RdxR4
where

Aalil(v,) = [ (00)+ 6(01) = 9(0) = w0l T) do (149

and the post-collisional velocities (v', v),) are given by

o i (o — ), o= — 2 (o —w),
R u (1.5)
where U=V — Uy, U= —

Jul

Here, do denotes the Lebesgue measure on S?~! and the angular part b of the collision kernel
appearing in (1.4) is a non-negative measurable mapping integrable over S*~!. There is no loss of
generality assuming

/Sdl bo-Ddo=1, voesi!. (1.6)

Additional technical assumptions on the angular kernel b( - ) will be needed in the sequel. Namely,
in the rest of the paper, we suppose that the two following conditions are satisfied.
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e The mapping 0 € S¥~! = b(o - 2) belongs to L?(S?~1) for any 2 € S9!, i.e.

1 d—3
/ b*(s) (1 —s%) 7 ds< o0, (1.7)
-1

which is useful to get estimates on the difference between Q, and Q; (see Lemma 2.1).
e The following holds

! d—6 d—=3 =6 d=3
/ b(s)[(l—s)4 (1487 +(1+8)T (1-5)7|ds<oo, (1.8)
-1

we mention that this integral needs to be finite to get bounds on the bilinear operator Q,,
on L? (see Theorem B.1) as well as for deriving smoothness of the so-called Burnett
functions (see Lemma A.3).

It is worth mentioning that in the physical case of hard spheres in dimension 3, b is constant
and is thus included in our assumptions since (1.7) and (1.8) hold true.

The fundamental distinction between the classical elastic Boltzmann equation and that asso-
ciated to granular gases lies in the role of the parameter o € (0, 1), the coefficient of restitution.
This coefficient is given by the ratio between the magnitude of the normal component (along the
line of separation between the centers of the two spheres at contact) of the relative velocity after
and before the collision (see Section 2 for the detailed microscopic velocities). The case o = 1 cor-
responds to perfectly elastic collisions where kinetic energy is conserved. However, when o < 1,
part of the kinetic energy of the relative motion is lost since

1— 2
TO‘W (1-0-3) <0 (1.9)

where we recall that u = v — v,. It is assumed in this work that « is independent of the relative
velocity u (refer to Alonso (2009), Alonso & Lods (2014), and Alonso et al. (2021) for the viscoelastic
restitution coefficient case). Notice that the microscopic description (1.5) preserves the momentum

e A e e A

/ /
V + UV, =V + Vs

Let us introduce the macroscopic density and bulk velocity respectively defined by
R(t) == / F(t,z,v)dvdx and U(t) = / vEF(t,x,v)dvde.
R xT¢ RéxT¢

These quantities are preserved over time, namely:

d d
SR = ZU®) =0.

Consequently, there is no loss of generality in assuming that
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As already mentioned, the main contrast between elastic and inelastic gases is that in the latter
the granular temperature

1
Tt):=—3 [v|>F(t, z,v) dvdx
|Tg| R x T
is constantly decreasing

%T(t) — —(1-a)D(F(t),F(t) <0, Yt>0.

Here D(g, g) denotes the normalised energy dissipation associated to Q,, see Mischler & Mouhot
(2006), given for suitable f, g by

d
D(f,g) =2 / dz F(@,0)9(z, 0o — v.f? dvdo, (1.10)
4 Jra [T Jraxre

with
l—-0c-u ~ a2 [T . a2 . 2 (0
Vo = ————b(o-u)do =[S b(cosB) (sin@)“ ~ sin” | = | d6.
Sd-1 2 0 2

In fact, it is possible to show that
T(t)——0

t—00
which expresses the total cooling of granular gases. Determining the exact dissipation rate of the
granular temperature is an important question known as Haff’s law, see Haft (1983).

1.3. Navier-Stokes scaling. To capture some hydrodynamic behaviour of the gas, we need to
write the above equation in nondimensional form introducing the dimensionless Knudsen number

mean free path

spatial length-scale

which is assumed to be small. We introduce then a rescaling of time and space to capture the
hydrodynamic limit and introduce the particle density

Fs(t,x,v):F<t2,x,v> ) Vt>0. (1.11)
et e

In this case, we choose for simplicity £ = ¢ in (1.2) which ensures now that F; is defined on
R+ x T?¢ x R? with T? = T¢. From now on, we assume for simplicity that the torus T¢ is equipped
with the normalized Lebesgue measure, i.e. |T¢| = 1. It is well-know that, in the classical elastic
case, this scaling leads to the incompressible Navier-Stokes, however, other scalings are possible
that yield different hydrodynamic models. Under such a scaling, the typical number of collisions

2

per particle per time unit is €, more specifically, F; satisfies the rescaled Boltzmann equation

20, F.(t,x,v) + v -V Fe(t,x,v) = Qu(F:, Fy), (z,v) € T? x R?, (1.12a)
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supplemented with initial condition
x
F.(0,2,v) = Fi(z,v) = Fy (£,0) . (1.12b)
€
Conservation of mass and density is preserved under this scaling, consequently, we assume that

R.(t) := / F.(t,z,v)dvdz =1, U.(t) = / F.(t,z,v)vdvde =0, Vt=>0,
R4 xTd R

dyTd

and, setting now
T-(t) ::/ [v>F.(t, z,v) dvdz, Vt>0, Ve >0,
RdxTd

the cooling of the granular gas is now given by the equation

d 1—a?
—T.(t) = —
dt (*) g2

where we recall that D is defined in (1.10).

D(E(t),Ex(t), V>0, (1.13)

1.4. Self-similar variable and homogeneous cooling state. Various forcing terms have been
added to (1.12a) depending on the underlying physics. Forcing terms prevent the total cooling of
the gas (heated bath, thermal bath, see Villani (2006) for details) since they act as an energy supply
source to the system and induce the existence of a non-trivial steady state. These are, however,
systems different from the free-cooling Boltzmann equation (1.12a) that we aim to investigate
here.

To understand better this free-cooling scenario, it is still possible to introduce an intermediate
asymptotics and a steady state to work with. This is done by performing a self-similar change of

variables
F.(t,x,v) = Vs(t)dfe (Tg(t), x, Vg(t)v) , (1.14a)
with )
Te(t) := —log(1+cet), Ve(t):=(Q+ct), t=0, c>0. (1.14b)
Ce
With the special choice
11—«
Ce ' = —5—, (1.14¢)
€

we can prove that f. satisfies
528tf5(t) x, U) +ev- vxf&(t7 x, U) + (]- - a)v’u : (vfs(tv x, /U)) = Qa(f&v fE) ) (115)
with initial condition
fe(0,2,v) = Fi(z,0). (1.16)

The underlying drift term (1 — )V, - (vf(t, z,v)) acts as an energy supply which prevents the
total cooling down of the gas. Indeed, it has been shown in a series of papers (Mischler et al. (2006);
Mischler & Mouhot (2006, 2009)) that there exists a spatially homogeneous steady state G, to (1.15)
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which is unique for a € (ayg, 1) for an explicit threshold value oy € (0, 1) '. More specifically,
for @ € (v, 1), there exists a unique solution G, to the spatially homogeneous steady equation

(1= )7, (1Go(v) = Qo(GanGa)  with | Golt) (i) dv = <(1)) RENCRY)

Moreover, there exists some constant C' > 0 independent of « such that
1Ga = MlL1()2) < C(1 — ) (1.18)

where M is the Maxwellian distribution

2
M(v) = (27”91)*% exp <—’21;|11

for some explicit temperature ¥; > 0. The Maxwellian distribution M (v) is a steady solution

) , velR?, (1.19)

for « = 1 and its prescribed temperature ¥ (which ensures (1.18) to hold) will play a role in the
rest of the analysis.

Notice also that the equation in self-similar variables (1.15) preserves mass and vanishing
momentum. Indeed, a simple computation based on (1.3) gives that

d 1-—
a/ fe(t,z,v)vdode.
RaxTd

— t dvdr =
dt R’ix'ﬂ‘de( ,.Z‘,U)U var €

From now on, we will always assume that

1 1 1
/ fe(0,z,v) v dvdz = / Fi(z,v) v dvder = 0 (1.20a)
TdxRd ‘U|2 TdxRd |U‘2 E.
with £, > 0 and
E —
Ee —dt — 0. (1.20b)
9 e—

The choice of prescribing as initial energy some constant E. > 0 satisfying e "} (E. — diJ1) — 0
as € — 0 for our problem is natural because di}; is the energy of the Maxwellian M introduced
in (1.19) and as we shall see later on, the restitution coefficient « is intended to tend to 1 as € goes
to 0 in our analysis (see Assumption 1.1).

Using assumption (1.20a) and the fact that G, has mass 1 and vanishing momentum, it holds

/ fE(tvxuv) L dvdx = 1 s Vt}O
R x T4 v 0

Three main questions are addressed in this work regarding the solution to (1.15):

INotice that the results of Mischler & Mouhot (2006, 2009) are stated under restrictive assumptions on the collision
kernel b( -) essentially needed for moment control of the solution to the Boltzmann equation for granular gases.
Thanks to a general version of the Povzner lemma (see Alonso & Lods (2010, 2013a)), those results are valid under the
assumptions (1.7) — (1.8), see Alonso & Lods (2013a) for details.
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(Q1) First, we aim to prove the existence and uniqueness of solutions to (1.15) in a close to
equilibrium setting, i.e. solutions which are defined globally in time and such that

sup || fe(t) — Gall <0 (1.21)
t=0

for some positive and explicit & > 0 in a suitable norm || - || of a functional space to be identi-
fied. The close-to-equilibrium setting is quite relevant for very small Knudsen numbers given
the large number of collisions per unit time which keeps the system thermodynamically
relaxed.

(Q2) More importantly (though closely related), the scope here is to provide estimates on the
constructed solutions f. which are uniform with respect to €. This means that, in the previous
point, § > 0 is independent of €. In fact, we are able to prove exponential time decay for the
difference || f-(t) — G|

(Q3) Finally, we aim to prove that, as ¢ — 0, the solution f.(t) converges towards some
hydrodynamic solution which depends on (¢,z) only through macroscopic quantities
(o(t,x),u(t,z),0(t,z)) which are solutions to a suitable modification of the incompressible
Navier-Stokes system.

The central underlying assumption in the previous program is the following relation between the
restitution coefficient and the Knudsen number.

Assumption 1.1. The restitution coefficient ( -) is a continuously decreasing function of the
Knudsen number ¢ satisfying the scaling behaviour

ale) =1 —¢e*(No +n(e)) (1.22)

with \g > 0 and some function n( -) that tends to 0 as € goes to 0. We also assume that there
existseg > 0 such thatn( -) is positive on (0, £q) (which in particular implies thate=2(1—a(e)) > 0
fore € (0,¢e9)).

As mentioned before, in this regime the energy dissipation rate is controlled along time by
mimicking a viscoelastic property in the granular gas which is at contrast to other regimes such
as the mono-kinetic limit. In viscoelastic models, nearly elastic regimes emerges naturally on
large-time scale, see Bobylev et al. (2000); Alonso & Lods (2014); Alonso et al. (2021) for details.

Because € — 0, Assumption 1.1 means that the limit produces a model of the cumulative effect
of nearly elastic collisions in the hydrodynamic regime. Two situations are of interest in our
analysis

Case 1: If Ay = 0 the cumulative effect of the inelasticity is too weak in the hydrodynamic scale
and the expected model is the classical Navier-Stokes equation.

Case 2: If 0 < A\g < 00, the cumulative effect is visible in the hydrodynamic scale and we expect
a model different from the Navier-Stokes equation accounting for that. As we mentioned,
we require A\ to be relatively small compared to some explicit quantities completely
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determined by the mass and energy of the initial datum, say, 0 < Ag < 1 with some

explicit upper bounds on Ag.
We wish to emphasize here that, without Assumption 1.1, it appears hopeless to resort to any
kind of linearized technique, which is somehow at the basis of the Navier-Stokes scaling. Indeed,
even in the spatially homogeneous case, the asymptotic behaviour of the Boltzmann equation is
not clearly understood far from the elastic case (see the discussion in the introduction of Mischler
& Mouhot (2009)). We strongly believe that we captured with Assumption 1.1 the correct regime
that brings together the delicate balance between inelasticity and Knudsen number adapted to
the hydrodynamic asymptotics for the constant restitution coefficient case. We also remark that
it is very likely that the more adapted model of viscoelastic hard spheres will display naturally
such balance and enjoy the nearly inelastic regime in the long-time dynamic (see Alonso & Lods
(2014); Alonso et al. (2021) for more details).

1.5. Main results. The main results are both concerned with the solutions to (1.15). The first one
is the following Cauchy theorem regarding the existence and uniqueness of close-to-equilibrium
solutions to (1.15). A precise statement is given in Theorem 5.1 in Section 5.

Theorem 1.2. Under Assumption 1.1, one can construct two suitable Banach spaces &1 C £ such
that, for £, A\g and ng sufficiently small with respect to the initial mass and energy, if
15 — Gage)lle < emno
then the inelastic Boltzmann equation (1.15) with initial condition (1.16) has a unique solution
f-€C([0,00);€) N Ll([O, 00); &1)
satisfying, foranyr € (0,1)
Hfs(t) - Ga(s)Hg < C(r)eno exp (—(1 —r)A:-t), Vt>0
for some positive constant C(r) depending on r but not on £ and with . ~ Ao + 1(g) where \o
e—

and n( -) have been introduced in Assumption 1.1.

Remark 1.3. It is worth pointing out that the close-to-equilibrium solutions we construct are shown
to decay with an exponential rate as close as we want to A\ ~ 1_%2(5) The rate of decay can thus be
made uniform with respect to the Knudsen number € if \g > 0 in Assumption 1.1 and if Ao = 0, we
obtain a rate of decay as close as we want to 1(€), we thus obtain a uniform bound in time but not a

uniform rate of decay.

Theorem 1.2 completely answers queries (Q1) and (Q2) where the functional spaces & C £
are chosen to be L. L2-based Sobolev spaces

€= LW ((0)1), & = LW ((u)**)

for suitable choice of m, q. Exact notations for the functional spaces are introduced in Section 1.8.
We already point out here the fact that we do not assume any kind of regularity in the velocity
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variable v except the mere integrability (no derivative in v are assumed in the spaces & C &).
The close-to-equilibrium solutions we construct are shown to decay with a rate that can be made
uniform with respect to the Knudsen number . Recall here that, since Assumption 1.1 is met, the
homogeneous cooling state depends on ¢ and G ;) - M ase — 0.

The estimates on the solution f. provided by Theorem 1.2 are enough to answer (Q3) in the
following (we refer to Section 6 for a more accurate statement provided by Theorem 6.1).

Theorem 1.4. Under the assumptions of Theorem 1.2, set
fe(t,m,v) = Goe) +ehe(t, z,v),
with ho(0,z,v) = h (z,v) = e (F5 — Go(s))- For a suitable class of "well-prepared" initial

in

datum b, (see Theorem 6.1 for a precise definition) and any T > 0, the family {h.}_ converges in
some weak sense to a limit h = h(t, x,v) which is such that

h(t,z,v) = (g(t,x) +u(t,z) v+ %9(t,x)(|v|2 - d191)> M(v), (1.23)

where (0,u,0) = (o(t,z),u(t,x),0(t,x)) are suitable solutions to the following incompressible
Navier-Stokes-Fourier system with forcing

atu—ﬁlleU‘i‘ﬁlUVxU‘i‘pr:)\ou,

Ao €
. . = 1.24
000 — Jr Apf+01 u- Vol 2(d+2)\/1919, (124)
divyu =0, o+v160=0,

subject to initial conditions (0in, Win, 0in) (entirely determined by the limiting behaviour of hf as
e — 0). The viscosity v > 0 and heat conductivity v > 0 are explicit and Ao > 0 is the parameter
appearing in (1.22). The parameter ¢ > 0 is depending on the collision kernel b( -).

Remark 1.5. The data that we consider here are actually quite general. Indeed, the assumption
that we make only tells that the macroscopic projection of hi converges towards some macroscopic
distribution and we do not make any assumption on the macroscopic quantities of this distribution
(see (6.1)). Namely, we do not suppose that the divergence free and the Boussinesq relations are
satisfied by (0o, uo, 0o), oscillations induced by acoustic waves that could be created by such a lack
of assumption is actually absorbed in our notion of weak convergence, the precise notion of which
being very peculiar and strongly related to the a priori estimates used for the proof of Theorem 1.2
(see Theorem 6.3 for more details on the type of convergence).

Remark 1.6. Whenever Assumption 1.1 is not in force, the well-posedness as well as the hydro-
dynamic limit obtained in Theorems 1.2 and 1.4 are open questions to the best of our knowledge.
Actually, even in the spatially homogeneous case, some small inelasticity assumption is necessary to
prove the uniqueness of the homogeneous cooling state as well as its stability (see Mischler & Mouhot
(2009)). This is in particular due to the absence of H -theorem for granular gases which does provide
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any general nonlinear mechanism driving the solutions towards its equilibrium state like it happens
in the elastic case.

It is classical for incompressible Navier-Stokes equations, see (Majda & Bertozzi, 2002, Sec-
tion 1.8, Chapter I), that the pressure term p acts as a Lagrange multiplier due to the constraint
divyu = 0 and it is recovered (up to a constant) from the knowledge of (g, u, 6).

We point out that the above incompressible Navier-Stokes-Fourier system (6.4) with the self-
consistent forcing terms on the right-hand-side is a new system of hydrodynamic equations that,
to our knowledge, has never been rigorously derived earlier to describe granular flows. We also
notice that the last two identities in (6.4) give respectively the incompressibility condition and a
strong Boussinesq relation (see the discussion in Section 6). It is important to point out that in
the case A\g = 0, one recovers the classical incompressible Navier-Stokes-Fourier system derived
from elastic Boltzmann equation, see Saint-Raymond (2009a). This proves continuity with respect
to the restitution coefficient a.

Moreover, in both cases \g = 0 or A9 > 0, the limiting system (6.4) is conservative (for all
quantities o(t, z), u(t, x), 6(t, x) as soon as the initial bulk velocity is vanishing) which illustrates
the perfect balance of the self-similar scaling in the hydrodynamic limit.

We finally mention that Theorem 1.4 together with the relations (1.14) provide also a quite
precise description of the hydrodynamic behaviour of the original problem (1.12a) in physical
variables. In this framework, the aforementioned Case 2 for which Ag > 0 enjoys some special

features for which uniform-in-time error estimates can be obtained. Turning back to the original
problem (1.12a) not only gives a precise answer to Haff’s law (with an explicit cooling rate of the
granular temperature T (¢)) but also describes the cooling rate of the local temperature of the gas.
Precisely, one can deduce the following

Theorem 1.7 (Haff’s law: local and global). Let Assumption 1.1 be in force with
Ag > 0.

We consider a solution F¢(t, x,v) to(1.12a) as constructed in Theorem 1.2 for e, Ao and no sufficiently
small and define the local temperature of the gas T.(t, ) and the global temperature T(t) as
1

= |’]I‘7d‘ » T.(t,z)dx, t > 0.

T.(t,x) = /d F.(t, z,v)|v|*dv x €T, T.(t)
R

Then, T.(t) ~ % , fort > %, and there exist Co, C1 > 0 such that
C C
702 < Tg(t,x) < 7127
(1+ Aot) (1 + Xot)
foranyt > 0 and x € T

Ve € (0,e0)

We point out that the time-decay of the temperature for granular gases has been deduced,
under some heuristic considerations, in Haff (1983) and an algebraic decay of the order (1 + )2



FLUID DYNAMIC LIMIT OF BOLTZMANN EQUATION FOR GRANULAR HARD-SPHERES 15

has been established. This is known as Haff’s law for the cooling of granular gases. A rigorous
proof of such a decay has been established in the spatially homogeneous setting in Mischler &
Mouhot (2009) in a regime of relative small inelasticity (i.e. assuming o > o for some explicit
value of a € (0, 1) and for an initial datum F},, € LP(R?) (p > 1). This result has been extended
by the first two authors in Alonso & Lods (2013b) to consider initial datum with finite entropy.
For the physically relevant model of visco-elastic hard-spheres, Haff’s law predicts a different
decay and has been proved rigorously in the spatially homogeneous setting in Alonso & Lods

(2010). To our knowledge, the above result is the first result applying to spatially inhomogeneous
setting and it shows that the decay of the global temperature predicted by Haff’s law is actually
accurate also for the local temperature: in the perturbative setting considered here, Haff’s law
occurs somehow uniformly with respect to the spatial variable z € T¢. We refer to Section 7 for a
more detailed discussion.

Let us summarize here the main original features of this paper:

e We identify the correct regime of weak inelasticity (Assumption 1.1) which, with a novel
use of self-similarity techniques, allows to balance uniformly, in terms of the Knudsen
number, the in-and-out fluxes of energy and allows to exploits fully the non Gaussian
steady state in the spatially inhomogeneous setting.

e In order to derive exploitable hypocoercivity and energy estimates, we craft a very fine
analysis of the collision operator Q,, and, in particular, provides a sharp quantification of
the nearly elastic limit || Q. (f,g9) — Q1(f, g)| in terms of .. Several existing results have
to be refined drastically in order to be able to capture precise smallness estimates of the
linearized collision operators.

e We introduce a sophisticated argumentation (including some non standard Gronwall
Lemma) exploiting fully the interplay between linear and nonlinear estimates. This
approach leads to uniform estimates for the nonlinear spatially inhomogeneous inelastic
Boltzmann model in terms of the Knudsen number as well as some long-time decay of the
solutions to (1.27).

e We bring a precise quantification of the macroscopic observables in the hydrodynamic limit
yielding first to a modified Navier-Stokes-Fourier system and also to a rigorous derivation
of both the global and local versions of Haff’s law in the spatially inhomogeneous setting.

The reader will experience a self-contained and detailed presentation including the material
corresponding to the full derivation of the modified Navier-Stokes-Fourier system and the relevant
estimates for the Boltzmann collision operator.

1.6. Hydrodynamic limits in the elastic case. The derivation of hydrodynamic limits from the
elastic Boltzmann equation is an important problem which received a lot of attention and its origin
can be traced back at least to D. Hilbert exposition of its 6th problem at the 1900 International
Congress of Mathematicians. We refer the reader to Saint-Raymond (2009a); Golse (2014) for an
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to-date description of the mathematically relevant results in the field. Roughly speaking three

main approaches are adopted for the rigorous derivation of hydrodynamic limits.

A)

B)

®)

Many of the early mathematical justifications of hydrodynamic limits of the Boltzmann equa-
tion are based on (truncated) asymptotic expansions of the solution around some hydrodynamic
solution

F.(t,z,v) = Fo(t,z,v) (1 + Ze"Fn(t,m,v)) (1.25)

where, typically

et (o)
Folt,,0) (2r6(t,2)) " p( 20(t,7) ) (126

is a local Maxwellian associated to the macroscopic fields which is required to satisfy the
limiting fluid dynamic equation. This approach (or a variant of it based upon Chapman-Enskog
expansion) leads to the first rigorous justification of the compressible Euler limit up to the first
singular time for the solution of the Euler system in Caflisch (1980) (see also Lachowicz (1987)
for more general initial data and a study of initial layers). In the same way, a justification
of the incompressible Navier-Stokes limit has been obtained in De Masi et al. (1989). This
approach deals mainly with strong solutions for both the kinetic and fluid equations.

Another important line of research concerns weak solutions and a whole program on this
topic has been introduced in Bardos et al. (1991, 1993). The goal is to prove the convergence
of the renormalized solutions to the Boltzmann equation (as obtained in Di Perna & Lions
(1990)) towards weak solutions to the compressible Euler system or to the incompressible
Navier-Stokes equations. This program has been continued exhaustively and the convergence
have been obtained in several important results (see Golse & Saint-Raymond (2004, 2009);
Jiang & Masmoudi (2017); Levermore & Masmoudi (2010); Lions & Masmoudi (2001a,b) to
mention just a few). We remark that, in the notion of renormalized solutions for the classical
Boltzmann equation, a crucial role is played by the entropy dissipation (H -theorem) which
asserts that the entropy of solutions to the Boltzmann equation is non increasing

d

/ F.log F.(t,z,v)dvdz < 0.

dt RAxTd

This a priori estimate is fully exploited in the construction of renormalized solutions to the
classical Boltzmann equation and is also fundamental in some justification arguments for the

Euler limit, see Saint-Raymond (2009b).

A third line of research deals with strong solutions close to equilibrium and exploits a careful
spectral analysis of the linearized Boltzmann equation. Strong solutions to the Boltzmann
equation close to equilibrium have been obtained in a weighted L?-framework in the work Ukai
(1974) and the local-in-time convergence of these solutions towards solution to the compressible
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Euler equations have been derived in Nishida (1978). For the limiting incompressible Navier-
Stokes solution, a similar result have been carried out in Bardos & Ukai (1991) for smooth
global solutions in R? with a small initial velocity field. The smallness assumption has been
recently removed in Gallagher & Tristani (2020) allowing to treat also non global in time
solutions to the Navier-Stokes equation. These results as well as Briant et al. (2019) exploit
a very careful description of the spectrum of the linearized Boltzmann equation derived in
Ellis & Pinsky (1975). We notice that they are framed in the space L?(M~!) where the
linearized Boltzmann operator is self-adjoint and coercive. The fact that the analysis of Ellis &
Pinsky (1975) has been extended recently in Gervais (2021) to larger functional spaces of the
type L2((-)9) opens the gate to some refinements of several of the aforementioned results.
We also mention here the work Jiang et al. (2018) which deals with an energy method in
L?(M™1) spaces (see also Guo et al. (2010); Guo (2016) and Rachid (2021)) in order to prove
the strong convergence of the solutions to the Boltzmann equation towards the incompressible
Navier-Stokes equation without resorting to the work of Ellis & Pinsky (1975). We also refer
to Gervais & Lods (2023) for a recent unified and spectral approach to the hydrodynamic
limits for strong solutions of various kinetic equations.

We mention finally that the works Briant et al. (2019), Carrapatoso et al. (2022) and Gervais (2022)
were the main inspirations to answer questions (Q1)-(Q2). Indeed, in Briant et al. (2019) and
in Gervais (2022), estimates on the elastic Boltzmann equation in Sobolev spaces with polynomial
weight are obtained uniformly with respect to the Knudsen number €. On the other hand, the work
Carrapatoso et al. (2022) introduces the main hypocoercivity estimates without derivative in the
velocity variables which play a fundamental role in our analysis. To answer question (Q3), we
will resort to ideas introduced in the theory of renormalized solutions Bardos et al. (1991, 1993);
Golse & Saint-Raymond (2004) that we adapt to the notions of solutions we are dealing with here.
We notice here already that we cannot resort to the work of Ellis & Pinsky (1975) and need to
carefully exploit the properties of the solutions as constructed in Theorem 1.2.

1.7. The challenge of hydrodynamic limits for granular gases. There are several reasons
which make the derivation of hydrodynamic limits for granular gases a challenging question at
the physical level. In regard of the mathematical aspects of the hydrodynamical limit, several
hurdles stand on way when trying to adapt the aforementioned approaches:

I) With respect to the strategy given in A), the main difficulty lies in the identification of the
typical hydrodynamic solution. Such solution is such that the time-space dependence of the
one-particle distribution function F'(¢,xz,v) occurs only through suitable hydrodynamic
fields like density o(t, x), bulk velocity u(t, x), and temperature 6(¢, x). This is the role
played by the Maxwellian Fp in (1.26) whenever o = 1 and one wonders if the homogeneous
cooling state GG, plays this role here. This is indeed the case up to first order capturing the
fat tails of inelastic distributions, yet surprisingly, a suitable Maxwellian plays the role of the
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hydrodynamic solution in the e-order correction. This Gaussian behaviour emerges in the
hydrodynamic limit because of the near elastic regime that we treat here.”

II) The direction promoted in B) appears for the moment out of reach in the context of granular
gases. Renormalized solutions in the context of the inelastic Boltzmann equation (1.27) have
not been obtained due to the lack of an H-Theorem for granular gases. It is unclear if the
classical entropy (or a suitable modification of it) remains bounded in general for granular
gases.

IIT) Homogeneous cooling states G, are not explicit, this is a technical difficulty when adapting
the approach of Ellis & Pinsky (1975) for the spectral analysis of the linearized inelastic
Boltzmann equation in the spatial Fourier variable. Partial interesting results have been
obtained in Rey (2013) (devoted to diffusively heated granular gases) but they do not give a
complete asymptotic expansion of eigenvalues and eigenfunctions up to the order leading to
the Navier-Stokes asymptotic. We mention that obtaining an analogue of the work Ellis &
Pinsky (1975) for granular gases would allow, in particular, to quantify the convergence rate
towards the limiting model as in the recent work Gallagher & Tristani (2020).

IV) A major obstacle to adapt energy estimates and spectral approach lies in the choice of
functional spaces. While the linearized Boltzmann operator associated to elastic interactions
is self-adjoint and coercive in the weighted L2-space L2(M™1), there is no such “self-adjoint”
space for the inelastic case. This yields technical difficulties in the study of the spectral
analysis of the linearized operator which is still actually missing. Moreover, the energy
estimates of Guo et al. (2010); Guo (2016); Jiang & Masmoudi (2017); Jiang et al. (2018)
are essentially based upon the coercivity of the linearized operator. For granular gases, it
seems that one needs to face the problem directly in a L.-setting. Points III) and IV) make
the approach C) difficult to directly adapt.

1.8. Notations and definitions. We first introduce some useful notations for function spaces.
For any nonnegative weight function m : R? — R* (notice that all the weights we consider
here will depend only on velocity, i.e. m = m(v)), we define LI L% (m), 1 < p,q < +00, as the
Lebesgue space associated to the norm

1Pl gz my = IIAC s )l 2 m(v)llzs -

We also consider the standard higher-order Sobolev generalizations Wy YW35% (m) forany o, s € N
defined by the norm

1Pllwg avrsr om) = Yo VIR ) m(o)l

0<s'<s,0<0' <o,
s'+0’'<max(s,0)

%See the interesting discussion in Villani (2006), especially the Section 2.8 entitled “What Is the Trouble with
Non-Gaussianity”
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This definition reduces to the usual weighted Sobolev space W3 (m) when ¢ = p and o = s. For
m = 1, we simply denote the associated spaces by L{ LL and W TW3P.

We consider in the sequel the general weight
w,(v) = (14 |v]?)2, Vv eRY, Vs>0.

For any z € R4, » # 0, we will denote by z = é the associated unit vector. For two tensors
A= (4i;), B = (Bi;) € #3(R), we denote by A : B thescalar (A: B) =}, A;;B;j € R
as the trace of the matrix product AB whereas, for a vector function w = w(z) € R?, the tensor
(On;wj)i,; is denoted as V,w. We also write (Div,A)! = Z]. Oz; Aij().

Throughout the paper, for A, B > 0, we will indicate A < B or A < C'B whenever there is
a positive constant C' > 0 depending only on fixed numbers (but never on the parameters o and ¢)
such that A < C'B. Notice also that we shall use the same notation C for positive constants that
may change from line to line.

1.9. Strategy of the proof. The strategy used to prove the main results Theorems 1.2 and 1.4
yields to several intermediate results of independent interest. The approach is perturbative in
essence since we are dealing with close-to-equilibrium solutions to (1.15). This means that, in the
study of (1.15), we introduce the fluctuation h. around the equilibrium G, defined through

fe(t,z,v) = Go(v) + € he(t,z,v),
and h. satisfies

1 1 1
Othe(t, z,v) + v Vahe(t,x,v) — = Lohe(t, z,v) = gQa(hs, he)(t, z,v),

g2 (1.27)
he(0,xz,v) = h*(z,v),
where %, is the linearized collision operator (local in the x-variable) defined as
Zuh(z,v) := La(h)(z,v) — (1 — )V, - (vh(z,v)), (1.28)
with
Lo (h) :=2Q4(Ga,h), (1.29)
where we set
Gulf.9) = 5 (Qalf,9) + Qalg. )} (130)
We also denote by .7 the linearized operator around G; = M, that is,
Z1(h) = Ly(h) = Q1(M, h) + Q1(h, M). (1.31)

It is also worth noticing that assumption (1.20a) and (1.17) result in

/TdXRd A (x,v) <i> dvdz = <8) :
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Moreover, equation (1.27) preserves mass and vanishing momentum since, if h. solves (1.27), then
one formally has

d

— he(t,x,v)vdvde = —/ he(t,z,v)vdvde. (1.32)
dt Td xRd

Td x R4

Consequently, there is no loss of generality assuming that

/ he(t,x,v) <1> dvdzr = <0> , Vt>0. (1.33)
Td « R4 v 0

Notice that under this assumption, the hypothesis made on the energy of the initial data
in (1.20a) implies that

/ AR (z,v) |v|? dvde — 0. (1.34)
Td x Rd e—0

Indeed, using (1.20a) and Assumption 1.1 combined with (1.18), we obtain

. 1 )
/ h(z, v)|v|2 dvdx = = / (Fgm(x,v) — Ga(a)(v)) |v|2 dvdz
Td xRd € JTdxRd

= M+1/ (M() = Goe)(0)) v dvdz — 0.
€ € JTdxRd e—0

The above basic estimate and limit is illustrating the two-levels features of the perturbative
strategy we adopt to prove Theorem 1.2: F" stays close to the equilibrium (close-to-equilibrium
perturbation) but this comes from the fact that G .) is close to M (nearly elastic regime).

Our approach is indeed perturbative in two aspects: first, as already said, we are considering
close-to-equilibrium solutions (i.e. fluctuations around the homogeneous cooling states) and
second, we consider a nearly elastic regime (i.e. fluctuations around the classical/elastic Boltzmann
equation). This means in particular that we shall enforce in (1.15) the elastic Boltzmann operator
(at both the linearized and nonlinear levels) and will treat, up to some extent, the various inelastic
operators as source terms which can be controlled in the limit ¢ — 0 thanks to Assumption 1.1.
Let us try to make this basic idea more precise.

First, our approach requires a very fine analysis of the full linearized operator appearing
in (1.27):
Gach =~ Voh + 2%, h

but we wish to insist on the fact that our approach is not directly related to a description of the
spectral properties of G, .. We treat G, . as a perturbation of the elastic linearized operator G ..
However, such a perturbation does not fall into the realm of the classical perturbation theory of
unbounded operators as described in Kato (1980). Typically, the domain of G, . is much smaller
than the one of G; . (because of the drift term in velocity) and the relative bound between G .
and G, . does not converges to zero in the elastic limit & — 1. It is one of the reasons why it is
not easy to deduce the spectral properties of G, . from those of G . (which are well-understood,



FLUID DYNAMIC LIMIT OF BOLTZMANN EQUATION FOR GRANULAR HARD-SPHERES 21

see for instance Briant et al. (2019)) and we rather adopt an alternative approach based upon a
combination the enlargement methods introduced in Gualdani et al. (2017) and L?-hypocoercivity
methods (see Villani (2009); Carrapatoso et al. (2022)). Indeed, first borrowing ideas from Gualdani
et al. (2017); Tristani (2016), we can split G, . as

ga,a = AE + Ba,a

where A. is a regularizing operator in the velocity variable and B, . is a suitable dissipative
operator. We refer to Section 2 for details and insist on the fact that, to capture the dissipativity
properties of the operator B, ., a very fine analysis of the collision operators Q, and .Z, is
needed with particular emphasis of the quantification of the elastic limit @, — Q; and %, — .24
as a — 1 in various functional spaces. Besides this splitting, we also can write

ga,a = gl,a + (ga,a - gl,a)

and exploits the hypocoercivity properties of G ., hoping the reminder term G, . — G1. will not
make them degenerate too much. To do so, and because of the additional derivative in the velocity
variable (appearing now in the difference G, . — G1 ), we device new hypocoercivity estimates
for G1 . We refer to Section 3 for a detailed description of the method and result but just mention
here that, even though it seems possible to adapt the result of Briant (2015) in Sobolev spaces
in v, we rather adopt a strategy based upon L?-hypocoercivity working in the space

d
MHo=LPW2(M™2), m> 3 (1.35)
on which we build a norm || - [[|,, with associated inner product (( - , - )% equivalent to the standard

norm || - |3 for which

1
(Greh, h)n S 5 lI(1d — mo) A3, — 1R,

where 7 is the spectral projection associated to the zero eigenvalue of L (see Section 3 for

details) and H; is defined in (3.1) and is such that H; <— H.

With this at hands, in order to prove Theorem 1.2 several a priori estimates for the solutions
to (1.15) are required. This is done in Section 4. The crucial point in the analysis lies in the
splitting of (1.15) into a system of two equations mimicking a spectral enlargement method from
a PDE perspective (see the Section 2.3 of Mischler & Mouhot (2016) and Briant et al. (2019) for
pioneering ideas on such a splitting). More precisely, the splitting performed in Sections 4 and 5
amounts to look for a solution of (1.27) of the form

he(t) = h(t) + ha(t)
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where h° = h? and h! = hl(t) are the solutions to the following system of equations (in order to
lighten the notations, in this whole section, we shall omit the dependence on ¢ for A, h9 and hl):

O = Bogeeh? + &2 [Logoht = Liht| + (1 - a(2))e 23w, (Id - Po) b

+e! [Qa(a)(hov ho) + Qa(s)(hov hl) + Qa(a)(hlv ho) + o Qa(a)(hlv h1)1| )

RO(0,z,v) = kS, (x,0) € €
(1.36)
where a3 is some positive constant allowing to control the drift term (see Lemma 3.3) and the
projectors o, P are the spectral projectors associated to Ly and Gy , respectively (see Egs. (3.2)-
(3.4) for a precise definition) and

oht = Giht+ (1 - a(e)e? [~div, (vh!) — ageos (Id — Po) h']
+e 1 (Id — mp) Que) (R, BY) + ARD,

Y 0,2,0) = 0eH.
(1.37)

Tailoring the splitting of (1.27) into two equations (1.36)-(1.37) is actually one of the most
difficult part of this work and some comments are in order.

e First, notice that as in Briant et al. (2019), we can analyze the equation on h! in the most
convenient functional space since we have put 0 as initial data for h'. It is then natural to
study the equation on h! in the Hilbert space H since the elastic linearized operator G .
is well-understood in this type of space (see Proposition 3.1). It is worth mentioning
that in Briant et al. (2019), the equation on h' is posed in ngq’? (M_%) whereas we
study it in the space H with no derivative in velocity. It is made possible by our above
L?-hypocoercivity results.

e Similarly as in Briant et al. (2019), we have put the nice dissipative part of the linearized
equation on h” in the equation on h° (namely Bu(e),e hY) while we have put A.h" in the
equation on hl. We are able to do this thanks to the regularizing properties of A. (namely

Ac € B(EH)).

We already mentioned a first difference with the study by Briant et al. (2019) in the first item
concerning the space in which we study the equation on h'. If we compare our splitting to the one
in Briant et al. (2019), it is also much more complicated because of the additional terms coming
from the inelasticity of our equation. Let us present and explain those differences.

e First, notice that we can keep the drift term on h'! in the equation on h! because when
performing energy estimates in 7, it only induces the appearance of bounded terms in h!
that are small and terms with a loss of weight (see Lemma 3.3) but no terms with a loss of
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derivative in velocity. This loss of weight is counterbalanced by the introduction of the
term —agwos (Id — Pg) hl.

e The term azwos (Id — Py) h! has thus to be added to the equation on h° but it turns
out to be harmless when estimated in the functional space £ because of the continuous
embedding H into & where &; is defined as

&y = LW (wgi2013), K> g
and acts as an intermediate space which allows somehow to make the link between the
Ll-space £ and the L2-space H.

e Since we only put the elastic linearized collision operator on h! in the equation on h!,
it still remains to deal with the difference (1 — a(¢))e 2(Ls — L1). Notice that some
crucial point is that we are able to obtain estimates on this term with no loss of derivative
in velocity in the functional space £ thanks to Lemma 2.4 and we can handle this term
still thanks to the embedding H — &s.

e Finally, concerning the nonlinear term 5_1Qa(6)(h1, hl), it is split into two parts. We
only keep the microscopic part of this term, namely e~! (Id — ) Qa(s)(hl, h') in
the equation on h' because this term can be handled thanks to the nice hypocoerciv-
ity estimates satisfied by Gy . in H (see Proposition 3.1 and Lemma 3.4) (as the term
e 1Qq(h',hY) = e~ (Id — mp) Q1(h', h') was treated in Briant et al. (2019)). The re-
maining part ¢~ ! Qu(e) (h', h') is then added to the equation on h” and does not induce
any difficulty because the projector ¢ regularizes as necessary in velocity and because
Bae),e is —e2-dissipative in €.

The physical meaning of the above decomposition is not clear to us but appears to be a
convenient tool to enforce the energy method we adopt here. Notice that, in the framework of
strong solutions in the elastic case, some other kinds of splitting have been considered (see Gervais
(2022); Gervais & Lods (2023)). They have a clearer physical meaning since they are related to the
decomposition of the solution f¢ to the kinetic equation into several pieces (kinetic, macroscopic,
dispersive terms) which all have a precise meaning. This is made possible thanks to a suitable
mild reformulation of both the Boltzmann equations and Navier-Stokes-Fourier system and a
fine spectral analysis of the linearized operator, see Gallagher & Tristani (2020); Bardos & Ukai
(1991).

As mentioned earlier, because of the above considerations, we are able to seek hl(t) in the
above Hilbert space H and prove bounds of the type

t
sup (IO + [ 1) Be, dr) < il + 1 2
t=0 0

where H; is defined in (3.1). It is important to point out already that A. is regularizing only in
the velocity variable but not in the x-variable. Therefore, no gain of integrability can be deduced
from the action of A.. Therefore, since we look for h; € H, we need to look for hg in a space
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based on L2. The velocity regularization properties of .A. allow then to look for
r(t) € LiW™%(wm,),  Yt>0.
This is the role of Section 4.

In Section 5, we prove Theorem 1.2 introducing a suitable iterative scheme based upon the
coupling (h¥(t), hl(t)). We show in practice that the coupled system of kinetic equations satisfied
by h? and h! is well-posed. It is fair to say that the bounds for 2 and ! given in Sections 4 and 5
play the role of suitable energy estimates as the ones established in the purely Hilbert setting
Guo et al. (2010); Guo (2016); Jiang et al. (2018). In particular, these bounds are sufficient to
deduce a very peculiar type of weak convergence of h.(t) towards an element in the kernel of the
linearized operator .#}, in particular, the limit of /. is necessarily of the form (6.3). The notion
of weak convergence we use here fully exploits the splitting h. = h? + h! where we prove that
h? converges to 0 strongly in L'((0,T); L%W?’Q(wq)) whereas h! converges to h weakly in
L2((0.7): LIWE(M™2)).

Finally, in Section 6, the regularity of (g, u, ) obtained via a simple use of Ascoli-Arzela
Theorem and the identification of the limiting equations these macroscopic fields satisfy is
presented. With the notion of weak convergence at hand presented above, the approach is
simpler but reminiscent of the program established in Bardos et al. (1991, 1993). In particular,
we can adapt some of the main ideas of Golse & Saint-Raymond (2004) regarding the delicate
convergence of nonlinear convection terms. Detailed computations are included to make the
paper as much self-contained as possible also because, even in the classical “elastic” case, it is
difficult to find a full proof of the convergence towards hydrodynamic limit for the weak solutions
we consider here. For such solutions, details of proof are scattered in the literature and full proof
of the convergence of nonlinear terms is sometimes only sketched where most of the full detailed
proofs are dealing with the more delicate case of renormalized solutions Golse & Saint-Raymond
(2004, 2009); Levermore & Masmoudi (2010). In our framework, the terms involving the quadratic
operator Q,, (he, h.) are treated as source terms which converge in distributions to zero whereas
the drift term and the dissipation of energy function D are the objects responsible for the terms
in the right-side of the Navier-Stokes system (6.4). We also observe that the derivation of the
strong Boussinesq relation is not as straightforward as in the elastic case. Actually, the classical
Boussinesq relation

V (o(t, ) + 110(t, z)) = 0
is established as in the elastic case. In the elastic case, this relation implies the strong form
of Boussinesq relation mainly because the two functions o(¢, ) and 0(¢, z) have zero spatial
averages. This cannot be deduced directly in the granular context due to the dissipation of energy.

1.10. Organization of the paper. The paper is divided into 7 Sections and three Appendices. In
the following Section 2, we collect several very fine results regarding the collision operators .Z,
and Q,, quantifying the differences || Q, — Q1| and ||-Z,, —-Z1 || in terms of 1 — « for various norms.
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We also introduce in Section 2 the splitting of the operator G, . = A. 4 B, .. As mentioned, even
if our final goal is to study the collision operator in spaces built on L!-spaces with polynomial
weights, we shall also need to resort to estimates of ., in L2-spaces. Section 3 is devoted to the
hypocoercivity method for the operator G; . and its various consequences. In Section 4, we derive
the fundamental a priori estimates on the close-to-equilibrium solutions to (1.27). It is the most
technical part of the work and fully exploits the above splitting (1.36)—(1.37). Section 5 gives the
proof of Theorem 1.2 whereas Section 6 gives the full proof of the hydrodynamic limit (Theorem
1.4). In Section 7, we give an informal presentation of the consequences of our analysis on the
problem in original physical variables. In Appendix A, we collect some well-known properties
useful for the hydrodynamic limit as well as some technical proofs used in Section 6. Finally,
Appendix B gives the proof of several technical results of Section 2.

Acknowledgements. RA gratefully acknowledges the support from O Conselho Nacional de De-
senvolvimento Cientifico e Tecnologico, Bolsa de Produtividade em Pesquisa - CNPq (303325/2019-
4). BL gratefully acknowledges the financial support from the Italian Ministry of Education,
University and Research (MIUR), “Dipartimenti di Eccellenza” grant 2018-2022. Part of this re-
search was performed while the second author was visiting the “Département de Mathématiques
et Applications,” at Ecole Normale Supérieure, Paris in February 2019. He wishes to express his
gratitude for the financial support and warm hospitality offered by this Institution. IT thanks the
ANR EFI: ANR-17-CE40-0030 and the ANR SALVE: ANR-19-CE40-0004 for their support. The
authors thank Isabelle Gallagher for stimulating discussions and precious advices.

2. SUMMARY OF USEFUL RESULTS ABOUT THE COLLISION OPERATOR

2.1. Strong and weak forms of inelastic Boltzmann collision operators. In this section,
we collect several results about the Boltzmann collision operator Q,, for granular gases. Before
entering the details of the technical result, we briefly reminds the main physical features of
inelastic interactions and the role of the coefficient of normal restitution yielding naturally to the
n-representation of the collision operator.

As indicated in the Introduction, the Boltzmann equation for granular gases is a well-accepted
model that describes collisions in a system composed by a large number of granular particles
which are assumed to be hard-spheres with equal unitary mass and that undertake inelastic
collisions. If v and v, denote the velocities of two particles before collision, their respective
velocities v’ and v/, after collision are such that the normal relative velocity is dissipative during
impact according to the law

(u"n) = —a(u~n) . (2.1)
The unitary vector n € S determines the impact direction, that is, n stands for the unit vector
that points from the v-particle center to the v,-particle center at the moment of impact while

/ / /
U=V — Uy, U =0 —v,,
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denote respectively the relative velocity before and after collision. The velocities after collision v’
and v/, are given, in virtue of (2.1) and the conservation of momentum, by

, 1+« l1+a

vV =0V —

(u-n)n, vlo= v, + (un)n (2.2)

In particular, the energy relation induced by the collision mechanism can be written as

1—a?
2

In particular, for @ € (0,1) and in contrast with elastic interactions, the collision mechanism

2
e A e L (w-n)” < Jol* + Juu . (2.3)

(v,v) = (V',v) is not reversible. This means that the pre-collisional velocities (v, v, ) (resulting
in (v, v,) after collision) differ here from the post-collisional ones and can be introduced through

the relation
1+«

1
=wv— ;a(wn)n, e = vy + (un)n, (2.4)
a
where of course (2.1) reads now (u-n) = —a(/u -n) with u = v — 'v,. Notice that the Jacobian
of the transformation (2.2) is given by
o, vy)| _
o(v,v,) |

With such a representation, for a given pair of distributions f = f(v) and g = g(v) and a
given collision kernel By(u,n), the Boltzmann collision operator associated to By is defined as
the difference of two nonnegative operators (gain and loss operators respectively)

QBO,Ot(Q? f) = nga(gaf) - Qéo,a(gv f)a

with
+ _ 1 ! ! /
QBo7a(97f)(U) = a/ Bo(u,n) f(v)g(vs) dve dn,
RdxSd—1 (2.5)
By, (9:f)(w) = f(v) Bo(u,n)g(vs) dvg dn, w="To— v, .

RdxSd—1

We will assume that the collision kernel By = By(z,n) for z € R4\ {0}, n € S* ! is of the form

By(z,m) = ®(|2|)bo (2 n), zi=—,

where ®(-) and by( - ) are suitable nonnegative functions known as kinetic potential and angular
kernel respectively where by( - ) is an even function. For any fixed vector Z, the angular kernel
defines a measure on the sphere through the mapping n € S¥! — b, (3 n) € [0, 0o]. Observing
that

ul? /
|’u\2:‘a|2(a2+(1—a2)(a-n)2), (un) :—a(u-n)7
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we deduce easily that

Bolte.m) <| AV (u'n)2> <\/a2 1u—r;2 @ n)2> '

In this representation, the weak form of Qp,  is given by

/ QBy,alf,9) (V)Y (v) dv =/ Bo(u,n) f(v)g(ve) [$(v') — ¥(v)] dvdv.dn
R4 Rd xR xSd—1

(2.6)

-5/ Bo(u,n) f(0)g(v) [6(") + (v]) = $(v) = $(0,)] dvdu, dn
RdxRdxSd—1

for any test function ¥ = 1 (v).

The above representation captures the main physical features of inelastic interactions but, for
mathematical purposes, it is more convenient to adopt an equivalent representation (the so-called
o-representation) by setting, for a given pair of velocities (v, v, ) and for n € S,

c=0—-2(U-n)nest,

where we recall that u = ﬁ Such a description provides an alternative parametrization of

the unit sphere S*~! in which the unit vector o points in the post-collisional relative velocity
direction in the case of elastic collisions. In this case, the impact velocity reads

N 1—-u-0
- n| = |ul[a-n| = |ul\ ——
In this representation, the post-collisional velocities (v', v},) are given by
1 1
v’:v+¥(\u|a—u), vl = v, — Za(]u\a—u). (2.7)

Moreover, using the following formula, valid for any continuous function F’ (see (Bobylev , 2020,
Lemma 2.1.1) for a proof in dimension d = 3),

|zyd-2/ F (z _2|Z"’> do = 2d-1/ 2" 2F((z-n)n)dn, ¥z e R\ {0},
Sd—1 Sd—1

(2.8)

one sees that the above weak form (2.6) translates into

[, Qmala N do = [ F@)g(0.) (") = $(0)) Bl 7) do du, do
R4 Rd xRdxSd—1

= % / Fv)g(ve) (w(v’> + () — P(v) — w(m) B(u, o) do dv, dv
RIxRExS4—1
(2.9
for any test function ¢ = 1(v) where

B(z,0) = ®(|z|)b(Z-0), VzeR¥\ {0}, Voesit, (2.10)
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and b( - ) is related to by( - ) through the relation by (- n) = 297 @-n|92b(u - o), ie.

b(s) = 214 (1;5>2 bo ( 1 ; 8) , se(-1,1). (2.11)

Notice that (2.8) implies in particular that the change of variable n € S*™! ++ o0 = 4 —2(7-n)n €
S%1 is such that

a—2

1—-T-0\ =
do =29 Ya - n|?"2dn = 2471 (;U) dn

and, using the strong n-representation formula (2.5) together with the expression of By('u,n)
and (2.11), tedious computations show that the strong form of the Boltzmann operator in this
o-representation is given by Op, o = ngo o — 9B,.o Where

Q5 al9: V) = / f(v)g(v.) B (u,0) do dv,
RdxSd-1

(2.12)
Qyolg: 1)) =) [ g(v)Blu.c)dods,
R xSd—1
where, for ¢ € S 1, % and v, denote the pre-collisional velocities
, V + Uy 11—« +1—1—04|| , v+v*+1—a 1+a|‘
V= — U u|o Vy 1= u — ulo,
2 4o 4o ’ 2 4o 4o
and
d—2

B (u,0) = é (1 o (12_ a2)(a-a)>2 o (\‘/%\/1 a2 (1 —a2)(a-a)>

(1+02)(@ o) — (1 — a?)
b< T’ —(1—ad)@ o) > :

We also refer to Appendix A of Carlen et al. (2009) for derivation of such an expression in
dimension d = 3.

A particularly relevant model is the one of hard-spheres corresponding to ®(|u|) = |u| which
is the model investigated in the core of the paper and, in that case, we simply denote the collision
operator Qp, o by Q, omitting the dependence with respect to the variable b( - ) which will
always be assumed to satisfy (1.6)-(1.7)—(1.8). In such a case

Bl (u,0) = Zgba(ﬂ- o)

2 = 14+a)s—(1—a?
with ba(s) := TroZ_(1 042)5} b <(1 i a2)_ (1(_ a2)5)> 7 Vse (—1,1).

(2.13)
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2.2. Estimates on the difference between inelastic and elastic collisions. Our main technical
contribution in this section is the careful (quantitative) study of the differences between Q, — Q3
and the linearized counterpart L, —L;. We improve here significantly previous estimates obtained
in Alonso et al. (2010); Alonso & Gamba (2011); Mischler & Mouhot (2009).

2.2.1. Estimates on Q,, — Q1. Notice first that in all the sequel, we will need quantitative estimates
for the bilinear operator Q(f,g) and Q;(f, g) in several different functional spaces. We refer to
Alonso et al. (2010); Alonso & Gamba (2011); Mischler & Mouhot (2009) for precise statements
(see also Theorem B.1, Lemma B.3 and Corollary B.4). A fundamental role in our analysis will be
played by the fact that, in some suitable sense, Q,, is close to the elastic operator Q; for o ~ 1.
Let us begin with the following crucial result which justifies the optimal scaling (1.22) and opti-
mise the rate of convergence previously derived in (Mischler & Mouhot, 2009, Proposition 3.1 (iii))
in a different functional framework than ours. It is worth mentioning that due to the lack of sym-
metry in the two entries of the Boltzmann collision operator for inelastic collision, it is not trivial to
show that one can choose the entry on which the additional derivative is carried when estimating
Q1(f,9) — Qa(f,g). In the following lemma, we prove that it is possible in a L2- framework
thanks to a Bouchut-Desvillettes estimate (which is available only in the L2-framework).

Lemma 2.1. Leta = max{d — 1,2} andq > 0. Forany x > % and any a € (0, 1],

1Qa(fs9) — Q1(f, 9l L2(wy) + 1Qalg: f) — Qu1(g: Fll L2 (wy)

l—«

< B 3o 1922 gy 219
As a consequence, for any { > g, we have:
1Qa(f,9) — Ql(f?g)HL%Wff(wq) + 1|1Qalg, ) — Qu(g, f)HL%chv?(wq)
11—«
5 a? ||f”L%WfC’2(wq+~+3) HgHW},’ZWfC’2(wq+K+3) ’ (215)

Proof. Step 1. The first part of the proof is dedicated to the estimate on Q, (g, f) — Q1(g, f). Since

19a(9. £) = Q1(0. Nl 2y = D /R 19, f) ~ Q1(g Nl o

”(P”L%(mq)gl

one needs to estimate, for some test function ¢ € L?(wo,) the integral

- / [Qulg, /) (v) = Qi(g, £)(v)] () dv
Rd
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by some suitable L2 norms of ¢, f, g and Vg, the function g being the only one to carry the
additional derivative. Using the representation (2.9)-(2.7) in the hard-spheres case, one sees that

-/ o = @)l

« (¢ (wlzo‘auw—u)) —y (U—I—;(Ma—u)) ) b(ii- o) do dudv .

Setting now w = H?O‘u one can split I = I1 + Iy with

- [(Ha) ) ]/R%dxgdf’(”‘mo F)e(v}) [ulb(@- o) do dudv,

I = (o (v ) — gl —w) ) F)p(eh) ful b o) do dudo.
fomonges (s (7= ) ot =)

For the first term, thanks to the mean-value theorem, one notices that

() -
14+«

<1l-a, Vae(0,1)

so that
2 .
1L < (1 - 04)/ glv———ul|lf)|le®)]|ulb(@-c)dodudv
RIxRIx xSd—1 l+a
and, performing back the change of variable w = HTO‘u one sees that
LIS A -a) | —— lg (v = W[ f(W)[l¢(va)l [ulb(u- o) do dudv
R xRdxSd—1

S-0) [ Qs INE)le)l v,
Then, thanks to classical Boltzmann estimates (see Theorem B.1), it holds that
11| 5 (1= @) (19l oo o) 11 z2(m0) + 19122000 1) 1 L2 g ) ) 12 3

Since || (- >*2”||L1(Rd) < oo for & > 4, one can estimate the L!-norms with L? ones as

1121 S (1922w e 123000+ 1902 00 i) 1 22y NP2y (2:16)

for K > %.
For the second term one uses Taylor formula:

2 1-a L
g<v— 1+au> —g(v—u)——1+au‘/0 Vg(wy) dt

where

2 11—«
B = v — _ t) C Yte(0,1). 2.17
W= (1—|—a 1+« “ €(0.1) 217)
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Thus,
1
2 1-—
\Ig\g(l—a)// Vg(v—( - at)u)’
0 JRIxRIxSI-1 1+« 1+«
| f(v) p(v])] lul?b(t-0) do dudo.

Since p%a — ;—g > 1, it holds that, thanks to classical Boltzmann estimates (see again Theo-
rem B.1),

|| < (1- a)(HVQHL})(WHQ)HfHL%(wHQ) + HVgHLg(wq+2)HfHL}j(qu)) ol 22 (e) -

Combining the estimates for I; and I, we deduce that

d
191(9: 1) = Qalg: Mlzz(eg) S (1= lhyt o I (s 5> 5

Step 2. We now deal with Q. (f,g) — Q1(f, g) and as already mentioned, it is not trivial to show
that we can still impose that g is carrying the additional derivative. To prove such an estimate in
our L?(o,) framework, we shall resort to a method reminiscent to Bouchut-Desvillettes estimates
and use the weak o-representation. We need to estimate

Jz/’@%u@xm—gmﬂw@ﬂwwdv
R4

_/’ f(w — w)g(v)|u]x
RdxRdxS§d—1

x <¢ <v+ % (|u0u)> s (er % (|uyau)) > b(@- o) do dudo.

1+

Here again, thanks to the change of variable w = ~5%u, one splits J = .J; + J2 where, as before

(notice that the estimate (2.16) for I; does not involve derivatives), one has

T S (1123w 190 2000 10) + 122 190 20 1) ) 19 235

whereas

o= (o (o= u) = =) ) 9(0)e () [ul (i o) dordudo.
foponsn (7 (o Tgw) = 0-0)

Again, we use Taylor formula as before to get

11—«

B 1—|—a/ dt/Rded i L V f () g(v) o(v}) |u] b(t- o) do dudv

where w; has been defined in (2.17). Integrating by parts in the variable v, we deduce that

1 — o~
Jo = 1+Z/ dt/Sd 1dU /]Rd dv Rdf W) Vy - (u|u|g(v)<p(vi)b(u.a)) du
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ie.

l—«o

1+a/dt/8d1da/Rddv Rdfwt (u-Vyg(v)) |ulb(u-o)du
l—a/ dt/ do’/ dv [ f(@)g(v) (u- Vop(r})) lulb(@-o) du = J3 + J3.
Sd—1 Rd R4

1+«
Clearly, as for I3, one has

Jo =

‘J21‘ S (1 - a)(HVUQHL},(qurz)HfHL%(qurg) + HvﬂgHL%(qurg)HfHL})(wq+2)) H()DHLQ(wq) .
For the second term, one performs, for a fixed t € (0, 1), the change of variable
2 l1-—a
l+4a 1+«

u = uy = Bru, Bt ==

from which v} = v — 2%8,5 (|us|o — uy) and

1« d2/
72 1+a/ﬁt at [ do

/Rd dv g fv—us)g(v) (u* Vo <v -3 (Jts|o — u*)>> s |b(T5 - o) s

We introduce e; € (0, 1) such that
1 1+ e ) 20+ (1 —a)t
— = €. =
2675 4 2 — (1 — Oé)t ’

€ € (O, 1)

and therefore

l—«

1+a/ B~ th/Sd 1da/Rddv Rdf (v —u)g(v) (u-Vyp (vs,)) lulb(@- o) du

1—
12 [ [ avoh, 0 Ve

where, for any ¢ € (0,1), Qp., is the (vector valued) Boltzmann collision operator associated
with the restitution coefficient e; and kernel B(u, o) := u |u| b(u - o) . Thus, using an additional

integration by parts,
-« d—2 +
1+a/ By dt/ (VU-QB,et(f,g))sﬁdv-

Now, from Bouchut-Desvillettes estimates for Q7 B, S€E€ Bouchut & Desvillettes (1998) and
(Mischler & Mouhot, 2006, Theorem 2.5) for a proof in the inelastic case °, one has, for any

3Notice here we need simply to adapt the proof of (Mischler & Mouhot, 2006, Theorem 2.5) with, at the beginning
of the proof F(v,v.) = f(v)g(v«)(v — vs)|v — v«| instead of F'(v,v.) = f(v)g(v«)|v — v«| which explains the
additional moments zo 443 instead of zog42 as in the op.cit.
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te(0,1),
195, (f; g)llwi;,z(w : S 9l 22 (o) 1122 (0 s) + 1191121 ey ) 11 23 (e ss)
v q

where the multiplicative constant depends on [|b|[ 12(sa-1y but not on the restitution coefficient
and, thus, not on ¢. Since d > 3, this implies that

IV Q5 o, (Fs O 2(wy) S N9l 22 (g so) | FllL2(gss) T 191122 (g i) | F Nl L1 (0g0)

and, since SUP4e(0,1) By I <1, we deduce that

J3 S (=)@l r2(my) (19022(wqs) 111 L2(m00s) + 1912 (egs) 11 L2 (g 15)
which, controlling the L' norms with L? ones (with higher moments) as in the first part, yields

J S (= )l N9l o 1 2(ssn)

which proves the desired estimate (2.14).
Step 3. The estimate (2.15) can be deduced easily from (2.14) using Fubini theorem and the fact
that W5? is an algebra since ¢ > %. O

In our analysis, we will also need an estimate on the difference between L, and L; (see
Lemma 2.5) with no loss of regularity and with a “minimal” loss in weight (i.e. an estimate in
the graph norm), even if the rate is not anymore optimal (notice that this type of estimate can
obviously not being deduced from the previous lemma). To this end, we here state a lemma which
is in the spirit of (Mischler & Mouhot, 2009, Proposition 3.2) except from the fact that one of the
argument is fixed to be the Maxwellian M. Note that (Mischler & Mouhot, 2009, Proposition 3.2)
gives an estimate of this type on the difference between 9, and Q; for general arguments but the
proof heavily relies on the exponential weights they consider. It turns out that we can not adapt
easily the proof of (Mischler & Mouhot, 2009, Proposition 3.2) for polynomial weights. However,
by using decay properties of M, we are able, to get an estimate on Q, (M, ) — Q1(M, -) and
its symmetric, which is enough for our purpose. The proof is reminiscent of the proof of (Mischler
& Mouhot, 2009, Proposition 3.2) and (Alonso & Lods , 2013a, Theorem 3.11) but we face some
additional difficulties due to the polynomial weight.

Lemma 2.2. Let ¢ > 0. There exist some explicitp € (0,1) and a € (0, 1) such that

1Qa (M, f) — Q1M )l L1 (coy)
+[Qa(fy M) = Qu(f, M)lLi(wwy) S (1 — )P | fllLi(eogsn), @€ [oa,1].

Proof. We only prove the first estimate on Q;(-, M) — Q,( -, M), the other one can be treated
exactly in the same way. Notice first that

Qa(f7M)_ Ql(va) = Qz(va)_ Qi_(faM)
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As in the proofs of (Mischler & Mouhot, 2009, Proposition 3.2) and (Alonso & Lods , 2013a,
Theorem 3.11), we set w := v + v, and @ := w/|w| and define x € [0, /2] through |cos x| :=
|- o|. Let § € (0,1) and R > 1 be fixed and let 5 € W1>°(—1,1) such that ns(s) = ns(—s) for
any s € (0,1) and

1 if se(—1+251—26)
ns(s) = .
0 if sé¢(—-1+9,1-9)
with moreover
3
O<ms(s) <1 and  ns(s)l <5, Vse(=11).

Let us define also Or(r) = ©(r/R) with ©(z) = 1 on [0,1], O(z) = 1 — z for x € [1,2] and
©(z) = 0 on [2,00). We define the set

A(6) == {o € STL; sin? x > 6}
we split QF into
of =9i"+ ol + o

where the collision operators ot " fori = 1,7, a, are defined in weak form by (2.9) with associated
collision kernels defined as

By (u,0) :==ns(w-0) Or(u) lulb(u-o), Bi(u,0) = 1a5(0) (1 —Or(|ul)) [ulb(u-o)
and
Ba(u,0) := lulb(@-a) (1 = n5(@-0))Or(|u]) + (1 — Or(|ul) Lae(s)) -

This splitting corresponds to a splitting for small angles (corresponding to the kernel B,,), large
velocities (corresponding to B;) and the reminder term (corresponding to B,). The treatment of
small angles and of the truncated operator is similar to the one of (Mischler & Mouhot, 2009,
Proposition 3.2) and we only recall the results obtained therein:

||Q(—)t7a(f7M)HL}J(wq) SJ 5||f”L}J(wq+1) ) o€ (07 1] , Re (L OO)

and
+,r +,T < 1 R2 R
HQa (va) - Ql <f7M)”L11J(wq) ~ ( - Od) 7 + (573 HfHL%(wq) .
Let us now handle the case of large relative velocities. To this end, we estimate || Q4" (f, M))|| L1 (wq)
by duality and thanks to (2.9)

19, M)y = SUD / By, o) M(0) (1)t Yt/ dv dv, do
RdxRdxS§d—1

llelloo<1
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Choosing, ¢ = ¢(v) € L®(R%), one writes
I, = / B (u, o) M () f(vi)p(v")wog(v') dv dv, do
RIxRExS4—1

= [, 1) (1= On(fu) M) dodv, [ (@-0)plo! )y (o') do
R xR4 A(6)

where, by definition of ©p,

(1 =Or(Jul) Jul < 555 <

Juf?

noticing that [v/|* = %5~ (1 + o + (1 — &®)u- o) > o?|ul*. Therefore,

] S HCPJ}O;/ \f(v*)\lA((;)(a)b(ﬂ-U)wq+2(v/)<v;>2/\/{(v) dvdv,do. (2.18)
(6% RIxRI xSd—1

one has

Foro € A(6) and 6 > 1+ ,
2 2
[l = 5 (WP +10L). (2.19)

It is somehow easier to see this using the pre-collisional velocities. Indeed, observe first that the
set A(9) is invariant under the change of pre-post collisional change of variables and remark that

R e
B e 2 2] 2a

Using now that, when sin? y > 4, then |[w-o] <V1-6<1— g, we have
1 1 1-—

of? > Luf? + )~ r( ) - LR - P

9
2

1 1+« 1+« 1) 11—«

> (= - 1-— 1——

[ <2 Ao < > > < i < 2>+ 4a>
14+a, o l+a 1-« 9
> % — .
>0 8a [oe] +<5 S8« 2a )M

Then, if 6 > we get:

817
J

\’v|22 1—|—a 0
16

— (ol + o) >

2 1
which is of course equivalent to (2.19). As a consequence, since M(v) < exp (—%) Mz (v),

one deduces that

[v'|2 vk |2

M) () 2@ g12(v) S € " my0(v)e 51 ()2 M

[

o=

(v) S
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.. . . 1—
Combining this with (2.18) we deduce that, for § > 81—5—73’

i1, < el / |F(0) | M3 (0)b(@- 0)dvdv.do
02R6 2 JRIxRIxSI-1
which of course results in

1
iy _
190 (f, M)l L1 () = st”t;pgll < Y 1z

since b € L'(S?!). Gathering the previous estimates, we obtain if § > 8%;—3 and « far away

from zero:
< R?> R 1
19a(f; M) = Qu(fs M)l Lt (eog) S |0+ (L —a) [ 5+ 55 | + Py 1F 2L (ogin) -

Picking now § = (1 — «)? for some p € (0, 1) (so that the condition ¢ > 8%;—3 will be satisfied

for «v close enough to 1) and R = (1 — a) P~ 5= (1—a) —P*3° | we then obtain for o close
enough to 1 that

HQO&(f7M) - Ql(va)”L%(wq)
< ((1 — )P 4 (1— @) P (1 = a)l—p‘”‘z”) TirTa—.

and, with p = quS’ 1—p(¢g+7) =pand

1Qalf; M) = Qi M)lzaemy) S (1= @) + (1= ) 57) | Flly(em,
(1= )Pl fll Lt (oogsn) -

This proves the result. 0

S
S

Estimates on G, — M. We now investigate the rate of convergence of the equilibrium G|,
towards M as o goes to 1. An optimal convergence rate in L!-spaces is given in (Mischler &
Moubhot, 2009, Step 2, proof of Lemma 4.4): there exists aa > 0 such that

1Ga = MllLy(ymy S T —a),  a€lag1], (2.21)

for m(v) = exp(a |v]), a > 0 small enough. We need to extend this optimal rate of convergence
to the Sobolev spaces LY (o ) for j = 1,2 we shall consider.

Lemma 2.3. Let g > 0 be given. There exists some explicit ag € (0, 1) such that

1Ga = M L1 () + [1Ga = Ml 12() ST —a), a€las,1].
Proof. We start with the L2-case. To this end, we slightly modify here a strategy adopted in
Alonso & Lods (2013a) which consists in combining a nonlinear estimate for |G — M| 12 ()

together with non-quantitative convergence. We fix ¢ > 0, kK > % and we divide the proof into
three steps:
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Step 1: non quantitative convergence. Let us prove that

1Ga — M| 12 0. (2.22)

(gt+r+1) a—1

We argue here as in (Alonso & Lods , 2013a, Theorem 4.1). We sketch only the main steps. First,
from (Mischler & Mouhot, 2009, Proposition 2.1), there is @ > 0 such that for any £ > 0 and
any r = 0,

sup HGQHW’J’Q(WT) < 00.
a€c(a,l)

Then, there is a sequence (), converging to 1 such that (G,,, ), converges weakly in the space
L2(wg4k+1) to some limit G (notice that, a priori, the limit function G' depends on the choice
of g). Using the pointwise decay of (G4 ), and compact embedding for Sobolev spaces, this
L wgini1) — 0. According to (2.21), one
necessarily has G = M and one deduces easily that whole net (G, ), is converging to M. This

convergence is actually strong, i.e. lim, ||Gq, — G”L%(

proves (2.22).

Step 2: nonlinear estimate. We first consider the Maxwellian M, with same mass, momentum and
energy of G, and we consider the linearized elastic collision operator around that Maxwellian

L:=091(-,Muy)+ Q1(Mq, -).
One simply notices that, since Q1(M,, M) =0,

L(Ga) — Ql(Ga - MomMa - Ga) + Qa(Gaa Ga) + |:Q1(Gom Ga) - Qa(Gaa Ga):|

= Q1(Ga — Mas Mo — o) — (1 — )V, - (vGa) + [Ql(Ga, Ga) — (G Ga>] .
Therefore, using classical estimates for Q; (see Theorem B.1 and Lemma B.3) and considering
K > g, a > Q,

”L(GQ’)”L%(W(I) g ”Ql(Ga - M()“Ma — GQ)HL%(W(I)
+ (1 - O‘) HGaHW;ﬂ(qu) + ||Ql(Gow Ga) - Qa(Gow Ga)”L%(wq)
S 1Ga — Mall 22 () |Ga — Mall 22 )+ (1= )[|Gallyre
+ (1 =) [[Gall2(ws nra) 1 Gallgrz

Tq+r+1 (wog+1)

Wgtrt3)
where we used Lemma 2.1 for estimating the difference Q1(G,,Go) — Qa(Ga, Go). Since
sup, ||Ga HWLQ( < 00, we obtain that there is a positive constant C' > 0 such that

)HGa _MaHL%

Wqtr+3)

IL(Ga)ll22(w,) < C(1 = @) + CllGa — Mall 3

Wgt1 (@gtrt1) *
We can write L(G,) = L(G, — M,) and, as G, — M, has zero mass, momentum and energy,

there is a positive constant ¢ > 0 (that can be taken independent of «) such that

[L(Go — Ma)”L%(wq) > cf|Go — Ma”L%(

Wgt1)
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The constant ¢ > 0 is actually the norm of the inverse of L on the subspace of functions with
zero mass, momentum and energy; recall that this inverse maps L?(wo,) into 2(L) = L2(wwg+1).
Therefore, with C' := C'/c

HGQ - MQHL%(W(I+1)
SCA-a)+CGa - Ma”L%(wq+1)”Ga — Mallrz( a€ [a,1].

Watrt1)

(2.23)

Step 4: conclusion in L. Setting

Boy 1= 1/ vaMa(U)dv:l/ (0 Gu(v) v,
d ]Rd d Rd

one sees easily from (2.21) that [¢; — ¥4| < 1 — v and then, one can check without difficulty that

|IMqy — M||L%(wq+ﬂ+1) <1-a, a € [ag,1]. (2.24)
Thanks to (2.22), there exists a3 € [max (a2, @), 1) such that
~ 1
CHGQ - MQHL%(wq+H+1) < 57 @ e [Oé3, 1]

where C is the positive constant in (2.23). Then, (2.23) reads simply as

1Ga = Mall 2w,y <2C(1—0),  a&lag,1],
and, using (2.24), we end up with
HGa_MHL%(le) S l-a, OS [a?nl]v

which gives also a quantitative lower bound on as.
Step 5: estimate in L}. The estimate on the L} (w,)-norm of G, — M can be obtained straight-
forwardly by using the previous result in L2-spaces and Cauchy-Schwarz inequality. g

2.2.2. Estimates on L, — L. We first provide an estimate on L, — Li; (where we recall that L,
is defined in (1.29)) in an L2-framework which comes from Lemmas 2.1 and 2.3.

Lemma 2.4. Consider g > 0. For any k > %, there exists some explicit g € (0,1) such that for
any h € L3 (@qit3),

[Lah = Lihllr2(w,) S (1 — @) [|hll12(mgynrs) @ € oa 1] (2.25)
As a consequence, for any ¢ > 0, there holds
a € [ag,1]. (2.26)

[Lah — LthL%Wﬁ’Z(wq) S(1-a) HhHL%ch’Q(Wq+n+3) )

Proof. Notice first that

Lah - Llh = Qa(h, Ga - M) + Qa(Ga — ,/\/l, h)
+ [Qal(h, M) = Q1(h, M)] + [Qa(M, h) — Q1 (M, k)] . (2.27)
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From Theorem B.1,

192 (9, N2 (y) + 195 (F, Dl 22(0) S I L1 (egi) 191122 (g 50)

where we recall that Q" is the gain part of the operator Q. On the other hand, using Lemma B.3,
we have that for k > %,

190 (9, PllL2(wwy) S L2 19122 (e 1)
where Q) is the loss part of the operator Q,. One deduces that
1Qa(h, Go = M) 12(w,) + | Qa(Ga = M, 1) 12z,
Sl (i) (1Ga = Mllzamyen) + 160 = Mllzz o))
+ 12l 2 (i ) [[Ga = Ml L2 (my11) -
Then from Lemma 2.1, for any x > %, we have:

|Qa(h, M) — Ql(hw/\/l)”L%(wq) +[|Qa(M, ) — Ql(Mvh)HL%(wq)

Sl_a

Ml oy )

where a = max(d — 1,2). One can then conclude that (2.25) holds true thanks to Lemma 2.3. [

We will need also to derive an estimate for L, — Ly in its graph norm in a L-framework, at
the price of loosing the sharp convergence rate (1 — «).

Lemma 2.5. For any q > 0, there exists some explicit as € (0, 1) such that

ILah — Libll (S (= 0P Il s @ € [as, 1], (228)
where p is defined in Lemma 2.2. As a consequence, there holds
b
[Lah = Lihllrir2(w,) S (1 —a)2 [AllLir2 (e, @ € [as,1]. (2.29)

Proof. Recall (see Theorem B.1 and Lemma B.3) that for any a € (0, 1],

Hgi(gv f)”L},(wq) S./ ||g||L11,(wq+1) HfHL},(w,H.l) ) Vfgé€ qu;(wq—i-l) . (2.30)

Using the decomposition (2.27) and choosing a5 € [max(aq,as), 1) (where oy is defined in
Lemma 2.2 and a3 in Lemma 2.3), the proof of (2.29) is then a direct consequence of (2.30) and
Lemma 2.2 which give

[Lah — L1kl 23w,y S IPLL (i) 1Ga = MLy (gr) + (1 — )P Al L1 (20, 1) -

Let us prove (2.29). On the one hand, the L} L. (z,)-norm of Loh — Lih is estimated using
Fubini theorem and (2.28):

[Lah — Lahll L1 11 (w,) S (L= )P 1Rl 1111 (egs) -
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On the other hand, using (2.30) and the fact that Qi are local in z, one can show that

[Lah — Lah|l L1 oo (wy) S NI LL Lo (egsn) -

We obtain (2.29) by interpolation. O

2.3. Decomposition of .Z,,. Let us now recall the following decomposition of %}, defined
in (1.28) introduced in Gualdani et al. (2017); Tristani (2016) (see also Alonso et al. (2017) for
proofs adapted to the case of a general collision kernel b). For any § € (0, 1), we consider the
cutoff function 0 < O5 = O5(&, &y, 0) € C®°(R? x R4 x §%71), assumed to be bounded by 1,
which equals 1 on

J5 = {(g,g*,a) eRYx RYx ST || <67, 26 <€ — €] <671, Jcosd] < 1 —25},

and whose support is included in Js (where cos = <\§:§*| ,0)). We then set
2 *

LE0O = [ [MEDE) + MEME) - MOR(E)]

€~ ] (cos6) O5(€, 4, 0) dé. do
LEE = [ IMIEDRE) + ME(ED — MOME.)]

€~ &1 b(cos 0) (1 — ©5(6,,0)) de. do

so that Z1h = le’gh + ZIR’éh — hX A where using (1.6), >, denotes the mapping

Sale) = [ M —elde,  veeR!, @3
Recall that there exist g > 0 and o1 > 0 such that
oowi(§) < Em(E) <orwi(§), VEER™ (2.32)
Introduce
AO(R) = £3%(h)  and  BY(h) = 2R 3y,

so that & = A® + Bgé). Let us now recall the known dissipitavity results for the elastic
Boltzmann operator in L} L2-based Sobolev spaces, see (Gualdani et al., 2017, Lemmas 4.12, 4.14
& Lemma 4.16):

Lemma 2.6. Foranyk € N and d > 0, there are two positive constants Cj, s > 0 and Rs > 0 such
that supp (.A(‘s)f) C B(0, Rs) and

‘|A(5)f||wﬁv2(ﬂgd) < Crsllfliyy,  Vf € Ly(w). (2.33)
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Moreover, the following holds: for any q > 2 and any 6 € (0, 1) it holds

/ Ih(-,v)|| 72 (/ (gg%(x, U)) h(w,v) dm) w(v) dv
R? @ \Jrd
< (Aq(0) =D Al L2 r2(mogspe)  (2:34)
where Ay : (0,1) — R is some explicit function such thatlims_,o Ay(8) = ﬁ.
Remark 2.7. Notice that this lemma comes from Gualdani et al. (2017) but the constants involved

in the final estimates are not the same as in Lemma 4.14 of Gualdani et al. (2017) where it seems that
some multiplicative constants coming from (2.32) have been omitted in some computations of their

proof.
This leads to the following decomposition of .Z,:
L =B + A® where BY) = B@ + [ L0 — 4. (2.35)

2.4. The complete inelastic linearized operator. The complete linearized operator is given by

Gach =e 2%\ (h) — e w-V,h, Ya e (0,1].
With the previous decomposition of .Z,, we have that

Goe = AL+ BL)

where

AL = 72 40) Bgfg =e2B0) _ 71y v,

One has the following properties of B(()i)a in L} L2-based spaces.

Proposition 2.8. Forany?¢ > 0 and q > 2, there exist aI, > 0, (52 > 0 and v4 > 0 such that for
anye € (0,1],
BC) + 72y, s dissipative in LYW.? (zo,)

forany a € (o}, 1) and § € (0,5)).

Remark 2.9. Let us be more precise on the estimate of dissipativity we obtain in L} L2 (wo,) for
further use: for any e € (0, 1], any a € (a(TI, 1) and any § € (0,6}), we have

1h(- o)l BOL(R) (z, v)h(z,v) dz ) woq(0) dv < = 2vg|lhl| 3 12 (e ) -
R4 = \JTd

Proof. Notice that derivatives with respect to the z-variable commute with the operator B((f%
and this allows to prove the result, without loss of generality, in the special case ¢ = 0. We first

introduce the following notations:

Po =Ly — Ly, To=—(1—a)Vy-(v-).
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We then write B&‘fi(h) =33, Ci(h) with
Co(h) :=e2BVh,  Cy(h) = —e " -V,h,

Cy(h) = 2Pyh,  Cs(h) = *T,h,

and correspondingly (with obvious notations),

1ol ([ BELB) )b, v) da ) (o) do = " Ii(h)
feconi (f, ) >

First, I;(h) = 0 since

/ (v-Vzh(z,v))h(z,v)dr = 1/ v-Vyh*(z,v)dx =0.
Td 2 Td

According to (2.34), by taking ¢ small enough so that A,(d) < 1 (which is possible since g > 2),
we have

Io(h) < e %00 (Mg(6) = 1) ||hll 2 r2

m(wq+1) :
Moreover, it follows from Cauchy-Schwarz inequality and (2.29) that there exists C' > 0 such that
for any a € [as, 1],

2 / 1Pah(-,0) 2 wg(v) dv < e 2C(1 — )} |l sy 12 (m s -

Finally, for I3, one can compute

/ ||h(-,v)HZ21/ Vo - (vh(z, v)) h(z, v) de oy (v) dv
—d/ 1A(-, )|z () do + = /Hh )HE%I/Tdv-VUhQ(x,v)dqu(v)dv
—d [ InC ol wa@dot 3 [0l ool o)l wy(o)do

/ [A (-, v)|lp2v - Vg (v) do.
Since v - V@4 (v) = qmog(v) — qmog—2(v) we get

I3(h) < q(1 — )e?||hll 1112wy 4n) - (2.36)

Gathering the previous estimates, one obtains

= [ ([, 300 00000 ) ) @)
<e

2 (€0 =)k +00(8g(0) = 1) + a1 = ) 10l 220
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Recalling that lims_,o(Aq(6)—1) = — Z-% < 0, we can pick 52 small enough and then a}; € (as,1)

close enough to 1 so that

D
2

vy = — inf {0(1 — )% 4+ 00(Ag(0) = 1) +q(1 —a); a € (al,1), 6 € (0,5;)} >0

and get the result. g

3. HYPOCOERCIVE NORM FOR THE ELASTIC PROBLEM

We establish here some hypocoercivity result for the elastic linearized operator G; .. Fore = 1,
hypocoercivity results have been established notably in Mouhot & Neumann (2006) with the
so-called H!-hypocoercivity method. For ¢ € (0, 1), it is important to deduce hypocoercivity
results with optimal dependency on ¢ (see Section 4 where the hypocoercivity estimate below
will be crucially used). The results of Briant (2015) extend the ones by Mouhot & Neumann (2006)
and provide estimate in Sobolev spaces like Wi%(./\/l_%) for e € (0,1) with ¢ > 1 but in our
subsequent analysis, it is important to use a space which does not involve any derivative in the
v-variable, we work therefore in the spaces

M= LZWPRMEY),  Hpo= DEWPRMOA (), ms g. (3.1)

Notice that all the results of this section except Lemma 3.4 would be true in LgWﬁ’Q with £ € N,
we only state our results in H because we will use them only in this framework. In order to prove
our result in the functional space #, we use the L2-hypocoercivity method. Let us mention that
recent L?-hypocoercivity results have been obtained in Bernou et al. (2021) (to which we refer
for references on hypocoercivity methods in general) for various linearized kinetic equations in
bounded domains with general Maxwell boundary conditions. For the Landau equation on the
torus, similar results have been obtained in Carrapatoso et al. (2022) and our result is an easy
adaptation of (Bernou et al. , 2021, Theorem 5.1) and (Carrapatoso et al., 2022, Proposition 3.2).
Before stating our result, we recall the expression for the spectral projection 7 onto the kernel
Ker(L) of the linearized collision operator Ly seen as an operator acting in velocity only on the

space L2 (M_%):

d+2
mo(g) == Z (/Rdg‘l’i dv) v M, (3.2)
i=1
where
i— . 1
Ui(v):=1, Y(v):= 1\)/19% (1=2,...,d+1), and VYguas(v):= p m(h}\z—dﬁl).
1

(3.3)



44 RICARDO ALONSO, BERTRAND LODS, AND ISABELLE TRISTANI

Note also (see for example Briant (2015)) that the spectral projection Py onto the kernel of G; .

is given by
d+2

Po(g) == Z (/’ﬂ‘d Rdg‘l/i dx dv) v, M (3.4)

i=1
and so the difference with respect to the spectral projection 7y is that an additional spatial
integration is performed.

Proposition 3.1. On the space H defined in (3.1), there exists a norm ||| - ||, with associated inner
product (-, -))w equivalent to the standard norm || - ||3; for which there exist a; > 0 and ag > 0
such that

al
(Greh. h)w < = [I(1d — mo) hll3g, — arllPl3, — azllhll, (35)
holds true for any h = (Id — Po)h € Z(G1) C H where my (resp. Py) is defined in (3.2)
(resp. (3.4)).

Remark 3.2. Remark that the equivalent norm || - ||, actually depends on ¢ (see (3.17)) but we do
not mention this dependency in our notation because this norm is equivalent to the usual one || - |4
uniformly ine € (0,1). In particular, there exists Cy; > 0 independent of € € (0,1) such that

Cullhllae < lIAllly < Cit bl . YheH. (3.6)

Proof. The proof follows closely the one in (Carrapatoso et al., 2022, Appendix A) and we provide
only the main steps and main changes.
Step 1. In this first step, we provide tools that are useful to carry out our proof. We set

zhr) = {o € 220 [ otz =0},

Then, for any ¢ € L2(T?) there is a unique solution f € W23(T4) N L%(T9) to the equation
_Az‘f = ¢7 T € Td .
We denote then by (—A,) ! the bounded operator
(“A0)7": g e TATY) s f € W22(T)  I3(TY).
In particular, (—A,) " € Z(L3(T%), Wy*(T4) N LE(T?)).
Forany f € L%,’U(M_%) we introduce the following notation
fri=1d—mo) f (3.7)

where 7 is the spectral projection 7 onto the kernel Ker(L;) of the linearized collision op-
erator L; defined in (3.2). As in Section 6, it will be more convenient to adopt the equivalent
definition of 7rg:

mof(o0) = (o) + o) o+ GO F - am) ) M), 9
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where

Q[f]::/Rdf(~,v)dv, u[f]:ﬁll/Rdvf(-,v)dveRd,

and 0[f] is defined through

olf] + V10[f] :d;L%/Rd lo2f(-,v)dv.

For general f € L%,U(M_%)’ the splitting f = f* + mo f implies that

192, ety = W42, oy, eI + Rl + 1600 - 69)

T,V

M)

Notice that, for f € Z(G1 ) N Range(Id — Py), one has Pof = [4 7o f dz = 0 so that
olf], urlf], 01f] € L3(TY),  Vk=1,...,d.

In particular, (—A,) "' o[f], (—Az) " ui[f] and (—A,) "' 0[f] are well-defined and

|80 ol 20 S Nl ez S 171y 03,

|20 walf1] o S Hslf iz SUF1, e

and |[(=A0) 7 01| S 101 Ms2 S 171, s

(3.10)

)
We introduce here the following notations, for any k,¢ € {1,...,d} and any f € H, we set

_ 2 _ b 2
Wil = g [ @ o= g [ o (ol @+ 2m) sy do, @
where
b(v) = % (o — (d+2)91)v, veRd (3.12)
and
Owlf)(x) = /R o)) M) dv, €T (313)
with
1 , ,
mvkvdv\ lfk#g,
Pre(v) =
d—1

1 .
5 791+v,%—§|v\2 ifk="2¢.

One observes easily that
d—1
2

Oelf] = Oelf] if k#¢, while Oplf] = Olf]— 930[f].  (3.14)
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Notice that, since by, and py, are polynomial function, a simple use of Cauchy-Schwarz inequality
shows that

9z + 1@uelf iz S 15,5 s (.15)
In particular, using (3.14), we deduce that
I©uelfllzz < 161105z + 1741, s, 616)

We now have the tools needed to develop the proof of Proposition 3.1.
Step 2. Since spatial derivatives commute with G ., the crucial point is actually to define the
equivalent inner product and norm on the space

H:=L2,(M2)

1 while, on the space L2(T%)

and norm || -
1 | HL%W(Mff)

iz,
the inner product is denoted (-, - ).

with usual inner product (-,

We define the following inner product (-, - )) i on L2 (./\/l_%) as follows: if Po f = Pgg =0,
then we define

TP

+em Z (10, LOLF),ulgl) 2 + (o (=20) 7 Olgl, Gl iz )

+eng Z ((% (—A2) " urlf], Owelgl)zz + (9, (—A2) " uilg] @u[fDLg)
k=1

d
+ens Z <<8Z’k (_Ax)il Q[f] ) uk[gDL% + <a€vk (_Al’)il Q[g] ) uk[fDL%)
k=1
(3.17)

for some suitable constants 0 < 13 < 172 < 11 < 1 to be chosen, otherwise, we simply define
(f;9hm = (f.9)

It is worth mentioning that in the rest of the paper, the only useful part of the definition is the first

L2,(M"2)"

one, that is (3.17). The associated norm is denoted by || - ||| ;. Since V, (=A,) "' is a bounded
operator on L2, one deduces easily from (3.10) and (3.15) that

2 2 < 2 2 < 2
I, eny S SUAI, oy eI, 1712,

for e € (0,1). Therefore, the norms || - ||, and || -l 1 are equivalent uniformly with

L, (M™2)
respect to €.
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For h € 2(G1,.) N Range(Id — Py) C H given, we compute (G ch, h)) i as

2
(Greh, W) = (Greh. bz + em(D + L) + em > (P + J3°) + ens(Ra + Ra)
k=1

where
Il = <V;c (_Ax)il a[gl,ah]ﬂvb[hDL% ) 12 = <v$ (_Ax)il e[h] ) ¢[g175h]>[/§ ’
T = (O, (—00)  uklGr ], Okelh) 2, T3 = (O (—An) " uklh], OpelGreh]) p2

and

Ry i= (Y, (<A olGuehlult)) s, Rai= (Ve (=A,) ™ olh], ulGohl) 1
We compute and estimate all these terms in succession. First, recalling that

1 1
gl,ah - ?Llh — —=U- Vxh
5 IS

and using that L; is self-adjoint and coercive on H: there exists ag > 0 such that

(Laf, f) —ag| (Id — 71'0)fH2

L%,U(Mf%) SMTE(3y)
for any f € 2(G1,) C H such that Py f = 0 (see Briant (2015) for instance), we deduce first
that

_30 12
<91,Eh,h>L%v(M,%)< I ”Lg,vw—%m%) (3.18)

where we recall that h+ = h — mph.

As far as Iy, I are concerned, one has the following technical computations, in the spirit of
(Carrapatoso et al., 2022, Proposition 3.2):

0[G1.h] =~V plh] — = Vaulh],

de

while

1 1 d+ B
ild1.h] = S [Llh }+ — 29,04, 0[] dﬂzzamj/ b (v)ht dv

With this, arguing as in (Carrapatoso et al., 2022, Proof of Proposition 3.2), we deduce first that
2 (e Illzz + [l [7]]l2)

and then, thanks to (3.15) and the fact that 4[h] = 1[h"], we get that

1
hls - <|u[h}HLz + |hLHL%,v(M_%)> L Ve

| V2 (—a0) oG-

L2N

2)°
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Similarly, using the expression of 1y [G; h], we can split I3 as Iy = Io; + Iz + I3 with

1 _ d+1
I = (Ve (~As) YO[R], Y[Lah e, D= y

91(Va (—Ag) 1 0[h], Va0[h]) 12
and

-1
gdﬁ22< 0[h], Ox, /vkb v)ht dv>L%.

1

Since L; is self-adjoint on L2(M™2), one has from (3.11)

2 2
P[Lyht) = a5 / b(v)M (v)Ly (hH)M ™ (v) dv = i Ll(bM)hLM_ldv
and H@b[LlhﬂHL% S HhLHL%U(M*%) from which
1
] S 1O 10y s

By a simple integration by parts, one has

1d+2 _ 1d+2

Iy = ————= 918 (=A) " 0[], O[h]) 2 = —— =D [I0[R]][7; -

Finally, I3 is estimated thanks to Cauchy-Schwarz inequality as in Carrapatoso et al. (2022) to
deduce that

1 1
sl S ORIz s

Combining all this estimates, we deduce from Young’s inequality as in (Carrapatoso et al., 2022,
Eq. (A.8)) that there exist Ky, Cyp > 0 such that

C C
2 lulh]l| g2 B + g IR . (319

Ko 2
11+I2<—€7H9[h]||L3+ £2,(M"%) L2,(M™2)

To estimate Jf * and J; * we first observe that

1 d

1
Uk[glﬁh] = 721918xk (Q[h] + ﬁlg[h}) — g Zax] /Rd UkUth- d'U,
=1 (3.20)

1 1 1
One[G1.h] = EGkZ[Lth] = ZOkilv- Vamoh] — —Ofv- V.h']
where

93 (D e [h) + Dy ui 1) if0#k,
@kg[v . Vxﬂ'()h] =

92 <8xkuk[h] — axjuj[h]) if0=F.
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With these technical calculations, we can argue as in Carrapatoso et al. (2022) and first observe
that, using an integration by parts and (3.20)

Ve (—Az) " ur[Grehlll 1z = <Uk[g1,a[h]7 (—Ag)7! Uk[gl,ah]>

1 1
S 2 (el + 160z + 1041y s))

which, thanks to (3.16) easily gives
V4
751 2 (leltlas + 100z + 10y ) (1O0RISs + 141, 0y )-

For the term Jf’e, we use the expression of @/[G; ] in (3.20) to deduce that Jg’f = ng,g +
Jhit )

9 + Jos where

k,t 1 _
I = 55 (On (=) il @kg[Lth‘]>L% ,
ke 1 A - _ L
It =2 <au (=) " uglh], Ol Viuh ]>L%
and
1 _
Jécéz = z <8x£ (—Ax) ! uk[h] , G‘)M[U . Vxﬂ'()h]>L2

One has then easily thanks to Cauchy-Schwarz inequality that

1
kL
Joi S —llulh ]HL?HhL”

1
k.t
21 S 2 Jo3 S EHU[h]HLthLH

S(MTT) L2,(M™3)

while, arguing as in Carrapatoso et al. (2022) ans using integration by parts we see that

d
k,l
o= 3 I = ffzuuk 2 =~ Dufullz

k=1

Gathering all these estimates, we obtain, as in (Carrapatoso et al., 2022, Eq. (A.16)) and using
Young’s inequality again that there exist positive constants K7, C; > 0 such that

3 (764 250) < =B utnliy + bl o0z + S lellalntl,
k=1 1 A Ly T g etz 13 T g ety L3,(M72)

e

Cl 2
ORI + I,

L. (3.21)
2)
Let us now estimate the last term R + Ro. We begin with observing that

1
Q[gl,sh] = _gvz ~ulh]
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so that
_ _ 1
Ry = (Vo (=0z) " 0Greh], ulhl) e S I (—=As) " 0lGueh]ll 2 lulh]ll 2 S EHU[hHI%g :

Using the expression of uj[G1 <] in (3.20) again we can split Ry as Ry = Ra; + Raa + Ras with

Roy = %191 (Vo (00 olh]. Violh]).  Bop = %ﬁ% (Vo (~20) " oln], V,001])

and

d
1 -
R23 = —g E <8Ik (—Ax) L Q[h] s 855]. /I‘%d ’UkUth' d’l)> .

k=1
Clearly, an integration by parts gives

Rot = =201 (=0 (=00 i olf]) |, = —Z0ull el

LE

whereas, easily, Roo < é”g[h}HL% 10[A]]| 2 and

Ros S = V2 (=a0) 7" ol

1
®uhtdv| < =|lo[h]|l 2|kt .
[ ve v, 5 ety s,

Using Young’s inequality after gathering these estimates, we deduce that there are K5, Cy > 0
such that

Ky Co Ca Co
Ry + Ry < =—ellIzz + —llulb]llzz + N0, + [

12

P (3.22)

One sees now that Egs. (3.18) — (3.19) — (3.21) — (3.22) correspond respectively to Egs. (A2)-
(A8)-(A16)—(A18) of (Carrapatoso et al., 2022, Proof of Prop. 3.2). Therefore, as in Step 5 of the op.
cit., we can choose 0 < 173 < 2 < 11 < 1 small enough and a;, as > 0 such that

a1
(Greh, M < =5 [I(Id — mo) hliz, — allhllF, —azllhlliz

where we used (3.9). This proves the desired hypocoercivity in H = L%U(/\/l*%). One extends it
without difficulty to H = L%W?’Q(M_%) by introducing

(f9hn =D (fdighu (3.23)
l7l<m
and by observing that G . commutes with x-derivatives. O

The following result ensures that multiplication by polynomials and the drift term behave
nicely with respect to this hypocoercive norm:

Lemma 3.3. The inner product (( -, -))3 associated to the norm ||| - ||,, on H constructed in Proposi-
tion 3.1 is such that there exists a3 > 0, C > 0 (independent of ) such that

—{(divy (vh) , h )y < ag((@2h, h)y + Ce|lhl3
forany h € L2Wi-*(( >M7%)
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Proof. As in the proof of Proposition 3.1, it is enough to show the result in the space H =

Lz, (M_%) with inner product (( -, - )) ;7 defined in (3.17) since here again z-derivatives commutes
with the operator Ty : h +— Toh = —V, - (vh). From the definition (3.17), we need to estimate
carefully (Toh, 1) | as well as [|o[Toh] | 2. [ulTohl 2. 161Toh] 2. 44[Toh] | 2 and

|®we[Toh] ||L2 Slnce

S(M72)

(Toh, h> Sk T /Td dz Rdv - (vh(z,v))h(x, V)M (v) dv

/ / M () do + = Addx/Rdh2xv (oM (v)) do

= d/ dx/ b (z, )M~ (v) d1)+/ dx/ h*(z,v)v- VoM (v) dv
2 R4 2 Td Ra
Since v- V,M™1(v) = %|v|2./\/l_1(v) = ﬁwz(v)/\/l_l(v) - ﬁil/\/l_l(v) we deduce that

(Toh, h) L2, b = I H M1 + ﬁ<w2h h) s 2 (ME) (3.24)
Now, by simple integration by parts
2
o[Toh] =0,  w[Tph] =wu[h],  60[Toh] = 9,9 olh] + 20[h]
while
d+2 ~ -
Yr[Toh] = 3¢i[h] + ZWuk[h] and  Op[Toh] = Olh] := dpkg(v)h(x,v)/\/l(v) dv
1 R
with
Bralv) = —ﬁ—ll\U\kag(v) + 4dppe(v) , if k#1,
—19—11|v\2pkk(v) + Zpkk(v) - (d - 1)191 if k=~¢.

In particular, ©¢[Tyh] shares the same properties of @y[h]. Since V, (—A,) ! is a bounded
operator in H, one thus checks easily that (3.10) and (3.15) yield

<<T0h7 h)u — (Toh, h> S EHhH2 1.

12,1 ~ " ount)
Combining this to (3.24) gives the existence of C' > 0 such that

1
2191 <WQh h)

Using the same kind of arguments, we deduce now that

(ol By oty — Gt B eI,

(Toh, h) +Cs||h||2 -

Lz (M~ ?) H(MT2)

Therefore,

< - 2
(Toh, W) i < 20, {(zah, h)# + C€HhHL§7U(M,%)
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which is the desired estimate with a3 := ﬁ Il

We end this Section with the following useful estimate, in the spirit of (Briant , 2015, Theo-
rem 2.4) (see also (Briant et al., 2019, Theorem 4.7)):

Lemma 3.4. The inner product (( -, -))3 associated to the norm ||| - ||,, on H constructed in Proposi-
tion 3.1 is such that for any h1, hy € H1, g € HiNRange(Id — Py),

((Id = m0) Qa(e)(P1, h2), g w < (1hallae 12l + [[ha ol Pallz,) 1(Xd — o) glly,
+ ellhallzllh2llallmogllz - (3.25)

Proof. The proof is based on Lemma B.5 and we recall that, thanks to (3.17) and (3.23), (-, - ))x
is defined as:

<<f7g>>7'l = <f7g> 1

LIZWF"*(M™2)

s
x

d
om0 (@ (~00) 701 Blol) ez + (0o (—B2)7 0lg], il D)
k=1

d
+ eng Z <<a$g (_Ax)il uglf], @M[Q])Wgﬂ + <aﬂﬁz (_Ax)il ukg] ekf[f]>W§"’2>
kt=1

d
tems D (O (~80) " olf], walolhpa + @ (~00) " elo], uel Mgz
k=1

(3.26)

for f, g € Range(Id — Py). In the rest of the proof, we apply this to
fi=(Id =) Qa(ha, ha),

and one observes that A[f] = uy[f] = o[f] = 0. Splitting ¢ = g + mog, in the same way
Q[QL] = Uk [gﬂ = Q[gJ‘] = 0 so that

((Id — mo) Qalhi, h2), g))u = ((Id — mp) Qa(h1, ha), mog))n
+ <(Id —70) Qualh1, h2),gL>H

where, moreover,

(1d = m0) Qu (1, ha). mog)yy = 0, (1 = m0) Qulhusho).g*) = (Qulhu,ha).gt)
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since (Id — 7rg) and 7y are orthogonal projections on L2 (/\/l_%) With (3.26), we deduce that

((1d = m0) Qulhs, ), gl = { Qulhn, ha), g

ISH

d
+eém Z<8xk (_A:v)_l 0lg] d’k[fbw;"? +Ene Z (Ox, (_Aw)_l uglgl, ka[fbwg%?
k=1 k=1

where we used the fact that 0[mg] = 0[g], ux[m0g] = ui[g]. Notice that we can easily adapt the
bounds (3.15) to deduce that

e[ FlllLz + 1Okel Az S I (3.27)

L2, (M2 ()1

With such a bound and using and the fact that V, (—AI)*1 is a bounded operator on W2, we
deduce easily that

((1d = 70) Qu (. ha). g S (Qalhr, ha)g™)

& (Ilulglllypye2 + 100Gy ) 1l
where we introduced
Hoy = L2WPA(MT3 ()71,
According to (B.2) and using that Id — 7 is bounded in H_1, this implies that
((d = 70) Qa(h1,h2), gha S (1hallllballae, + 1]l hallae) g™ o4,
& (Ilulgl g2 + 1010] g2 ) 19 (B, o)l -

Adapting easily the proof of (B.4), one sees that ||Qa(h1,h2)ll4_, < lh1ll#llhell3 and one
deduces that

((Xd — 70) Qa(ha, h2), ghn < (Iallsellhallze, + 7l B2 llae) g™ le,
& (Ilulglllygze2 + 1000] g2 ) WAl e

where, obviously, ||u[g]||ym.2 + [|0]g]llyym2 S |lwogll%- This gives the result. O

4. NONLINEAR ANALYSIS

We now apply the results obtained so far to the study of Eq. (1.27) under Assumption 1.1. Let
us define the functional space £ in which we are going to carry out our analysis:

d
£ = LiWZ"Q(wq) with m > B and q=3 (4.1)
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and recall that Hilbert spaces H and H; are defined in (3.1). We also recall here that M is the
steady state of .7 defined in (1.19) while H is a Hilbert space on which the elastic Boltzmann
equation is well-understood (see Subsection 3). We also define the following functional spaces

& = LW (wogy1), &= LW (wgi0.43) (4.2)

v

where m and ¢ have been fixed in (4.1) and k > g is fixed.

Notice here that we impose here the condition m > g in order to ensure that the embedding
Wi»(T%) —s L°(T%) is continuous, which allows us to treat nonlinear terms thanks to the
underlying Banach algebra structure. Notice also that our analysis is based on the fact that
A, € #(E,H) and on the following continuous embeddings:

H—Ey— E — €.

Since A has no regularisation effect on the spatial variable, we are forced to have the same number
of spatial derivates in the spaces £ and H. Taking ¢ > 3 allows us to control the dissipation of
kinetic energy D(f, f) defined in (1.10).

For the rest of the paper, we fix § € (0, 5(;) (with ¢ fixed in (4.1) and 61, defined in Proposition 2.8)
and €1 € (0,g0) (where ¢g is defined in Assumption 1.1) such that a(e) € (0, ag) for any
€ € (0,e1) (where oz}} is defined in Proposition 2.8). It in particular implies that the conclusions
of Proposition 2.8 and Remark 2.9 are satisfied for B,() . 1= B((j()s)’s in the functional space £
defined in (4.1) for any € € (0, 1). In order to lighten the notations, we also denote G, := ga(a),g.

4.1. Splitting of the equation. As said in the Introduction, we adapt the approach of Briant
et al. (2019) and decompose the solution h = h, of (1.27) into

h(t,z,v) = h2(t, z,v) + hi(t,z,v)

where h® = h0 € £ and h! = h! € H are the solutions to the following system of equations (in
order to lighten the notations, in this whole section, we shall omit the dependence on ¢ for h, Ko

and hl):
Oh° = Booyoh? + 72 [La(g)hl Lkt 4 (1= afe))e2agems (Id — Po) bt

671 | Qu(e) (% A) + Qa(e) (%, 1Y) + Qagey (W1, 1) + moQa(e) (1, 1)

RO(0,z,v) = i, (x,v) € E
(4.3)
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where a3 is defined in Lemma 3.3, the projectors 7y, Py in (3.2)-(3.4) and

Oih? = Gicht+ (1 —afe))e 2 [=divy (vh') — agwoz (Id — Po) h!]
+et (Id — 71'0) Qa(g)(hl, hl) + Asho ,

R (0,z,0) = 0€H.

(4.4)
Since
G-ht = Gich! — (1= a(e))e*div, (vh') + (1 — a(e))e 2 | Ly h' — Llhl}
while
G.h" = Ba(s)ysho + .Agho,
one checks easily that h = h¥ + h! satisfies
Oh=Gh+e ' Qu(hh),  h(0,2,0) = K (2,v) €E (4.5)

which is exactly (1.27). Comments about the splitting of (1.27) into two equations (4.3)-(4.4) are
given in the Introduction.
Before starting the analysis of equations (4.3) and (4.4), we recall that h satisfies (see (1.33))

/ﬂ‘ded h(t,x,v) < Qlj > dvdr = ( 8 ) . (4.6)

Recalling the definition of Py in (3.4), since the part of the projection related to the dissipation of
energy will play a particular role in our analysis, we define

d+1

Poh = / hU;dvde | U, M, Toh:= / WUy odvde ) Ugg M. (4.7)
TdxRd Tdx R4

i=1

Of course, from (3.4), one has Py = Py — Ilj. Recall also that the eigenfunctions W are such that
/ \I’i(v)\lij(v)/\/l(v)dv:&,j, Vi,jzl,...,d+2,
Rd

which in particular implies that, in the Hilbert space H*, one has Id — Py = Py-.

The rest of the section is dedicated to the proof of a priori estimates on h® and h'. To this end,
during the rest of the section, we assume that h® € &, h! € H are solutions to (4.3)-(4.4) and that
there exists Ag < 1 such that

Sup (IR @lle + 1R ®)ll2) < Ao (4.8)

Mention also that the multiplicative constants involved in the forthcoming estimates of this
section may depend on Ay < 1. We will only mention it when necessary.

4Recall here that, on the space L2 (./\/17%) the inner product is (f, g) = [ra f(v)g(v)M ™ (v) dv.
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4.2. Estimating h°. For the part of the solution h%(t) in £, we have the following estimate:

Proposition 4.1. Let 1o € (0, v4) (see Proposition 2.8 and Remark 2.9 for the definition of v,). Then,
there exists an explicit eo € (0,¢1) such that for anye € (0,e2) and anyt > 0,

_ kg 1—ae) [t _woq_,
e IO ® + 25 [ s @9
As a consequence, for any e € (0,e2) and anyt > 0, there holds
20 1—ae)? [t _uop_q
I3 < e o S5 LB s @

Proof. From the definition of £ and Remark 2.9, for any € € (0, 1), we have:

SR <~ 21ROl + - (1Qaco (B0 K0 e + 1Qa (K00, B ()]
- 1Qage) (BL ) O e + |0 Qace) (0 (1), A1 ()]

: _5621(6) |eoo (Id — Po) A (t)||¢ -

1 1 1
+ ;QHLa(e)h (t) = Lah* ()| +as
Using classical estimates for Qa(a) and Q; (see Corollary B.4), there exists C' > 0 such that
1Qa(e) (h (1), RO(0)lle + 1| Que) (O (1), K1 (1)) |
+ 1Que (B0, @)l < C (IR0 @)le + I (1)l ) 1D, -
Thanks to Cauchy-Schwarz inequality and Lemma 2.4,

1 1

gmmyﬂﬂ—memgggWQ@M@—Lml

1 —ale)
2

Ol awr2 @y
<C NG

(notice that such estimate is exactly what motivated the definition of £). From the conservation
of mass and momentum, one deduces from (3.2) that

70 Qa(e) (h' (), ' (1)) = Y0 M /Rd Qa(e) (B (1), (1)) (w) ¥gya(w) dw.
Consequently, as in (1.10),

™0 Qa(a) (hl (t), hl (t)) = \Ifd+2 M

w(l = a?(e))

R (¢, z, w)h (t, 2, v) |w — vy]? dw du,
491v2d /Rded ( I ) |
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from which one deduces easily that there is C' > 0 such that

2
0 Qo0 )l < (1= @) ([ I, )P .
<C 1 -afe) [ ®IE
where we used that WQ”Q(W) is a Banach algebra since m > %. Since moreover, we clearly have
lewz (Id = Po) A (1)l < ClIR' (1)l -

using that H — & — &1, we are able to conclude that there exists C' > 0 such that
d 1
SOl < = (v =2 CUR Dl + 1K ®)ll0) ) 1K)l
1—ale) 1—a(e)
+ O 2Dty + 2D

For 119 € (0,v4), we pick €2 € (0,e1] as vy — e2C Ay > pg. Consequently, using that
oW1 ()13, < 20| ()|]3¢ < ||h'(t) ||, we obtain that for any € € (0,£2) and any ¢ > 0,

d o 1—a(e 1—a(e

SIR e <~ 0wl + 2D+ 2, -,

4.11
1—a(e

<0, + T2 D)l

which gives (4.9) after integration and using the fact that h°(0) = h(0). To prove (4.10), we use
the fact that by Cauchy-Schwarz inequality, for any nonnegative mapping ¢ — ((t) and any
B > 0, we have that for any r € (0,1),

2
(/Ot A =3¢ (o) ds) < (/Ot 2B (=) ds) </0t e~2(1-1)B (=) (52 ds)

L (4.12)
X 2 /O € g(S) ds, Vi>0

This inequality applied with r = % gives the result. U

4.3. Estimating Poh'. Let us point out that getting estimates on h' is trickier than in Briant et al.
(2019), indeed, in the latter paper, the idea was to estimate separately Poh! and (Id —Pg)h! where
P is the projector onto Ker(G; ) defined by (3.4) and thanks to the properties of conservation
of mass, momentum and energy of the whole equation, one could write that Pyh = 0 so that
Poh! = —Poh® and directly get an estimate on Poh' from the one on h°. In our case, the energy
is no longer preserved which induces additional difficulties. However, we keep the same strategy
and start by estimating Poh!. To this end, we begin with two observations. The first one is related
to Poh! where PPy is defined in (4.7):
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Lemma 4.2. Foranyt > 0, there holds
1 0
[Poh” (t)lle S NIA°()le -

Proof. Note that total mass and vanishing momentum conservation yields fori =1,...,d+ 1,

/ RO(t, z, v)¥;(v) dv da + / hY(t, z,v)¥;(v) dvdz = 0.
TdxRd Td xR

Thus, forany i =1,...,d+ 1,

/ R (t, z,v)¥;(v) dvde
TdxR?

1
= ‘ / RO(t, z,v)¥;(v) dvdz| < max <1, ) IXGIE
T4 xR

VI

thanks to Cauchy-Schwarz inequality and since |¥;(v)| < max (1, \/%—l)wq(v) for any i =
1,...,d + 1. The final estimate for the projection follows from the previous inequality and (4.7)
since max;—1, .. d+1 [T, M]le < 0. O

A second observation regards the action of Il on the linearized operator ..

Lemma 4.3. One has for anyt > 0,

0 (6] =~ 0 (<14 1) Toh(t) + () WsaM (.13

where we recall that h is a solution to (4.5) and W 4, 5 is defined in (3.3). Moreover, e € R (independent
of t) and s.(t) € R are such that for anyt > 0,
1—a(e)

rel S1-ale),  [s:() S —(

|0~ Po) h(B)ly gy - (419)

Proof. The proof is by direct inspection. One first recalls that

1
oh = h(|v]? = dv dvdx)\I/ M,
’ Y1v2d </Rd><1l‘d (el 1) 2
1

= h|v 2dvdx) W9 M.
91v2d </Rd><’11‘d i 2

G-hdvdz =0= / gl,gh\v\Q dv dz, one has
TdxRd

Notice that since /
TdxRd

1 1 9
o [Geh(t)] = ?ﬁlm </]I‘d><IRd ga(s)h(taxavﬂm dv dx) Vgo M
1 1

- 2 z,v) — (1 —ale (v z,0))) [v|? dvdz
_82 191m </EdXRd (La(a)h(t, , ) (1 ())VU (h(t, , )))‘ ‘ dvd >\I}d+2/\/l

_ 1 1
g2 191\/%

(/ (Lo h(t, z,v) + 2(1 — a(e))h(t, z,v))) lv|? dv dx) UgpoM.
TdxRd
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Now, as in (1.10), one can check that

—a?(e)

1
/ La(a)h(t,x,v)IUIde de = —
Td xRd 2

’yb/ h(t,x,v)Ga(g)(v*)|v—v*|3 dv, dvdz
TdxRIxR4
which, writing first h = Tlph + (Id — Ilp) h and then Gy = M + (G () — M) gives

11y [ggh(t)] = aIlph + sc(t) Vg1 M

where
1 1—a?(e) w 3
e = 53201 = T T4 /a3 9 v * — Ux *
i {o0-a@) - SR [ s M@ M@l - o do
1—a(e) 5
T T 0 o v x) — % — i|” du, d
01vV2d 2 /]Rded ar2(v)M(v) [Ga(e)(v ) = M )] [v = v" dv v}
and
11-a?(e)w 3
€ =T STy e 9 Id-1II ) a(e)\Ux — Ux * .
se(t) = g vad 2 (/Jl‘dedx]Rd[ d 0] h(t, ,v)G ooy (Vi) v — vs]” dv dvdx)

One has (see (Mischler & Mouhot, 2009, Lemma 5.19, Eq. (5.10)))

)
M V2 2

which results easily in

/ o (0) M) M0 — v, dvdo, = >
Rax R4 2

1 —ale) 3
_1tal)m / Uiy (0)M(0) [Gae) () = M(2)] |0 — v, vy do p .
1V2d 2 Jraxgd
Writing simply 1 + a(e) = 2 — (1 — a(€)), one sees that
1—a(e
az = 72( ) (=1+7e),
€
with
3 Vb
21— _ <1_
|T€‘ < 9 (1 O‘(E)) + 191\/ﬁH\de+2-/\/lHL}J(Wg) HGa(a) M‘ LY (wo3) ~ 1 a(g)

thanks to Lemma 2.3. The bound on s () is also obvious since, for solution A to (1.27), conservation
of mass and vanishing momentum implies that I[Ioh(t) = Poh(t). We thus obtain the desired
result. O
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In all the sequel, we will denote

1—ale)

— (=7 ~ 5

e—0 )

~ Ao+ n(e) (4.15)

e—0

where \g and 7 are defined in Assumption 1.1. Notice that this assumption implies that A\, > 0
for € small enough so that there exists €3 € (0, £2) (where 3 is defined in Proposition 4.1) such
that

0<% 1—ale)

< T < 2)\5, v€ € (0,53) . (416)

We are now able to derive a nice estimate on Pyh!:

Lemma 4.4. We have that for any e € (0,¢3) and anyt > 0,
t
Pon* (#)ll2 < K0 (#)lle + 1R(0) o™ <" + 6&:/0 e ARt (s) [l ds

t
+)\5/0 e (||R0(s)]|, + ]|(1d — Po) B (5)], ) ds. (a17)

Proof. Due to the properties of preservation of mass and vanishing momentum of our equation,
we have Pgh = 0 (where Py has been defined in (4.7)) which implies that Poh! = —Pyh”.
Consequently, we easily get an estimate on Poh! using that Py € B(E,H):

[Poh!(8)]l3¢ S 1A (1) - (4.18)
It remains to estimate ITph'. To this end, we first notice that
Ioh! = Poh! — Poh! = Poh — Poh® — Poh! = Tlgh — Poh® — Poh!

where we used that Poh = IIgh due to the conservation of mass and vanishing momentum so,
using (5.1) with the fact that Py € #(€, ) and (4.18), we only need to estimate IIyh to get an
estimate on IIph'. To this end, we start by computing the evolution of IToh. We recall that the
equation for A is given by

1
Oth = G.h + gQa(a)(h7 h)
and that Il has been defined in (4.7). Thus, applying the projection IIy and using (4.13)-(4.15)
1
on (H0h> = —AIloh + s:(t)VgpoM + EHO Qa(g)(h, h),

so that
t 1
oh(t) = oh(0) e e +/ e Ae (t=3) <€H0Qa(€)(h(s),h(s)) + 55(5)\Ifd+2/\/l> ds. (4.19)
0
Notice that, according to (4.7), IIp Q) is explicit with

110 Qae) (), h(s))] |, = (1= 0%() [ D(h(s), h(s))|[[ Was oM,

1
¥1v2d
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where we recall that D(g, g) denotes the normalized energy dissipation associated to Q, namely,

D(g,g) = 2 / d / 9, 0)g(, v) o — v.® dvs d
4 Td R4 x R4

where 7, independent of o, see (1.10). Now, one clearly has

oo s [ [ [ wseinsroia]

and, using Minkowski’s integral inequality, we deduce that

L= ([ e opar)’ dvr<||h<>|rL1Lz 0

10 Qae) (B(s), A()) |, S (1 = ele))lIRs) 2
because g > 3. Thus, applying the ||- ||H -norm in (4.19), one obtains

[D(h(s), h(s))| <

Therefore,

_ 1—-ale (s
[T0b(0), Mo O)e e+ 22 [T as

t
+ e / e~ (=9 ||(1d — Pp) h(s)||¢ ds (4.20)
0

where we used (4.14) to estimate ||s.(s) W 42.M||7;. We obtain the desired estimate using that
Iy € B(E,H), (4.16) and (4.8). O

We make more precise our estimates of Poh!(t) in the following proposition:

Proposition 4.5. There exists an explicit e4 € (0,€3) such that for anye € (0,£4) and anyt > 0,
there holds

bt g .
1Poh (£) ]2 S [[R(0)[lee™ ! + Ae /0 ™ 7| (s) |3 ds

t
+5/\6/ e (t=9) 31 (5) 13, ds + Ae / A-(t=9)(Id — Py (s) |3 ds
0 0

(4.21)
In particular, for anyr € (0,1), anye € (0,¢4) and anyt > 0, there holds
X [*
[Poh! ()13, < 1RO)|Fe 2" + == / T2UmIAE| R () 1F ds
T' S 2
+/ 2A=rA=9) | [(Id — Po) b (s)[3, (4.22)

where the multiplicative constant involved in the previous inequality does not depend on r.
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Proof. We insert the bound for ||h°(t)||¢ obtained in (4.9) combined with (4.16) in the estimate of
Lemma 4.4, for any € € (0,¢3) and any ¢ > 0, we have:

b _mg

Pont (Ol < [AO) s (72 + ) o a [ B s
0
t t
+5)\5/ e—Ae<t—S>|h1(s)|des+A5/ e <=9 |(Id — Po)h'(s)|| ds
0 0

t " t s

+ A / e (=9) e 85 4| 1 (0) | + A2 / e Ae(t=9) / e BT (1) g drds. (4.23)
0 0 0

We now choose ¢4 € (0,¢e3) such that g > 2e2); for € € (0,24). We also remark that for any

B1 > [2 > 0 and nonnegative mapping ¢ — ((t)

t s t t
/ e P2(t—s) ds/ e—ﬁl(S—T)C(T) dT:e_B”/ 65174(7.) dT/ e~ (B1—=B2)s s
0

0 0 T

1 /t
< e =T (r) dr .

B1— B2 Jo ™)
Using this estimate with 3; = e~ 29 and 32 = ). to bound the last term in (4.23) and keeping
only the dominant terms, we obtain the wanted estimate (4.21). Concerning (4.22), using (4.12),
we get

(4.24)

t
IPoh! ()[IF S 12(0) 262" + (e Ac)? / e Rl (s) 3, ds
0

€2A ¢ — —Tr —S
52 [ ) s

Ae [P, 2
ze —2(1=m)A(t=9) ||(Id — Po) At d
[ |7~ Po) 11 s)] [, s
which provides the wanted result by keeping only the dominant terms. g

4.4. Estimating the complement (Id — Pg)h!. Let us focus on an estimate on Pg-h!(t) with
P := Id — P, the orthogonal projection onto (Ker(glja))J‘ in the Hilbert space L2, (/\/l*% )-
The same notation for the operator G . in the spaces £ and H is used. Let us highlight the fact that
we can proceed in a similar way as in Briant et al. (2019) to estimate Pj-h'. More precisely, one
crucial point in their estimate of POth was that o Q1 (hl, hl) = (0 where 7 is defined in (3.2).
In order to mimic this approach, we have only put (Id — m)Q,(h', h!) in our equation (4.4) so
that o(Id — 7o) Q, (h!, h!) = 0. Notice that due to the dissipation of energy, we do not have
anymore that w9 Q, (h!, h') = 0 for a # 1, which is why the splitting of Q, (h!, h!) into two
parts in (4.3)-(4.4) is so important. Using Proposition 3.1 together with Lemmas 3.3 and 3.4, we
are able to obtain some nice estimate on Pg h'.
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Lemma 4.6. With the notations of Proposition 3.1, assume that A defined in (4.8) is small enough
so that
1 = 2a; — ClA% >0 (4.25)

where ¢1 > 0 is a universal constant defined in (4.30). Then, for any e € (0,e4) (where 4 is defined
in Proposition 4.5) and any t > 0, there holds
1(Xd — Po)n' (1)13,

1

t
2 /0 e RN () [l 1R ()]l ds - (4.26)

t
S Ot B) [ eI ds +
0

where ji1 := C% i1 with Cy is the constant appearing in (3.6) related to the equivalence between to
- [ll5, and ] - [l

Proof. Set W(t) := Py -h!(t) for any t > 0. We start by recalling that h'(0) = 0 so that ¥(0) = 0.
One checks from (4.4) that

0¥ =GV + Py (e7' (Id — mg) Q) (R, h') + AR°)
—(1—ale)e Pt (Vo - (vhl)) —a3(1 — a(e))e 2Py (w2 0).
One observes then that
Py (Id — m0) Que) (', B') = (Id — mg) Que) (h*, 1)
since Py = P while,

Py (V- (vh')) =V, (v¥) =PV, - (vh') + V- (vPoh')

(4.27)

and Py (wo¥) = @V — Py (w2 V) . We recall that, according to Proposition 3.1, there is a norm
[l - Il; which is equivalent to || - ||3; independently of ¢ and which allows us to write nice energy
estimates with respect to the associated inner product {(-, - ))%. From (4.27), we have

1d

§&H!‘I’(t)Hlf2H = (G1Y(1), O())p + e ((Id — m0) Que) (h'(8), h' (1)), ¥ (1) )2

L-ale) ( — (Vo (WU(E), U(t))p — as (W (), ‘P<t>>>H)

g2
_129E) ipy,. (uh!) =V, - (vPoh!) +asPo(eo), T(E))
= 0V v 0 3Po(w2V), H
+ (P AR (@), W) = L1+ Lo+ I3+ La + I5 .
We estimate each of the terms independently. First, according to Proposition 3.1,
I < =55 (1d = o) ()3, — [ (0)]5,
while, according to Lemma 3.3,

I; < Cem' (1= a(@) [ ()17 < Ce7*(1 = ale) R (D)7 -
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We deduce from Lemma 3.4 that there is C' > 0 such that
Iy = e {((Id — 70) Que) (R (1), R (1)), W (t))x

< Ce MR Bl B (O 3¢ | (Td — 7o) B (2) 24,
+ ClIh )3, [l ¥ (1) -

According to Young’s inequality,
n 2 C2 L2 1L (12 1py )3
I < 5 [I(1d = mo) W(t)ll3, + %Hh O3l O3, +ClR- O3, n>0. (4.28)
Obviously, since ||| - |||, and || - |3 are equivalent norms, there is C' > 0 such that
C
Is < CI¥ )l [Py AR @)l < Z I @)l Dl

where we used the regularization properties of A (see Lemma 2.6) to get the last inequality. Finally,

using the regularizing properties of Py, it is easy to see that

1—ale)
22

I, <C IR ()13, -

Therefore, choosing 1 < a; in (4.28), one sees that there is some positive constant ¢y > 0 such
that

d 2

YOIl < —2a1 | W (t)[13,, + collB' ()13, (1" ()13, + 1R (1))

ot 2 @B+ ) A0 e (429

Writing h' = Poh! 4+ ¥, we obtain
IR B (0 O, + 10 Oll) < 10 01 (PR 0B, + 12O, + 150
< IR0 B (IR + I8 Ol + I8 ()l
from which we deduce that there exists ¢; > 0 such that
collk* @)1 (1" @)1, + 18O 1) < caAFIL@IF, +erdollB' ONF  (4.30)

where we used (4.8) and the fact that we assumed Ay < 1. Therefore, assuming that A is small
enough so that f1; := 2a; — clA% > 0, we deduce that

d -
IO < = 1) 3, +eadollh! ()]

1 —ale) o
ot SRR+ St @ W) e, Ve 0.
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Using (4.16), we deduce that there exists c; > 0 such that

d - C2
all!‘l’(t)llli < = O[3, + c2(Ae + Do) W ()17 + ?th(t)HH XGIES

from which we get the desired estimate (4.26) after integration of the previous differential in-
equality recalling that h*(0) = 0 and || U(¢) |, = (1Y) |ln = Cull ()|l O

To complete the estimate of ||(Id — Pg)h!(t)||3, we need to estimate the last integral in (4.26):

Lemma 4.7. With the notation of Lemma 4.6, there is an explicit ¢5 € (0,e4) such that for any
e € (0,e5) and anyt > 0,

G [ Rl ds S IO0)se 4 A [ e 6.
Proof. We use the estimate of ||h%(s)||¢ provided in (4.9) combined with (4.16) which gives
=), D 6 [0(9) e ds < T+ T
with ’ .
B= e [ eI ) (0)leeH as.

= [ e s [ EEI ) s
Choosing €5 such that pg —Oagul > £ and using (4.8)(,) we obtain:
Iy S e7?||h(0)[lge™"" /Ote_:s%sds < |R(0)[lee™" .
Concerning I, using Young’s inequality, we have that

t
L <A / =911 (5)2, ds
0

t s 2
+e74 /0 e M(t=9) 4g < /0 e‘ié“sﬂyhl(f)mm) :

and, using (4.12) with r = % we get that

t t s
S [ e In(s)ds+ =2 [ emtds [ B ) Bar.
0 0 0

To estimate the second integral, we remark that

t s
5_2)\5/ et (t=s) ds/ efgig(sz)HhI(T)”?HdT
0

0
t t
= [emtIu ) ar e (E)e g,
0 T
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and using that £3 — py > &% for ¢ € (0, ¢5), we obtain

t s t
e / e t=9) g / IR () 2, dr < A / =) 11 ()3, dr
0 0 0
Combining these estimates yields the wanted result. H

We deduce from the previous the following main estimate for ||(Id — Po)h! ()]

Proposition 4.8. Under the Assumptions of Lemma 4.6, for any ¢ € (0, 5) (where 5 is defined in
Lemma 4.7) and anyt > 0,

t
uad—PMMuw%suumweWN+up+m»/eﬂﬂ“%mwﬁﬁﬁw- (431)
0

In particular, there exist ¢ € (0,e5) and A¢ > 0 such that if \g € [0, \¢) (where \g is defined in
Asssumption 1.1), foranyr € (0,1), anye € (0,e6) and anyt > 0,

t
e - Ry (s ds
0
t
< [h(0)]|ge 272l 4 (X, + Ag) / e 202 (=9)| p1(5)|2,ds  (4.32)
0

where the multiplicative constant involved in the previous inequality does not depend on r.
Proof. Inserting the estimate obtained in Lemma 4.7 into (4.26) allows to get directly (4.31).
Using (4.24) twice, we deduce then easily (4.32) from (4.31) after integration by choosing Ag

and e¢ small enough such that p; > 4\ for any € € (0,£¢) and any \g € [0, \¢) and thus
pr—2(1 = 7)Ae = p1 — 2. > B fore € (0, ¢¢). O

4.5. Final a priori estimates. We deduce from the above the following estimate on h':

Proposition 4.9. Under the assumptions of Lemma 4.6, for anyt > 0, € (0,6), Ao € [0, A¢)
(where e¢ and A are defined in Proposition 4.8) and r € (0,1),

IR 0)IB: S = (17(0)]e + 1A(0)|2) e=20=mA

3|

t
+ Ae (62 + Ae + Ao) / e 20mmA(=9) | p1 ()12, ds
r 0

t
+ (Ae + Ap) / e =) ||l (s)[12, ds. (4.33)
0
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Proof. We gather estimates (4.31) and (4.22) (combined with (4.32)) to obtain

t
IR )13, < 1RO lee™" + (A + Ao)/o e MU nl (s)[17, ds

T

2 t
HIBOBe 2 4 2 [ o2 ), ds
0

A —all=r A ' —2(1—r —s
+ = [1A(0)[lee™*! W+;(AE+A0>/ e 20mA(t=9) | p1 ()2, ds . (4.34)
0

For e € (0,&6), 1 = 2Xc (and thus A\ < 1). Then, using that r < 1, we are able to obtain the
wanted result. O

By a refined Gronwall type argument, we are able to derive from this the following decay rate

for || (t)]l2:

Corollary 4.10. Letr € (0,1). There existe, € (0,e6), \r € (0, \g) (where e and \¢ are defined
in Proposition 4.9), Ao > 0 and C, > 0 depending on r such that for any e € (0,¢,), Ao € [0, A)
(where A\ is defined in Assumption 1.1), Ag € (0, Ag,) (where A is defined in (4.8)) and any t > 0,
there holds

IR @)1 < Cr (IR(O) e + [1R(0)I[) exp (—2(1 = r)A: 1) . (4.35)
Proof. Letr € (0,1), set ' := § and
2(t) = I RBZ, t 0.
In order to lighten the notations of the coming proof, we also introduce the following notations:
Ko == [[h(0) ]l + [|h(0)]Z (4.36)

and

Ae

74/

K1:=K1(r',e,Xe, Do) = = (2 + X + Ao) Ka := Ka(Ae, Ag) = A + Ao,

and
po = pa(r,e) = — 2(1 — ')A > 0.

Inequality (4.33) applied with 7 instead of r implies that there exists a universal constant C' > 0
such that

t t
x(t) < C% + CKy / x(s) ds + CKge 12! / ez (s)ds = y(1).
0 0
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It implies that

y'(t) = O(K1 + K2)(t) — poCKoe H2t /Ot e"?x(s)ds
ZC(’C1+/C2)ZL'(15)—/12< (t) — CICO—C/Cl/OtiL'(S)dS>

K t
2 = OO + ) y(t) + 12 + s [ (o) ds.
0

Taking now &,, A, and Ag, small enough so that puy — C(K1 + K2) > & forany € € (0,¢,),
Mo € [0,\) and Ag € (0, Ag,), we can deduce that

d t
5 (#u0) <2 (10?2 eom [ us)as)
t 0

Integrating in time the last inequality (notice that y(0) = C' %) yields

. IC IC t N t 7 S
e’zlty() CT/O%-MQC'?",O/O ei2lsds+M20’C1/0 €l218d3/0 y(r)dr.

t t 2 t
/ g7 / 7)drds —/ y(T)dT/ 79 ds < €M21t/ y(r)dr,
0 0 T M1 0

we can conclude that

Using that

y(t) < ICO—HQ/O y(s)ds.

From the standard Gronwall inequality, we deduce that for any ¢ > 0,

2(t) = 2R (D) < w(t) S o

7,,/
Up to reducing the values of €,,, A, A, we can furthermore assume that 2+ N+ A < %
which in particular implies that K1 — 2(1 — r")\. < —2(1 — )\ so that
K
IRL@)1F S =2e 2072 v >0
r
which is the desired estimate. O

We are now able to state the main result of this section which provides a result of decay for
the solution h to (1.27):

Theorem 4.11. Letr € (0, 1). There existe, > 0, \, > 0, Ao, > 0 and C, > 0 such that for any
e €(0,e), Mo €[0,\), Ag € (0,A¢,) and anyt > 0,

IR@IE < Cr (I10(0) e + 1AO)F ) exp(~2(1 = r)Act) -
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Proof. The result is obtained by gathering estimates (4.10) (combined with (4.16)) and (4.35) and
keeping only the dominant terms. U

We also point out the gain of decay in  in the following lemma.

Lemma 4.12. Under the same conditions of Theorem 4.11, it follows that

[ bl dr < €, (VIROTE + )y min {1+ 61+ 5} veso.
0

A

In particular, |h( -)||¢, is integrable and exists a.e. in (0,T) for any T > 0.

Proof. After performing time integration of equation (4.11) in [0, ¢] one finds that
0 o [*o
s + 5 [ 1), as

t
S [1(0)[le + /\e/o 1R (s)ll3 ds S VIRO) e + 1R(O0)lle,  VE=0, (437)

where we used (4.35) in the latter inequality. Using the continuous embedding H — & and (4.35)
once more, we obtain

t N . . 1
/0 15 (s) e, ds,S/O 1R(5) le, ds+/0 1R (5) |12 ds
S & (VIRO)e + [1rO)lls) + € ||h(0)||g+||h(o)||g>/0 i he gy

which gives the result. g

Remark 4.13. Of course, for a fixed € > 0, one can replace min {1 +t, 1+ )\%} byl+ )\% and the
above estimate shows that h(t) = h(t) € L'([0,00), ). However, in the case in which A\g = 0
then the bound is not uniform with respect to . In practice, two situations occur according to the
value of Ag in Assumption 1.1:

a) If \g > 0, then the family {h.(t)}->0 is bounded in L'(]0, c0), £1),

b) If \g = O then for any T > 0, the family {h.(t) }c>0 is bounded in L*([0, T, &1).

5. CaucHY THEORY

We assume that Assumption 1.1 is satisfied. The scope of this Section is to prove the well-
posedness of the system (4.3)-(4.4) thanks to the a priori estimates derived in the previous section.
We namely aim to prove the following precise version of Theorem 1.2 (reformulated in terms of
the variable h.) and we shall use the functional spaces introduced in (3.1), (4.1), (4.2).
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Theorem 5.1. Letr € (O 1). There exists a triple (e, Ay, m0) of positive constants that depend on
the mass and energy of 5, m and q, (¢, and \, additionally depending on r whereas g is not) such
that, fore € (0,e,), Ao € [0, \;), if

[hinlle < mo
then the inelastic Boltzmann equation (1.27) has a unique solution h. € C([O, 00); 5) NL! ([O, 00); 51)
satisfying

[he()lle < C(r;m0) exp (=(1 —7)Act),

1
/|h g, dr < Crmymin {1461+, vizo,
€

for some positive constant C(r,1n9) > 0 independent of ¢ and where we recall that \. o
E—
defined in (4.15).

Remark 5.2. Under the same assumptions, we can actually prove the following estimates (which
will be useful in what follows) on h? and h! that are respectively solutions to (4.3) and (4.4). Let
T > 0, then

thHLOO((O,T);g) S1 and th||L1((O,T);£1) <é? (5.1)
as well as
IRt e ory:20 S 1 and 1A 2oy 1) S 1 (5.2)

where we recall that the spaces H and H 1 are defined in (3.1). Notice that in the previous inequalities,
the multiplicative constants only involve quantities related to the initial data of the problem and are
independent of <.

As in Section 4, we shall consider ¢ and € small enough so that the conclusions of Proposition 2.8

(9)

and Remark 2.9 are satisfied in the functional space £ and we denote B, = Ba(a) . as well as

ga - ga(g),g-

5.1. Iteration scheme. Let us follow the iteration scheme of (Tristani, 2016, Section 3) with
suitable modifications. We are seeking to approximate the solution to the inelastic Boltzmann
equation using the iteration scheme

athn-i-l(t) = gehn-‘rl(t) + a_lga(s)(hn(t)7 hn(t)) ;o nz=l,
Othi(t)  =G-hi(t), (5.3)
ha(0)  —h(0)€E, n>1,

where the initial perturbation ~(0) has zero mass and momentum. This is done using the decom-
position of previous section. More precisely, writing h,, = h) + hl we consider solutions with
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the coupled system
(0041 = Behl s + 67 Qago) (0, h9) + 7| Que) (9, k) + Qagey (B, 19)|
272 Lol 1 — Libhy | + &7 m0Qage) (b, hi)

(5.4)
+ (1 — a)eagwwy (Id — Po) Al 4,

ho1(0) = hO(0) = h§, € €,
and

Oy = Guehyy +e ' (Id = mo) Que)(hn, o)
— (1= a(e)e? [divy (vhl ) + agwoe (Id — Po) kL 4| + Ak,

hL(0) = h'0)=0€eH,
(5.5)

where az > 0 is defined in Lemma 3.3. Motivated by the a priori estimates of Section 4, we
introduce the following norms

t
lgllyi=sup (lg(@lle +=72 [ lalledr). g€ cllo,00).8).
t=0 0

and
1

t 1
gl i=sup (ol + [ latr)lf dr)’s g € clio.00). 7).
t>0 0

where we recall that £, &1, H and H; are defined in (4.1), (3.1) and (4.2).
Notice that (C([0,0),&); || [llo) and (C([0,00), %) [[ - [Il,) are Banach spaces. In particular,
the space

B :=C(]0,),&) x C([0,00), H)

endowed with the norm

ICg, W= Nlglll + [IRll, — for  (g,h) € B,

is a Banach space. Define then

Xy = {n" € c([0,00):€) | In°ll, < CVKo }
= {ntec(o,00sm) | [In']l, < CVEe}. 59)

for some positive constant C' > 0 which can be explicitly estimated from the subsequent com-
putations and where we recall that Ky has been defined in (4.36) by Ko = [|h(0)||s + ||h(0)]|%.
The system (5.4)-(5.5) is a simplified coupled version of the system (4.3)-(4.4) with all nonlinear
terms as sources. Notice however that the coupling between A0, ; and A}, ; in the system makes
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it nonlinear. However, because . is the generator of a Cp-semigroup in &, equation (5.3) is
well-posed and

hns1(t) = Ve(t)h(0) + 7 /O Ve(t = 8)Qa(e) (hn(s), hu(s)) ds

where {V.(t); t > 0} is the Cp-semigroup in £ generated by G.. With this at hands, substitute
in (5.4) the term k), by k41 — RO 1 and look at h,,11(t) as an additional source term. In the
same way for (5.5), the system (5.4)-(5.5) becomes linear (in terms of hQ 41 and hl 1) and admits,
for any n € N, a unique solution. One can use a slight modification of the ideas of Section 4 to
check that the iteration scheme is stable, that is, the mapping

(ho hy) € Xo x Xy (WO 1 heyy) € Xp x X

is well defined. Indeed, existence of the scheme is guaranteed by the linear theory as the iteration
scheme is based on the linear equation. Moreover, note that (5.3) preserves the conservation laws:
mass conservation and vanishing momentum, which were essential for the a priori estimates
related to Poh!. Thus, proceeding as in Theorem 4.11 with r = % for example, stability holds
true under the conditions of the a priori estimates, that is, for € € (0, € 1 ), Ao € [0, A 1 ) and

sup ([ln (D)l + A5 (1)) < OVKo < Ay, neN.

This latter condition is possible by taking Xy smaller than a threshold depending only on the
initial mass and energy F.

Ko < (Aoé/c)Q — K.

We leave the details to the reader and focus in the next subsections on the convergence of
the scheme. For the rest of the section, we also set AT := A1 and choose ¢/ € (0,e1) such
2 2

that v, > 2520721211 where v, Cy and a; are respectively defined in Proposition 2.8, (3.6) and
Proposition 3.5 (this condition will be useful in the proof of Lemma 5.5).

5.2. Estimating ||hY_ ; — hY||s and ||h},; — h}|l%. To prove the convergence of the scheme,
we define forn € N

dg+1 = h2+1 — I, diH—l = hic-&-l — hy, -
Then, one deduces from (5.4) and (5.5)

+ (1 — a)e %agwwy (Id — Po) d) | + ' FY (5.7)

n

dg+1(0) =0 )
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and

8td7ll+1 = Ql,gd}LH—(l —a(e))e” [lev (Udn+1) + agwos (Id — Py) dn+1]
+ Add o +e L EY, (5.8)

dy1(0) = 0.

The sources F, for i € {0,1}, correspond to the bilinear terms and depend only on the previous
iterations {h%, h!,_,},fori € {0,1} and n > 2 (see (5.11) and (5.13) for the precise expression).
We introduce

Uy, (1) = [ (t)lley + [1hn—1 (®)lle,
U () = [|hn®)lle + IAn_1 @)l + 1@l + lhn1 ()l
which satisfy

t
sup (ql;o(t) + 6_2/ Tl(r) d7'> < CVKy, n>2, (5.9)
0

t=0

for h%,h_, € Xy, and h}, hl_; € X;. Consequently, the following estimate for d2 , ; follows
under suitable modifications of the arguments leading to Proposition 4.1.

Lemma 5.3. Lete € (0,ef), \g € [0, \) and K < IC For anyt > 0, we have that

t
||dn+1<>uggxg/0 e HE) gl (5) | ds

E vy,
bt [CEONL (I + o)) ds G10)

0
t
b [ HOIw ) (U ey + Nl ()] ds
0
where we recall that v, is defined in Proposition 2.8 and Remark 2.9.
Proof. As in the proof of Proposition 4.1, we use the fact here that e 21, + B. is dissipative so that

1% —
IIdn+1( e < - qlldn+1( Mew + e HIFa e + &2 |La@ dnga () = Ladp (1)

1—ale
,1ma)
€

l/ —
Sldna®lle + e HIFaOlle + Cclldnir (Bl -

ag ||y (Id — Po) d), 1 (1),

We need to estimate || F0(t)||¢. One has,

F= Qu(ey(d, h0) + Quey (Ao _y,d0) + 2Q0 ) (d0, hY) + 2Q0 ) (RO _y, d})

(5.11)
+ 7o Qa( <d7117 h}z) + 7 Qa(a)(h}L—lv d}z,)
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where we used the notation éa introduced in (1.30). Using (1.10) and using that W is a Banach
algebra, we have

Im0Qa(ey (£ 9)lle S (1 = ANl ym ey 191 12 ey

Therefore, using that ¢ > 3 and using Corollary B.4:
1Fnlle S ldnlle, (1Balle + 1hn_1lle) + lldnlle (1R lle, + 1hn_1lle,)
+ ) llellnlle, + dblley 1 lle + lldplle, 1ho—1lle
+ lldplle 109 1 lle, + e Aclldy e, (1P lle, + 111 lley)

where we used that 1 — a(e) < e?).. Using that || - ||g; < |- ||, we get

1Fe S Nddlle, @2 + (1ol + ldhlla) Ty, + 2 Acldy [l20%75° .
This leads to the desired estimate. O

We now focus on Pod}, ,; in the following lemma:

Lemma 5.4. Lete € (0,et), \g € [0, \) and Ky < ICES. For anyt > 0, we have that
t v,
Podh (0l < A [ e HO )l (0)lcs
t oy
e [ HIL ) () e + b)) ds
0
K — 24 (t—5) 7,00 —1| 40 1
+ /O e E W (s) (=7 ) () e, + el ()l ) s
t
e [ eI o) (e + 1 (5) ) ds

t
+)\6/0 o Ae(t=s) <”d2+1(3)H5 + HPéd}wﬂS)HH) ds.

Proof. Since the difference hy, 1 — hy, = d | + d},; has zero mass and momentum, one can
follow the line of proof of Lemma 4.4 to deduce that

t
IPodh (0l S s (O +he | 000) ()l + 1435 ) ds

t
o [ (10l + PG dhan ()]s ) ds.

Consequently, plugging (5.10) in the right side yields the wanted result. g

Let us focus on estimating Pgd}, +1(t). To do so, we introduce the functions Ll and &
defined by

() = [ (Dl3e, + W1 (W)l and @(1) = [ hn (O)15 + [ (D)5
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which satisfy

t
sup (@;’f(t) +/0 ®l(7) dT) <CKp, n=2. (5.12)

t20

One has the following lemma.

Lemma 5.5. Lete € (0,e1), \g € [0, \) and Ko < ICT Foranyt > 0, we have that

t
PSS [ e 00k s) e ds
t t
+/0 e =992 (5) [1dL ()12, d8+)\6/0 Yy ()13, ds
t
wet (supldba(olle) [ e ) (I8 + 14h()le) dr

t
# (sup ()l ) [ e w3 (=7 o)l + e Acldh)lle) d

3/

where v > 0 is defined in the proof.

Proof. One deduces from (5.8) that Pg-d}, , ; (¢) is such that

1_
OPGd(1) = G1Pg iy (1) — 0 [P (div, (v)a)) + 5P (2P|

+ Py Al () + e Py FL
where
F o= (Id — mo) [Q1(dy, hyy) + Qu(hy_y,dy)] - (5.13)

Following the argument leading to inequality (4.29), one deduces first that, recalling that || - ||,
is the hypocoercivity norm introduced in Proposition 3.1 and ((-, - ))# is the associated inner
product that there exists a positive constant cg > 0 such that

s < |Pé i )H -2 | =m0y Prab 0] - ailPEd 0B,

b Ol Da e o™ 1 1)
+cOe—1||d,£<t>||Hl (In Bl + 1 (1) 1e) || (1 = o) Py (1)
+ o™ (0 e (1850 ey + 11 () 20) || (30 = m0) PGy 1),

o |woP o (1) 1 (®)le (1A e + 111 (1))

1
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There exists ¢; > 0 such that

co |[moPdha @) 1L e (I @l + Ik @) 10)
< 1l i1 (8l l1dh (8 (Hhﬂt)HH + [|hh >\|H)

IIPLdnH( M3, + 1‘1>°°( )ldn (613,

while, using again Young’s inequality as in (4.28), one deduces that, for any n > 0,

o dn (Ol (1Bl + 11 Oll) || (0 = o) Pdl (8)],

+ coe ™ la Ol (1Ol + 1A Bl ) ||(1d = m0) P ()]

Ha

2
< 005% H(Id - WO)P(J)_dTlH*l(t)‘ "
1

+ %7 (1R ()11, @5 () + dh ()15, 25, (1))

Picking 1 small enough so that cgn < a; and, arguing as in the estimates leading to (4.29), this
provides the existence of ¢ > 0 such that

2
Pyl ()| < ~SIPGd (01, + @@l 0), + @b Ol1d (),

1
et 2l O+ (O [0 (e (519

sl

Setting v := C%[al (similarly as in Lemma 4.6), we deduce after integration that

t t
P dy, 1 ()11 S/O e_V(t_s)‘I’i(S)Hdi(S)H%ds+/0 e D0 () |y (5) 3, ds

t
A /O =9 gl (5) 2, ds

1

t
5 [ N (o) e ds. 515)

The latter term in the right side of (5.15) can be estimated using (5.10):

1 t

3
= Y dga ()l 1 (s) e ds < ) Ta
i=1
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with
. Ae ! —v(t—s) || 41 ° *%(3*7) 1
Tii= 5 [ e M@l [ e d Tl @lhdr ) ds,
t S v
Tpi=e? /0 ™| d () [ /O e 0L () (I () e + lah(r) ) df} ds
t S v
Toim e [ o [ e F D w ) (e e+ oAb dr] s

It is easy to check, using (4.24) and the fact that v, > 262y for e < &f, that

t
TS (supudms)m) | e ke (I @le + b)) ar
s=0 0

and
t
75 (supldha @) [ e W) (0l + A1 () l)

The estimate for 77 is a bit more involved. Thanks to Cauchy-Schwarz inequality one first has

A t 3/t ;
Ti < ;2 ( / eVt L (s)]3 ds> ( / e VY2 (s) ds)
0 0

R s—T
V()= [ e HOTd ledr, s € @)
0

where

Thanks to (4.12) applied with r = %,

Y2(s) < 2 /0 B dl, (1) dr

and, using now (4.24) and the fact that v, > 2e2v,

t t ¥ g
[ertoviass e [eras [ H 0 o) ar
0 0 0

t
et [ el (o) ds.
0
We deduce finally that
t
TEh [ e Idh (o)l ds
0

and this, together with the estimates for 75 and 73, gives the desired conclusion. g
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Introducing now the quantities

1]

0= sup (10 +7 [ 10l ar).

[

L= (@1 + [ IR, ar) s,

t=>0 0
we can gather the three previous lemmas and use (5.9) to obtain the following result.
Proposition 5.6. Lets € (0,e'), \g € [0, AT) and Ko < ICO For anyt > 0, we have that

Hdgﬂ( e S A B '—'n+1 +eVK (E :}L) ) (5.16)
while

[ (D]l S VA + e EL 1+ VeKoES + VG EL . (5.17)

Proof. First, we claim that

IPydhi i (Ol S VA +e By + VeKo BEY + VKo BL, (5.18)

Indeed, from Lemma 5.5, we have that

[Pddl (DI, < [M}%[sm?(/o ¢;<s>ds+sup<1>;;o<s>)

s=>0
t
V+Eh) [ o

+ 24 <i1i%) Wff(s)) (e BV +eAEL).

+
™
]
3H
t
™

We can thus invoke (5.9) and (5.12) to deduce that

PG dhir ()13 < Ko [E]) + e [Bh]” + VKo () + EL) &Ly
where we used that e\ < €. From Young’s inequality, we deduce that
—172 —012
[Py s1 ()3 S O + ) [Ena] + Ko [E1]” + Ko [20]
which proves (5.18). Then, we have that
IPody (83 S VA + 2B + VeKoED + VKo, - (5.19)

This inequality is a consequence of Lemma 5.4 combined with (5.9), (5.16) and (5.18). In the same

way, the estimate (5.16) is easily deduced from Lemma 5.3. To end the proof, it remains to prove
that g

We slightly modify here the proof of Lemma 5.3 and Lemma 5.5 to get the following:
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Proposition 5.7. Lets € (0,e'), \g € [0, AT) and Ko < ICS. For anyt > 0, we have that

/ HdnJrl |51 dS E 5711+1 tev ’CO (Eg + Erll) ) (5'20)
and

1
</ [ (7 \H1d7> SVAAFEEL L+ VEKEY + VEOEL. (5.21)

Proof. To prove (5.20), we follow the argument that led to Lemma 5.3 and recall that

I/ _
”dn+1( e < =Zldnri®lle + 7 IFa)lle + CAclldna ()1

After integration over [0, ¢], using that d2, ; (0) = 0, we get that

1% (O)le + / 1% 1 () s ds < / 1F0(s) e ds + Ao / Il (5) 2 ds,

and, recalling that 70 is given by (5.11), we estimate || F(s)||¢ as in the proof of Lemma 5.3 to
obtain that

1 t t 3 t
5 [ @l ds 0 [ ldhalbeds + e [0 (1026 + 1dh(6) ) ds
t
+ [ ) (7 IR s + el ah ()l s

This yields (5.20). In the same way, we adapt the proof of Lemma 5.5 and, according to (5.14), we
have

2 2
Padu@, + 3P dbact],

—*IIP dp 1 (O3, + COE Ol (D17, + COu () dn (D)7,

ail

+ OXcldy 1 (8)3, + Qlldn+1( Malldn 1 (®)lle

which, after integration, gives
! Y (t— g 1 2
/062 DNIPg 1 (7)]3, dT</ e 270 (s)|1dy (5) 113, ds
[ e HON L () s

! $) &0 1 -3 s)
[ B a6 s+ [ ¢ ) s s
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This estimate is similar to (5.15) and therefore we can resume both the proofs of Lemma 5.5 and
Proposition 5.6 to obtain that

l
([ 1P ar)” £ VAT el + VeRom) + VGRS

Using Lemma 5.4 combined with (5.9), (5.16) and (5.17), we also obtain that

t 3
IPody 1 (T))13, A7) S VA-+eBL +VeKo B + VEKoE,
0

Adding these two estimates, one deduces (5.21). O

5.3. Convergence of the iteration scheme. We are now in position to conclude our analysis
by proving the convergence of the iteration scheme. Suitably adding (5.16) and (5.20) and taking
the supremum in time, one has that

n+1 SAE —'n+1 +eVvK (—O ) (5.22)
Similarly, adding (5.17) and (5.21) and taking the supremum in time it holds that

TL+1 \V )\ + g = un+1 + \V f':IC[) —i + \/ . (523)

Let us define &, := E% + =l for n > 2. Adding the estimates (5.22) and (5 23), we conclude that
there exists C > 0 such that &,+1 < CvVAc +€ép41 + CV Ko 6. Thus, choosing ¢ sufficiently
small such that C'\/\; +¢ < % we get that &,11 < %C VKo &, from which

n—1
Snt1 < <O\//C0) &, Vn>2.

2
Choosing Ky < /CT < 4C~2 so that

), one has form >n > 1,

we deduce that, in the Banach space (B,

0 Bl 0 1 = !
10 1t~ B < Y e <
=N

Whence the sequence {(h%, h,ll)}n C Xy x X1 C B is a Cauchy sequence and it converges in
(B, || - lII) to a limit (h°, h') € Ay x Aj. Of course, such limit satisfies equations (4.3) and (4.4).
Thus, h = h° + h! is a solution to the inelastic Boltzmann problem (1.27). Such solution is unique
in the class of functions that we consider since, at essence, we proved that the problem is a
contraction on Xy x A7. This completes the proof of the existence part of Theorem 5.1 recalling
that f. = G (c) + €he. If one wants to obtain the rates that are stated in the Theorem, one has to
be more careful in the previous proof and keep track of every rate at each step. We chose not to

do it in order to lighten the proof and also because the proof would be completely similar.
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Remark 5.8. We point out that, as observed by an anonymous referee, our construction and fixed
point argument give the uniqueness of solutions to (1.27) only for the class of solutions h € Xj that
can be written as a sum h = h° + h' with (h°, h') € Xy x Xj. Strictly speaking, other solutions in
Xy could exist. However, uniqueness of general solutions to the spatially inhomogeneous Boltzmann
equation (with a forcing term given by a Laplace operator) has been established in Tristani (2016)
(for any choice of ¢ > 0). The argument of Tristani (2016) can be easily adapted to deal with the
forcing term given by the drift term as considered in (1.27). Therefore, in the functional space X,
uniqueness of solutions to (1.27) holds true.

6. HYDRODYNAMIC LIMIT

In this section, we modify a bit the assumptions made on the functional spaces &£, £1, &2 defined
in (4.1)-(4.2), we shall consider m and q satisfying

d
m>§ and q=5

but keep the same notations &, £; and . We also denote by (ef, AT, 1g) the threshold values such
that the conclusions of Theorem 5.1 and Remark 5.2 are satisfied in those functional spaces. The
estimates on the solution A, provided by Theorem 5.1 and Remark 5.2 are enough to prove that
the solution h.(t) converges towards some hydrodynamic solution h which depends on (¢, =)
only through macroscopic quantities (o(t, x), u(t, x), 0(t, z)) which are solutions to a suitable
modification of the incompressible Navier-Stokes system. This is done under an additional
assumption on the initial datum, namely (6.1), that is lightly restrictive as explained in Remark 1.5.
Before stating our main convergence result, we introduce the notation

d+2
Wy = (Wg? (’Jl"d)> , (eN.
We prove here the following precised version of Theorem 1.4 presented in the Introduction:

Theorem 6.1. We suppose that the assumptions of Theorem 5.1 are satisfied. We assume furthermore
that there exists (0o, uo, 0p) € #y, such that

|mohi, — hollg — 0, (6.1)
e—0

where we recall that g is the projection onto the kernel of Ly defined in (3.2) and
1
ho(z,v) == (Qo(x) +uo(z) v+ 590(53)(\”’2 - d’l91)> M(v). (6.2)

Then, for anyT' > 0, the family of solutions {h.}_ constructed in Theorem 5.1 converges in some
weak sense to a limit h = h(t, z,v) which is such that

h(t,z,v) = (g(t,x) +u(t,z) v+ %9(t,x)(|v|2 - d191)> M(v), (6.3)
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where
(0,u,0) € C([0,T]; #in1) N L2 ((0.T); #;)

is solution to the following incompressible Navier-Stokes-Fourier system with forcing
8tu— #leu—%ﬁlu‘qu—kvxp: )\ou,

Ao €

—_ LA . = 6.4
0; 0 9 20+ V1 u-V0 2(d+2)¢1710, (6.4)
divyu =0, o+1160=0,
subject to initial conditions (gin, Uin, in) defined by
d 2
in ‘= ;O = o — ) in i= —U10in, 6.5
u Pug pELL (d+2)191Q0 0 1 (6.5)

where P is the Leray projection on divergence-free vector fields and (0¢, ug, 0o) have been introduced
in (6.2). The viscosity v > 0 and heat conductivity v > 0 are explicit and Ao > 0 is the parameter
appearing in Assumption 1.1. The parameter ¢ > 0 is depending on the collision kernel b( - ).

In what follows, we shall consider {h.}. a family of solutions to (1.27) constructed in this
theorem that splits as h. = hY + h! with h? and h! defined in Section 4 (notice that in this last
section, we will once again specify that h = h, h’ = hQ and h! = h! depend on ¢). We also
fix T' > 0 for the rest of the section. Finally, mention that to lighten notations, we will write o
for a(e) but recall that o = «(e) satisfies Assumption 1.1.

6.1. Compactness and convergence. One can prove the following estimate for time-averages of
the microscopic part of h., namely on (Id — 7)h., which in particular tells that this microscopic
part vanishes in the limit € — 0:

Lemma 6.2. Forany 0 < t1 <ty < T, there holds:

to
/ |(Id — 7o) he (7)|le AT S evita — 11, (6.6)

t1
where we recall that g is the projection onto the kernel of L defined in (3.2).

Proof. We first remark that

[ montear s ([ - o) va=n

t1 t1

+ </t2 1(Id — mo)h(T)|3,, dT)é Ny

t1
The first term is estimated thanks to (5.1), which gives:

to
/ I(Id — o) h2(7) |7 d7 < [|(XId — 70)B2| L= ((0,7) : )| A — 70) B2 | L1 (0.1 s21) S €7

t1
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Concerning the second one, we perform similar computations as in the proof of Lemma 4.6. We
recall that h! solves (4.4) and consider || - [|;, an hypocoercive norm on H (see Proposition 3.1).
We then have, with ¥(¢) = (Id — Pg) hl(t),

1d

-4 o1
2dt

2
@I, < -5

I(Td — 7o) @ (1) (17, — a1 [ (D)3,

C
+ ClRE @5 (12D, + 1B @) 12+ 1) + g!lhg(t)llsllhi(t)lm
from which we deduce that

1 [
5 [ 1ad - m)u(lBy, ar < ke

t1

to 1 t2
+/ 1B (T)F (IR 13, + 1R ()2 + 1) dr + €2/t IR2()ellhe () [l dr S 1
1

t1

where we used the fact that the norm || - [||,, is equivalent to the usual one || - ||3; uniformly in ¢
as well as (5.1) and (5.2) to get the last estimate. Now, since woPy = Py, one has

(Id — mo)h; = (Id — mo) ¥ (7)
and one deduces that

1)
/ |(Xd — o) (7) |3, dr < &2

t1
and this allows to conclude to the wanted estimate. O

We deduce the following convergence result (whose proof is immediate using estimates (5.1), (5.2)
together with (6.6)):

Theorem 6.3. There existsh = wq(h) € L? ((0,T); 1) such that up to extraction of a subsequence,
one has

{hg}E converges to 0 strongly in Ll((O, T):&),
(6.7)
{h;}E converges to h weakly in L ((0,T);H) .

In particular, there exist
d
o L*((0,7); W), wer? <(0,T); (w2 (r)) ) ,

0 e L2 ((o,T) ;Wgﬂ(qrd)) :
such that
1 2
h(t,z,v) = <Q(t,x) +u(t,z) v+ 59(t,x)(|v| - d01)> M(v) (6.8)

where M is the Maxwellian distribution introduced in (1.19).
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Remark 6.4. The convergence (6.7) can be made even more precise since from Lemma 6.2, we also
have
{(1d — ) h} }6 converges strongly to 0 in L* ((0,T) ;1) .

This means somehow that the only part of he which prevents the strong convergence towards h
is {moh} .

Remark 6.5. Notice that the hydrodynamic quantites (o, u, 6) in (6.8) can be expressed in terms
of h through the following equalities:

1
o(t,x) :/ h(t,z,v)dv, wu(t,z)= / h(t,z,v)vdv,
R U1 Jpa

2 _
0(t,z) = /Rd h(t,x,v)w dv. (6.9)
1

Because of Theorem 6.3 and for simplicity sake, from here on, we will write that our sequences
converge even if it is true up to an extraction. We now aim to fully characterise the limit h
obtained in Theorem 6.3. To do so, we are going to identify the limit equations satisfied by the
macroscopic quantities (o, u, #) in (6.8) following the same lines as in the elastic case and more
precisely the same path of Bardos et al. (1993); Golse & Saint-Raymond (2004) exploiting the fact
that the mode of convergence in Theorem 6.3 is stronger than the one of Bardos et al. (1993);
Golse & Saint-Raymond (2004). The regime of weak inelasticity is central in the analysis. The
main idea is to write equations satisfied by averages in velocity of h. and to study the convergence
of each term. To this end, we begin by a result about convergence of velocity averages of h. and
in what follows, we will use the following notation: for g = g(x,v),

)= [ o 0o
Rd
which is now a function of the spatial variable only.

Lemma 6.6. Let {h.}. be converging to h in the sense of Theorem 6.3. Then, for any function
1 = 1p(v) such that |1p(v)| S wo4(v), one has

. /
<¢ h5> — <¢ h> in 9. (6.10)
Proof. Let 9 be such that |1 (v)| < @, (v) and let p = p(t,x) € C2°((0,T) x T?) be given. One
computes
T
o _ _ 70 7l
I ._/0 dt/Tdcp(t,x) (<¢h€> <¢h>) do =10 4 1!
where

0= /OTdt/Td go(t,m)<¢hg>dx, Il = /OTdt/Td o(t, x) (<wh;> — <1j}h>) dx .
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Because 1) < [l@lzee i IR2OLs gy dt S llellzzs, ST IHO(E) 13 12 emy dt. we deduce

from (6.7) that lim._,¢ I; U = (. In the same way, one has

/ a | M(©)g(t,2)) (hL(t,2,0) = h(t,z,0)) de M (0) dv
de]Rd
and, since we have
(t,2,v) — p(v) M(v) p(t, ) € L*((0,T); H), (6.11)
we deduce from (6.7) that lim._, I! = 0. This proves (6.10). O

6.2. Incompressibility condition and Boussinesq relation. Using Lemma 6.6, we are able
to obtain a first result about the incompressibility of v and to give a first version of Boussinesq
relation on p and 6.

Lemma 6.7. With the notations of Theorem 6.3, the limit h. given by (6.8) satisfies on (0, T) x T¢
the incompressibility condition

divyau =0, (6.12)
as well as Boussinesq relation
V(o4 016) =0. (6.13)
As a consequence, introducing for almost everyt € (0,T),
E(t) := / 0(t,x)dz, (6.14)
Td

one has strengthened Boussinesq relation: for almost every (t, ) € (0,T) x T¢,
olt, ) + 91 (B(t, ) — E(t) = 0. (6.15)
Proof. Set

1
0:(t,x) := / he(t,x,v)dv, ue(t,z) := / vhe(t,z,v)dv,
Rd 191 R4
and, multiplying (1.27) with 1 and v and integrating in velocity, we get

£010- + 1divy (ue) =0, (6.16)

1—
g Qyue + Div, (J2) = Taus , (6.17)

where J. = J.(t, z) denotes the tensor

1
J.(t,z) := 191/ v @ vhe(t,z,v)dv,

since both L, and Q, conserve mass and momentum. The proof of (6.12) is straightforward
since €0;0. — 0 and div,(u:) — div,u in the distribution sense from Lemma 6.6. Let us give
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the detail for the sake of completeness. Multiplying (6.16) with a function ¢ € C3°((0,T) x T¢)
and integrating over (0,7 x T¢, we get that

T T
—191/ dt Vet z) u(t,z)de = s/ dt/ 0:(t,z)0pp(t, ) dz,
0 Td 0 Td
which, taking the limit ¢ — 0 and because g. — ¢ and u; — w in .@t',x, yields
T
/ dt | Vge(t,z)-u(t,z)dz =0, Yo eCX((0,T) x T?).
0 Td

Since u(t,z) € L2((0,T); (Wi"*(T?)?)), the incompressibility condition (6.12) holds true. In
the same way, for any i = 1,...,d and ¢ € C°((0,T) x T¢), noticing that

T 11—« T .
lims/ uy Opp(t, z) de = lim / dt/ ug(t,x)(t,z)de =0,
e—=0  Jo e—=0 € 0 Td
we get that
0= hg%; /0 dt /T I ()00 0(1 @) do = ; /0 dt /T 6 (6 2)0u ot ) da,
where

y 1
Jy? (t,x) == o /Rd v;v; h(t,z,v)dv = (o(t, ) + 910(t, x)) 6;5 Vi,j=1,...,d.

Therefore, forany i = 1,...,d,

/T dt/ (o(t,z) + 110(t,x)) Op,p(t,x)dz =0, Ve CX((0,T) x T?).
0 Td

As before, this gives the Boussinesq relation (6.13). To show that Boussinesq relation can be
strengthened, one notices that

/W 0e(t,x)de —— o(t, ) dx in 7A

e—0 Td

from which we deduce, from the conservation of mass for (6.18), that for almost every ¢t > 0,

/ o(t,z)dz =0.
Td

With the definition of F in (4.1), this implies that for almost every ¢ > 0,

[ (etta) + 1 (0(t.) = B(@) e =0,

and, this combined with (6.13) yields the strengthened form (6.15). O
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Remark 6.8. Notice here that the derivation of the strong Boussinesq relation o + V10 = 0 is
not as straightforward as in the elastic case. In the elastic case, the classical Boussinesq relation
V(04 910) = 0 implies the strong form of Boussinesq because the two functions ¢ and 6 have zero
spatial averages. This cannot be deduced directly in the granular context due to the dissipation of
energy and we will see later on how to obtain it (see Proposition 6.19).

6.3. Local conservation laws. We are now going to write a system of local conservation laws
and the first step is to study the limit of some of the terms of this system thanks to Lemma 6.6.

Recall (1.27):
€0she +v-Vihe + Y1 — )V, - (vhe) = e 'Lohe + Qu(he, he), (6.18)

under the scaling hypothesis that o = 1 — \ge? + 0(g?), Ag = 0 (see Assumption 1.1). Multiply-
ing (6.18) respectively with 1, v, |v|2 /2, we observe that the quantities

<h€>, <vh€>, <%W>, <%]v[2vh€> and <v®vh€>

are important. As in the classical elastic case, we write

<v ®vh£> - <Ah5> +p.Id

where we define p. and the traceless tensor A as

1 1
Pe = <&|v\2 h5> and A=AW) =v®v— g]v|21d. (6.19)
Properties of this tensor are established in Appendix A. In a more precise way, one obtains, after
integrating (6.18) against 1, v;, @,
1.

8t<h€> + gdlvm<v h€> =0, (6.20a)

1 1 1-—
8t<v h6> n —Divm<A h6> IV = To‘<v h6> : (6.20b)

€ € €

1, 1. /1 1 201—a) /1, ,

Or(lolhe) + —dive (SlofPvhe) = 5 Falfer fo) + = (5loPhe) . (6200

where we recall that f. = G, + ¢h. and where

Fallo 1) = [ [Qulf.) = QulGas Gl o do.
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Notice that, using (6.9) as well as Lemma 6.6 and Lemma 6.7,

lem<U h5> - Ydivyu =0, <f|v\ h5> 7 5 (o+110) ,

Vape — v <|v| h> = 91Va(0+910) =0,

() = () -0

1 1 d—|-2 .
<§|v\21)j h5> — <§]v|2vj h> = §Uj<]v|2v]2-/\/l> — 9y, Vi=1,...,d,

e—0
where all the limits hold in &; , and where <Ah> = 0 because h € Ker(L;) (see Lemma A.1).
Moreover, under the scaling of Assumption 1.1,
l1-—a
c2

The limit of ¢ 3 Fa(fe, f) is handled in the following lemma.

<v h€> — Y1 ou in Dy .-
e—0 ’

Lemma 6.9. It holds that
Eigja(ff-:,fe) —gJoin D

where

Jo(t,z) = —Xg 5191% <Q(t,x) + %191 9(t,$)> , (t,z) € (0,T) x T?
for some positive constant ¢ depending only on the angular kernel b( -) and d. In particular,

Jo(t,z) = =X 6191% (E(t) — iﬁ(t,x)) : (t,z) € (0,T) x T?

where E is defined in (4.1).
Proof. We recall, see (1.10), that

[ pPuta o=~ =at) [ f(wlg(w) o= v. dvdo.

Thus, for f. = G, + € h., we obtain

6%/a(fs, f)=—2 Lo < /R o B Ga(0) + () Go(w)] o = v dv

€
+E/ he(v)he (V)| — vi | dv dv*> . (6.21)
R xR4

Recall that hmsﬁo = \o. It is clear from Minkowski’s integral inequality that the W3" ( )
norm of the last term in the right-side is controlled by ||h.||2. Theorem 5.1 implies that the
last term in (6.21) is converging to 0 in L'((0, T); W4"?(T%)). One handles the first term in the
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right-side using Theorem 6.3 and the fact that G, — M strongly from Lemma 2.3. Details are
left to the reader. We then easily obtain the convergence of ™3 _#,(f-, f) towards

Jo ==X / h(t, 2z, v)M(vi)|v — v.]® dv do, .
RIxR4

The expression of Jj is then obtained by direct inspection from (6.8) with

2+/2 1
¢:="mpa, a:= \fd / exp <—|v|2> lv|? dv,
(2m)2 JRd 2

5
/ M(W)YM(v)|v v — v, |2 dv do, = Via.
Rdx R4

We refer to (Mischler & Mouhot, 2009, Lemma A.1) for these identities. The second part of the
lemma follows from the strengthened Boussinesq relation (6.15). O

6.4. About the equations of motion and temperature. Asin Bardos et al. (1993); Golse &
Saint-Raymond (2004), in order to investigate the limiting behaviour of the system (6.20) as ¢ — 0,
we need to investigate the limit in the distributional sense of

1. 1.

ngx<A h€> - nglvz<¢ L1h5> (6.22)
and

1. 1.

gdlvx<b h£> - —gdwx@ L1h8> (6.23)
where we recall that b is defined through (3.12):

1
b(v) = §(|v|2—(d—|—2)191)v, v €RY

and where the Burnett functions ¢ and v are defined in Lemma A.1 and we used that L; is
1

selfadjoint in L2(M™2).

Since the limiting vector-field v is divergence-free from Lemma 6.7, it turns out enough to
investigate only the limit of PDivx<z—:_1A hs> where we recall that P is the Leray projection on

divergence-free vector fields® . We begin with a strong compactness result:

Recall that, for a vector field u, Pu = u — VA™! (V- ). On the torus, it can be defined via Fourier expansion,
ifu=3 p0are™ * ar € C thenPu =3, a (Idd - %) axe® 7.
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Lemma 6.10. Introduce for (t,z) € (0,T) x T

1l -«

Lo
uc(t,z) == exp (—t = ) Pue(t, ) and  0.(t,z) = <§(|v| — (d+ 2)191)h5>.
(6.24)
Then, {Oyu.}e and {0,0.}. are bounded in L' <(O, T) ;W?’Q(Td)) Consequently, up to the ex-

traction of a subsequence,

T
/0 P (t) = (1) vz gy At — 0 (6.25)
and
T
/O 162, ) = Oo(t, )l gym—12(qay At —= 0 (6.26)
where

Oo(t, z) = <%(\v!2 —(d+ 2)01)h> = % (o(t, x) + 010(t, z)) — d;

In other words, {Pu.}. (resp. {60:}c) converges strongly to u = Pu (resp. 0y) in the space
L ((0.1); Wy A(T?)).

2@1@(@ z). (6.27)

Proof. We begin with the proof of (6.25). We apply the Leray projection P to (6.20b) to eliminate
the pressure gradient term. Then, we have that

1-— 1 1
Oyu. = — exp <—t 2a> P (Divx<Ahg>> .
€ h €
Notice that, since {h. }. is bounded in L*((0,T') ; £) by Minkowski’s integral inequality, one has
that

{u.}. is bounded in L* ((0, T) ;W?’Q(']I‘d)) .

Moreover, since (A h.) = (A (Id — () he) (see Lemma A.1), we deduce from Lemma 6.2 and
Minkowski’s integral inequality that

T
sup/ P (Divm<1A h5>) H dt < c0.
e Jo ¢ W h2(Td)

{Oyu.}e is bounded in ! ((0, T) ;W;”flg(Td)) .

In particular

Applying (Simon, 1987, Corollary 4) with X = W7"*(T4) and B = Y = W'~ "?(T4) (so that the
embedding of X into B is compact by Rellich-Kondrachov Theorem (Taylor, 1996, Proposition 3.4,
p. 330)), we deduce that {u. }. is relatively compact in L! <(O, T); W;n_l’Q(Td)). The result of
strong convergence follows easily since we already now that Pu. converges to u in Zj ,, (see
Lemma 6.6 and recall v = Pu since u is divergence-free).
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The proof of (6.26) is similar. We begin with observing that, multiplying (6.20a) with —%191
and add it to (6.20c), we obtain the evolution of 6.:

1 1 2(1 - 1
00 + Saive(bh) = & gulfe £+ 25 (Cpne). (6:28)

Notice that {6} is bounded in L* ((0, T) ;WT’Q(Td)) while, because (b h.) = (b (Id — mp) he)

(see Lemma A.1), we deduce from Lemma 6.2 by Minkowski’s integral inequality that

T
sup/
e Jo

It is easy to see that the right-hand side of (6.28) is also bounded in L' ((0, T) ;W?’Q(Td)) )

divz<ébhs> dt < 0o

W;n_l’2(Td)

that {0;0.}- is bounded in L! <(0, T) ;W?_1’2(’]I‘d)>. Using again (Simon, 1987, Corollary 4)
together with Rellich-Kondrachov Theorem, we deduce as before that {6, } is relatively compact
in L1 ((O, T); Wy ? (Td)>. Since we already know that 8. converges in the distributional

sense to Oy (see Lemma 6.6), we get the result of strong convergence. O

Remark 6.11. Notice that if we compare our approach to the elastic case, we have added the
exponential term in the definition of u. in order to absorbe the term in the RHS in (6.20b). Notice also
that as in the elastic case, the study of the limit e — 0 in the equations satisfied by u. and 0 is more
favorable than the direct study of convergence of (6.20a)-(6.20b)-(6.20c) because compared to (6.20a)-
(6.20b)-(6.20c), the gradient term in (6.20b) has been eliminated thanks to the Leray projector and also

because <A7r0> =0 and <b7r0> = 0 from Lemma A.1 so that thanks to Lemma 6.2, we know that
the quantities 5_1Divx<A h€> and 6_1divx<b h5> are bounded in L' ((O, T) ;W;nfl’z(']Td)).
We can now give a preliminary result about the problem of convergence for (6.22):

Lemma 6.12. In the distributional sense,

e—0

_ 1
PDiv, (<€A h€> — <(;5 Q; (mohe, mohe) >> — —vAzu (6.29)
where v is defined in Lemma A.1.

Proof. When compared to the elastic case, Lij h. does not appear in (6.18). We add it, as well as
the quadratic elastic Boltzmann operator when applied to the macroscopic part of A, by force
and rewrite the latter as

Eathg + v- Vxhg — EilLlhE - Ql(ﬂ-ohaa Tr[)hé‘)
— e Y1 = a)divy(vhe) + e (Lohe — Lihe) + (Qa — Q1) (mohe, mohe)
+ 20, ((Xd — mo)he, mohe) + Qa((Id — 70 )he, (Id — mo)he) . (6.30)
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We interpret the last five terms as a source term

S. = —c 11— a)div,(vhe) + et (Lahe — Lihe) 4+ (Qa — Q1) (mwohe, mwohe)

5
+2Q4((Id — mo) he, mohe) + Qu((Id — mo)he, (Id — mo)he) =: Y _ SI. (6.31)
j=1
We first remark that
(6981) =711 = a)(heVue ).

Using the estimates on V,¢ provided in Lemma A.3 as well as Assumption 1.1, we have that

‘<¢i’j 551>’ S e (12 o)) + 1B o0,y 30)) Se (6.32)

where we used (5.1) and (5.2) to get the last inequality.
Let us now prove that

182 +... + Sg“Ll((o,T);L;Lg(wq,l)) Se- (6.33)

Regarding S2, we have that

1
- ILahe = Lnhellpor); 3 L2 (w,-1))

1
Sz (el s ory: 22 omgy + IR s 01y 2 22000

1
+ 2 ahz = Tahells oy a3,y -

Using Corollary B.4, we have that

IEel2lls0.my; 2 z2iamesy T TPl s 0.2y 282300

SR o) 212 (wq)) S 102N 0,1y 0) S €2

where we used (5.1) to get the last inequality. Combining Lemma 2.4 with Cauchy-Schwarz
inequality, Assumption 1.1 and (5.2), we have that

1 1 2131 2
HLahs - LlhEHLl((O,T);L},Lg(wq_l)) S/ € ”thLl((O,T);H) S €.

Gathering the two previous inequalities, we obtain that

H.S’a2 Se.

HLl((O,T);L%LQ(Wq—l)) ~

We can handle S2 in a similar but simpler way. Using Cauchy-Schwarz inequality, Lemma 2.1,

the regularizing properties of m( in velocity and Asusmption 1.1, we get that

3 2
HSEHLl((O,T);L}JLg(wq_l)) S e llhellzor ;) S €
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where we used (5.1)-(5.2) to conclude. The last terms S and S? are treated similarly. Using
Corollary B.4 and Lemma 6.2 with (5.1)-(5.2), we have that

HS? + SSHLI((QT);L}JLg(wq_l)) ,S H(Id - 7"'O)haHLl((O,T);S)HhEHLOO((O,T) i E) 5 €.
This ends the proof of (6.33).
Then, multiplying (6.30) by ¢ and integrating over R?, we get using (6.22) that, for any i, j =
1,...,d,
58t<¢i’jh5> n divx<v i h£> _ 5*1<¢m'L1ha>
- <¢i»i Q1 (mohe, 7r0h5)> + <¢"J SE> . (6.34)
According to Lemma 6.6, (6.32) and (6.33), we have that
sat<¢>ivj h€> S divx<v i h€> — divm<v e h> , <¢>W’ s€> — 0,
e—0 e—0 e—0
where the limits are all meant in the distributional sense. From Lemma A.6 in Appendix A, one
has
v ifiz£j, £=1,
N . it (=,
(woiny={ , vu o fiFi 0=
—Svug+2vuidy ifi=j,
0 else.

Therefore, using the incompressibility condition,
divx<v g h> =v (a%.ui + (%iuj) .
We deduce that in 2, ,

(i<¢m L1h€>+<¢m Q1 (mwohe, mohe) >> —— (O, ui + O, uj) -

e—0

Applying the Div,, operator, one deduces that in Z; ,

Div’, <i<¢ L1h5>+<¢> Q1 (mohe, mohe) >> —— v,

e—0

where we use the incompressibility condition to deduce that Divé (85,; Ui+ axiuj) = A u;. This
proves the result. O

In the same spirit, we have the following which now regards (6.23).
Lemma 6.13. In the distributional sense,
1
gdivx<b h6> + dm@ 01 (mohe, ﬁ0h€> — AL (6.35)
E—

where 7y is defined in Lemma A.1.
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Proof. The proof is similar to the one of Lemma 6.12, remark that multiplying (6.30) by 1); (recall
that 1) is defined by (A.1)), it holds that

€at<7!1ihs> + diVx<U 1/Jihs> — 8_1<¢iL1h5> = <1!)i Ql(ﬂ'ohaﬂfohe)> + <¢i Sa> .
It then follows that

1 d+2
<<wiL1h5>+<1/)iQ1 (ﬂohg, 7Toh5>> —_— divx<v wzh> — L ¥ (9%9
€ e—0 2
thanks to Lemma A.7 in Appendix A, which gives the result. 0

To determine the distributional limit of (6.22) and (6.23), it remains to explicit the limit of the
nonlinear terms

PDivz<¢Q1(ﬂ'0h5,ﬂ'gha)> and div$<1/1Ql(TFoh57ﬂ'0ha)>

respectively. One has the following whose proof is adapted from (Golse & Saint-Raymond , 2004,
Corollary 5.7).

Lemma 6.14. We have
PDiv, {6 Q1 (mohe, mohe) ) — 03PDiv(u@w) in I,
e— ’

and
d+2
dive(t Qu(mohe, mohe) ) —> “T=0bu- Va0 i 7,
e—0 2 ’
In particular,
1

PDiV$<gA h5> — —vAzu + 93PDiv, (u @ u) in 9, (6.36)
while ) J49

diva(bhe) — —% (VA0 — Pu-V,0)  in 9, (637)

where v and vy are defined in Lemma A. 1.
Proof. Writing
mohe = (Qs(t,a:) +u(t, ) v+ %es(t,a:) (= dz91)> M(v)
we first observe that, according to Lemma A.5 and Lemma A.7 in Appendix A,
<¢ Q1 (mohe, mohe) > =2 [ua ® U — z\ua\QId]
and

d+2
2

(v Qi (mohe, mohe) ) = S =0 (6. e)

Therefore,
PDivx<¢ Q1 (mohe, mohe) > — 92PDivy (ue @ u.)
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since Div, (|uc|?Id) is a gradient term and

d+2
2

We then write u. = Pu. + (Id — P)u.. Due to the strong convergence of Pu. towards u in

L ((0, T) ;W;n_l’Q(Td)) (see Lemma 6.10) and the weak convergence of u. (see Lemma 6.6),

we see that

93 div, (0: ue) .

divx<1/) Q1 (moh, w0h5)> -

PDiv, (ue @ us — (Id — P)us @ (Id — P)ue) - PDiv, (u® u) in Dy o -
)
So, to prove the first part of the Lemma, it remains to prove that

PDiv, ((Id = P)u. ® (Id — P)us) — 0 in Dy - (6.38)

e—0

Moreover, as in (Golse & Saint-Raymond , 2004, Corollary 5.7), we set

1
B: = d71§‘1<|v‘2h8> = 0; + U10;

which is such that 8, = ﬁ (BE + %&) and

. 2 _ 1
dlvx(qug) = mdlvx (ﬂgug + ﬁlugeg)
— 2 v, (B.(Id=P)uw) + —2— |dive ( B-Puc + —u.0
= (d_|_ 2)01 1V B Ug (d—|— 2)191 1Vy e - Ug 791 UegUc .

Therefore, using the strong convergence of 6, towards g in L' ((O, T) ;W?il’z('ﬂ‘d» given by
Lemma 6.10 together with the weak convergence of u. to u from Lemma 6.6, we get
2 2
———di 0.) — ——
(d+2)92 iva(usbe) 5 (d+2)92
whereas from the strong convergence of Pu. to u with the weak convergence of 3. towards
0+ Y16 we get

div,(u 6y) in D4

divg (B Pue) — divg (u (04 916)) =0 in D, .
e—> ’

where we used both the incompressiblity condition (6.12) together with Boussinesq relation (6.13).
Notice that, thanks to (6.12), it holds

2 2
7d' 6 = . v 0 == * V 9
@t 2o e (1) = gyt Vo = Ve
where we used the expression of 0y together with Bousinesq relation (6.13). This shows that

2
divg (B: (Id — P)us) —> u-V,0 in D}

d1V$ (HEUE) - m —0
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and, to get the second part of the result, we need to prove that

divy (8B: (Id — P) u.) —>0 in D, ... (6.39)
e— ’
Let us now focus on the proof of (6.38) and (6.39). One observes that, Equation (6.20b) reads
1— 1
£ Oue + Voo = — S — ﬁ—Divx<A h5> (6.40)
1
whereas (6.20c) can be reformulated as
_ 1 2 2(1 — «
Eatﬁg + divy <d7291‘v’2v ha> = Wfa(fe’ fg) + (5)BE (6.41)
where we check easily that
1 2 d+2
divx<d—ﬂl\v]2v h5> = dT?ldivx<bha> + * Y1divue
_2 d+2

divx<b hs> + 229 div, (Id — P) ue .

dvy
Recall that from Theorem 5.1, h. € L ((0,T); £) so that by Minkowski’s integral inequality,
B: € L™ <(O, T) ;W?Q(Td)) and using (Majda & Bertozzi, 2002, Proposition 1.6, p. 33)), we can
write

(Id — P)u. = V,U;
with U, € L™ ((0, T); (W?_l’Z(Td))d). After applying (Id — P) to (6.40) and reformulat-
ing (6.41), we obtain that U, and 3. satisfy

eV, U, + V.8 = F;

(6.42)
e + L20,0,U. = G.
with
Fo=1"%,u - t(1d- P)Divx<A hg>
€ oal
SR DNE S SR (P

From (5.1)-(5.2), Lemmas 6.2, 6.9 and Asssumption 1.1, it is easy to see that
IEEN s o,y wp—r2ry S € and Gl oy w1 2(ray S €
so that both F. and G- converge strongly to 0 in L' ((0,T) ; L2(T%)) and
Ue € L2((0,7); (WA (T9)Y), B € L¥((0,T); LE(T)).
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Then, according to the compensated compactness argument of Lions & Masmoudi (1999) recalled
in Proposition A.8 in Appendix A, we deduce that (6.38) and (6.39) hold true and this achieves the
proof. The proofs of (6.36) and (6.37) follow then from an application of Lemmas 6.12 and 6.13. [

Coming back to the system of equations (6.20) and with the preliminary results of Section 6.3,
we get the following where we wrote PDiv,(u ® u) = Div,(u ® u) + 9] V.p, see (Majda &
Bertozzi, 2002, Proposition 1.6).

Proposition 6.15. The limit velocity u in (6.8) satisfies

By — 191 Ayt + 91Divy (u @ u) + Vop = Aou (6.43)
1
while the limit temperature 0 in (6.8) satisfies
v 2 2d g 2 d
00 — —5 A0+ u V0 = —F 6.44
0= gr Bl Vel = e P T P (6.44)

where we recall that [y is defined in Lemma 6.9 and E is defined in (4.1).

Remark 6.16. The viscosity and heat conductivity coefficients v and ~y are explicit and fully
determined by the elastic linearized collision operator L1 (see Lemma A.1).

Remark 6.17. Notice also that, due to (6.12), Div,(u ® u) = (u-Vy) u and (6.43) is nothing but a
reinforced Navier-Stokes equation associated to a divergence-free source term given by Aou which
can be interpreted as an energy supply/self-consistent force acting on the hydrodynamical system
because of the self-similar rescaling.

Proof of Proposition 6.15. The proof of (6.43) is a straightforward consequence of the previous
lemma. To investigate the evolution of 8, we recall that 0. satisfies (6.28). We notice that

1 21 —«) /1
?/a(faafa) + (62)<2|U|2ha> —g St di1 o (0 + 010) ,

whereas
1, 5 _dvy d+2 ) ,
6. — (F(WP = (d+29)h) = TE(e+010) - e in 7,
We deduce from (6.37), performing the distributional limit of (6.28), that
dv d+2 d+2 d+2
L0, (o + 0n0) - ;r 91650 — %7 A6+ "; B u-V,0

= Jo+ddixo (o +1h0). (6.45)

Using the strengthened Boussinesq relation (6.15), we see that

d d
Oy (0 +1010) = ﬁl&E and do = — (C‘)t@ — th> ’

and get the result. g
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6.5. About the initial conditions. Recall that in Theorem 6.3, the convergence of h. to h
given by (6.8) is known to hold only for a subsequence and, in particular, at initial time, different
subsequences could converge towards different initial datum. In such a case, (g, u, #) could be
different solutions to the same system. In Theorem 6.1, the initial datum is prescribed by ensuring
the convergence of wyh; towards a single possible limit where 7 is defined in (3.2) (recall that
the initial data for (o, u, 6) is defined in (6.5)). Using the additional assumption (6.1), we can use
Arzela-Ascoli theorem to deduce some regularity results (in time) on our hydrodynamic quantities.

Lemma 6.18. Consider the sequences {u. }. and {0.}. defined in Lemma 6.10. The time-depending
mappings

S [0, T] — HuE(t)HW;rzfl,Q(Td) and t € [O,T} — Haa(t)HW;n71’2(Td)

are Holder continuous uniformly in €. As a consequence, the limiting quantities w and 6y belong to

c([0,T]; Wi t2(Td)).

Proof. Recall that 95 is defined in (6.24). For any test-function = () € C°(T%) and multi-
index 8 with |8| < m — 1, multiplying (6.28) with 95 ¢ and integrating in time and space, one
has that for any 0 < t1 to,

[, [026.02.) ~ 026.(01,)] s
T
to
/ dt/ dwx b@fjh >cpd:1:—{— / dt/ 08 Folfe, f)pdz

to
/ dt / |u\285h godx (6.46)

Notice that

[, (Glorotn)par (5lopotn.)

thanks to Minkowski’s integral inequality. Clearly, since e 72(1 — o) — Ao,

1
< lellzz §|v\28fh€

‘ < llolee
2 L112

2(1—a) | [* 1 2
—_— dt <§|U‘28£ha><ﬂd$ 5 ||90‘L2/ ‘|h5"L%W?71’2(W2) dt S to — 11
t t1

Td

from the general estimate in Theorem 5.1. In the same way, since

32 Folfer fo) = Fa(@Pfer ) + Fulfe,05F.),
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with f. = G, + € he, one deduces again from Theorem 5.1 that

to 1
/ dt/ =00 Jolfer f2)pda
t1 Td g
to
:ﬂm@j|thywm(1wmum¢wmgwsmn
1

Moreover, recalling that <bh5> = <b(Id — 7r0)h5> (see Lemma A.1) for any ¢ > 0, one deduces

easily from Lemma 6.2 that
to 1
/ —divx<b hs> dt‘ <Via— 1.
t 13

1

Since 92 commutes with 7o we deduce easily that for any 0 < |5] < m — 1,

to 1
/ fdivx<b8fh5> dt‘ <V 1. (6.47)
t1 €

We conclude with (6.46) that

[, [026-(02.0) - 92601, 0)] oo
T

S el vt —t

Since €>°(T¢) is dense in L?(T¢), the previous estimate is true for any ¢ € L?(T?) and, taking
the supremum over all ¢ € L?(T%), we deduce that for any 0 < |3 < m — 1,

|026-(t2) - 96.(10)|| , S V2=t

and, the time-depending mappings ¢t € [0,7] — [|0.(t)

HW'm—l,Q(Td) are thus Hélder continuous
x

uniformly in €. One can thus apply Arzela-Ascoli theorem to get that 8, converge strongly in
C([0,T] ;W;nfl’Z(Td)) towards 6 defined in (6.27) that also belong to C ([0, T ;W?il’Q(Td)).
The proof about w, is similar and we thus skip it. g

6.6. Limit equations. To end the identification of the limit equations, we go back to the strong
Boussinesq equation (6.15) and prove the following result:

Proposition 6.19. It holds that
E(t) =0, Vtel0,T]
where E = E(t) is defined in (4.1). Consequently, the limiting temperature 6 in (6.8) satisfies

y Ao €
00— = A0+ u- Vel = ———</1 0. 6.48
t g2 o tTvUIu- Vg 2d+2) 1 (6.48)
where 7y is defined in Lemma A.1, A in Assumption 1.1 and ¢ in Lemma 6.9. Moreover, the strong
Boussinesq relation holds true:

0+110=0, Y (t,z) € [0,T] x T¢. (6.49)
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Proof. Using Lemma 6.9 and averaging in position the equation (6.44), it is easy to prove that

d
—E({t)=¢ E(t
S B() = B()
for some some constant ¢y € R. Moreover, on the one hand, from (6.5), we have
1
E0) = / 0(0,z)dx = —/ 0(0,z)dz. (6.50)
Td 191 Td
On the other hand, from the definition of 8y in (6.27), we also have
2 2
E0) = — 60(0,x)d — 0,z)dx. 6.51
0= 52 [, 000.2) v+ 5 [ e0a)da (651)

From Lemma 6.18, we also know that 6. converges towards 8 in C ([0, 7' ; W?_I’Q(Td)). Con-
sequently, we deduce that

T ] = (d +2)9, o Lo
/W 00(0,z)dx = ;lg((l) » < 5 h5(0,$)> dz = lim <§|v] h€(0,$)> dzx

e—=0 Jpd

where we used (1.33) to get the last equality. From (1.34), we deduce that

/ 0p(0,z)dx =0.
Td

Coming back to (6.50)-(6.51), we deduce that

which implies that £(0) = 0. This concludes the proof. U

Gathering the results we obtained in Propositions 6.15 and 6.19, we are able to end the proof
of Theorem 6.1.

7. ABOUT THE ORIGINAL PROBLEM IN THE PHYSICAL VARIABLES

The above considerations allow us to get a quite precise description of the asymptotic behaviour
for the original physical problem (1.12a) in the case Ao > 0 by carefully estimating the error
between the solution F¢ (¢, z,v) to (1.12a) and the solution h(t, z,v) defined in (6.3). We keep
the presentation informal, explaining only the main idea allowing to derive both global and local
versions of Haff’s law for granular gases. We recall here that Haff’s law as predicted in the seminal
paper Haff (1983) asserts that the temperature of a freely cooling granular gases of hard-spheres
decays like (1 4+ ¢)~2 as t — o0o. It has been proven rigorously in the spatially homogeneous
case in Mischler & Mouhot (2006) (see also Alonso & Lods (2010) for a version of Haff’s law for
viscoelastic gases in the spatially homogeneous case). We derive here a version of Haff’s law valid
for small values of ¢ in the spatially inhomogeneous framework we adopted.

In this section, we work under the conditions of Theorem 5.1. Recall that, if F (¢, z,v) denotes
the solution to the Boltzmann equation (1.12a) with associated Knudsen number ¢, the time-scale
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functions 7.(t), V-(t) that relate the problem in original (physical) variables to its self-similar
counterpart

F.(t,x,v) = Vg(t)df8 (Tg(t),x, Vg(t)v)
are given by

1
Ts(t):c—ln(l—i—cst), Ve(t) =1+ cet, Vt>0,
€

where ¢, = 1= a( ) (see (1.14)). Recalling that h as defined in (6.3) is the weak limit of h. (up to a
suitable subsquence) we introduce the error term e, is given by

e-(t,z,v) 1= Va(t)? (he(7e(t), 2, Ve(t)v) — h(7=(t), 2, Va(t)v)) -

Under Assumption 1.1, a relevant phenomenon occurs when considering the purely dissipative
case A\g > 0. In such a case, the term e.(¢, x,v) becomes a uniform in time error term. More
precisely, the following error estimate holds.

Lemma 7.1. We suppose \g > 0 in Assumption 1.1. Let a € (0, 1). For € small enough (depending
on a), the following estimate holds up to possibly extracting a subsequence,

[(e<(t), [v]"0)| < Clp,a,mo) (L4 Xot) "%,  w€eC,Ly, 0<r<qg—1, (7.1)

where we denoted by C, !  the set of C! functions in v that are bounded as well as their first derivatives
and recall ¢ > 3 is deﬁned in&

Proof. Let a € (0,1). After a change of variables it follows that, for any test-function ¢,
(e=(t), |v]"p)
) [ (here(0):5.0) = Al (2).,0) ol (2o Vo)) — (2, 0) doda
TdxR4

ORI (e(re(t). 2, 0) = Ao (), ,v) ) [o]p(, 0) dv da

= Ti(t) + Ia(t) -

Note that, up to a subsequence, h is the weak—x limit of {h.}. in L™ ((O, 00); 8). Thus, for
.&) < liminfos g [|2e| Lo ((£,00) ; £)- Consequently, for r € (0, 1) such that
1 — r > a thanks to Theorem 5.1, it holds that

1R oo ((t.00) ) < Crymg) e 720!y >0, (7.2)
In regard of Z; (¢), note that

lo(z, Ve(t) ') — p(x,0)] < V() v Sup sup |Dup(,0)| = Cle)Va(t) ol
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so that the following holds:

< C@)Ve() ™ Hlhe(7() = h(re®) L3 (w00 11)

S C(Ve(t) " Hhe(re(t) — B(7:(t)) e

< C(@ﬂ”, 770) V*a(t)fﬁfl (67(177‘))\5750) + ef(lfr)/\ng(t)> .

Recalling that Ac = ¢.(1 — r.) with r. — 0 as e — 0 (see (4.15)), we deduce that for £ small
enough,

67(1—r))\575(t) S (1 + Cgt)ia S (1 + /\Ot)fa.

Similarly, for & small enough, e~ ="207(t) < (1 4 X\ot)~% and V. (¢) "1 < (1 4+ A\gt) * L. In
conclusion, we obtain that

)| < Clerrmo)(1+ 20t)
The term Z(t) is treated similarly and we obtain easily that
20| < Clerimo) (14 Dot)
which ends the proof. g

Let us explain how Lemma 7.1 allows to deduce the large time behaviour of F; in the weak

sense defined through (7.1).

Proof of Theorem 1.7. Indeed, recalling the relations (1.14) together with Theorem 1.4 one has
Fs(ta z, U) = VE(t)de (TE(t)7 €L, ‘/E(t)v)
= Va()* (Glage) (Velt)0) + 2 bl (t), 2, Va(£)0) )

_ Vs(t)d<Ga(€)(Vg(t)v) +eh(r(t),z, Vg(t)v)) tee(t,z,v),

From Lemma 7.1, one can deduce that

F.(t,z,v) = Vs(t)d<Ga(g)(Vs(t)v) + e (o(r(t), z) + u(r=(t), 2) - (Ve(t)v) s
7.3
+ %H(Tg(t),m)(lvg(tm? _ dﬁl))M(VS(t)v)) + 50((1 4 Aot)fnfa) 7

in the weak sense described in (7.1). In particular, if ¢ = 1 and kK = 2, one finds from (7.3) an
explicit expression for Haff’s law. Indeed, the optimal cooling rate of the temperature is described
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by
1
|| Jpaxra

1 €
= Vt2</d Ga(a)(v)|u|2dv =+ de‘ /Rd (!v|2 _ d191)|v|2/\/l(v) dv /Td O(1:(t), x) dz

’]I‘d‘/ [v[PM (v dv/ o(7e(2), )dx> —|—€O<(1+A0t)*27a)

Recalling that the fluctuation h. is such that the average mass and temperature both vanish at all

T.(t) = F.(t,z,v)v|? dvdz

times, we deduce the precised Haft’s law

dvh 1
T.(t) = — —.
O~ Tz

We can actually show that the Haff’s law holds uniformly locally in space due to the bounded-
ness of the solutions that we treat here. This is not expected in a general context where more
general solutions are considered. Consider 0 < x < ¢. Note that

/fa(v'e(t),x,w)]w|”dw:/ Ga(e)(w)]w|“dw+£/ he(12(t), z,w)|w|* dw.
Rd Rd Rd

Thanks to Sobolev embedding it holds that

< Cllhe(r=(H)]le < Cno) -

sup [ he(r(t),aw)ful v
Rd

zeTd

Therefore, for sufficiently small € > 0, there exist two positive constants ¢(19) and C(7g) such
that

cm) < [ L0zl de < Clm), Ve 0.

which leads, for the physical problem, to
Ve(t)"elm) < [ Pt ool do VA0 Cm), Ve 0.
Rd
In particular, this estimate renders a local version of Haff’s law

/Fg(t,x,v)\v\dew(l—l—)\gt)2, Vi>0, VoeT?d.
]Rd
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APPENDIX A. TooLs FOR THE HYDRODYNAMIC LIMIT

We collect several tools that are used in Section 6.3 to derive the modified incompressible
Navier-Stokes system. Various known computations regarding the elastic Boltzmann operator are
needed but we also need some new estimates on the so-called Burnett functions ¢ and v defined
in the following Lemma (recall that L; is defined in (1.31)):

Lemma A.1. Let A be the traceless tensor defined in (6.19) and let b be the vector defined in (3.12)).
One has that AM, bM € (Ker(Ly))" in L2 (M_%) and there exists two radial functions x; =
xi(|v]), i = 1,2, such that

$(v) = x1([v)A(v) € Ay(R)  and  P(v) = x2(|v])b(v) € R,

satisfy
Li(pM)=—-AM, Li(y M) =—-bM. (A1)

Moreover,

. 2
<¢z’]L1(¢k’eM)> =-v (6ik5jé + Giedjk — d5z‘j5kl)

<¢zL1(¢]M)> = _¥762]7 Vi7j7k>€ S {13 s >d}7 (A2)
with
1 2
V= —m<¢ : L1(¢M)>207 Y= —m<¢'L1(¢M)>>O'
Finally, A
690) Sws(v), i) Swalv),  Vije{l,....d}.

Proof. The tensor A and the vector b satisfy
<AW\I/2-M>:O, <b\pi/\4>:o, Vi=1,....d+2, Vkle{l,....d, (A3)

from which we get the first part of the result. We refer to Desvillettes & Golse (1994) and Bardos
et al. (1993) for the proof of the second part of the Lemma, just mind that the linearized Boltzmann
operator considered in such references is defined as Lg = —M ~1L;(M g). We refer to (Bardos
et al. , 1993, Lemma 4.4) for the proof of (A.2). We refer to (Golse & Saint-Raymond , 2005,
Proposition 6.5) for the last estimates on ¢*/ and ). O

Remark A.2. Notice that if ( = ((|v]) is radially symmetric, then
<<AMM> - <<L1(¢M)> 0, Vij=1,....d.

In the case of Maxwell interactions, the above Burnett functions ¢ and 1 are actually explicit
(see Cercignani (1988) and (Bobylev, 2020, Egs. (7.3.9) & (7.3.15))) and turn out to be smooth
with a growth of V¢ and V1) similar to that of ¢» and 1. In order to evaluate the contribution
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of the drift term in the hydrodynamical limit (see Lemma 6.12), we need also pointwise estimates
on V,¢" and V,; that we did not find in the literature. It is the purpose of the next lemma.

Lemma A.3. Ifb( -) satisfies (1.8), then the Burnett functions ¢ and;, (3,5 = 1,...,d) satisfy
Voo™ () S wa(v),  IVeti(v)] Swalv),  Vijefl,....d}
foranya > 3+ %.
Proof. We only give the proof of ¢/, the other one being exactly the same. For simplicity, we fix
i,j =1,...,d and only write ¢ = ¢"7 and A = A"J. The equation satisfied by ¢ is
Li(pM) = —AM,

where L; is the linealized elastic collision operator. Recall that, since we are dealing here with
elastic interactions, by a simple symmetry argument and replacing b(s) with

b(s) =b(s) +b(—s), Vse (0,1),

there is no loss of generality in assuming that b is supported in the upper half sphere, i.e. b(s) = 0
for s < 0. Before proving that for a > 3+ %, w_qVyp € L™, we first prove that wo_,V ¢ € L?
fora >3+ %. One has

Q7 (M, M) = AM + QF (M, ¢ M) + QF (M, M) — Q7 (¢M, M) .

Since we are dealing here with elastic interactions, it holds M’ M/, = MM, and one can rephrase
the above identity as

H(0) S (v) = Aw) + / (¢ + 6, — 6.) M, [ul b(@t- o) du, do,

R xSd—1
where we recall that u = v — v, and ¥\ is defined in (2.31). Taking the gradient of the above
identity, we see that

Vo(v) = T (v) (VvA(U) + Vol [9](v) + VoT2[g](v) = To[g](v) —¢(v) Ve Xrq (U)) (A.4)

where one introduced

Ty [6](v) = /R L Mub ) doade, Tafel) = /R Ml i) do.do

To[d](v) := /Rd ) O MV fulb(i o) do, da:/ b M, bl o) du, do .

RdxSd—1 ‘u’
Now, recalling that 3 1 is such that w1 < ¥ < w0y and |V, 2| S 1, one has
||w—avv¢HL2 S Hw—a—lvaHB + Hw—a—lvvrl[‘bmﬂ
+ lw—a-1Vol2[9]|l 12 + [[m—a-1T0[9][l 2 +||Tw—a-1]| L2 -
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To estimate V,I'1[f], we transfer the gradient to the Maxwellian M by a suitable change of
variables. More precisely, we express I'1 [¢] as follows, performing the singular change of variables

Uz = 7%'2”‘0,
dz
T :2d—1/ = T
@ =2 [ ow-am (o=t o) Elgoae o) e,
where we note that v = v — z, v, = v — 2z — |u|o, and | 2|2 = @ (1-u-0) = —|u|z- 0 so that
2
G-o=14+—2-0=1-2(2-0)*, and |u|= —JA,
|u zZ-o
so that the Jacobian of the transformation u + z is
0 ~ ~
det <6Z) =291 -7.0)=2"9Z-0)2.
Now, perform the change of variables z — w = v — z, we have
Tufelle) =27 [ ptwlo - uldw
|v —w] — 9 do
§i-1 (v—w)-o (v —w)-of?

We compute the integral with respect to o using polar coordinates. For fixed vectors w and v we

set cos x = (v — w) - o so that
o =cosy (v—w) +sinyé,
with {: Ev_w € S%2 is orthogonal to v — w, so that

/ M (-v + 2w + MU) b(1 = 2((v - w)-0)?) Py
Sd—l

(v—w) o (v —w)-o|?

iny =\ b(1 —2cos?
sin ) ( cos? x) siny dy.

3
= / a [ M <w + v — w| 13 3
si-2  Jo oS X cos? y

where we notice that

—U—|—2w—|—£;7w’0:w+|v—w\smxg.
(v—w) o CosX

This gives the equivalent formulation of T'; [¢]

d(w)|v — w| dw/ € x

§d—2

3 inx ) b(1 —2cos?
x/z./\/l<w+\v—w]smx§> ( cos”x) sin x dx .
0

Lol =2 [

R4

cos Y cos3 x
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One checks without difficulty that
V(o = wléow)| S 1,

while, since |V,|v — w|| < 1,

iny ~\ b(1— 2cos?
S > ( X) sin x dy

-~ %
< _
vl s [ lowlde [ € [*at (w -l Xe)
~ (3 iny 2\ b(1 — 2cos?
+/d]¢(w)Hv—w|dw/d dg/ VM| <w+|v—w|SlnX§> (1=2c05"%) oy,
R Sd—2 0

Cos Y costy

Performing backwards all the change of variables, one sees that

Vrel@I S [ 6] Mebi0)do.do

RdxSd—1

b(a -
+/ W’H(VM)*Hu]Mdv* do.
R xSd-1

l1-u-o

Therefore, since wo_g(v) S wg(v«)wo_g(v') forany § > 0 and |u| < w01 (v)wo1(vi),

@ VOIS [ (0iwan) (M), W) do.do
b))
Vi—u-o

With the notation of Alonso et al. (2010) and with v' = v, + u™, one sees for instance that the
last integral can be written as

+ [ (o) (FMIwan). Q. do = Fy(0) + Fo(v)
RdxSd—1

Fy(v) := g G(v)P(1, 7—p, ) (v) dvy

where G := |[VM|w,11, ¢ := ©o_4|¢| and
P(f.9)w)i= [ Fu)glutb(a- o) do,
Sdfl

with b(s) := 2L 4~ := 1(u — |u|o), u* = u — u~. Then, by Minkoskwi’s integral inequality
1-s 2 y

12l 2 < [IGlprsup [[P(1, 70, 9)l 2
Vx

and, according to (Alonso et al. , 2010, Theorem 5) with p = co,q = r = 2 and « = 0, one has

a—3

1
PO @)l < Cllrpls  with €S / b(s) (1—%) 7 (1+s) 1 ds.
0

Recalling that b( - ) is supported on the upper half-sphere, one sees then that

! d—4
1Flle < ( /0 b(s)(1— 5)" ds) VMl [lo—adl iz
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Arguing in the same way with F}, we deduce that
lw—a—1VoIl'1[0]]] 2

1 d—4
< ( /0 b(s)(1— )" ds) VM@l + M) otz

For the second term V,I'2[¢] we use the regular change of variables u — z = %

identically. We end up with the estimate

and proceed

(@ 0 1 VT[] ()] S / (6@ —ar). (Meoasr), blit- o) dv, do

R xSd-1

, ba-o) o
e (M), A dvda = Fy(e) + o).

As before, writing now v}, = v, + u~, one has for instance

Fy(v) = i G(v)P(T—, 0, 1)(v) dvs,

with now

PUr)) = [ Fgwhbli-o)do,  bls) =

According to (Alonso et al. , 2010, Theorem 5) with now p = r = 2 and ¢ = 0o, @ = 0, one has

d—3

1
[P(Tv.0, Dl < Cll7v.pllz - with  C'5 / b(s) (1—5)7 (1—s)74ds.
0

Therefore, as before using Minkowski’s integral inequality and recalling that b( - ) is supported
on (0,1), we get

~ 1 d—6
1Bulle < ( /0 b(s) (1 — 5)" ds) NIV Ml [ —adl2.

Consequently,
[ —a-1Vul2[¢]] 12

1 d—6
([ -9 as) UV MImaeals + [Mialls) [o-atlse.
Collecting the above arguments and estimating I'y[¢] in a similar fashion, we end up with

l-a Vol £ Cal®) [w-abllzz + [@-ac1 VoAl ot w@-acrélliz,  Va>0, (AS5)

where
d—6 d

Cald) < /01 bs) [(1— )T + (1 - )7 ] ds.
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Since |V, A| < w1 and |¢| < o3, one sees that max (||eo_q¢| 12, ||to—a—1 VAl [2) < oo for
a>3+ g and

d
w_oVep € LXRY),  Va>3+ 3

Now, this control in L? of the gradient of ¢ implies a control in L> of that same gradient. Indeed,
coming back to (A.4) one has

||wfavv¢”Loo S ”wfaflvaHLoo + ||wfaflvvrl[¢]”L°°
+ lww—a-1VoI2[9]l| poo + [[T—a—1T0[d]|| oo +]|TT—a—10] L

where one can write

V.Ii[o](v) = / ¢ M Vy|ulb(i- o) dvs do + T4 [V,9](v) ,
RdxSd—1
so that
l@—a—1Vol'1[@]l| e S lm—alo[@]l| L~ + |w-al'1[[Vuol]llLe ,
where

@D Vel0)] S [ (M), P(L o Voo
R
Invoking again (Alonso et al. , 2010, Theorem 5) and Cauchy-Schwarz inequality one has then
[ a1l [Vl e < IM@ara]|12l|P(1, @0l Vod])l[ L2 S Calb)[@—al Vo] |22,

where C,(b) is as before. Using (A.5) for the other terms and sees that, provided

1 d—6 d—4
/0 b(s) {(1 —s) T +(1—s)2 | ds< o (A.6)

one has wo_,V,0 € LOO(Rd) for any a > 3 + %. Notice that, for d > 2, % > % so that the
above assumption amounts simply to

1 d—6
/ b(s)(1—s) T ds < oo
0
which holds true since b( - ) satisfies (1.8). O

Remark A.4. It is very likely that the above growth of |V ,¢| < ©w, witha > 3+ & is not optimal.
In the case of Maxwell interactions the growth is actually

[v-Vop(v)| S o), |v-Vu(v)] S [(v)].
We refer to Bobylev (2020) for more details.

Lemma A.5. For h given by (6.8), it holds that

2
<¢Q1(h,h)> = 2 (u@u—d\u|21d> . Vi j=1,....d.
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Proof As observed in (Cercignani , 1970, Eq. ( 0)), if gM € Ker(L;) then Q;(gM,gM) =
—1L1(g?M). Therefore, with g = o+ u-v + 3 (|v[? — 201),

1
Qi(h,h) = —iLl((um)QM) — §02L1(lv|4./\/l) + 9u~L1(§|U\QUM) (A7)
One checks that
(6" Lu(o]* M) ) =

whereas L1 (|v[>vM) = L; (bM), from which

1 . .

i,] a2 _ i,] — 2, _

<¢ Li(5 ol UM)> <bL1(qb /\/l)> <bA M> 0

since b A%J is an even function. Therefore, we obtain that

<¢W Qi(h,h) > = —— Zuku£< ’]Ll VEveM) > = %Zukw<vkwAi’jM>. (A.8)

k0
As for (A.2), one checks that 1f 1#£ ]

Zukw<vkngi’jM> = Z ukw<vi2@]2-./\/l> = 2uiuj<vi2vj2-/\/l> ,
k.l {k,l}={i,j}

whereas, for i = 7,

ZukUg<Uk’UgAi7iM> = zd:ui <<va,%./\/l> - 2<U%‘U‘2M>> .
k=1

kL

Notice that a := <v2211]2./\/l> is independent of 7, j, thus, it is not difficult to check that

1
= d/ lv|* M dv —/ viM(v)dv = (d — 1)9%,
R4 R4
that is, a = ¥2. In the same way, for any k € {1,...,d}

(2P = 2ol M) = (a+ 2)3%,

whereas
— 92 ~ :
(voim) = <vg/&>_;91319§ i Z ’ .
so that,
Zuku5<vkngi’i./\/l> =3 Zuz + 393u? — d%‘lz\u]%?% = 20%u? — %ﬁ%\u? .
k¢ ki

Gathering these last computations, we get

(9010 M, fa0)M)) = 07 (s = 2 )
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which, combined with (A.8) gives the result. O

Lemma A.6. Let h be given by (6.8). For anyi,j = 1,...,d it holds that

vugj ifi#j, {=1,
O I e
—Zvug+2vuidy  ifi=1j,
0 else.

Proof. Using the fact that x is radial, similar computations to that of Lemma A.5 imply that for
te{l,...,d},

™~
M=

<vg ¢ h> = uk<vgvk o /\/l> = uk<ka o M>

b
Il

1

B
Il

1

m <<Ak’£ ¢ /Vl> + a<lv|2 o M>5ke>

I
M~

i

1

|
M-

u(#77 L (67 M) )

ol

=1
where we used that L; (¢ M) = —AM and <\v|2¢”./\/l> = 0. This gives the result thanks
to (A.2). 0

Lemma A.7. Let h be given by (6.8). Foranyi = 1,...,d, it holds that

(0 alhm) =457

and, if o and 0 satisfies Boussinesq relation (6.13), then

divx<¢)¢ h v> = 7%&,%9 .

Proof. On the one hand, using (A.7) it holds that

(:Qi(h,h)) = Ou- <¢¢L1(%|U|2UM)> = 0u- (% La(bM) ),
since, 1); being odd, one has <1/}iL1((u . U)QM)> = <1/}iL1(|’U|4M)> = 0. Now,
(i La(®M)) = (bLi(M) ) = —(bMb;).,

and a direct computations show that

1 d—+2
<bjbi/\/l> - _@< (J02 = (d + 2)91)° |v|2/\/l> bij = ——5— 010,
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which gives the expression for <1/JZ Qi (h, h)> On the other hand, using symmetry properties,
one checks that

<1/1ih W> = Q<1/JiUiM>5ie + %9<¢i(|v|2 - dﬁl)UiM> die
from which

divx<1/zihv> - <1/JZ’UZM> B, 0 + 2<¢Z(yv| - dﬁl)vz./\/l>8zi9.

Writing 5 <¢z‘ (Jv|?—dv, )vz/\/l> = <¢i b, M > + < > and using Boussinesq relation (6.13),
one gets that

divx<1/zl- hv> <¢Z b, M> 25 6,
where the identity <¢z‘ bi./\/l> = —<¢z‘L1(¢z’ )> was used together with (A.2). d

To handle the convergence of nonlinear terms, we resort to the following compensated com-
pactness result extracted from Lions & Masmoudi (1999) (see also (Golse & Saint-Raymond , 2004,
Lemma 13.1, Appendix D). The original result in Lions & Masmoudi (1999) is proven in the whole
space but is easily adapted to the case of the torus.

Proposition A.8. Let ¢ # 0 and T' > 0. Consider two families {¢.}. and {1).} bounded in
L>((0,T) ; L2(T%) and in L>®((0,T) ; Wy*(T%)) respectively, such that
c? 1
vst =+ *vxgba =-F:
£ €
1 1
0P + —Agtp. = -G
5 5
where F. and G converge strongly to 0 in L' ((0,T) ; L2(T%)). Then,
PDiv,, (wae & vxwa) ——O_> 0, div, ((Zsavxwa) — 0
E—

e—0
in the sense of distributions on (0, T) x T
APPENDIX B. ESTIMATES ON THE COLLISION OPERATOR

We first recall a crucial estimate on the Boltzmann collision operator established in Theorem 1
of Alonso et al. (2010) (see also Alonso & Gamba (2011)):

Theorem B.1 (Theorem 1, Alonso et al. (2010)). Consider ¢ > 0, r € [1,00). Forany f €
Ly(wgy1) and g € L, o(Tg+1),

HQ+(f g)HLT(wq) Cl”f”L’"(wq+1 Hg”L L(wog+1) 0
and

19 (9 Nl (wg) < Coll FllLpogsn) 191111 (040
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with
L1 s\ e 43
cl_cl(r)_zq?+i+ﬁysd—2|/ ( 2S> Tb(s)(1-52) 7 ds
—1
and
1 2 -5
1 1-— 1 2r d—3
02:02(7«):2“"51+1\Sd—2\/ ( ;3+( 40‘) ‘2”> b(s) (1—s%) 7 ds
-1

1 1 _
where;—kp—l.

Remark B.2. Throughout the paper, we assume b( -) satisfies assumption (1.8) so that Cy(r) < oo
and Ca(r) < oo foranyr € [1,2].

We also recall a classical estimate (whose proof is immediate using Hélder inequality) for the
loss part of the collision operator.

Lemma B.3. Consider ¢ > 0, r € [1,2] and b such that condition (1.8) is satisfied. Then, for any
K > (T L) ,any f € Ly(wgy1) and g € L} (@, 41), we have:

HQ;(gv f)”Lg(wq) S ”g”L{,(wN/+1)||f”L{,(wq+1) :

From the two previous results, using that the operators Q§ are local in z and that ch’2 is an
algebra for ¢ > %, we can deduce the following :

Corollary B.4. Considerq > 0,r € [1 2), b such that condition (1 8) is satisfied and ¢ > 2 Then,
for any k' > d(rr D ,any f € L’"W (wq+1) and g € LQWQE 2(@ep1) N Lva (wq+1),
have:

19a9: Dl ey S W gt oy ) (19 gz, 190 ey ))
The proof of Lemma 3.4 is based on the following technical lemma:

Lemma B.5. Consider b such that assumption (1.7) is satisfied. Then, there exists C' > 0 such that

1

forany f, g and p € L3(M™2(-)3),

(Qx(9, 1), #) 3, <Clel

L2(M™ L%(M’% % <HfHL2 M’? %HQHLQM 2)

+ £l (B.1)

3l

L3 (M L2<M5<->%>> '

In particular, if f, g and p € H,, it holds

(Qa(9: 1), #)s < Cligln <||f”7—h||9||% + HfHHHgIIm) (B.2)

where the functional spaces H and H are defined in (3.1).
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Proof. We use the strong form of QF (g, f) given in (2.12) and prove the result only for Q7 (g, f),
the proof for Q (g, f) = Q7 (g, f) being simpler and well-known. Notice that (B.1) is dealing
only with spatially homogeneous functions g, f and ¢. We set

Fi=M"2f G=M1g, &:=M7p. (B.3)

Given v € R?, one has

QLN < [, Biwo) 1) lg(o)] do o,

Rd ngfl
< / B (u, 0) M3 (o) M3 () |F ()| |G ()] do do,
RdXSd_l
|u

where, according to (2.13), B (u,0) = [ (u- o) with

&2

2 =R (14 a?)s — (1 —a?)
1+a2—(1—a2)s} b<1+a2—(1—a2)s

ba(s) = [ ) , se(-1,1).

|2 4+ |v4)? = |v]? + |v«|? which translates into

Due to the dissipation of kinetic energy,

1

M2 ()M (o) < M2 () M2 (v,)
so that

|94 (g, f)(v)] < Mé(v)/ B (u, 0) M2 (v.) |F ()] |G (v,)| do du, .

RdxSd—1

Thanks to Cauchy-Schwarz inequality, we deduce that

Q@I <M ([ IPORIGEPasan )

(/Rdxgdl (Bf (u,0))* M(v,) dv. d(f)

(NI

Now, for fixed (v, vs) € R? x RY, we compute

/ (B (u,0))?do = % s?=2 /1 (1- 32)% b2 (s)ds
§d—1 @ ’ 054 -1 @
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(1+a?)s—(1—a?)

(1+a2)t+(1—a?)
1+a2—(1—a?)s nd

so that s = m

and, performing the change of variable t =

— 4
dS = m dt, we get

/1 (1- 52)% b2 (s)ds

-1

' 402(1 — 2 ey .
:4Q2/—1 (<1+a2ﬂ£(1 —f)x?)t)2> Lla? (1+a®+(1—a?))
dt

(1+ a2+ (1— a?)i)?

b (t)

1 d-3 b2(t) d
= (2a)5_d/_1 (1- t2) ’ (1+ a2 +(t()1 j a2)t)2”

In particular, according to assumption (1.7) and since 1 + o + (1 — ?)t > 2a?, one deduces that

(BS (u,0))*do < 2d+4ﬂ\gd*2\ 1 (1- tQ)% b (t)dt = C, [uf*
IR = o+ . b 7+d

from which
/ (BE (u.0))* M(v,) dv, do < C’ba—7_d/ 0 — 0P M(v.) dvs S (0)°.
R xSd-1 Ré

Therefore

Q2 (9, £) ()] S ME () (0) ( [ wer \G(’v*)IQdadv*>

dy§d—1
Mutiplying by (v)M~1(v) and integrating over R?, we get

(9092 3ty 5/@@(“)(”) (/R%m ’F(/U)|2|G('v*)\2dodv*>2 dv.

Using Cauchy-Schwarz inequality again, we obtain

Q2009 0 1y SN0 ([ has [ PP IGE0 doao, )

1 2
SR W) PG dodedo)
R xRdxSd—1
where we used the pre-post collisional change of variable in the last estimate. Since
(V) < (v) + (vs)
we deduce that

(QF0: )18} pety S 1Y@z (IF Ul G llag + 1% Pl |Gz )
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which is exactly (B.1) thanks to (B.3). Notice that (B.1) can be reformulated equivalently as

+
1920 Dlgenr by < C(W a1 190

1 g b1 )
For functions f, g depending on z, since Wﬁ’Q(Td) is a Banach algebra for ¢ > g and QZ is local
in z, we deduce that (B.2) holds true, or equivalently

192 (9. ) -3

L2WSA (M2 ()2

< (Il + Ul ) B4

This achieves the proof. g
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