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FLUID DYNAMIC LIMIT OF BOLTZMANN EQUATION FOR GRANULAR
HARD-SPHERES IN A NEARLY ELASTIC REGIME

RICARDO ALONSO, BERTRAND LODS, AND ISABELLE TRISTANI

ABSTRACT. In this paper, we provide the first rigorous derivation of hydrodynamic equations
from the Boltzmann equation for inelastic hard spheres with small inelasticity. The hydrodynamic
system that we obtain is an incompressible Navier-Stokes-Fourier system with self-consistent
forcing terms and, to our knowledge, it is thus the first hydrodynamic system that properly
describes rapid granular flows consistent with the kinetic formulation. To this end, we write
our Boltzmann equation in a non dimensional form using the dimensionless Knudsen number
which is intended to be sent to 0. There are several difficulties in such derivation, the first one
coming from the fact that the original Boltzmann equation is free-cooling and, thus, requires a
self-similar change of variables to introduce an homogeneous steady state. Such a homogeneous
state is not explicit and is heavy-tailed, which is a major obstacle to adapting energy estimates
and spectral analysis. Additionally, a central challenge is to understand the relation between the
restitution coefficient, which quantifies the energy loss at the microscopic level, and the Knudsen
number. This is achieved by identifying the correct nearly elastic regime to capture nontrivial
hydrodynamic behavior. We are, then, able to prove exponential stability uniformly with respect
to the Knudsen number for solutions of the rescaled Boltzmann equation in a close to equilibrium
regime. Finally, we prove that solutions to the Boltzmann equation converge in a specific weak
sense towards a hydrodynamic limit which depends on time and space variables only through
macroscopic quantities. Such macroscopic quantities are solutions to a suitable modification of the
incompressible Navier-Stokes-Fourier system which appears to be new in this context.

Mathematics Subject Classification (2010): 76P05 Rarefied gas flows, Boltzmann equation
[See also 82B40, 82C40, 82D05]; 76T25 Granular flows [See also 74C99, 74E20]; 47H20 Semigroups
of nonlinear operators [See also 37105, 47]J35, 54H15, 58D07], 35Q35 PDEs in connection with
fluid mechanics; 35Q30 Navier-Stokes equations [See also 76D05, 76D07, 76N10].

Keywords: Inelastic Boltzmann equation; Granular flows; Nearly elastic regime; Long-time
asymptotic; Incompressible Navier-Stokes hydrodynamical limit; Knudsen number.
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1. INTRODUCTION

The derivation of hydrodynamic models from suitable nonlinear (and possible non conser-
vative) kinetic equations is a challenging problem which has attracted a lot of attention in the
recent years. Besides the well-documented literature dealing with the Boltzmann equation (see
Section 1.6 hereafter), a large variety of new kinetic models and limiting processes have been
considered, spanning from high friction regimes for kinetic models of swarwing (see e.g. Karper
et al. (2015); Figalli & Kang (2019) for the Cucker-Smale model) to the reaction-diffusion limit for
Fitzhugh-Nagumo kinetic equations Crevat et al. (2019). For fluid-kinetic systems, the literature
is even more important, we mention simply here the works Goudon et al. (2004a,b) dealing with
light or fine particles regimes for the Vlasov-Navier-Stokes system and refer to Han-Kwan &
Michel (2021) for the more recent advances on the subject. We also mention the challenging study
of gas of charged particles submitted to electro-magnetic forces (Vlasov-Maxwell-Boltzmann
system) for which several incompressible fluid limits have been derived recently in the monograph
Arsénio and Saint-Raymond (2019).

We consider in the present paper the paradigmatic example of non conservative kinetic
equations given by the Boltzmann equation for inelastic hard spheres. In a regime of small
inelasticity, we derive in a suitable hydrodynamic limit an incompressible Navier-Stokes-Fourier
system with self-consistent forcing terms. This provides, to the best of our knowledge, the first

rigorous derivation of hydrodynamic system from kinetic granular flows in physical dimension
d=>2.

1.1. Multiscale descriptions of granular gases. Granular materials are ubiquitous in nature
and understanding the behaviour of granular matter is a relevant challenge from both the physics
and mathematics viewpoints. Various descriptions of granular matter have been proposed in the
literature, see Garz6 (2019). An especially relevant one consists in viewing granular systems as
clusters of a large number of discrete macroscopic particles (with size exceeding 1 pm, significantly
larger than the one of a typical particle described in classical kinetic theory) suffering dissipative
interactions. One speaks then of rapid granular flows or gaseous granular matter. If the number
of particles is large enough, it is then common to adopt a kinetic modelling based upon suitable
modification of the Boltzmann equation. As usual in kinetic theory, it is then particularly relevant
to deduce from this kinetic description the fluid behaviour of the system. This means, roughly
speaking, that we look at the granular gas at a scale larger than the mesoscopic one and aim to
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capture the hydrodynamical features of it through the evolution of macroscopic quantities like
density, bulk velocity and temperature of the gas which satisfy suitable hydrodynamics equations.

One of the main objects of the present work is to make a first rigorous link between
these two co-existing descriptions by deriving a suitable modification of incompressible
Navier-Stokes equation from the Boltzmann equation for inelastic hard-spheres as the
Knudsen number goes to zero.

Recall that the Knudsen number ¢ is proportional to the mean free path between collisions
and in order to derive hydrodynamic equations from the Boltzmann equation, the usual strategy
consists, roughly speaking, in performing a perturbation analysis in the limit ¢ — 0 (meaning
that the mean free path is negligible when compared to the typical physical scale length). We
point out that these questions are perfectly understood in the elastic case (molecular gases) for
which rigorous results on the hydrodynamic limits of the Boltzmann equation have been obtained,
we refer to the next Section 1.6 for more details and to Saint-Raymond (2009a) for an up-to-date
review.

The picture in the context of granular gases is quite different. In fact, a satisfying hydrodynamic
equation that properly describes rapid granular flows is still a controversial issue among the
physics community. The continuous loss of kinetic energy makes granular gases an open system as
far as thermodynamics is concerned. Moreover, no non-trivial steady states exist in granular gases
without an external energy supply which makes granular gases a prototype of non-equilibrium
systems. This is an important obstacle in the derivation of hydrodynamical equations from
the kinetic description since it is expected that equilibrium states play the role of the typical
hydrodynamic solution where time-space dependence of the single-particle distribution function
F(t,z,v) occurs only through suitable hydrodynamic fields like density o(¢, ), bulk velocity
u(t, ), and temperature 6(¢, z). An additional difficulty is related to the size of particles and scale
separation. Recall that granular gases involve macroscopic particles whose size is much larger
than the one described by the usual Boltzmann equation with elastic interactions referred to as
molecular gases. As the hydrodynamic description occurs on large time scales (compared to the
mean free time) and on large spatial scales (compared to the mean free path) the mesoscopic -
continuum scale separation is problematic to justify in full generality for granular gases. We
refer to (Garzo, 2019, Section 3.1, p. 102) for more details on this point and observe here that
the main concern is related to the time scale induced by the evolution of the temperature (see
(1.11) herafter). In particular, as observed in Garzé (2019), this problem can only be answered
with a fine spectral analysis of the linearized Boltzmann equation that ensures that the d + 2
hydrodynamic modes associated to density, velocity and temperature decay more slowly than
the remaining kinetic excitations at large times. This is the only way that the hydrodynamic
excitations emerge as the dominant dynamics. All these physically grounded obstacles make the
derivation of hydrodynamic equations from the Boltzmann equation associated to granular gases
a reputedly challenging open problem. Quoting Brey & Dufty (2005):
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“the context of the hydrodynamic equations remains uncertain. What are the relevant
space and time scales? How much inelasticity can be described in this way?”

The present paper is, to the best of our knowledge, the first rigorous answer to these rele-
vant problems, at least in dimension d > 2. We already mentioned that the key point in our
analysis is to identify the correct regime which allows to answer these questions: the nearly
elastic one. In this regime the energy dissipation rate in the systems happens in a controlled
fashion since the inelasticity parameter is compensated accordingly to the number of collisions
per time unit. This process mimics viscoelasticity as particle collisions become more elastic as the
collision dissipation mechanism increases in the limit £ — 0 (see Assumption 1.2 below). In this
way, we are able to consider a re-scaling of the kinetic equation in which a peculiar intermediate
asymptotic emerges and prevents the total cooling of the granular gas.

Other regimes can be considered depending on the rate at which kinetic energy is dissipated,;
for example, an interesting regime is the mono-kinetic one which considers the extreme case of
infinite energy dissipation rate. In this way, the limit is formally described by enforcing a Dirac
mass solution in the kinetic equation yielding the pressureless Euler system (corresponding to
sticky particles). Such a regime has been rigorously addressed in the one-dimensional framework
in the interesting contribution Jabin & Rey (2017). It is an open question to extend such analysis
to higher dimensions since the approach of Jabin & Rey (2017) uses the so-called Bony functional
which is a tool specifically tailored for 1D kinetic equations.

1.2. The Boltzmann equation for granular gases. We consider here the (freely cooling) Boltz-
mann equation which provides a statistical description of identical smooth hard spheres suffering
binary and inelastic collisions:

OF(t,x,v) +v -V, F(t,z,v) = Qu(F, F) (1.1)

supplemented with initial condition F'(0, z,v) = Fi,(x,v), where F(t,z,v) is the density of
granular particles having position z € T¢ and velocity v € R? at time ¢t > 0 and d > 2. We
consider here for simplicity the case of flat torus

T¢ = RY/ (27 £ Z)? (1.2)
for some typical length-scale £ > 0. This corresponds to periodic boundary conditions:
F(t,x +2mle;,v) = F(t,x,v) i=1,...,d

where e; is the i-th vector of the canonical basis of R%. The collision operator 9, is defined in
weak form as

[ 0ula.pe)vite =3 [ f@)ge) o= vl alullov)dude. 13)
R4 R2d
where

Aaliltv,) = [ )+ 6(01) = 0(0) = w(w)blo- D)o, (14
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and the post-collisional velocities (v', v’,) are given by

1 1
V=t (o —w), ol = v~ ((ulo — ),
" (1.5)
where U=V — Vs, U= —.
Jul

Here, do denotes the Lebesgue measure on S%~! and the angular part b = b(cos 8) of the collision
kernel appearing in (1.4) is a non-negative measurable mapping integrable over S*~!. There is no
loss of generality assuming

/ blo-u)do =1, Vaesi L
Sd—1

An additional technical assumption on the angular kernel b( -) will be needed in the sequel,
namely, in the rest of the paper, we suppose that there exists > 2 such that

1
/ b(s) [(1—3)%(1+3)%+(1+3)%(1—3)% ds < . (1.6)
-1

We just mention here that we need this integral to be finite to get bounds on the bilinear op-
erator Q, on L] for r > 2 (see Theorem A.1). As a consequence, if b € Loo(Sdfl) and d > 3,
condition (1.6) holds true for any r € [2,3). In particular, our assumption includes the case of
hard spheres in dimension d = 3.

The fundamental distinction between the classical elastic Boltzmann equation and that asso-
ciated to granular gases lies in the role of the parameter o € (0, 1), the coefficient of restitution.
This coefficient is given by the ratio between the magnitude of the normal component (along
the line of separation between the centers of the two spheres at contact) of the relative velocity
after and before the collision (see Appendix A.2 for the detailed microscopic velocities). The case
a = 1 corresponds to perfectly elastic collisions where kinetic energy is conserved. However,
when a < 1, part of the kinetic energy of the relative motion is lost since
1—a?
4
It is assumed in this work that « is independent of the relative velocity u (refer to Alonso
(2009), Alonso & Lods (2014), and Alonso et al. (2021) for the viscoelastic restitution coefficient

case). Notice that the microscopic description (1.5) preserves the momentum

0+ [vil? = o = Juu|* = - ul* (1= o) <0. 1.7

v + vi = v + v,
and, taking 1) = 1 and then ¢(v) = v in (1.3) yields to the following conservation of macroscopic
density and bulk velocity

d d d d
—R(t) = — F(t dvdz =0 —U(t) := — F(t dvdz = 0.
G0 =g [, P =0 QU =G [ ore i
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Consequently, there is no loss of generality in assuming that
R(t) = R(0) =1, Uit)=U(0)=0 vt > 0.

As mentioned, the main contrast between elastic and inelastic gases is that in the latter the
granular temperature
1

= T Jotns lv|2F (t, z,v)dvdz
4 Xy

T(t):

is constantly decreasing

d
ET(t) = —(1 —a®)Do(F(t),F(t)) <0,  Vt>0.
Here D, (g, g) denotes the normalised energy dissipation associated to Q,,, see Mischler & Mouhot
(2006), given by
dx
Dalgsg) =2 [ i [ gl olglavlo - v fdude, (18)
4 Jra |TF| Jraxprd

with
l—o-u, a2 " od2 .o (b
Vo 1= ———b(o-u)do =[S""?| | b(cosh) (sinf)* “ sin” [ = | db.
Sd—1 2 0 2

In fact, it is possible to show that

A T =0
which expresses the total cooling of granular gases. Determining the exact dissipation rate of the
granular temperature is an important question known as Haff’s law, see Haff (1983).

1.3. Navier-Stokes scaling. To capture some hydrodynamic behaviour of the gas, we need to
write the above equation in nondimensional form introducing the dimensionless Knudsen number

mean free path

~ spatial length-scale

which is assumed to be small. We introduce then a rescaling of time and space to capture the
hydrodynamic limit and introduce the particle density

F.(t,x,v)=F (2, x,v) , t>0. (1.9)

et e
In this case, we choose for simplicity £ = ¢ in (1.2) which ensures now that F; is defined on
R+ x T4 x R? with T? = T¢. From now on, we assume for simplicity that the torus T¢ is equipped
with the normalized Lebesgue measure, i.e. |T¢| = 1. It is well-know that, in the classical elastic
case, this scaling leads to the incompressible Navier-Stokes, however, other scalings are possible
that yield different hydrodynamic models. Under such a scaling, the typical number of collisions

per particle per time unit is £ ~2

20, F.(t,x,v) + ev- Vi Fe(t,z,v) = Qu(F:, Fy), (z,v) € T? x R, (1.10a)

, more specifically, F; satisfies the rescaled Boltzmann equation
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supplemented with initial condition
F.(0,z,v) = F{(2,v) = Fin(Z,v). (1.10b)

Conservation of mass and density is preserved under this scaling, consequently, we assume that
R.(t) = / F.(t,z,v)dvder =1, U.(t) = / F.(t,z,v)vdvde =0, Vt>0,
R X Td R xTd

whereas the cooling of the granular gas is now given by the equation

d 1—a?

—Te(t) = _TDa(FE(t)7FE(t))¢ (1.11)

where T.(t) = / |v|2F.(t, x,v)dvdz.
R xTd

Remark 1.1. From now on we will always assume that

1 1
/ Ff (z,v) v dvdz = 0
Td x R4 |U|2 Ein

with Ei, > 0 fixed and independent of €. It is important to emphasize that, in the sequel, all the
threshold values on £ and the various constants involved are actually depending only on this initial
choice.

1.4. Self-similar variable and homogeneous cooling state. Various forcing terms have been
added to (1.10a) depending on the underlying physics. Forcing terms prevent the total cooling of
the gas (heated bath, thermal bath, see Villani (2006) for details) since they act as an energy supply
source to the system and induce the existence of a non-trivial steady state. These are, however,
systems different from the free-cooling Boltzmann equation (1.10a) that we aim to investigate
here.

To understand better this free-cooling scenario, it is still possible to introduce an intermediate
asymptotics and a steady state to work with. This is done by performing a self-similar change of

variables
F.(t,x,v) = Va(t)dfE (Tg(t), x, Ve(t)v) , (1.12a)
with
1
Te(t) = —log(1+cet), Ve(t)=14ct), t=0, cc >0. (1.12b)
Ce
With the special choice
l-«
Cce =—%, (1.12¢)
€

we can prove that f. satisfies

20, fe(t,x,0) + ev- Vo folt, 2,0) + ko V- (fe(t,2,0)) = Qalfer fo),  (1.13)
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with initial condition
fe(0, 2, 0) = Fi (2, v).
Here
ka=1—a>0, Va € (0,1).
The underlying drift term x4V, - (vf(t, z,v)) acts as an energy supply which prevents the total
cooling down of the gas. Indeed, it has been shown in a series of papers (Mischler et al. (2006);
Mischler & Mouhot (2006, 2009)) that there exists a spatially homogeneous steady state G, to (1.13)

which is unique for o € (v, 1) for an explicit threshold value o € (0, 1). More specifically, for
a € (ap, 1), there exists a unique solution G, to the spatially homogeneous steady equation

KoV (VG4 (V) = Qu(Ga, Ga) ,

with
/ Gq(v)dv =1, Go(v)vdv = 0.
Rd Rd
Moreover,
Jim [|Ga = Ml|z1(wy2) =0, (1.14)
where M is the Maxwellian distribution
2
M(v) = Gi(v) = (2%191)*% exp <—|2119|> , veR?, (1.15)
1

for some explicit temperature ¥; > 0. The Maxwellian distribution M (v) is a steady solution for
a = 1 and its prescribed temperature 191 (which ensures (1.14) to hold) will play a role in the rest
of the analysis. We refer to Appendix A for more details and explanation of the role of ¥;.

Notice also that the equation in self-similar variables (1.13) preserves mass and vanishing
momentum. Indeed, a simple computation based on (1.3) gives that

d

— fe(t, z,v)vdvde = —/ fe(t,z,v)vdvde .
dt RdxTd

RAxTd
Consequently, the assumption made in Remark 1.1 and the fact that G, has mass 1 and vanishing
momentum imply that for any ¢ > 0, we have

/RdXTdfg(t,x,v) ( : )dvdx: ( . )

Three main questions are addressed in this work regarding the solution to (1.13):

(Q1) First, we aim to prove the existence and uniqueness of solutions to (1.13) in a close to
equilibrium setting, i.e. solutions which are defined globally in time and such that

sup || fe(t) — Gal <0 (1.16)
t=0
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for some positive and explicit ¢ > 0 in a suitable norm || - || of a functional space to be identi-
fied. The close-to-equilibrium setting is quite relevant for very small Knudsen numbers given
the large number of collisions per unit time which keeps the system thermodynamically
relaxed.

(Q2) More importantly (though closely related), the scope here is to provide estimates on the
constructed solutions f, which are uniform with respect to €. This means that, in the previous
point, § > 0 is independent of ¢. In fact, we are able to prove exponential time decay for the
difference || f-(t) — G4

(Q3) Finally, we aim to prove that, as ¢ — 0, the solution f.(¢) converges towards some
hydrodynamic solution which depends on (¢,z) only through macroscopic quantities
(o(t,x),u(t,z),0(t,z)) which are solutions to a suitable modification of the incompressible
Navier-Stokes system.

The central underlying assumption in the previous program is the following relation between the
restitution coefficient and the Knudsen number.

Assumption 1.2. The restitution coefficient «( -) is a continuously decreasing function of the
Knudsen number € satisfying the optimal scaling behaviour

ae) =1 — Ne? + o(e?) (1.17)
with Ag = 0.

Indeed, a careful spectral analysis of the linearized collision operator around G, shows that
unless one assumes 1 — o comparable to £ the eigenfunction associated to the energy dissipation
would explode and prevent (1.16) to hold true. In fact, we require A to be relatively small with
respect to the eigenvalues associated to other kinetic excitations. As mentioned before, in this
regime the energy dissipation rate is controlled along time by mimicking a viscoelastic property
in the granular gas which is at contrast to other regimes such as the mono-kinetic limit. In
viscoelastic models, nearly elastic regimes emerges naturally on large-time scale, see Bobylev
et al. (2000); Alonso & Lods (2014); Alonso et al. (2021) for details.

Because € — 0, Assumption 1.2 means that the limit produces a model of the cumulative effect
of nearly elastic collisions in the hydrodynamic regime. Two situations are of interest in our
analysis
Case 1: If Ay = 0 the cumulative effect of the inelasticity is too weak in the hydrodynamic scale

and the expected model is the classical Navier-Stokes equations. In this case, to ensure
that \. > 0, we need the additional assumption that « satisfies

ale) =1 —enle)

for some function 7)( - ) which is positive on some interval (0, €). This technical assumption
will be made in all the sequel.
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Case 2: If 0 < ¢ < 00, the cumulative effect is visible in the hydrodynamic scale and we expect
a model different from the Navier-Stokes equation accounting for that. As we mentioned,
we require A\ to be relatively small compared to some explicit quantities completely
determined by the mass and energy of the initial datum, say, 0 < Ag < 1 with some
explicit upper bounds on Ag.

1.5. Main results. The main results are both concerned with the solutions to (1.13). The first one
is the following Cauchy theorem regarding the existence and uniqueness of close-to-equilibrium
solutions to (1.13). Exact notations for the functional spaces are introduced in Section 1.8.

Theorem 1.3. Under Assumption 1.2, let

m > d, m—1>2k>0, q =3,
be fixed. There exists a triple (T, AT, IC(TJ) depending only on the mass and energy of F\; and m, k, q
such that, fore € (0,e"), . € (0, A1), and Ko € (0,K}), if

”Ff; - Ga(5)||WIE,IW;n,2(<U>q) <e \/IC>0

then the inelastic Boltzmann equation (1.13) has a unique solution
f= € C([0, 00); Wi 'Wi2((0)7))
satisfying fort > 0

| £(t) — Ga(e)nglwg‘ﬂ(@W) < CeV/Ko exp (=Act)

t
and /0 Hfs(T) — Ga(a) ng,lwg,z«wqﬂ) dr < Cey/Kpmin {1 +t, 1+ %E} )
for some positive constant C > 0 independent of & and where \. ~ 1_%2(6) is the energy eigenvalue
of the linearized operator (see Theorem 1.8 hereafter).

Remark 1.4. We wish to clarify here the role of the parameter X' in the above result (and in several
similar others in the sequel). Of course, for any choice of ¢, the parameter \. is fixed as it is the
energy eigenvalue. Asking it to be smaller than the threshold value AT has to be however understood
as a constraint on the parameter \g appearing in (1.17). The above result applies to any Ao > 0 such
that \. < \'.

Theorem 1.3 completely answers queries (Q1) and (Q2) where the functional space is chosen
to be a L} L2-based Sobolev space

k,1ypym.2
W W= ((0)9)
and the close-to-equilibrium solutions are shown to decay with a rate that can be made uni-

form with respect to the Knudsen number €. Recall here that, since Assumption 1.2 is met, the
homogeneous cooling state depends on ¢ and G (o) — M ase — 0.
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The estimates on the solution f. provided by Theorem 1.3 are enough to answer (Q3). This is
done under some additional assumption on the initial datum. Namely

Theorem 1.5. Under the Assumptions of Theorem 1.3, set
fe(t,,v) = Goe) + € he(t, z,v),
with h(0, z,v) = hi, (z,v) = e (F, — Go(e)) such that
lim {[7ohiy — holl pyyyy2 =0,

where T stands for the projection over the elastic linearized Boltzmann operator (see Section 6 for a
precise definition)

ho(,v) = (00(@) + uo(x) v + 100(x)(|v]* — dv1)) M(v),
with M being the Maxwellian distribution introduced in (1.15) and
(00, w0,60) € Wi,
where we set #j := Wi’z(Td) X <Wi’2(’]1‘d))d X Wﬁ’Q(Td) forany ¢ € N.

Then, for any T > 0, {h.}_ converges in some weak sense to a limit h = h(t, z,v) which is such
that

h(t,z,v) = (g(t,x) +u(t,x) v+ %G(t,x)(]’u]z — d191)> M(v), (1.18)
where
(0,u,0) € C([0,T); #in—2) N L ((0,T); W),

is solution to the following incompressible Navier-Stokes-Fourier system with forcing

8tu—ﬁ%Amu—l—ﬁlu-qu—FVzp:)\ou,

Ao €
010 — L A0+ u-Vel) = ——/010 1.19
't 19% x+ 1uV 2(d+2)\/71 , ( )
div,u = 0, o+ 60=0,
subject to initial conditions (gin, Uin, Oin) given by
uin = u(0) = Pug, bin =0(0) = d 0o — 2 in = 0(0) = =016,
in — - 05 in — _d+20 (d+2)191907 Qin = 0 - 1Y%n ,

where Puy is the Leray projection of ug on divergence-free vector fields. The viscosity v > 0 and
heat conductivity v > 0 are explicit and Ny > 0 is the parameter appearing in (1.17). The parameter
¢ > 0 is depending on the collision kernel b( -).
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The precise notion of weak convergence in the above Theorem 1.5 is very peculiar and strongly
related to the a priori estimates used for the proof of Theorem 1.3. The mode of convergence is
detailed in Theorem 6.3, see also Section 6.2 for more details.

It is classical for incompressible Navier-Stokes equations, see (Majda & Bertozzi, 2002, Section
1.8, Chapter I), that the pressure term p acts as a Lagrange multiplier due to the constraint
divyu = 0 and it is recovered (up to a constant) from the knowledge of (g, u, 6).

We point out that the above incompressible Navier-Stokes-Fourier system (1.19) with the
self-consistent forcing terms on the right-hand-side is a new system of hydrodynamic equations
that, to our knowledge, has never been rigorously derived earlier to describe granular flows. We
also notice that the last two identities in (1.19) give respectively the incompressibility condition
and a strong Boussinesq relation (see the discussion in Section 6). It is important to point out
that in the case Ao = 0, one recovers the classical incompressible Navier-Stokes-Fourier system
derived from elastic Boltzmann equation, see Saint-Raymond (2009a). This proves continuity with
respect to the restitution coefficient a.

We finally mention that the above Theorem 1.5 together with the relations (1.12) provide also
a quite precise description of the hydrodynamic behaviour of the original problem (1.10a) in
physical variables. In this framework, the above mentioned Case 2 for which Ag > 0 enjoys some
special features for which uniform-in-time error estimates can be obtained. Turning back to the
original problem (1.10a) not only gives a precise answer to Haff’s law (with an explicit cooling
rate of the granular temperature T (t)) but also describes the cooling rate of the local temperature
Jga F=(t,z,v)|v|*dv. We refer to Section 6.6 and Appendix B for a more detailed discussion.

1.6. Hydrodynamic limits in the elastic case. The derivation of hydrodynamic limits from
the elastic Boltzmann equation is an important problem which received a lot of attention and
its origin can be traced back at least to D. Hilbert exposition of its 6th problem at the 1900
International Congress of Mathematicians. We refer the reader to Saint-Raymond (2009a); Golse

(2014) for an up-to-date description of the mathematically relevant results in the field. Roughly
speaking three main approaches are adopted for the rigorous derivation of hydrodynamic limits.

A) Many of the early mathematical justifications of hydrodynamic limits of the Boltzmann equa-
tion are based on (truncated) asymptotic expansions of the solution around some hydrodynamic
solution

F.(t,x,v) = Fy(t,x,v) (1 + ZEnFn(t,$,U)) (1.20)
where, typically '
ot ) = 2L (L1 lt)P) |
olt, 2:) (27r0(t,a:))% P 20(t, ) (21

is a local Maxwellian associated to the macroscopic fields which is required to satisfy the
limiting fluid dynamic equation. This approach (or a variant of it based upon Chapman-Enskog
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expansion) leads to the first rigorous justification of the compressible Euler limit up to the first
singular time for the solution of the Euler system in Caflisch (1980) (see also Lachowicz (1987)
for more general initial data and a study of initial layers). In the same way, a justification
of the incompressible Navier-Stokes limit has been obtained in De Masi et al. (1989). This
approach deals mainly with strong solutions for both the kinetic and fluid equations.

B) Another important line of research concerns weak solutions and a whole program on this
topic has been introduced in Bardos et al. (1991, 1993). The goal is to prove the convergence
of the renormalized solutions to the Boltzmann equation (as obtained in Di Perna & Lions

(1990)) towards weak solutions to the compressible Euler system or to the incompressible
Navier-Stokes equations. This program has been continued exhaustively and the convergence
have been obtained in several important results (see Golse & Saint-Raymond (2004, 2009);
Jiang & Masmoudi (2017); Levermore & Masmoudi (2010); Lions & Masmoudi (2001a,b) to
mention just a few). We remark that, in the notion of renormalized solutions for the classical
Boltzmann equation, a crucial role is played by the entropy dissipation (H -theorem) which
asserts that the entropy of solutions to the Boltzmann equation is non increasing

d

— F.log F.(t,z,v)dvdz < 0.

dt RdxTd

This a priori estimate is fully exploited in the construction of renormalized solutions to the
classical Boltzmann equation and is also fundamental in some justification arguments for the

Euler limit, see Saint-Raymond (2009b).

C) A third line of research deals with strong solutions close to equilibrium and exploits a careful
spectral analysis of the linearized Boltzmann equation. Strong solutions to the Boltzmann
equation close to equilibrium have been obtained in a weighted L2-framework in the work Ukai
(1974) and the local-in-time convergence of these solutions towards solution to the compressible
Euler equations have been derived in Nishida (1978). For the limiting incompressible Navier-
Stokes solution, a similar result have been carried out in Bardos & Ukai (1991) for smooth
global solutions in R? with a small initial velocity field. The smallness assumption has been
recently removed in Gallagher & Tristani (2020) allowing to treat also non global in time
solutions to the Navier-Stokes equation. These results as well as Briant (2015) exploit a very
careful description of the spectrum of the linearized Boltzmann equation derived in Ellis &
Pinsky (1975). We notice that they are framed in the space L?(M~!) where the linearized
Boltzmann operator is self-adjoint and coercive. The fact that the analysis of Ellis & Pinsky
(1975) has been extended recently in Gervais (2021) to larger functional spaces of the type
L2({-)%) opens the gate to some refinements of several of the aforementioned results.

We mention in particular two papers whose approaches are the closest to the one adopted here.
The work Briant et al. (2019) was the main inspiration to answer questions (Q1)-(Q2). Indeed,
in Briant et al. (2019), the first estimates on the elastic Boltzmann equation in Sobolev spaces
with polynomial weight (based on L!) are obtained uniformly with respect to the Knudsen number



FLUID DYNAMIC LIMIT OF BOLTZMANN EQUATION FOR GRANULAR HARD-SPHERES 15

€. Also, the work Jiang et al. (2018) deals with an energy method in L?(M™!) spaces (see also
Guo et al. (2010); Guo (2016)) in order to prove the strong convergence of the solutions to the
Boltzmann equation towards the incompressible Navier-Stokes equation without resorting to the
work of Ellis & Pinsky (1975). We adopt a similar strategy to answer (Q3).

1.7. The challenge of hydrodynamic limits for granular gases. There are several reasons

which make the derivation of hydrodynamic limits for granular gases a challenging question at
the physical level. In regard of the mathematical aspects of the hydrodynamical limit, several
hurdles stand on way when trying to adapt the aforementioned approaches:

I)

10)

1I)

V)

With respect to the strategy given in A), the main difficulty lies in the identification of the
typical hydrodynamic solution. Such solution is such that the time-space dependence of the
one-particle distribution function F'(¢,z,v) occurs only through suitable hydrodynamic
fields like density o(t, x), bulk velocity (¢, x), and temperature 6(¢, ). This is the role
played by the Maxwellian Fp in (1.21) whenever o = 1 and one wonders if the homogeneous
cooling state GG, plays this role here. This is indeed the case up to first order capturing the
fat tails of inelastic distributions, yet surprisingly, a suitable Maxwellian plays the role of the
hydrodynamic solution in the e-order correction. This Gaussian behaviour emerges in the
hydrodynamic limit because of the near elastic regime that we treat here.

The direction promoted in B) appears for the moment out of reach in the context of granular
gases. Renormalized solutions in the context of the inelastic Boltzmann equation (1.22) have
not been obtained due to the lack of an H-Theorem for granular gases. It is unclear if the
classical entropy (or a suitable modification of it) remains bounded in general for granular
gases.

Homogeneous cooling states GG, are not explicit, this is a technical difficulty when adapting
the approach of Ellis & Pinsky (1975) for the spectral analysis of the linearized inelastic
Boltzmann equation in the spatial Fourier variable. Partial interesting results have been
obtained in Rey (2013) (devoted to diffusively heated granular gases) but they do not give a
complete asymptotic expansion of eigenvalues and eigenfunctions up to the order leading to
the Navier-Stokes asymptotic. We mention that obtaining an analogue of the work Ellis &
Pinsky (1975) for granular gases would allow, in particular, to quantify the convergence rate
towards the limiting model as in the recent work Gallagher & Tristani (2020).

A major obstacle to adapt energy estimates and spectral approach lies in the choice of
functional spaces. While the linearized Boltzmann operator associated to elastic interactions
is self-adjoint and coercive in the weighted L2-space L?(M 1), there is no such “self-adjoint”
space for the inelastic case. This yields technical difficulties in the study of the spectral

ISee the interesting discussion in Villani (2006), especially the Section 2.8 entitled “What Is the Trouble with
Non-Gaussianity”
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analysis of the linearized operator . Moreover, the energy estimates of Guo et al. (2010);
Guo (2016); Jiang & Masmoudi (2017); Jiang et al. (2018) are essentially based upon the
coercivity of the linearized operator. For granular gases, it seems that one needs to face the
problem directly in a L.-setting. Points III) and IV) make the approach C) difficult to directly
adapt.

1.8. Notations and definitions. We first introduce some useful notations for function spaces.
For any nonnegative weight function m : R? — R (notice that all the weights we consider
here will depend only on velocity, i.e. m = m(v)), we define L{ L% (m), 1 < p,q < +00, as the
Lebesgue space associated to the norm

HhHLZLT;(m) = [[[|A(-, U)HLg m(U)HLZ'

We also consider the standard higher-order Sobolev generalizations Wy “W3% (m) forany o, s € N
defined by the norm

/ !
Allwoawse (my = > 1IVe Ve b, v)ll e m(v)| e
0<s'<s,0<0’'<0,
s'+0'<max(s,0)

This definition reduces to the usual weighted Sobolev space W35 (m) when ¢ = p and o = s. For
m = 1, we simply denote the associated spaces by L{ LL and W TW3P.

We consider in the sequel the general weight

w(v) = (L+[o)?,  veR, s

WV
o

On the complex plane, for any a € R, we set
Cq:={2 € C; Rez > —a}, Cr:=C,\ {0}
and, for any r > 0, we set
D(r)={z€C; |z| <r}.
We also introduce the following notion of hypo-dissipativity in a general Banach space.

Definition 1.6. Let (X, || -||) be a given Banach space. A closed (unbounded) linear operator
A 9(A) C X — X is said to be hypo-dissipative on X if there exists a norm, denoted by || - |||,
), that is,

equivalent to the || - ||[-norm such that A is dissipative on the space (X, ||| -|

A = A)nll = All, YA>0, he2(A).

%Recall that the powerful enlargement techniques for the elastic Boltzmann equation are based on the knowledge
of the spectral structure in the space L?(M ™) (and Sobolev spaces built on it) which can be extended to the more
natural L'-setting.
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Remark 1.7. This is equivalent to the following (see Proposition 3.23, p. 88 in Engel & Nagel (1999)):
if || - I, denotes the norm on the dual space X*, for allh € Z(A), there exists u, € X* such that

[, h] = IP)* = llunll?  and  Relun, AR] <0,
where [ - , -] denotes the duality bracket between (X*, ||| -|||,) and (X, ||| - |||

For two tensors A = (4, ;), B = (B, j) € #4(R), we denote by A : B the scalar (A : B) =
> ;Ai;jBi; € R as the trace of the matrix product AB whereas, for a vector function w =
w(x) € RY, the tensor (9,,w;); j is denoted as V,w. We also write (Div,A)" = > O, Ai ().

1.9. Strategy of the proof. The strategy used to prove the main results Theorems 1.3 and 1.5
yields to several intermediate results of independent interest. The approach is perturbative in
essence since we are dealing with close-to-equilibrium solutions to (1.13). This means that, in the
study of (1.13), we introduce the fluctuation /. around the equilibrium GG, defined through

fe(t,z,v) = Go(v) + € he(t,z,v),
and h, satisfies

1 1 1
Othe(t, x,v) + gv Vihe(t,x,v) — = Lahe(t, z,v) = gQa(hs, he)(t, z,v),

g2 (1.22)
he(0,2,v) = hi*(z,v),
where %, is the linearized collision operator (local in the x-variable) defined as
Zoh(x,v) = Lo(h)(x,v) — ko Vy - (VR(z,0)),
with
La(h) = 2éa(Ga7 h) ’

where we set

~ 1

Qalfi9) = 51{Qalf.9) + Qalg, )} - (1.23)

We also denote by .7 the linearized operator around GG; = M, that is,

The method of proof requires first a careful spectral analysis of the full linearized operator
appearing in (1.22):
Gach = —c 0 -Vih +e 2%,

Such a spectral analysis has to be performed in a suitable Sobolev space, our starting point is an
enlargement argument developed in Gualdani et al. (2017) (that has then extended to the case
€ # 1 in Briant et al. (2019)) to study the spectrum of the elastic operator in a large class of
Sobolev spaces.
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More precisely, in our approach, we treat G, as a perturbation® of the elastic linearized
operator Gy .. The spectrum of G; . in Wi’1W£’2(<v>q) is well-understood Briant et al. (2019), so,
it is possible to deduce from this characterisation the spectrum of G, . using ideas from Tristani
(2016). We only study the spectrum of G, . without requiring knowledge of the decay of the
semigroup associated to G, .. This simplifies the technicalities of the spectral analysis performed in
Section 3 related to Dyson-Phillips iterates which leads to the spectral mapping theorem Gualdani
et al. (2017); Tristani (2016). Most notably, in this simplified approach one is able to identify the
optimal scaling (1.17) of the restitution coeflicient. It is worth mentioning that capturing the
optimal scaling (1.17) for this linear and spectral approach yields to rather involved and technical
analysis with the introduction of several kinds of function spaces of type Wi W42 ((v)9) and
W‘Z’QWQZ((U)Q) and the properties of the linearized operator on each of those spaces.

The scaling (1.17) is precisely the one which allows to preserve exactly d 4 2 eigenvalues in
the neighbourhood of zero (recall that 0 is an eigenvalue of multiplicity d + 2 in the elastic case).
Recalling that, in any reasonable space, the elastic operator has a spectral gap of size i, > 0, i.e.

6(G1) N{z € C; Rez > —u,} = {0}

where 0 is an eigenvalue of algebraic multiplicity d 4 2 which is associated to the eigenfunctions
{M,v;M,|v|> M, j=1,...,d}, one can prove the following theorem

Theorem 1.8. Assume that Assumption 1.2 is met and consider the Banach space
Wi’2W£’2(wq), leN s>0, {£=s, q > q*,

E:=< or
WilWe(w,), LeN,s>0, £>s,  ¢>2,

where ¢* is defined in (2.17). There exists some explicit v, > 0 such that, if i € (fx — Vs, 1+), there
is some explicit € > 0 depending only on ji, — u and such that, for alle € (0,€), the linearized
operator

Gae : D(Gae) CE—E
has the spectral property:
S(Gae)N{z € C; Rez = —pu} = {A\i(e),..., Aas2(e)}, (1.24)
where \1(€), ..., Aat2(€) are eigenvalues of G (not necessarily distinct) with

Ni(@)| Spu—p  forj=1,...,d+2.

3This perturbation does not fall into the realm of the classical perturbation theory of unbounded operators as
described in Kato (1980). Typically, the domain of G,  is much smaller than the one of G; . (because of the drift term
in velocity) and the relative bound between G . and G, . does not converges to zero in the elastic limit o — 1.
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More precisely, it follows that
S(Gae)N{z€C;Rez > —pu} =6(c2%)N{2€C; Rez > —u}
= {)\1(6), R )‘d+2(5)} )

with
A1(e) =0, )\j(e)zs_2ma(€), j=2,...,d+1,
and
Apo(e) = =X = —1_;;(5) +0(£?), for € ~ 0. (1.25)

To prove Theorem 1.8, it is necessary to strengthen several results of Mischler & Mouhot (2009)
and obtain sharp convergence rate in the elastic limit for the linearized operator. Typically, one
needs to prove that, for suitable topology

L~ L ~(1-a) (1.26)

which gives an estimate of the type

(ga,a - gl,s) = 1872(1
Our aim is of course to capture the properties of G, . in space built on L. but, for technical reasons,
we will also need to investigate the above ansatz (1.26) in some L2-spaces with polynomial
moments. This is done in Sections 2 and 3.

After the spectral analysis is performed, in order to prove Theorem 1.3 several a priori estimates
for the solutions to (1.13) are required. This is done in Section 4. The crucial point in the analysis
lies in the splitting of (1.13) into a system of two equations mimicking a spectral enlargement
method from a PDE perspective (see the Section 2.3 of Mischler & Mouhot (2016) and Briant et al.
(2019) for pioneering ideas on such a splitting). More precisely, the splitting performed in Sections
4 and 5 amounts to look for a solution of (1.22) of the form

he(t) = h(t) + he(t)

where h(t) is solution to the linearized elastic equation with a source term involving the reminder
h(t), namely,

Ohi(t) = Grehl + e Qu(hl, hl) + Ach? (1.27)
having zero initial datum and where A, is a regularizing operator (see Section 3 for a precise
definition). In this way we seek h(t) in the Hilbert space

hi(t) € W2 (M*l/z) —

with m > d and prove bounds of the type

t
sup (RO + [ Ik By,dr) < K
t>0 0
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where H is the domain of G; . in H, K¢ depends only on the initial datum A . With such a
splitting, it is possible to fully exploit the elastic problem and treat h. as a perturbation of this
solution. It is important to point out already that A, is regularizing only in the velocity variable
but not in the x-variable. Therefore, no gain of integrability can be deduced from the action of
A.. Therefore, since we look for h! € H in (1.27), we need to look for h? in a space based on L2.
The velocity regularization properties of .A. allow then to look for

Ro(t) € WHIW™2(em,),  t>0.

This is the role of Section 4. Of course, to study the equation solved then by h2(t), a careful study
of the linearized operator on spaces Wﬁ’IW?Q(wq) is necessary (see Sections 2 and 3) yielding
highly technical additional difficulties.

In Section 5, we prove Theorem 1.3 introducing a suitable iterative scheme based upon the
coupling (h2(t), hl(t)). We show in practice that the coupled system of kinetic equations satisfied
by k" and h' is well-posed. It is fair to say that the bounds for Y and h! given in Sections 4 and 5
play the role of suitable energy estimates as the ones established in the purely Hilbert setting
Guo et al. (2010); Guo (2016); Jiang et al. (2018). In particular, these bounds are sufficient to
deduce a very peculiar type of weak convergence of h.(t) towards an element in the kernel of
the linearized operator .77, in particular, the limit of h. is necessarily of the form (1.18). The
notion of weak convergence we use here fully exploits the splitting h. = h? + h! where we prove
that ¥ converges to 0 strongly in L'((0,T); L}}W?’Q(wq)) whereas h! converges to h weakly

in L2((0,T) ; L2W;(M~7)).

Finally, in Section 6, the regularity of (g, u, ) obtained via a simple use of Ascoli-Arzela
Theorem and the identification of the limiting equations these macroscopic fields satisfy is
presented. With the notion of weak convergence at hand presented above, the approach is
simpler but reminiscent of the program established in Bardos et al. (1991, 1993). In particular,
we can adapt some of the main ideas of Golse & Saint-Raymond (2004) regarding the delicate
convergence of nonlinear convection terms. Detailed computations are included to make the
paper as much self-contained as possible also because, even in the classical “elastic” case, it is
difficult to find a full proof of the convergence towards hydrodynamic limit for the weak solutions
we consider here. For such solutions, details of proof are scattered in the literature and full proof
of the convergence of nonlinear terms is sometimes only sketched where most of the full detailed
proofs are dealing with the more delicate case of renormalized solutions Golse & Saint-Raymond
(2004, 2009); Levermore & Masmoudi (2010). In our framework, the terms involving the quadratic
operator Q,, (he, h.) are treated as source terms which converge in distributions to zero whereas
the drift term and the dissipation of energy function D,, are the objects responsible for the terms
in the right-side of the Navier-Stokes system (1.19). We also observe that the derivation of the
strong Boussinesq relation is not as straightforward as in the elastic case. Actually, the classical
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Boussinesq relation

is established as in the elastic case. In the elastic case, this relation implies the strong form
of Boussinesq relation mainly because the two functions o(t, x) and (¢, x) have zero spatial
averages. This cannot be deduced directly in the granular context due to the dissipation of energy.

1.10. Organization of the paper. The paper is divided into 6 Sections and three Appendices.
In the following Section 2, we collect several results regarding the collision operator .%;, and
introduce the splitting of the operator in ., = A, + B, as well as the splitting of the full
linearized operator G, .. As mentioned, even if our final goal is to study the collision operator in
spaces built on L -spaces with polynomial weights, we shall also need to resort to estimates of .%,,
in L2-spaces. Section 3 is devoted to the spectral analysis of G, . culminating with the proof of
Theorem 1.8. In Section 4, we derive the fundamental a priori estimates on the close-to-equilibrium
solutions to (1.22). It is the most technical part of the work and fully exploits the splitting of the
operator G, . as explained earlier. Section 5 gives the proof of Theorem 1.3 whereas Section 6
gives the full proof of the hydrodynamic limit (Theorem 1.5). In Appendix A, we recall some facts
about the granular Boltzmann equation and gives the full proof of a technical result of Section 2.
Appendix B deals with some properties of the solution to (1.10a), i.e. dealing with the original
variables, and provides some insights about the local version of Haff’s law. In Appendix C, we
collect some well-known properties useful for the hydrodynamic limit as well as some technical
proofs used in Section 6. Finally, Appendix D gives the proof of two technical results of Section 2.
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2. SUMMARY OF USEFUL RESULTS ABOUT THE COLLISION OPERATOR

2.1. The linearized operators .Z,, and .Z). In all the sequel, we will use well-known estimates
for the bilinear operator Q,(f, g) and Q1 (f, g) in several different functional spaces. We refer to
Alonso et al. (2010); Alonso & Gamba (2011); Mischler & Mouhot (2009) for precise statements.
A crucial role in our analysis will be played by the fact that, in some suitable sense, .7, is close to
the elastic linearized operator . for o o~ 1. Let us begin with the following crucial result which
also justifies the optimal scaling (1.17) and optimise the rate of convergence previously derived in
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(Mischler & Mouhot, 2009, Proposition 3.1 (iii)) for weights different to the ones considered here.
The technical proof is postponed to Appendix A.

Lemma 2.1. Let a = max{d — 1,2} and k > %. Fork € N and q > 0, there is a positive constant
. q > 0 such that for any a € (0, 1],

11—«
1Q1(g, f) — Qalg: f)Hwﬁvl(wq) S Chg Taa (Hf”wﬁvl(qu) HgHwﬁﬂ»l(qu)

19l sy 1 41 )
and a constant ¢y, 4(k) > 0 such that, for any o € (0, 1],

||Ql(.g> f) - Qa(ga f)HWﬁQ(wq) < Ck q

—= (1) ol

al ( ! Wi (g4 n+2) lgl W2 (g ns2)
Wq+n+2)) '
By using the previous lemma and estimates on the difference between G, and M, one can get

an estimate on the difference between L; and L,, with loss of regularity on the argument (see the
first part of Proposition 2.4 below). In our analysis, we will also need an estimate on the difference

+”9”W§’2( ) ||f||wﬁ+1’2(

Wa+r+2

between L; and L, with no loss of regularity (i.e. an estimate in the graph norm), even if the rate
is not anymore optimal. To this end, we here state a lemma which is in the spirit of (Mischler
& Mouhot, 2009, Proposition 3.2) except from the fact that one of the argument is fixed to be
the Maxwellian M. Note that (Mischler & Mouhot, 2009, Proposition 3.2) gives an estimate on
the difference between Q; and Q,, for general arguments but the proof heavily relies on the
exponential weights considered. It turns out that we can not adapt easily the proof of (Mischler
& Mouhot, 2009, Proposition 3.2) for polynomial weights. However, by using decay properties
of M, we are able, to get an estimate on Q; (M, -) — Q,(M, -) and its symmetric, which is
enough for our purpose. The proof is also postponed to Appendix A.

Lemma 2.2. Let ¢ > 0 and k € N. There exist some explicit ¢, > 0, ¢4 > 0,p € (0,1)
and oy € (0, 1) such that
HQl(M7 f) - QO&(M7 f)HWif’l(wq)

HQ1(f, M) = Qalfs M)l () < Crg (1= )P Il () @ € lan, 1],

wq+1)

and
1Q1 (M, £) = Qa(M, )tz (o,
QUL M) = Qalf M)tz () < Cra (1= ) I fllyyp (> @€ o, 1]

Let us now investigate the rate of convergence of the equilibrium G, towards M. An optimal
convergence rate in L'-spaces is given in (Mischler & Mouhot, 2009, Step 2, proof of Lemma 4.4):
there is C > 0 and ay > 0 such that

IM=Gallpiym) SCL—a),  a€lal]. (2.1)
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for m(v) = exp(a |v]), a > 0 small enough. We need to extend this optimal rate of convergence

to the Sobolev spaces Wh (zoq) for j = 1,2 we are considering here. The proof of this technical
result is postponed to Appendix A.

Lemma 2.3. Letk € N, ¢ > 1 be given. There exist some explicit ag € (0,1) and C' > 0 such that

IM = Gallygir ) + M = Gallygra o) SCO—0a), € lag1].

)
q
For j = 1,2, on the underlying space W (zoq), introduce the operator T,, : Z(T,) C
Wh (zoq) — W (zoq) defined by 2(T,) = k1. (tog+1) and
Toh(v) = —kaVy - (v R(v)), he2(1y).

One sees that Ty, is one of the operators responsible for the discrepancy between the domain of
2 and .Z,,. Because of this, we set

Po = D(Pa) € Wy (wg) = W (wy)
as P, = L, — L; with domain
PD(Pa) = (A1) = Wy (wg41)-
One has then the following Proposition in L} and L2-based spaces:

Proposition 2.4. Consider k € N and q > 0. There exist some explicit constant Cy, , > 0 and
ay € (0, 1) such that for any h € W5+1’1(Wq+2)

Hpah||Wﬁ’l(wq) = HLah_Llh”Wﬁ’l(wq) < Ck,q(l —a) HhHW§+1,1 o € [Oé*, 1] , (2.2)

(wg+2)’

k41,1
As a consequence, for any h € Wy (z,19)

|-Zah = Lbllgea ) < (Chgll = 0) + Ka) [[hllsns aclonl].  (23)

(wq+2) ’

In the same way, for any k > % and q > 2, there exist some explicit Cy, 4(k) > 0 such that for
any h € Wh? (Togtr+2) it holds

||Po‘h||W1’f’2(wq) = | Lok — LthWq’fg(wq) < Crq(k) (1 —a) ||h||W1]f+l’2(wq+,€+2) , € [ay, 1],
(2.4)
As a consequence, for any h € Wﬁ“z(wﬁ,ﬁg)
|Zah = Liblyn gy < (Cral) (1= @) + i) Dbl e o€ 1.

Proof. Recall (see Alonso et al. (2010); Alonso & Gamba (2011)) that, for any ¢ > 0, there exists
some universal positive constant C;; > 0 such that for any a € (0, 1],

||Q;zt(gvf)HL}J(wq) < CquHL}J(wq.;,.ﬂ ”fHL}J(wq_H)v Vf,g€ Lll;(qurl)a (2.5)
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where we have denoted by Q! (resp. Q_,) the gain (resp. loss) part of the operator Q. Then, we
have
Loh(v)—Lih(v) = Qa(h,Gq — M) (v) + Qu(Go — M, h)(v)
+ [Qa(h, M)(v) = Qu(h, M)(v)] + [Qa(M, h)(v) = Q1 (M, h)(v)].
One thus deduce from (2.5) and Lemma 2.1 that
[Pl 21 (wy) < 2CqlIM L1 (egyr) [Ga = M| L1 (o0

(2.6)

11—«
+2eq — o it (o) M2 ()

where we recall that « = max{d — 1,2}. Using now (2.1), one can conclude the proof of (2.2) for
k = 0. In order to prove the result for higher-order derivatives, one argues using the fact that

Vv Qal(g; f) = Qa(Vug, f) + Qalg, Vu f). (2.7)
Then, using (2.6) with the help of the estimate

1Tahllyst oy < Falltllmgs e, )

one deduces (2.3) from (2.2).
We prove the result in L2-based space in a similar way. From Theorem A.1, there exists C; > 0
such that

195 (9, NIz ) + 195 (F, Dl 22(0) < Call Fllr(myrn) 19122 (g 0)-
Indeed, since we have supposed that the condition (1.6) is satisfied for some r > 2, it in particular
holds true for » = 2, which implies that we can apply Theorem A.1 for = 2. On the other hand,
it is immediate to check that for x > 4, there exists Cy(x) > 0 such that
H Q; (97 f)”L%(wq) < Cq(’i)HfHL%(qu) ||g||L%(wn+1)

where we used Cauchy Schwarz inequality. One deduces that
”Qa(h> Ga — M)HL%(wq) + ”Qa(Ga - M, h)HL%(Wq)

< Cy@Ihl 3wy (1Ga = Mlliam, ) + G = Ml 3gem, )
+ Calm) 1l agem, |G = Ml

TWr+1 wgt1)

Then from Lemma 2.1, for any £ > %, we have:

|Qa(h, M) — Ql(hw/\/l)”L%(wq) + | Qa(M, ) — QI(MJL)HL%(WQ)

l—«o
< (k) o Mty ) IPllwi2 (e

where a = max(d — 1,2). One can then conclude that (2.4) holds true for £ = 0 thanks to
Lemma 2.3 and the proof for k£ > 0 follows from (2.7). Finally, since

||Tah||w’572(wq) S HO‘”hHW:fH’Q(Wq-H)
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one also deduces the estimate for ||.Z,h — $1h||wk,2(w ) O
v q

We will need also to derive an estimate for P, in its graph norm, at the price of loosing the
sharp convergence rate (1 — o). The estimate is easy to deduce in L.-space but the extension to
the L2 case requires the use of Corollary A.2.

Lemma 2.5. Foranyk € N and q > 0, there exists C}, , > 0 such that

”PahHWS,I(wq) < Crq(1—a) a € [oy, 1], (2.8)

Pl ey
where p is defined in Lemma 2.2 (is independent of both k and q). Moreover, there exists p € (0, 1)
(independent of k, q) such that

HP@hHWﬁ’Q(wq) < Ck’q (1 — Oé)ﬁ ”h”Wﬁ’z( (S [a*, 1] . (2.9)

wg+1)’

Proof. The proof of (2.8) is a direct consequence of (2.5) and Lemma 2.2 which give
[PahllL1(w,) < 2C0 L1 (i) [Ga — M L1 (eoyiy) T €4 (1= )P |l L1 (coysr)-

The proof of (2.9) is then deduced from (2.8) by Riesz-Thorin interpolation. Indeed, (2.8) asserts
that

Pa € B(Ly(wai1), Ly(@0)), 1Pl (i yer), it (my)) < Coqll —a)”.
Now, using Corollary A.2, and recalling that b is such that (1.6) is satisfied for some r > 2, one

proves easily that, for some r > 2,

Pa € B(Ly(wgt1), Ly () Sl(lopl) 1Pall Ly (wysr),Lr (o)) = Cr(@) < oo
ac(0,

Then, from Riesz-Thorin interpolation Theorem (Grafakos, 2014, Theorem 1.3.4)

Pa € B(Li(wg11), Ly(wg))  with  [Pallp12(my.r)12(emg) < C (1 — @)

where 6 = % is such that % =0+ 17,;9 This proves (2.9) for k = 0 setting p = pf and its
extension to k£ > 0 follows from (2.7). O

The above extends to functional spaces Wﬁ’lLi (zoq) and W5’2L§(wq) in an easy way:
Corollary 2.6. Consider k € N and q > 0. There exists some explicit constant C~'k,q > 0 such that

HpahHw,’j,lL%(wq) < é’k,q(l - O‘)% HhHngvng( o< [Oz*, 1] ) (2.10)

wgt1)’

and similarly,

H,Pahqu’j’QL%(wq) < C’W](l - O‘)ﬁ ”h”wﬁﬂL% , Q& [a*v 1}7

(wwg+1)

where p > 0 and p are defined respectively in Lemmas 2.2 and 2.5.
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Proof. On the one hand, the Wt L. (w,)-norm of P,h is estimated using Fubini theorem and (2.8)
in Lemma 2.5:

Pahllyss r () < Chall = ) IRl py -

On the other hand, using (2.5) and the fact that Qai are local in z, one can show that
”PahHW]gvngo(wq) < Ck,q\|h\|W571Lgo(qu)-

We obtain (2.10) by interpolation. The proof for L2 L2-based spaces is simpler since it is deduced

directly from Fubini Theorem. g

2.2. Decomposition of .Z,,. Let us now recall the following decomposition of .} introduced
in Gualdani et al. (2017); Tristani (2016). For any 6 € (0, 1), we consider the cutoff function
0 < 05 = 05(,&,0) € C°(R? x R? x S71), assumed to be bounded by 1, which equals 1 on

s = {(5,5*,0) e R xR x §7° \ €] <071, 20 <€ =& <071, feos B < 1— 26} :
and whose support is included in J5/, (Where cos 6 = <%, 0)). We then set
LG = [ IMEME) + MEME)  MEO(E)]
X ‘5 - g*‘ @5(57 "g*v O')dé.*dO' )
L = [ MIEDRE) + ME(ED — MM

X ‘g - £*| (1 - @5(57 3 O'))dg*d(f )
so that £1h = le’éh + flR’(Sh — h¥ o where X ¢ denotes the mapping

Sale) = [ MEIE-6lde,  €ERe 1)
Recall that there exist g > 0 and o1 > 0 such that
o0w@1(§) < Tm(é) <ormi(€), EeRL (2.12)

Introduce

AO ()= £ ) and  BY(h) = L — S

so that &4 = AO) + Bgé). Let us now recall the known hypo-dissipitavity results for the
elastic Boltzmann operator in L! L2 and L%@—based Sobolev spaces, see (Gualdani et al., 2017,
Lemmas 4.12, 4.14 & Lemma 4.16):

Lemma 2.7. Forany k € N and § > 0, there are two positive constants Ci, s > 0 and Rs > 0 such
that supp (.A(‘S)f) C B(0, Rs) and

||A(5)f\|W5,2(Rd) < Crsll flliry, Y € Ly(w). (2.13)
Moreover, the following holds
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(1) Forany q > 2 and any 6 € (0,1) it holds

/||h(-,v)|L21 (/ (3§5>h(x,v))h(x,v)dm)wqdv
Rd @ \Jrd
< (A960) = 1) Ihll 20 219

where Agl) : (0,1) — RT is some explicit function such that lims_q Agl)((s) = qf“z'
(2) Foranyq > q* and any§ € (0, 1),

0
/R e (B§ e v)) h(z,v) do w2(v) dv < (\/aAg% () — ffo) 122 (g (215)
where Ag2) : (0,1) = RT is explicit and such that limg_, A((Jz)(é) = 2(%3.

Remark 2.8. Notice that this lemma directly comes from Gualdani et al. (2017) but the constants
involved in the final estimates are not the same as in Lemma 4.14 of Gualdani et al. (2017) where it
seems that some multiplicative constants coming from (2.12) have been omitted in some computations
of their proof.

This leads to the following decomposition of .Z7,:

Lo =B + A®  where BY =B 42, -] . (2.16)
2.3. The complete linearized operator. The complete linearized operator is given by
Gach=e 2%\ (h) — e w-V,h,  Vac€(0,1].
With previous decomposition, we have that
ga e = Agé) + Bgz

where

A Z 2 g BO) _ 250 _ oy,

«,

Notice that

d -2 -2
= Gae—G1e =€ “Po+e T,

lor 3
q1 = 27 q2 = q* =4 ;0 + 5) (217)

(9)

where we recall that o and o are defined in (2.12). One has the following properties of B :
in L L2 and L? ,-based spaces.

BY) — B
We set

Proposition 2.9. Forj = 1,2, forany{ > s > 0 and q > q; there exist O‘;,Z,s,q > 0, (5}7&87(] >0
and vy s 4 > 0 such that for any e € (0,1],

BP) + e %vj4,, is hypo-dissipative in WSIW.2 (zo,)

a,e

forany a € (O‘;,&s,q’ 1), andd € (0, 5;,€,s,q)'
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Proof. We present here the proof in the space W2 Wh? (zoq), the proof for Wolwh? (zoq) follows

the same lines and is given in Appendix A. Notice that derivatives with respect to the z-variable

g

commute with the operator By ¢ and this allows to prove the result, without loss of generality, in

the special case ¢ = s. We divide the proof in several steps:
e We first consider the case ¢ = 0. We write ng(h) = Z?:o Ci(h) with
Co(h) = 2BVh,  Cy(h) = —e v V,h,

Cy(h) = e 2Poh,  C3(h) = e 2Toh = —¢ 264V - (vh(z,v)),

and correspondingly and with obvious notations,

3
/ Bafg(h)(x, v) h(z, v)wg(v) dedv =: Z I;(h).
=0
First, I;(h) = 0 since

/ (v-Vzh(z,v))h(z,v)dr = / v-Veh?*(z,v)dz = 0.
Td Td
Then, from (2.15), one has

Io(h) < &2 (VETAD (8) = /o ) 1Al 13 emyvsimn)

Recalling that lims_.q A((f)(d) = 8/(2¢q — 3), one can choose 4 > 0 small enough so that, for

q>q,
VAP (8) < /oo

Then, for ¢ > ¢* and ¢ small enough, we have

Io(h) < =72/a0 (VETAP (8) = Vo) 11z ey 1 - (2.18)
Moreover, it follows from Cauchy-Schwarz inequality and (2.9) that

5(h) < e 2[Pahllzs e,

v,x

1Al L2 (1)

SV

< s‘QCO,q_%(l —a) HhH%g’x(wH%)

Finally, for I3, one can compute
/ V- (vh(z,v)) h(z,v) wg(v) dzdv
Rd xTd

1
= dHhH%g’z(wq) + 3 /[Rdx’]l‘d v Vvh2(x,v)w§(v) dzdv

d 1
= 5"}1“%%@(12(1) - 5 /]Rdx']rd hZ(I',’U)’l)-vvwg(fu) dxdv
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Since v - vag(v) = 2qwg(v) - 2qwg_1(v) we get
—9 2 -2 2
I3(h) < grae™"[IAlIL2 | (w,) S GFat ||h||Lgﬁx(wq+%)- (2.19)

Gathering the previous estimates, one obtains

@,

/ BY) (h)(x,v) h(x, v)wg(v) dzdv

<& (Coyoa (1= @) + oo (VEIAL (6) = Voo + k) Illzz (e 1 -

Recalling that x,, = 1 — a while limg_( , /alAff) () < /g for ¢ > ¢* we can pick 5;0’07(1 small
enough and then a;’o’()’q € (0,1) close enough to 1 so that

V2.0,0,q ‘=
—inf { Gy, 1 (1= ) + vag (VETAP(0) = Voo ) + akas a € (abgoq 1) 0 € (0,850,

is positive and get, for any ¢ € (0, (5;0707[1) and o € (a;(xo’q, 1),

i [ BOM @) o) 0)dady <~ unp0g IhEs e
E ety (2.20)

< —5_2V2,0,0,q||h||i%,x(wq)

which implies that ng + £ 219,0,0, is dissipative in L7 (o).

Let now investigate the case { = 1. We consider the norm
2
RI™ = 1022 (o) + 1V2RIZ2 (o) + 1 IVRIZ: (s

for some 1 > 0, the value of which shall be fixed later on. This norm is equivalent to the classical
W},i (zoq)-norm. We shall prove that for some 571, > 0, ng + 5*21/2,1,1,(1 is dissipative in
Wiz (o) for the norm ||| - |||. Notice first that the z-derivative commutes with all the above terms
Ci(h),i=0,...,3,ie.

VoBOLh(w,0) = BEL (Vah) (2, 0)

)

so that, according to the previous step

Jo: = / V. BO(h) (2, v) - Vph(z, v) w2(v) dudy
RéxTd (2.21)
—2 2
< - V2,0,0,qHvzhHLgJ(W(ﬁ%)'

Consider now the quantity

Toi= [ VuBEUM @) Voh(a, ) wi(e) dodo,
RaxTd
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Using the notations above, one notices that V,Cy (h) = —e~ 'V h + C1(V,h), so that

Vo(BLLA(z,v)) = e 72V, (B R) — 71V, h + C1(V,h) 022
+ 72V (Pah) + e 2V (Toh) '

Then, it follows from Corollary 2.6 that

IVe(Pah)lliz e 1) < Chrye

1
-3 AT

(=0 (Il im, ) + Vbl ) ) - @29
Now,
VB =V, [ L0 — Suh) = LI (Voh) — SpVeh + R(R),
where
R(h) = Qi(h, Vo) + Qu(VoM, h) = (Vo AD)(h) = AO (T, h).
From the proof of (Gualdani et al., 2017, Lemma 4.14), we have that

IRM) 2, (e, ) < Csllbllzz e, )
2

(S

q—

while, according to (2.18), one has
e / [.,%IR"S(vvh) S Mvvh] Vyh w2dzdy
RaxTd
= 1o(Vuh) < =2y (VAR (O) — vao) IVohls )
2Tyl
Therefore, the contribution of Vngg)h is
e~ / VBV, hwidedo
Rd x T4
<25kl )+ V00 (VOIAP () = va0) [VuhlEy () (220
’ Ea) ’ 2

where \/UTA((ZZ)(é) — /0o < 0 for ¢ small enough and ¢ > ¢*. Finally, using the short-hand

notation
Vo (0Vh) = (Vy- (08yh), -+, Vo (00u,h)),
we have
Voh:Vy (Vo (vh)) = [Voh|* + [Vy - (0 Vyh)] - Vyh.
Doing similar computations as the ones leading to (2.19), we obtain:

/ Vo Ta(h)(@,0) - Voh(z, 0)e2(0) dedv < (g — Dral VohlZs o ) (225)
RdXTd v,T g+

2
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Coming back to (2.22), Cauchy-Schwarz inequality and estimates (2.23), (2.24) and (2.25) give that
T < 2(Cs+ Cyg1ya(l — a)P)[|hl|72 RE A e IVahlir2 e Vbl L2 (e
’ 2

+67 (Crp s (1= 0+ (g = Vet vao (VEAP (0) = voo) ) 19ehlfs )

where we used that the contribution to 7, of the term C}(V,h) vanishes. Hence, combining this
estimate with (2.20) and (2.21) and using that ¢ < 1, one obtains, for any 7 > 0,

IT+Je+nTo < 6_2< |:_V2,0,0,q +n (06 + CN'Lq_%(l - Oé)ﬁﬂ ”hH%g (@ 1)
’ 2

1 2
- <V2,0,0,q - 4Tn> ||Vxh||Lg7w(wq+%)
1| Cryos(1= ) + (g = Do + Va0 (VrAP (6) = vao) + 7] Vbl m)
aty
where we used Young’s inequality to estimate the mixed term
1
Vel ) IVl ) < g IVl oy + 7 IVobIRs (s 7 0.

There exist oz;u’q > 0 and 5;1717(1 > (0 and 7 > 0 small enough so that for any a € (ag,Ll,q’ 1)
and any J € (0, 5;1717(1),

(Cryos(1= ) + (g = Do+ Voo (AP(6) = Vav) ) +7 < 0.
One chooses then 7 > 0 small enough such that

1 ~ _
2,0,0,¢ — 1) Max (47_, sup Cs+ C’Lq_%(l - a;l’l’q)l’> > 0,
50,65 11.,)

we finally obtain that there exists 19 1 1 4 > 0 such that for o € (a;,l,l,tﬁ 1)and ¢ € (0, 5;1717(1),

-2 2 2 2
T4 Tt n s < < g |10 o, )+ Ve oy 0900 o)
< —e Ppagllnll®.

This proves that Bg?; + £ 21911 4 is hypo-dissipative in qujj%(wq). We prove the result for
higher order derivatives in the same way considering now the norm

Iz = 3

|B1|+]B82]<k

2

‘V\Uﬂl\v\xﬂﬂh’

L2L2 ()

for some 1 > 0 to be chosen sufficiently small. g
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Remark 2.10. It is important to notice that the equivalent norms constructed in the Proposition 2.9
are independent of €. This means that the hypo-dissipativity ofBgS% +e7 20054 00 Wi wh? (zoq),
7 =1, 2 can be re-written as

_ 5 .
H()‘ —¢ 27/]'74757(1 - Bé,z:)gnwf;jwff(wq) > C AHQHWgJW:‘;’Q(wq)’ J=12
forany A > 0,9 € @(B&‘fl), and some constant C' > 0 depending on j,¢, s, q but not on c.

We now state some semigroup generation result.

1),6 € (0,87

M,s,q) and

Proposition 2.11. Forj = 1,2, foranyl{ > s > 0,q > q;, a € (O‘},Z,s,q’
e > 0, the operator
1) 0 ivwrd,2 ivds2
BR) : 9(BY)) € WeIWh2(wg,) — WEIWE? (o)

Q, «,

is the generator of a Co-semigroup {Sc(fg(t) ; >0} in Wi’jWi’Q(wq) and there exist 0 < v, <
Vjts,q and Cj g5 4 > 0 such that

|88

Asa consequence,

-2
B ) < Cjpsqexp(—e “vit), Vit > 0. (2.26)

Gore © D(Gae) C WHIWE (woy) — WETWE ()

)

is the generator of a Cy-semigroup {Vo(t) ; t > 0} in ij’jW%Q(wq).

Proof. The fact that B&‘f?g is a generator of a Cp-semigroup in WZ’IW£’2(wq) is proven in Appen-
dix D. Since we already proved that ng 4720} 4 5 ¢ is hypo-dissipative, we deduce directly (2.26).
Finally, because Aéé) is a bounded operator in ijlef(wq), we deduce from the bounded per-

turbation theorem that G, . = Aé‘” + Bf;f?s generates a Cj-semigroup in Wf;1W£’2(wq). O

2.4. The elastic semigroup. The spectral analysis of G; . and the generation of its associated
semigroup has been performed in Theorem 2.1 of Briant et al. (2019). We need a slightly more
precise estimate on the decay of the semigroup independently of €. Our main result concerning
G1 ¢ is the following whose proof is postponed to Appendix D:

Theorem 2.12. There exists cg € (0,1) such that, forall {,s € N with{ > s and ¢ > ¢* and
any € € (0,e0), the full transport operator Gy . generates a Cy-semigroup {V1.(t) ; t > 0} on
ijQWi’Q(wq). Moreover, there exist Cy > 0 and p, > 0 (both independent of €) such that,

HVLE (t) [h — Poh] HW?,’QWf;Q(wq)

< Cpexp(—pt) ||h — Poh”ws,Q Vt>0, (2.27)

W5 ()



FLUID DYNAMIC LIMIT OF BOLTZMANN EQUATION FOR GRANULAR HARD-SPHERES 33

holds true for any h € Wf,’2W§;’2(wq), where Py is the spectral projection onto Ker(G,.) =
Ker(.21) which is independent of ¢ and given by
d+2

Poh=>Y_ ( / h, dxdv) U; M (2.28)
=1 Tdx R4
where U1 (v) =1, U;(v) = F2=v; 1 (i=2,...,d+ 1) and Vg o(v) = [vfP—dd, (v € RY).

Y1v2d

Remark 2.13. Theorem 2.12 is known to be true on the Hilbert space Wﬁ’i(/\/f%), see (Briant
2015, Theorems 2.1 and 2.4). Notice that Theorem 2.1 from Briant (2015) only provides an exponential
decay of a norm of the solution which depends on €. The introduction of a new norm which is

Vi1

equivalent to the usual Wﬁi norm uniformly in € then allows the author to recover in Theorem 2.4 a
uniform in € exponential decay of the solution to the whole nonlinear problem. One can of course
proceed similarly to obtain a uniform in € exponential decay of the semigroup. In the present context
of polynomial weighted spaces, a similar result was obtained in (Briant et al., 2019, Theorem 2.1)
with the important difference that the estimate (2.27) was shown only fort > t, > 0. This actually
comes from the use of a general enlargement theorem from Gualdani et al. (2017) which yields
N
IVie(®h = Pohlly g2 ) < Corray XP(=nt) b = Pohllygaez s 20
(2.29)
forsome N € Nands > 0 and pu < pi,. It is important for the rest of our analysis to be able to remove
this strong dependence on ¢ in the decay estimate of Vi .(t)(Id — Py). This is done in Appendix D.
The key point is that, in our case, the enlargement argument is developed with Wf,’i(/\/l_lm) as the
small space and Wi’gwg’Q(wq) as the larger one. One can remark that in this context, we do not
need any gain of regularity in the space variable. The fact that the rate degenerates for small times
in (2.29) actually comes from the use of an averaging lemma to gain regularity in x, which is no
longer necessary in our framework. Note that Theorem 2.12 also holds in W§’1W§;2(wq) forq > 2
for the same reasons.

Remark 2.14. Notice that, unfortunately, it seems that the above result is not true on the natural
space Wf,’lwgl(wq): indeed, whereas (2.29) still holds in such a space, it seems that the “initial
layer” dependence on ¢ is not removable in this case because A. has no regularizing properties
on the x-variable. This is the main reason why we need in our approach to deal with spaces built
upon L2.

An important consequence of the Theorem 2.12 is the following proposition.

Proposition 2.15. Let ¢, s € N with{ > s and q > q*. There exists C1 > 0 such that,
1 1
IR Gre)ll g ws 22 () < C1 miax (M’ ReAm) , VAeC,, Vee(0,e),

where €g and i, have been defined in Theorem 2.12, C' being independent of <.
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Proof. On the space Wi’QWi’Q(wq), the spectrum of G, . satisfies
S(G1c) N{z € C; Rez > —p,.} = {0}

and the above projection Py is nothing but the spectral projection of G(G; ) associated to the
zero eigenvalue given by
1

Pn=
0 um

55 R(z,G1.)dz, v i={2€C; |z| =1}, T < Ll
Ir

Notice also
dim (Range(Py)) = dimKer(G, ) = d + 2,

which means that the algebraic multiplicity of the zero eigenvalue coincides with its geometrical
multiplicity and, as such, 0 is a simple pole of the resolvent R( -, G ) (see (Kato, 1980, IIL5)).
Denote by || - || the operator norm in # (Wf}QWi’Q (wq)> and fix p1 € (0, p14). Since R(X, G12) =
RN, G12)Po + R(X\, G1.)(Id — Py) and Py commutes with G; ., we only need to estimate
independently

IR Gre)Pol|  and  [[R(A,G1c) [Id = Pol ||
for any A € Cj;. Since the multiplicity of the pole 0 is one, one has R(\, G1,)Po = %Po and

1 Poll
Al

IR(A, G1.e)Poll < AeC, .

On the other hand, since for any A € C,,,
R (A Gie) [Id = Po] = /000 e MV o(t) [1d - Pol dt,
one deduces from Theorem 2.12 that
IR (X Gie) [Id — Pyl || < Co /000 e ReXe=iat | Td — Py||dt,
which gives that

1

IR\ Gre) | o] | < Col U e

YA€ C,,.

This gives the desired estimate with C1 = ||Pg|| + Co||/Id — Py|| independent of ¢ and pz. [

3. LINEAR THEORY IN THE WEAKLY INELASTIC REGIME

We start this part by giving some results on the spectrum of the homogeneous operator .%, in
the weakly inelastic regime.
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Proposition 3.1. For « close enough to 1, on the spaces

L})(wq)ﬂ{heL})(wl) ; /Rd h(v)dv:/Rd h(’U)’UdU:O}, q>2

and
L2 () N {h € L (w); / h(v)dv = / h(v)vdv = 0}, q>q,
Rd R4

the spectrum of .Z,, is such that there exists [ > 0 such that

S(Z)N{A€C; ReA> —fi} = {—pa} (3.1)
where [i,, is a simple eigenvalue of £, with
o = (1 —a) +0((1 — a)?) as o — 1. (3.2)
Moreover, denoting by ¢,, the unique associated eigenfunction such that HgéaHL%(wQ) = 1 and
¢a(0) < 0, it holds
lim ¢a(v) = co (Jv]* — dvy) M. (3.3)
a—1

Remark 3.2. In Mischler & Mouhot (2009), the authors obtained the exact same result but only in
exponentially weighted L -spaces. But it is an easy matter to enlarge and shrink the space in which
this type of result holds thanks to the enlargement and shrinkage arguments developed in Mischler
& Mouhot (2016) and thanks to the splitting of £, exhibited in (2.16). Indeed, one can check that
the assumptions of (Mischler & Mouhot, 2016, Theorem 2.2) are satisfied thanks to Lemma 2.7 and
Proposition 2.9.

The final goal of this section is to prove Theorem 1.8 in both families of spaces considered
there. Let k > % be fixed. For simplicity, in this section, we use the following notation:

Y= WiPWei(wo,), (€N, seN', (>s+1, ¢>¢ +r+2

We will actually prove that the Theorem 1.8 holds true first in the space Y for any choice of
the parameter ¢ > ¢* + x + 2 and then will use a factorization argument to deduce it also holds
in the spaces £ introduced in Theorem 1.8. We introduce then the two spaces

Yop o= W2 Wol(oog ), Yii= Wir Wi (oog40)

and will also use the notation Y := Y. We recall that, in the space Y, the full linearized operator
is given by

Gach=e2%\(h) —ew-V,h,  Vae(0,1],
with domain 2(G ) = Wi 2 W52 (zo, 1) .
Clearly, any spatially homogeneous eigenfunction of %, associated to an eigenvalue A € C is an
eigenfunction to G, . with associated eigenvalue e 2. In particular

Ker(.Z,) C Ker(Ga.c).
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Notice that, in contrast to Briant (2015); Briant et al. (2019), it is not clear whether such kernels
agree. We deduce in particular from Proposition 3.1 that, on the space L%@, (z7q),

_5_2,Ua € G(Qa,s)

with associated eigenfunction ¢, that is,

ga,5¢a = _5_2 /‘agba-

For the eigenvalue —&~2 ju,, to stay sufficiently close to 0, we assume that a = «(e) satisfies
Assumption 1.2 and write

Ge = ga(s),s )
and keep the notation G . for the elastic operator. Similarly, for all the operators introduced in
Section 2.1 the double subscript («, £) will be replaced by € except when o = 1. More precisely,
to fix notations, we have
G-h = 5_2.,2”@(5)]1 —e-V,h,
with
ga(s)h = La(e)h — Iﬁ;a(s)vv . (Uh) ,

and

Lo@)h = Qa(e)(h, Ga(e)) + Qa(e)(Gare), h)-

In the sequel, since j, ¢, s, q are fixed, we set

5 = 1min {52,£,S—1,q—:‘i—2 5 52,£,s,q ) 52,6754'_]_7(1-}-[{-‘,-2}’

and
— T T T
aT = max {a2,f,sfl,q7nf2 ’ a2,€,s,q’ a2,£,s+1,q+n+2} )
so that, for § € (0,5") and o € (af, 1), the results of the previous section hold in all the spaces Y.
Moreover, we denote by i > 0 the unique solution to
a(eh) =al.
We consider § € (0,67), e € (0,e") (which implies a(e) € (af, 1)), and write
A =AY B =BY).

i

Our scope here is to obtain a result similar to Lemma 2.16 of Tristani (2016) regarding the
invertibility of G.. We actually drastically simplify the proof given there by exploiting the fact
that the difference operator G. — G . does not involve any spatial derivatives. Precisely, one
starts with the following estimate for this difference:

Lemma 3.3. There exists some positive constant Cy such that, for any e € (0, ')

1—a(e)
@(YI,YO)) < Co =2 (3.49)

max (Hgs - gl,e B(Yo,Y_1)" ||g€ — gl,E
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Proof. Observe that, in the difference G. — G ¢, the transport term v - V, vanishes so that
Ge — gl,s =e? [ga(a) - .Zl] .

Let us only prove the estimate in (Y, Y_;), the other being the same (changing only the value
of s and ¢). For a given h € Y, one has, since V’; commutes with both fa(g) and .4,

1(G =G hlF, =t > /R VIV [Zae) = A BlIT; @ s (v)dv
0<k<l, 0<r<s—1,
r+k<l

26_4 Z /Td [‘iﬂa(f) _"g/ﬂl] Vih s—1,2

0<k<l v

dx

‘2
(Wq—m—Z)

According to (2.4), we deduce that there is C(s, ) > 0 such that

1
2

1—ale) k72
”(ga — gl,e) hHY—l < C(S,Q)T Z /ﬂ‘d ”vthsz(wq)dx

0kl

= C(5.0) =2y,

which is the desired result. O

Remark 3.4. The above result does seem to be true if one replace Y with Wf)JWff(wq) here even

if £, — 2 satisfies nice estimates on Wi’l(wq). The use of Fubini Theorem is fundamental here to
be able to get our rate.

Remark 3.5. Notice that the exact same argument together with Lemma 2.1 show that for ¢, s € N
andq = 0,

19a(e) (9, h) — Qu(g, M llyys1yy2 (oo

< O = alEDlgllwzrr 2wt @ o o) 1l 2w )

with k > %.

One can now adapt Lemma 2.16 of Tristani (2016):
Proposition 3.6. Forall A € C}, , let

Te(N) = (Ge — G1.e) R(A, G1.e) A R(N, Be).
Then, J-(\) € AB(Y). Furthemore, for any p € (0, pt,) and
A€ C,\D(ux —p) ={2 € C; Rez > —p, |2 > p — i},

it holds that

¢ 1= 3(5) (3.5)
o — €

[ACN [P
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for a universal constant C' > 0.

In addition, there exists £* € (0, ") such that Id — J.(\) and A\ — G. are invertible in Y with
RN G) =T-(NId - Z(A\)"", AeC\D(u.—p), c€(0,e%), (36

where - (\) = R(X\, Bz) + R(A, G1.2)A: R(A, Be). Finally, there exists some constant C' > 0 such

that
C N
HR()‘v gs)”&?(\\{) < [y — M> VA e C,u \ D(M* - N) , €€ (075 ) (3.7)

*

Proof. We adapt the method of Tristani (2016) but simplifies it in several aspects. For ReA > —p,,
A # 0, one knows from Proposition 2.15 that R(X, G .) € #(Y1) since we assumed ¢ > s + 1
and there is C; > 0 such that, for any € € (0, ET), it holds that

1 1
R(A <C N R ) AEChL
| R( ,gl,s)H@(Yl) 1max<w Re)\—l-u*) G

Moreover, from Proposition 2.9, there is v > 0 such that B. + ¢~ 2v is hypo-dissipative in Y. In
particular (see Remark 2.10) there exists C'y > 0, independent of ¢, such that

Co
BY) S 5 5 — P -
IR Be)llay) € gy o=z VROA> -
Therefore, as soon as e 2 > 2y, one gets
CQ 62 2
RN, Be)ll vy < Z2Rer+ v < Cse”, VReA > — iy, (3.8)

with C3 = 2C5/v. A similar estimate holds true if Y is replaced with Y. Notice that the
regularization properties of A, in both velocity regularity and tail behaviour implies that there
exists C' > 0 (independent of €) such that

I Acllzgev,y,) < Ce™?, i<y, i4,j€{-1,0,1} (3.9)
from which in particular,
AR, Bo) |l z(v,v,) < Ca, VRel > —p,,

with Cy = C35 C. We deduce with this that, for any ReA > —p,, A\ # 0, the operator J.(\) €
A (Y) is well-defined and, for any r € (0, 14)

[TeM N zvy < 119 = Grell g, vy IR Gre)llaee) A RO Be)l v vy
1 - a(e) 1 1 .
< - 7 e —
< Cs 2 max<|)\|,Re)\+M*>, re G, ,

with C5 := CyC1Cy > 0 independent of e. Then, for x € (0, p14) it holds

1 —ale) 1 1 .
9 < IEVR ) ) 3.10
[Te(M)l vy < Cs =2 max <W P M) AeCy (3.10)
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which gives (3.5). With this, under Assumptions 1.2, one can choose £* small enough, depending
on the difference |, — p

Cs 1-—
pe) = 5 (;(5) <1, Ve € (0,e%). (3.11)
pe—p €
Under such an assumption, one sees that, for all A € C, \ D(uy — p), Id — J-(A) is invertible
in Y with

oo

(Id - J-A) " =) [N,  Vee (0,
p=0

Let us fix then € € (0,¢*) and A € C, \ D(y, — p). The range of I'. () is clearly included in
9(B.) = 2(G1.¢). Then, writing G. = A. + B. we easily get that

(A =Gol-(N) =1d = T(A)
ie. Te(\)(Id — J-()\))~! is a right-inverse of (A — G.). To prove that A — G. is invertible, it is
therefore enough to prove that it is one-to-one. Consider the eigenvalue problem

Geh = A\h, h e 2(G.),
Writing this as (A — G1 -)h = G.h — G ch, there is a positive constant Cs > 0 independent of ¢
such that

1—oa(e
Il = RO G12)(G ~ Gl < o)

where we used Proposition 2.15 to estimate [[R(A, G1.¢) | (v) on Cp \ D(p1x — 1) and (3.4) for the

difference (G. — G1 )h. Let us now estimate ||h||y,. Since G.h = A h, one has (A — B.)h = A:h
and h = R(\, B:).A:h, so that, thanks to (3.8),

Ihlly, < IR Bl sy Mehlly, < Cae? | Achlly, < Csllhlly

1P/l (3.12)

where we used (3.9). Combining this with the above estimate (3.12), we end up with

1—a(e)
Il < 022

with C7 := CgC3 independent of £. One sees that, up to reducing £*, one can assume that
07%'3(5) < 1for e € (0,e*) which implies that h = 0. This proves that A — G is one-to-one
and its right-inverse is, actually, its inverse. Thus, for € € (0,¢*), C, \ D(ux — ) belongs to the
resolvent set of G. and this shows (3.6). To estimate now ||R(, Ge) || (v one simply notices that

1
(X = 7)) sy ZHJe W < Ty VAEC\Dl =) G139

from which, as soonas A € C, \]D)(u* — ),
1

RN, G:)|| 2 < —
RN, Ge)ll (v =)

[T (M) ] vy
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One checks, using the previous computations, that for A € C, \ D(p, — p),

ITe(Mlz(y) < Cse® + CsllAll g IR(A, Gue) vy (3.14)
and deduces (3.7). This achieves the proof. 0

Remark 3.7. Of course, the above result is relevant mainly for %u* < i < pig for whichD(p—p) C
C,., see Figure 1. Notice also that, in previous statement, the parameter €* is depending only on the

gap

X 2= s = fL
From (3.11) we consider € for which
1_
Ap := lim ﬁ < X,
e—0t €

therefore, A is a fraction of x.

A first obvious consequence of Proposition 3.6 is that, for any € (0, j,), there is ¢* € (0, ¢f)
depending only on x = p, — p such that, on Y

S(G:)N{AeC; ReA > —pu} C{z€C; |2| < pe — p}, Ve € (0,e%).
We denote by P the spectral projection associated to the set
6. 1= 6(G-) N Cy = 6(G.) N D(p, — p1).
One can deduce then the following lemma whose proof is similar to (Tristani, 2016, Lemma 2.17).

Lemma 3.8. For any i € (0, j1,) there is some ey € (0,e*) depending only on i, — p and such
that
||PE - POH,@(Y) < 17 Vee (Oaga)

In particular,

dim Range(P.) = dim Range(Py) = d + 2, Ve € (0,e5). (3.15)
Proof. Let &= < 1 < pp and 0 < r < x := py — p. Recall that * depends only on . One has
D(r) C C},. We set v, := {2 € C; [2]| = r}. Recall that

1 1
P, = — R(A, Ge)dA, Py := §£ R(A, G1e)dA.
2im [, 2 [,

For A € ~,, set
Z:(A) =R(N, Gi1)AR(N, B:)
so that I'.(\) = R(\, B:) + Z:()). Recall from (3.6) that, for A € 7,

RN, G:) =R\, B)Ad — To(N) ™ + Z.(\)(Id — Je(N)) !
=R\, B:) + R\, Bo) T-(N)(Id — T-(\) ™ + Z.(\)(Ad — J-(\) 7!
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where we wrote (Id — J:(A\)) ™! = Id + J-(\)(Id — J-()\))"!. In the same way, one sees that

R()H gl,s) — R()\7 Bl,s) + R()\; gl,s)AgR()\y Bl,e)
= R(Aa Bl,s) + 'R()\, gl,E)Ae [R()H Bl,s) - R()\, Bz—:)} + ZE()\)‘

Since the mappings A € D(r) — R(X, B;) and A € D(r) — R(A, By ¢) are analytic, one has

RO\, B.)d) = 315 R(A, By )dA = 0,

Yr T
so that
P. = 195 RN, Bo)T-(N)(Ad — J-(N) HdA + 195 Z.(N)Id - Z(1) " lan,
2im [, 2im [,
whereas
Py = o f ROLGLIA[ROLBL) —ROB) r+ 5 Z.0van
2T - 20T

Ir

Consequently, one easily obtains that

1
P. - Py = 95 T (N)J-(AN)(Id — J=(N) A
2 [,
1
+— @ R\ Gie)A: [R(N, B:) — R(X, Big)] dA.
2 J,,
Using (3.10), (3.13), and (3.7), one notices that there exists C' > 0 independent of ¢ such that
_ C 1—a(e)
1
}lFE()‘)%(A)(Id*jﬁ()‘)) HL@(Y) < T2(1—p(5)) 52 ) \V/>\ 677‘7

where we used that 0 < r < s — p and noticed that || ()\)||z(y) < C/r by virtue of (3.14).
Moreover, from Proposition 2.15, it follows that

C
HR()\, gl,s)As [R()HBE) - R()‘agl,s)]ngg(y) < 71 H-AER()"BE) - AER()\781,E)||%(Y)
for any A € ,, from which

Co 1 1—a(e)
P.-P G § — ) - ) %
1P = Polly) < = (T(l—p(e)) 2t AR, Be) — ARG BLJ”J(Y))

for some positive constant Cjy > 0 independent of €. We only need to estimate
[AR(A, Be) = AR(A, Bre)ll oy
for A € ~,. Observe that, for A € ,,
AR, B:) — AR(A, Bie) = AR(A, Be) [B: — Bue] R(A, Bue)
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ImA

| |

o / X

b
iy [y 7As O/é Re)

| | (1 — 1)

FiGURE 1. The set C, \ D(p, — pt) and the eigenvalue —\..

and, with the notations of the proof of Proposition 3.6,

AR, Be) — AR(A, Bue)ll vy
< AR, Be)ll vy o) 1Be — Biell zvo,v_1) IR Bre)ll z(vo)-

Now, as in Proposition 3.6 (see (3.8)) there is a positive constant C' > 0 independent of € such that
IR Bo)lzr_y) < Ce® RN BL)llay) <C, A€,

where we used the hypo-dissipativity of B + &~ 21 in Y_; thanks to Proposition 2.9. Now, using

(3.9) with ¢ = —1, 5 = 0, we deduce from (3.4) that

1—a(e)

Gathering the previous estimates, it follows that, for any 0 < r < x = ux — u,

C1—ale) 1
P.—-P < — 1):=1¢ 3.16
P = Pollaw) < - —— (r(l—p(a)) + ) (€) (3.16)
and, thanks to Assumption 1.2, one can find ¢, depending only on y such that /() < 1 for any
e € (0,&*). In particular, we deduce (3.15) from (Kato, 1980, Paragraph 1.4.6). 0

With Lemma 3.8 we can prove Theorem 1.8:

Proof of Theorem 1.8. We prove the result first in the space
=Y = W?Woi(wo,), (> s+1, q>q +r+2
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where we recall that x > %. The structure of the spectrum of §(G.) N C,, in the space Y comes
directly from Lemma 3.8 together with Proposition 3.6. To describe more precisely the spectrum,
one first recalls that

&(Ly) N{z € C; Rez > —pu} C 6(Ge) N{z € C; Rez > —pu}.
Since, for € small enough, the spectral projection I ¢, associated to 6(L, () N C,, satisfies
dim(Range(Ilg, .,)) = dim(Range(Ilg)) = d + 2 = dim(Range(P:))
we get that
& (L) NCL=6(G:)NC,, (3.17)

that is, the eigenvalues \;(¢) are actually eigenvalues of %, .. In particular, one has that

~ 1—ale) 1—ale))?
Adto(e) = —¢ 2Ma(g) :_T+O ((8 ) fore ~0,

according to (3.1) and (3.2). We set
As 1= —Agya(e) >0, Ae ~ —2(1 — afe)).

For the other eigenvalues, one notices that

/ Le)p(v)dv =0, Vo€ DLy CY
R4

Of course, the spatial variable = plays no role here since .Z,.) is local in z. We begin with
understanding the eigenfunctions in

Y = L2L2 (w4 k)
Recall that

y Lo@yp0)dv =0, VoeP(ZLy)) Y,
which implies that

w € DLLy) with L (w k) =0,
that is, 0 is an eigenvalue of the adjoint fo’j(e) in Y and therefore an eigenvalue of 7, (.) in Y.

With the same reasoning, since

L) vidv = =%k g)/ v;V - (vp(v))dv 2%(5)/ v; p(v)du
R4 Rd

one sees that, forany i = 1,...,d, m}(v) :== v;wo_,,.(v) € _@(Z;( )) satisfies

(H‘N
Z;(E)m: = 8_2Ka(€)m? s
that is, 5_2/%(5) is an eigenvalue of ,,2”;( 5 of multiplicity d and, as such, an eigenvalue of %)

with same multiplicity in the space Y. With this, we found d + 1 eigenvalues of Zu(e) in the
space Y. To prove that these d + 1 eigenvalues are still eigenvalues of Zu(e) in the smaller
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space Y, we proceed as follows. Let g be an eigenfunction of .Z, . in Y associated to the 5_2"%(5)
eigenvalue, i.e

L) § =€ ka@©)d,  GE D Lae)NY.

With the splitting 7, (o) = B% 4+ A, where we recall o« = a(e) and 6 is sufficiently small, one
deduces from this that

(57250[(5) — Bg) g=A%g

Using the fact that for 8_2/€a(€) < pyx — 14 < V4 the operator 6_2/1&(5) — B¢ is invertible in both Y
and Y thanks to Proposition 2.11 and

g= ,R'(E_Q’Lq‘a(e) ) Bt()cé))A(d)g .

Because § is depending on the velocity only, using the regularizing effect of .A(®) and the hypo-
dissipativity property of the operator S_QI{Q(E) — BS one concludes that A¥g € Y and, by
previous identity, so is g. Therefore, any eigenfunction of . associated to the eigenvalue
5_2/-fa(5) in Y lies in Y as well, consequently, it is an eigenvalue of Zo(e) in Y. It has the same
multiplicity d as in Y since the reasoning is valid for any eigenfunction g. In the same way, we
prove that 0 is a simple eigenvalue of .Z,(,) in Y. We just found exactly d + 1 eigenvalues and
exhausted & (%, (.)) NCy = &(Zy () ND(1x — 1) under the assumption that e %k (o) < fix—
which gives the desired result.

Now, let us prove the result in the space
E:=WolWhi(w,), ¢>2, (>

As mentioned earlier, we will resort to Theorem 2.1 of Gualdani et al. (2017). We observe that,
since Kk > %l,

s 21,2
E =Wy W, (@ gein) = €

with a continuous embedding, with of course F dense in £. We observe that g+¢*+x > ¢*+rk+2
and £ + 1 > s + 1. From the first part of the proof, the conclusion of Theorem 1.8 holds in F. It
follows then from a simple application of Theorem 2.1 in Gualdani et al. (2017) that the part of
the spectrum of G, lying in the half plance {z € C; Rez > —pu} coincides in both the spaces £
and F, i.e. Theorem 1.8 holds in £. Notice that all assumptions of Theorem 2.1 in Gualdani et al.
(2017) are met for the pair of Banach spaces (F, £) in a straightforward way due to the splitting

ga:Ae+Ba

and using Lemma 2.7, Propositions 2.9-2.11. In particular, due to the regularizing effect of A; in
velocity, Hypothesis (H2) (iii) of (Gualdani et al., 2017, Theorem 2.1) is satisfied with n = 1. The
extension to spaces of type Wf)’ZWi’Q(wq) with ¢ > ¢* and £ > s is similar. g
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Remark 3.9. It is an interesting open question to determine whether the conclusion of Theorem 1.8
remains true in spaces of the type Wf,’IWﬁ’l(wq). The obstacle here is of course the fact that the
regularizing operator A, acts in velocity only and do not induce any gain of integrability in the space
variable.

4. NONLINEAR ANALYSIS

We now apply the results obtained so far to the study of Eq. (1.22). In all this section we
assume that
£ =Wy Wi () (4.1)
with
m > d, m—1>2k=>0, q=3, (4.2)

and introduce also the Hilbert space on which .#} is symmetric
Hi= w2 (M),

We recall here that M is the steady state of %] whereas H is a Hilbert space on which the elastic
Boltzmann equation is well-understood Briant (2015).
We also denote

d
&1 = WHTWI2 (cwg40), o= Wy T PWi A (wgs0042), K> 2

Hy = W2 (M—1/2< : >1/2) and £y = WEIW™2(em, 1) (43)
where k, m, q satisfy (4.2).

The analysis of the elastic case in Briant et al. (2019); Briant (2015) holds in Wﬁ;ﬁ (/\/l_l/ 2) for
B > d. We need, however, the H-norm to control the £-norm, which constrains 5 > m. At the
same time, it is needed that A, € #(&, H) and, because A, has no regularisation effect on the
spatial variable, we are forced to choose 8 < m. This explains the choice of 8 = m. Moreover,
we need the constraint m > d to carry out our nonlinear analysis, more precisely, we use that
the embedding wr/ 2’2(']1‘d) < L2°(TY) is continuous if m > d which provides us an algebra
structure. Notice that the analysis of Briant (2015) is also valid under this condition. Taking
q > 3 allows us to control the dissipation of kinetic energy [ps Qa(f, f)|v|*dv and to apply the
results of Section 3. Finally, the restriction £ < m — 1 in (4.2) implies the continuous embedding

7‘[‘—>52.

For A, B > 0, we will indicate in the sequel A < B whenever there is a positive constant
C' > 0 depending on the mass and energy of the /4(0), but not on parameters like ¢, £ or Ay, such
that A < C B.

We adapt the approach of Briant et al. (2019) and decompose the solution A into
he(t,z,v) = hO(t, z,v) + (¢, z,v)
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where h? = h0 € € and h! = h! € H are the solutions to the following system of equations

O = Bage) eh + 7 Qo) (B0, h0) + 71| Qo) (K0, A1) + Quge (b, 10)]
+ [gahl - Ql,ghl] +e1 [Qa(g)(hl, rY) — Qi (h!, hl)} , (4.4)

RO(0,z,v) = ki (z,v) € E.

and
Oyh! = Giht+e71Qi(ht AY) + AR,
(4.5)
RY(0,2,v) = 0.

In this section, we omit the dependence on ¢ for h” and h'. We recall that

/ Ei($av)<1>dvd$=0:> fg(t,x,v)<1>dvdx:<1>
Td xR v Td x R4 v 0

and, in particular, the fluctuation h. (¢, x,v) also satisfies

/deRd he(t, x,v) < 11) )dvdx = < 8 ) i (4.6)

Recalling the definition of Py in Theorem 2.12, we define
d+1

Pohzz / hU;dvdx | O; M, Mgh = / WUy odvde ) Wao M, (4.7)
i—1 TdxR4 Tdx R4

where recall that

i— 1
Uz 1 fori: 7...,d+1, and \I/d+2:19 2d
1V

Of course, see (2.28), one has Py = Py — Ilj. Recall that the eigenfunctions W are such that

\Ifl :1, \Ilz: (|U‘2—d’191).

/ U, (0)¥;(v)M(v)dv = 6; 5 i,j=1,...,d+2,
R3

which in particular implies that, in the Hilbert space #*, one has Id — Py = Pg. We begin with
two basic observations. The first one is related to Py:

Lemma 4.1. Fori=1,...,d + 1, it holds that

/ hl(t, z,v)¥;(v)dvda
TdxRd

< max (1, ) %) e

As a consequence,
Pk (t)le < ClIR(@)l]e
for some constant C' > 0 depending only on M.

4Recall here that, on the space L2 (./\/17%) the inner product is (f, g) = [r.a f(v)g(v)M ™ (v)dv.
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Proof. Note that total mass and momentum conservation leads to
0:/ h(t, z,v)W¥;(v )dvdx—/ RO(t, z,v)¥;(v)dvde
TdxR4 TdxR?
—i—/ Rt z,0)¥;(v)dvdz, i=1,...,d+1.
TdxR?

Thus, foranyi=1,...,d+ 1,

M«R (t, 2, 0)U;(v)dvdz| < max (1 \/%)Hho( Mile

thanks to Cauchy-Schwarz inequality and since |¥;(v)| < max (1, V%—l)wq (v) for any i =

1,...,d + 1. Regarding the estimate for the projection, it follows from the previous inequality
and (4.7) by taking for example C' := max;—; _g+1 || V;M|¢. O

/ hY(t, z,v)W;(v)dode| =
TdxRe

A second observation regards the action of Il on the linearized operator G.:

Lemma 4.2. For any solution h = h(t,x,v) to (1.22), one has

Iy [Geh(t)] = —Ae (14 7¢) Hoh(t) + s:(t)po, ~ t>0 (4.8)
where r. € R (independent of t) and sc(t) € R are such that
1—al(e

<G -a@), 150/ < O 0 TPy oy @9)

for some positive constant Cy, independent of ¢ andt > 0

Proof. The proof is by direct inspection. One first notices that

1
%mﬁ<@wwhWV—WO®®)%w%:%m%

Notice that, since fRd G.hdv = 0 and de v-Vihdz = 0 one has

Igh =

1
H() [g5h<t)] = m (AdXRd ga(g)h(t7$71))’v’2d’l)dx) ¢0

1 2
— m (/ﬂ‘ded (La(g)h(t,x,v) — Fa(e) Vo - (vh(t,x,v))) v dvd:c) 0N

1 2
— 72d£20019% (/Wde (La(g)h(t,x,v) + 2ﬁa(5)h(t,x,v))) ] dvdx) N
Now, as in (1.8), one can check that

1— 2
/ L o) h(t, z,v)v|*dvdz = _a(s)%/ h(t, 2, 0)Gae) (Vi) [v — vi]*dvsdvde
TdxRd 2 TdxR2d
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which, writing first h = Tloh + (I —Ig) h = Bo[h]po + (I —Ip) h and then Gy = M1 +
(Ga(a) — M) gives

Iy [Geh(t)] = acBo[h]do + s(t)po = aclloh + s-(t)¢o

1—a?(e)

T Ade2 e I — o] h(t, 2,0)Go(ey (v:) v — vl *dvidod
4d520019%% (/deu@d[ o] Alt, z;v) a(a)(v)‘v vi|*dvsdy 33)

1 l1-a
Qe 1= 82{2’%(5) - M’Yb/ o (V) M (vs)[o = v *dvedo

1—a

a 4dcoq92 / Po(v) [Ga(e) () — Mi(vs)] !U—v*!?’dv*dv}.

One has (see (Mischler & Mouhot, 2009, Lemma 5.19, Eq. (5.10)))
3d
%/ B0 (V)M (vi)|v — v Pdvdv, = = ot
4 R2d 2
which, recalling that kK, = 1 — a, results easily in

1 —ale)
22

{2—%(1+a(5))
_1tale) / 90(0) [Gage) () = Ma(02)] [0 = vef*dvsdv .

[

4dcy? R
Writing simply 1 + a(g) = 2 — (1 — a(e)) one sees that

1—ale)

e2 (_1_’_7:5)7

a: =
with

(1—a(e)) +

|7e| <

| W

b
o 190 [ Gato) = Mall oy < €O~ ()
1 v

thanks to Lemma 2.3. The bound on s.(t) is also obvious since, for solution A to (1.22), conservation
of mass and momentum implies that IIph(t) = Poh(t). Then, since

we get the desired result. l

Remark 4.3. If we denote by I1. the spectral projection associated to G. and its eigenvalue — )., it
may appear at first sight preferable to rather deal with the projection I1. (since II.G.h = —\.II.h)
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but we face then two different problems: first, 11, is not fully explicit whereas 11 is; second, applying
II; to the equation satisfied by h

Oth = G:h + e! Qa(a)(h‘v h),

nothing guarantees that 11, [5*1 Qae) (hs h)] remains of order 1 with respect to € whereas we will
see later on (see Lemma 4.5) that, due to the dissipation of kinetic energy, Il [5_1Qa(5)(h, h)] is
actually of order ¢.

In all the sequel, we will denote
Ae = (1+72), Ae>0.
Notice that . does not exactly corresponds to the eigenvalue \. of G. but we observe that

Ae ~ A

e—0

with lim._,0 Az = lim._,o \c = Ao where we recall \g is defined in Assumption 1.2. In the rest of
this Section, we estimate separately h° and h'.

4.1. Estimating h°. For the part of the solution h%(#) in & we have the following estimate.
Proposition 4.4. Assume that h° € €, h' € H are such that

sup (A°(1) e + 13" (£) ) < Ao < 00

Let vy := min{v1 m kg, V1,m,k,q+1} given in Proposition 2.9. Then, for o € (0,10) there exists an
explicit £1 > O (that can be chosen less than g defined in Theorem 2.12) such that:

IR0 e < I1R0(0) 1 e 5 + A / B9 113 (s) g, ds
(4.10)
+6A5/ B a1l (s)|2, ds, Ve € (0,e1).
0
As a consequence, for any e € (0,¢1),
_2e0 2 b wg s
IR )12 SIRCO) |2 e 2 + (e Xe) /6 ¢ )||h1(8)\\%2d5

0 (4.11)

t
EINE / B3 ()4 ds.
0

Proof. In the subsequent proof, we denote by |- ||, and || - ||¢ the norms on &; and &£ that
are equivalent to the standard ones (with multiplicative constants independent of ) and that
make 21 + Be(e),e dissipative. > The conclusion with standard norms will simply follows by

> More precisely, we shall use here norms such that

. d _
if g =Bacg then —g(®)le <= wollg(®)]e,
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equivalence. We first observe that

SN < 23100 e, + = (1Quge) (HO0), AW + |1 Qe (HO(1), (1)) e
- 11Qa(e (R (1) OBl ) + | Goh (8) = Gr.ch* (1)
7 Qage (B (0), (1)) = Qulk (1), 1 (1) -

Using classical estimates for Q,,(.) and Q, (see Alonso et al. (2010); Alonso & Gamba (2011)),
there exist C' > 0 independent of € such that

1Qae) (1), B (1)l + [ Quge) (RO (1), A (1)) &
1o (R (1) ) e < C (IR0l + IR Dlle, ) IR°(E) e,
and, thanks to Remark 3.5
1Gh (1) = Greh! ()| + &7 || Qaey (B (1), 1 (1)) — Qu(h' (1), A (1))
< - a(@)B Ol (72 + 7B O)le. ).
Notice that such estimate is exactly what motivated the definition of £,. We conclude that
d _
SRl < —=2(vo — R Me + B Olle) ) 1D
+C(1—a(e)e ?[h (t)]le, + O — ale)e MR #)]Z, -
For any 1o € (0,1p), we pick g1 € (0,£¢) as vy — €1 C Ag > po. Therefore,
vo—C(IRWle + K Dller) > po. Ve e (0,e1).
Consequently, we obtain that
d o _
7Ol < = I O)lley + C1 = ale)e? 1 (D) le,
£ O - a(@)e N D), (.12)
<=L IR @)lley + OB O, + CXlIW B3, V>0,

where we used that 2\, ~ 2\, ~ 1 — «a(e) which gives (4.10) after integration. To prove (4.11),
we use the fact that by Cauchy-Schwarz inequality, for any nonnegative mapping ¢ — ((¢) and
B > 0, we have that for any r € (0,1),

2
(/Ot B (t—s)c(s)d8> < (/Ot 2B (t=s) ds> (/Ot 2018 (1=9) ()2 ds)

- (4.13)
\QTﬁ/oe C(s)“ds, Vi=0

Notice that such norm exists from Proposition 2.9.
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This inequality applied with r = % gives the result. g
4.2. Estimating Poh'. One has the following fundamental estimate for Poh!(t).

Lemma 4.5. We have that

[Poh' (D)., < IMoh(0)lee™ + R0
rer [ D (IR IR + IR ds

+)\€/ eI (|[R0(s)| + (X = Po) b (5)]| s (@.14)
0

foranyt > 0.
Proof. The equation for h is given by
Oth = Geh+ 7' Q) (R h).
Thus, applying the projection Iy and using (4.8)
O (Tloh) = =X (1 + 7o) Toh + s:(t) o + € T Que) (b, h)
so that
Ioh(t) = IIph(0) e <t + /0 t e 79 (67 I Qo) (R(5), h(8)) + s=(s)do) ds,  (4.15)
where )\, = \. (1 + 7). Notice that, according to (4.7), I1y Qa(s) is explicit with
[0 Qae) (h(s), h(s)) ¢, = (1= a*(e))

where D, (g, g) denotes the normalized energy dissipation associated to Q,,, namely,

1
Dulgrg) = ——— / s 0(0) Qu(g, g)duda
1 — Td xR

= %/ dx/ g(x,v)g(z, v.)|v — vy [3dv.do
Td Re xRd

for some nonnegative 7, independent of «, see (1.8). Now, one clearly has

Da(h(s).h(s))] < C [
Td R4

and, using Minkowski’s integral inequality, we deduce that

Dage) (h(5), 1) [ WaraM| -

2
W3(v)|h(s,x,v)\dv} dzx

1

» w3 (v) (/Td |h(s,x,v)]2dx>2 dv 2

o Qage) (h(s), h(s))|¢_, S (1 —ale))lIAs)l2

1Da(h(s), h(s))] < C = Cl1()II71 12 (oo

Therefore,
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because wo,(v) > (v)? for any v € R3. Thus, applying the || - ||¢_, -norm in (4.15), one obtains
_ 1—-a(e b (s
b o), < Moo} e+ 2= [ ey 2 as

t
+ e / e A=) (T - Po) h(s)|| o ds  (4.16)
0
where we used (4.9) to estimate ||s-(s)¢ol|c_,. As already observed, according to (4.6), one has
Poh(t) = Hoh(t)

for any ¢ > 0. Since Poh!(t) = Poh(t) — Poh'(t), we can reformulate the above (4.16) in terms
of the relevant functions h' and h to obtain the desired estimate recalling that e\, ~ %(6) O

We make more precise our estimates of Pgh!(t) in the following

Proposition 4.6. There exists an explicit e € (0, 1) such that for anye € (0,e2) andt > 0, it
holds that

IPor' (®)lle_, < (IToh(0) e + [A°(O) e + *Ac A (O) I3 )=+
ox [ BN s s +en [ B R, 0
+/\/0 A=) | (1= Po) b (s) Hgds+g2A2/D A=) Bl (s) [l eds

t t
+ e / e 2= Rt (s)||2ds 4+ 7 A3 / e 9| nl (s)|4, ds.
0 0

Proof. We insert the bound for ||h°(¢)||% for i = 1,2 in (4.10) and (4.11) in the estimate of
Lemma 4.5. Assuming 9 > 2¢2)\. and recalling that 1 —a(e) ~ 2., we first deduce from (4.10)-
(4.14) that

IPoh' (®)]le_, < (IToh(0)]le + [[R°(0)]lg) e " + As / 2Rl (s)|lg, ds
t
+5/\5/0 e 2 0=9)|Ipl(s )|IZ, ds + e /0 =(t=3)||nt (s)||%ds
0 : —Ae(t—s) ,— 85 2 [ —Ae(t—s) ST Y P
+ A||R7(0) e ; e e <2°ds+ AZ ; e ds ; e < |h*(7) ||, dT
t S “ t
+eX? /0 e Ae(t=5)qs /O e*e%(S*ﬂth(T)uédTHE /O e (=9 || (T = Pg) h'(s)||; ds

t
e / e R0()|2 ds . (4.17)
0
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Now, using (4.11) for the last integral, we obtain

! “Ae(t=3)|| 1,0 2 4s < ||K0 2 ! ——ﬁgszs@fs)d
L [h7(s)l[g ds < [|R7(0) & ¢ s
t s "
#en)? [ as L E ) ar
0 0

t s
+ (22 /O e =) ds /0 e 2R (r)|14, dr .

Using that, for any 8 > a > 0 and nonnegative mapping ¢ — ((t)

S

t t t
/ e—o(t=s) ds/ e B(S_T)C:(T)dT = e_o‘t/ eBTg(T)dT/ e~ (B=a)s 4g
0 0 0 T

X . (4.18)
< e~ =T (r)dr
| r)
we have, for pg > 2e2 )\, that
t S ug,. 9.2 [t
/ e—Ae(t—s) ds/ 6—58 (s T)th(T)Hf‘f‘ng < 5/ e—Ae(t—s)th(s)HIEQ ds, k=1,2,4,
0 0 Ko Jo (4.19)

so that
t t
/‘eA*tSwh%sm%dsseﬂwpmn@e'%t+<¥A92/‘eA4t@uh%@Héds
0 0

t
+(9A92/“a***@W#@wéd&
0

Using again the above (4.19) to estimate the sixth and seventh terms of (4.17) and keeping only
the dominant terms, we get the desired estimate. g

Remark 4.7. We will also need an estimate for |[Poh'(t)||Z_ . Using (4.13), we obtain that for
anyr € (0,1),

[Por 1)]2., S (ITh()Z + [P O)]2 + (€53 2[R (O)]14 ) e
2 t—ﬂﬂwﬁ 1 2 2y \2 t—”@ﬂ) 1 4
+(eA)” [ e 2 (s)]g,ds + (e7A)7 [ e 2[R (s)]g, ds
0 0
t
| e s
0

t 4022\ )2 ot
/ 672(171”))\5(1575) th(s) Hég dS—i—E (5 a) / 672(177”))\5(1575) th(s) Hgg ds.
0 r 0

et

T

t
# 2 [l et poy o) +

2.

r

_l’_

where the multiplicative constant does not depend on r.
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4.3. Estimating the complement (Id — Pg)h!. Let us focus on an estimate on Pg-h!(t) with
Pi = Id — Py, the orthogonal projection onto (Ker(gLs))L in the Hilbert space Lf,,x(./\/lfl/Q).
The same notation for the operator G . in the spaces £ and H is used. We begin with the following

lemma where, we recall that 3 is defined in (2.11).
Lemma 4.8. With the notations of Theorem 2.12, letc € (0,¢g), o € (0, p1) and assume that
Sup (I lle + IR (B)ll2) < Ag

=

with Ag < 1 small enough so that
2
vi=H A2 0 (4.20)

where 0 1= infgcga Y A(§) > 0 and co > 0 is a universal constant depending only on M defined
in (4.24). Set

U(t) = hl(t) = Pohl(t),  Vt=0.
Then, there exists Cy > 0 independent of ¢ > 0 such that

Co [*

2 ), eI () o [R0(s) e ds - (4.21)

()]

t
< Co / =9 [ Poh (s) |4, ds +
0

2
H
foranyt > 0. In particular,

! —v(t—s G ! —v(t—s
< Cob [ I s + 5[ I 110l ds @22)
0 0

Proof. We start by recalling that h!(0) = 0 so that ¥(0) = 0. One checks from (4.5) that
0T =GV + Py (e Qu(h' b)) + AhY) = G U + et Qi (RY 1Y) + Py AR,

where for the later we used that P Q1 (h!, h') = 0. Hereafter, we denote by || - || a hypocoercive
norm which is equivalent to the usual one independently of € and which allows us to write nice
energy estimates. It is worth mentioning that such a norm has been exhibited in (Briant , 2015,
Theorem 2.4). Using (Briant et al., 2019, Theorem 4.7), one obtains as in (Briant et al., 2019,
Eq. (4.8)) that, for any u € (0, 114 ) there is some positive constant C' > 0 such that

d 21
SO < =S 1¥@ s, + CIR OIF IR @5, + 19 @) o [Py AR @)l (423)
0
Writing h! = Poh! + ¥, we obtain

IRE ()13 12" ()13, < 2||hl(t)H%(HPohl(t)H%1 + ||\I/(t)”%-£1>
<2051 (D)3, + 4Poh’ (0)I3, (IPoh’ (DI, + [T (®)1%) -
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In particular, since there exists a positive constant ¢ > 0 depending only on M such that
Poh! ()17, < [IPoh! (D)7, < clPoh! ()Z, .
we deduce that
IR @) IR @), < colPoh! (t)lle_, + co AN, (4.24)

for some universal constant ¢ > 0 depending only on M. Therefore, assuming that A is small

enough so that

2
V::—'L;—COA3>0
o

0
we deduce that
d
S IOI < —vIW@)E, + ClIPoh @)l + 1)l [Po Ak (@)ll2,  ¥E>0
dt
for some C' > 0 independent of ¢ and €. Moreover, we also have that

1
Py AR (1)l S S Oles 18Ol S IB Ol V20

from which we get the desired estimate (4.21) after integration of the previous differential in-
equality. We deduce then (4.22) from (4.21) we use that using the estimate

I-lles S -llaes and [IRYI57 < AG 1R, Viz0, (4.25)
together with the fact that [|Poh! |3 < || ||3. O
To complete the estimate of || ¥(t)||3, we need to estimate the last integral in (4.22):

Lemma 4.9. With the notation of Lemma 4.8, there is an explicit €3 € (0,e3) such that for any
d>0,e€(0,e3),andt >0

/ =) () 3¢ |70 (s) ||gd5</ V=)= 1 s 9)l[3ds + SR (O) e~

)\2 t
+ <5+5€>/0 e V|t (s)15, ds

Proof. We use the estimate of ||h"(s)||¢ provided in (4.10) which gives

t
/ 1 () 1 [10(5) e ds < Tu() + To(t) + Ts(t)
0
with ,
L(t)=e"? / e || B1(s) |13 [ BO(0) e 2 ds,
0

t S “
I(t) = e 2\ / e[ (3) ¢ ds / B 1 (1) gy
0 0
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and

-1 - (t=s)|IpL (s 12

B(t) =<\ [ eI s ds [ B0 o) a
0 0
Using Young’s inequality, for any d > 0 it holds that
1
122 ()[R O)lle < 8 11A* ()3 + 451" (O)IIE

so that, since jug — e?v > £,

-2 ! —v(t—s)—E9s) 11 2 1 0 2 ! —v(t—s)—£0s
L(t) < de e R ()l ds + =" (0)[lg [ e =7ds
0 40 e 0

— ! —v(t—s)—EQs 1 i
<072 [T ) s+ e 0(0) B

Similarly, Young’s inequality implies, for any > 0, that

t
0 <0 [ e o) ds
0

_2)\5 2t S g . 2
IR [ty ([ B )
0 0

and, using (4.13) with r = % and (4.18) to estimate the square of the last integral, we get for
po > 22w that

1 t
5/ v(t=s) hl 2 ds / e V=) R (8|12 ds.
1A (s) 1% 26527 J, A (s)I5,

In the same way, it follows that
S 1 ¢ —V(l—S
< [N Bas+ e [ as
Combining these estimates yields
t
o R [RCTMAE >ugds<6/ e s) B ds + 5 [H0(O)] 2™
0
5 [t e ko 9
5 [ B a5 [ )iz, as

n 52) /0 V=9 | Rt (s) |14, ds. (4.26)

We conclude thanks to (4.25). O

We deduce from the previous the following main estimate for || U(t)|%
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Proposition 4.10. Under the Assumptions of Lemma 4.8, there existe4 € (0,¢3), Ay > 0,c> 0 a
positive universal constant that depends on 1o and v such that, for any § > 0,t > 0, ¢ € (0,4),
Ae € (0, \y),

1 1 —v ! —v(t—s
@13 < Sl1R°0)1ze t+Cz/0 e "= |Ih () 13, ds

t
;0 / e == 29| B 1 (5)]2,ds,  (4.27)

e Jo
with Cy = C5(6,¢, ) := [5 + A%+ %ﬁ} . In particular, there is a positive constant ¢ depending

only on py and v such that for anyr € (0, 1),

t
L[ e () s
C1 Jo

1 — —r ! — -Tr —S
< SR04 Gy [ e (g s

5 [ —2(1—r)Ae(t—s) ,—E8s) 11 2
+ e c e 27|k (s)]|5,ds (4.28)

2 Jo
holds for anyt > 0,6 > 0.

Proof. Inserting the estimate obtained in Lemma 4.9 into (4.22) we get directly (4.27). Using (4.18)
twice, we deduce then easily (4.28) from (4.27) after integration by choosing A5 small enough
such that v > 4); and thus v — 2(1 — )\ > v —2A. > & for A € (0, \y). O

We deduce from the above the following

Proposition 4.11. Under the assumptions of Lemma 4.8, there exist €5 € (0,24) and ¢ > 0 that
depends on g and v such that, forany § € (0,1),t > 0, € (0,e5), A\c € (0,\4) andr € (0,1),

1 1 A2 t
— ([ ()3, < — Koe 27 4 (6 + 22 + A3 / eV U=)||nt ()| 5,ds
Co or 0 0
A A2 ) [ et 12
+t |0+ 5 T8 . A" (s)[l5, ds

5
t
+ ;% (1 + ?«6)/ e PO 0 (5) |y ds - (429)
0

where
Ko := [[K°(0) |2 + [[TToh(0) |2 + [|°(0) |2
depends only on h(0).
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Proof. The previous Proposition gives an estimate of ||¥(t)[|%, in terms of ||h!(¢)||3,. Adding
|Poh!(t)]|3, to both sides of (4.27) and, since

IRt ()13, < [Pok" ()13, + 2 (®)17 < IPoh' ()1, + 1) .

we only need to estimate ||Poh! (t)H?g,l in terms of ||h!(t)||3,. We invoke the estimate in Re-
mark 4.7 which, using that % > 2(1 — r) . and assuming ¢ small enough and keeping only the
dominant terms reads simply

IPor )12, S (IToh(0)2 + [A°O)]F + A0 O)]IF )2

A [ =2(1=r)Ac(t=s) | p1 2 | A t—z(l—m (t—s) 2
- ) © R O] 78 s o =9 | w(s)||2ds (4.30)

+

where we used (4.25) repeatedly. Then, using now (4.28) to estimate the last integral and adding
(4.30) to (4.27), there is cg > 0 depending only on g, v such that

t

1 1 —2(1—r —v(t—s
IR < 5 Koe 204Gy [ e 9l ) s
Co T 0

A t
22 (P4 [ I () s
0

g A ! —2(1—r) A (t—s)— 9 5
+§O+;>Ae<>“>smW@m@

where we used that A\ < 1 to obtain the first bound in the right-hand-side of the inequality and
v > 2(1 — r) ). for the last term. This gives the desired conclusion once we noticed that, for e

small enough (independent of 9), it holds A, (82 + C’g) < A <5 + %g + A(Q)). [l

We derive from this the following decay rate for ||h!(t)]|:

Corollary 4.12. Letr € (0,1). There existeg € (0,¢5), A¢ € (0, A1) and C > 0 depending on
v, o, Ao and r such that

[RY ()13 < C Ko exp (—2(1 = 7)A: 1) Vi=0), (4.31)

forany e € (0,e6), A\e € (0,\g) and where —\. denotes the eigenvalue of Ga(e),c obtained in
Theorem 1.8, Eq. (1.25) and Ky is given in Proposition 4.11.

Proof. Set for simplicity o := 5 and

2(t) == 2O R B3, 0.
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We choose A\¢ > 0 small enough so that \. < 7 for any A. € (0, \¢). Inequality (4.29) (applied
with 7 instead of r) then yields

1 2 t
;m(t) 57 ’CO + <5 + % + Ag) / 6_(V_2(1_T0))‘6)(t_s)w(S)dS
2 7o 0

2 t t
42 <5+/\+A3> / m(s)ds+52/ e B (s) ds
o d 0 e Jo

where c3 is defined in the previous proposition. We use a Gronwall type argument to prove the
result. For notational simplicity introduce

Cs(Ae, Ag) = ¢ <5 - A; + Ag) , Ap= Céfoo, &5(t) = i = G5\, A0)+@e 21>,
from which one obtains that
0 < z(t) < A0+05(A€,A0)/Ot —(v=2(1=r0)Ac)(t ds+/ &s(s T(t). (4.32)
Thus,
d

7T === 2(1 = r0)A:)Cs(\e, Ao) /0 t e~ 20710 A)(=8) gy (5)dl s

+(Cs(A, Do) +&5(1)) (2)

—(v=2(1 =ro)Xc) (T(t) — Ao — /Ot &s(s)x(s)ds) + (Cs(Ae; Do) + &5(1)) (1)
Using (4.32), which reads x(t) < Y(t), we deduce that
—T(t) < (v = 2(1 = 10)A) Ao + [C5(Ae, Do) — (v — 2(1 = r0)Ae) + & (1) T(2)

a
+(u—2(1—r0))\5)/0 £5(5) T (s)ds

Clearly, it is possible to choose 6 € (0,1) and A sufficiently small depending on y and v and
then A, sufficiently small depending on g, v, § and r such that

v dcy _roy

Cs(Ae, Ag) — (v —2(1 —rg) ) + &5(¢) < —3 + ¢ A Vit >0,
and
e 2 A2 2
€ 1o ¢y 5—|—A0—|—? <y (4.33)
hold true for any A; € (0, \,). Fixing A. in this range, we introduce
t
z(t) = Uy o e 2%ds
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to deduce that

d

T <€7Z(t)T(t)> < (v =2(1—r)A:) Age " + (v = 2(1 — )X / £5(s

t
<vAge* 4 Ve_z(t)/ &5(s)Y(s)ds
0

where Ay is defined as before. Integration of this differential inequality yields (recalling that
T(0) = Ao)

t
Y(t) <Aoez(t)+VA0/ ez()z(s)ds—i-y/ 2(t)—z(s) / &s(r

:Aoez(t)—l-qu/ —2(s d5+1// &(r (/ =(t)—= (S)ds>d7'.

Notice that z(t) — 2(s) < %2 — g(t — s), for 0 < s < ¢, from which we conclude that

~+

9 decg

e2=208)qs < Z ¢ no , 0<rt«<t.

R

Consequently,
deg decg
T(t) < 3Ape o + 2e #o / &(s)Y(s)ds
0

which, thanks to Gronwall lemma, implies that

decg dc t
T(t) < 3Ape o exp <26 m 55(s)ds) .
0

2
/55 02<5+A )\>t+c25.
0 Ho

Moreover, (4.33) implies that

Notice that

dc

2e o 02)\— <(5 + A

To

)\2
5 ) <r\. forany €€ (0,e4).

Consequently,
T(t) < CAge™t

for some positive constant C' depending on v, 119, A and r. Recalling the definition of A, such
estimate combined with (4.32) gives that

IR )12, < C Ko exp (=2(1 = r)At),  Vt=0. (4.34)

This estimate yields the final result since it can be proven for any r € (0,1) and A\; ~._,0 e
O

Estimate (4.31) leads to the main result of this section.
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Theorem 4.13. Letr € (0,1). There existet € (0,¢6), AT € (0, Xg), and C > 0 depending on
v, o, Do, r such that

@) < 0 (IO)E + [AO)IE) exp (-2~ r)Aut) , ¥t >0,
where \. is defined in (1.25), for any e € (0,¢") and \. € (0, \1).
Proof. Using estimate (4.31) in estimate (4.11), it follows that
IRO@)I2 < 20B00)][2 ™ 1 + CKpe? (e A) 2e 20-Ret < Crfcg e 200t (435
Consequently,
IR)I2 < 21RO 2 + IR B12) < CORCDIZ + IR (BIE) < CKoe 20 (436)
Recalling that h°(0) = h(0) in the definition of K, estimate (4.36) gives the result. O

Remark 4.14. In the following sections, for sake of simplicity, we will use this result for the special

value r = % and denote by £ and AT the threshold values associated tor = %

We also point out the gain of decay in A in the following corollary.

Corollary 4.15. Under the same conditions of Theorem 4.13 it follows that

t
/||h(7)\|51d7SC\/ICOmin{l—H,l—i—/\1}, V>0,
0 15

In particular, |h( -)||¢, is integrable and exists a.e. in (0,T) for any T > 0.

Proof. After performing time integration of equation (4.12) in [0, ¢] one finds that
0 po [ 0
ROl + 5 [ 1)
t
<[H0 e +C /0 (AlIB (Dlles + AR (DI, )ar - @37)

<c(VKo+eko), V>0,

where we used estimate (4.31) in the latter inequality. Thus,
t oo Lo
| e < [ isdr+ [ ipt e
t _
< C(VKo+eKo) + C\/ICO/ e~
0

which gives the result. g
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Remark 4.16. Of course, for a fixed ¢ > 0, one can replace min {1 +t 1+ %} with 1 + %

and the above estimate shows that h(t) = h.(t) € L'([0,0), &1). However, in the case in which
lime_,0 Ae = O then the bound is not uniform with respect to €. In practice, two situations occur
according to the value of \g in Assumption 1.2:

a) If \o > 0, then the family {h.(t)}.0 is bounded in L*([0, 00), &),

b) If \o = O then for any T > 0, the family {h.(t)}c>0 is bounded in L*([0, T], &1).

5. CaucHY THEORY

In this section, we will use the functional spaces introduced at the beginning of Section 4.
Based on the a priori estimates derived in the previous section, we show in this section the
well-posedness of the system (4.4)-(4.5).

5.1. Iteration scheme. Let us follow the iteration scheme of (Tristani, 2016, Section 3) with
suitable modifications. We are seeking to approximate the solution to the inelastic Boltzmann
equation using the iteration scheme

athn+1(t) = gz—:thrl(t) + 5_1Qa(€)(hn(t)> hn(t)) ;o o nzl
Oiha (1) =G (), (5.1)
ha(0)  =h(0)€E, n>1,

where the initial perturbation ~(0) has zero mass and momentum. This is done using the decom-
position of previous section. More precisely, writing h,, = h) + hl we consider solutions with
the coupled system

8th(r)LJrl = Ba(e),ehg+1 + €_IQQ(€)(h9L7 h?),) + et [Qa(e)(hgm h71’L) + Qa(s)(h}w h%)]

+ |:g5h’717,+1 - g175h711+1:| + e7! [Qa(a) (h’?lz’ h%z) - Ql(h}w hrlz)] ; (5'2)
hp1(0) = hP(0) € €,
and
Oihpn = Grehp +e1Qu(hy, hy) + Ah) 5.3
53

i (0) = h'(0) € H.

Motivated by the a priori estimates of Section 4, we introduce the following norms

t
lgllyi=sup (la(®lle +=72 [ llarllsdr). g€ co,00).8).
t=0 0

and
1

t 1
ol == sup (I + [ lo(r)Buar)* g e Clio.00). ),
t=>0 0
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where we recall that £, £, 7 and H, are defined in (4.3). Notice that (C([0,0),&); || |l,) and
(C([0,00),1); |l - |ll;) are Banach spaces. In particular, the space

B :=C([0,00),&) x C([0,00),H)
endowed with the norm

ICg, I == lllglllo + Al for  (g,h) € B,

is a Banach space. Define then
% = {n e c(0,00)58) | [[[1°]], < C\F}
2 = {nt e (0,00 1) | [In']]l, < VKo, G4y

for some positive constant C' > 0 which can be explicitly estimated from the subsequent com-
putations. The system (5.2)-(5.3) is a simplified coupled version of the system (4.4)-(4.5) with all
nonlinear terms as sources. Notice however that the coupling between k0, and A}, in the
system makes it nonlinear. However, because G, is the generator of a Cy-semigroup in £, equation
(5.1) is well-posed and

hi41(t) = Ve(t)h(0) + 7! /0 Ve(t = 5)Qa(e) (hn(s), hn(s))ds

where {V.(t); t > 0} is the Cp-semigroup in £ generated by G. (i.e., with the notations of
Prop. 2.11, Ve(t) = Va(e)(t), t = 0). With this at hands, substitute in (5.2) the term h;, | by
hn+1 — h9L+1 and look at h,,41(t) as an additional source term. In the same way for (5.3), the
system (5.2)-(5.3) becomes linear (in terms of 1! 41 and hl 1) and admits, for any n € N, a unique
solution. One can use a slight modification of the ideas of Section 4 to check that the iteration

scheme is stable, that is, the mapping
(ho hy) € Xo x Xy (WO 1 hyy) € Xo x X,

n''n
is well defined. Indeed, existence of the scheme is guaranteed by the linear theory as the iteration
scheme is based on the linear equation. Moreover, note that (5.1) preserves the conservation laws:
mass conservation and vanishing momentum, which were essential for the a priori estimates
related to Poh'. Thus, stability holds true under the conditions of the a priori estimates, that is,
for e € (0,ef) (where ' is defined in Theorem 4.13-Remark 4.14) and

Stgg(Hh%(t)HHH\ho )le) < CV/Ko < Ao, neN.

This latter condition is possible by taking ICy smaller than a threshold depending only on the
initial mass and energy Ej, °

Ko < (80/C)? =: K.

bsince all the threshold values appearing here are prescribed by the choice of the initial mass and energy, see
Remark 1.1.
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We leave the details to the reader and focus in the next subsections on the convergence of the
scheme.

5.2. Estimating ||h),; — hQ| ¢ and ||k} — h}||3. To prove the convergence of the scheme,
we define for n € N

0 _ 10 0 1
dn+1 - hn+1 - hn7 dn+1 hn—l—l hn

Then, one deduces from (5.2) and (5.3)

atd?z-‘rl = Ba(a),edgﬂ + [g5d711+1 - gl,advlwrl + 571}—37 (5.5)
d%+1(0) = Oa
and
atd}ﬂ—l = Gie n+1+"4 dn+1 +e ]:n7
(5.6)
dn+1( ) = 0.

The sources F., for i € {0, 1}, correspond to the bilinear terms and depend only on the previous
iterations {h’,h%_,},fori € {0,1} andn > 2 (see (5.9) and (5.11) for the precise expression).
We introduce

{%(t) = B0 Olle, + 151 (D)lle,
Ue(t) = [ @®lle + 1hn_1 (e + 1hn @)l + i1 ()]l
which satisfy
t
sup <\I/$L°(t) + 6_2/ \If,}l(T)dT) < CVKy, n>2, (5.7)
>0 0

for K3, h%_, € Xy, and b}, hl_; € X;. Consequently, the following estimate for d2 , ; follows
under suitable modifications of the arguments leading to Proposition 4.4 (keep in mind that

I lles < 11 [10)-

Lemma 5.1. Lete € (0,') and Ko < ICT Then, we have that
0 ! O(t )
a0l 2 | I 1(5) I ds
t
+e! / e~ 0wl () (Il () e + h(s) ) s (538)
0

b mg _
[ E O o) () s + oAl (o)) s
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Proof. Here again, as in the proof of Proposition 4.4, we denote by || - ||¢, and || - ||¢ the norms on
&1 and € that are equivalent to the standard ones (with multiplicative constants independent of ¢)
and that make 21 + B (e),e dissipative so that

Hdn+1( e < - ||dn+1( Mew + e IFL@)le + [|Gedria (t) = Gredn 1 ()]

< Hdn+1( Mew +eTHIFR@)le + Celldy, 1 ().
We need to estimate || F0(t)||e. One has,

]: Qa(s (dnahgz) + Q ( -1 n) + 2Qa(s (d917h711) + 2Q ( 17d111)

5.9
+(Q()(d}wh711) Qu(dy,, 1)) + (Qae) (M1, dy) — Qu(hy 1, dy)) . o

Therefore, since 1 — a(e) < 2\, using Remark 3.5 and the usual estimates for Q, and Qy:

IFe SN, (1B2]1e + 11RO_1lle) + Ndolle (1RO Nle, + [1RO_1le,)
+ [ldpllellnller + dolle 1P lle + ldnlle, (1Bl
+ |ldplle 1ho—1lle, + % Aelldnlles (Ihnlles + [1n_1lles) -

Using that || -[le, < [|- [|# we get
IF2®)lle < Nldn (@) le, W52 () + P (1) (Idn(®)lle + ldn(®) 1) + e Aclldy (B)lle, U7 ().

This leads to the desired estimate since pg < vg (see the proof of Proposition 4.4). g

Regarding the projection Pod), 41(1), since the difference hy, 11 — hy, = d° 1t dl 41 has zero
mass and momentum, one can follow the line of proof of Lemma 4.5 to deduce that

t
IPodh iy (B)lle- S 11 (B)lls + e / e Iw3 (5) ([ () e + ()] ) ds

t
A [ (10 + PG b ()] ) ds.

Consequently, plugging (5.8) in the second term in the right side and recalling that

Pody, 1 (D)l < [Pody 1 ()l S 1Podp 41 (t) 2

we obtain the following lemma.



66 RICARDO ALONSO, BERTRAND LODS, AND ISABELLE TRISTANI

Lemma 5.2. Foranyt > 0, we have that
1 ! —B9 (t—s)) 41
Podsa (@)l S 2e [ B0 () s
t ug
et [ H ) (120 e+ Al ds
b wg _s _
o [ H U ) () e + oAl (5 ) s
t
or [ M) (Jas)e + 4}l ds
0

t
A [ (1 a5+ PG b ()] s

Let us focus on estimating Pgd}, +1(t). To do so, we introduce the functions Ll and &
defined by

@y (t) = (O3, + -1 (D3, and () = [1hp(®)I[3, + 171 (8)]I3
which satisfy

¢
sup <<I>$L°(t) +/ @}l(r)dr> <CKy, n=2. (5.10)
0

t=0

One has the following lemma.

Lemma 5.3. Lete € (O,ET) and Ky < IC(T). Then,

t
IPEdl, ()2 < /0 L (s (3)|Z,ds
t t
4 / 932 (s) [ ()13, s + A / e |l (5) [Zds
0 0

t
wet (sup (o)) [ e e ) (Ie + 1ah)lhe) dr

£

t
+ (sl @) [ e we) (e + A dhr) ) ar

§=

Proof. One deduces from (5.6) that Py-d}; (t) is such that
0Py dy 41 (t) = GLePy dyy 1 (8) + Py Aedy oy () + 271 F,

where

Fo = Qi(hp, hy) — Qi(hy_q, hyy_y) = Qu(dy, hyy) + Qi(hy_y,dy,) . (5.11)
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Following the argument leading to inequality (4.23) (see also (Briant et al., 2019, Lemma 4.6,
Theorem 4.7)) one deduces that

t t
IPg dy 1 (£)113 5/0 6‘”“_5)‘1%11(8)IIdL(S)H%dS+/0 D00 (s) |y (5) 1, ds

t
+ /0 V)G () e 1A 4 () s . (5.12)

The latter term in the right side of (5.12) can be estimated using (5.8) and recalling that ||.A.d° a7 S
“2|\d% 1 |le- Thus,

t 3
/0 Y=Ly (3) 3¢ A1 () s S 3T
=1

A t S s ST
les/oe YL 4 (s >||H(/0 B6-)|gL, 4 (r >||de)ds,

e2

s — £ S—T
To=c /0 i 8>||dn+1<>rm[ /0 e >w;<f>(||d2<7>ug+ud,amua)df}ds
Tt [N G| [ B (1B + Al ar]as.
0 0

It is easy to check, using (4.18), that

2 ! —v{l—T
To< — <Sup||dn+1( )!H> / e VW (7) (Hd,‘i(f)llﬁlldi(f)llv{) dr
HoE \ s> 0

520

and

2 ! —v(t—7 o) -
7o 2 (sup a6l ) [ e () (I ey + 2 Aldh))

520
The estimate for 77 is a bit more involved. Thanks to Cauchy-Schwarz inequality one first has

>\ fu(t s) 2 % ¢ —v(t—s)y 2 2
Ti < 2\ J, dp41(5)1Fds . e Y“(s)ds

— B0 (s T)
Y(s) = / B (Dldr, s € (0,8).
0

Thanks to (4.13) applied with r = 1,

where

Y2(s) < & /0 B L, () 2,dr
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and, using now (4.18) for pg > 2%,

t —v(t—s)y 2 e [ —v(t—s) B B9 (s—7)p 41 2
[y < = [ [T B )ar
0 Ho Jo 0

<= / Lo gL () 2ds < 25 / "I, (5) s,
po (48 —v) Jo A 12 Jo A

We deduce finally that

\/Q)‘ ! —v(t—s
2 [ il (9

and this, together with the estimates for 75 and 73, gives the result. g

T <

Introducing now the quantities
t
= = sup (|0l +=72 [ %)l dr)
t=0 0

t 1
=1 1 2 1 2 2
=, = sup (IO + [ 1 lBuar)*,  n>2,
t>0 0
we can gather the three previous lemmas and use (5.7) to obtain the following result.

Proposition 5.4. Foranyn € Nandt > 0

Hd?—L+1(t)H5 <A Eiurl +evVKo (52 + E;) ) (5.13)
while
I Dl S VA + e B+ Ve EY + VKo EL (5.14)

as long as < € (0,e"), Ko < /Cg.

Proof. First, we claim that

IPedi DS Ve +e Ly + Ve ES + VKo EL, (5.15)

Indeed, from Lemma 5.3, we have that

t
e V9! (5)ds + sup @30(5)>

s=>0

K
of-
IS8
S =
+
ﬁ:
N
>
o
s
+
T
+
m
Gl
[\
+
S—

We can thus invoke (5.7) and (5.10) to deduce that

IPrdl 1 (8)]3 S Ko [BL]) + A [BLa]” +evKo (BS + EL) EL,,
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where we used that e\ < €. From Young’s inequality, we deduce that
1 _ 2 —112 —072
IPydr D7 S A +e) [Bniq] +Ko [Bh]” +eKo [E0]7,

which proves (5.15). In the same way, the estimate (5.13) is easily deduced from Lemma 5.1. To
end the proof, it remains to prove that

IPodh 1 (D)l S VA +eBhir +VeKo B + VEKES . (5.16)
This inequality is a consequence of Lemma 5.2 combined with (5.7), (5.13) and (5.15). O
Proposition 5.5. For anyt > 0, we have that
t
Ho —(t— - _ =
(?2 - V) / eI (5)leyds SAEL, +ev/Ko (B4 EL),  (5.17)
0

and

t 2
(/ 6‘”<t‘T>||d;+1<T>|r%1dT> SV A+ B+ VKB + VEeE, . (518)
0

Proof. To prove (5.17), we follow the argument that led to Lemma 5.1 and thus in the subsequent
proof, we again denote by || - ||¢, and || - ||¢ the norms on & and £ that are equivalent to the
standard ones independently of & and that make ¢~ 2vq + B (e),e dissipative so that we can write

d 140 _
&Hdﬁﬂ(t)\ls S 2 (o1 ()ley + e HIFRDlle + CAelldrr ()]l

which implies that,

d Ho
Sl @lle +v 1 Ol < = (5 = v )Ildh 1 B)le,
+e Fa®)lle + ONelldnr (8) |2
where we used that y < 1. After integration over [0, ¢], using that d2 , ; (0) = 0, we get that

t t
Ho —v(t—s - —v(t—s
Hd91+1(t)lls<—(;2 —V)/O eI d) 1 (9) eyds + & 1/0 e | FR(s) lleds

t
+ O [ el (5)ds,
0

and, recalling that 7 is given by (5.9), we estimate ||F2(s)| ¢ as in Lemma 5.1 to obtain that

t t
H —v(t—s —v(t—s
(B o) [ NG lsds S [ e s ()]s
€ 0 0
t
et [ ) (1)l + 145 ) ds

t
b [ e s) (o) ey + Al s .
0
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This yields (5.17). In the same way, we adapt the proof of Lemma 5.3 to get that

2/1, ¢ T ! —v(t—s
(25 —v) [ e PIPdah (R dr S [ 0k () s) Bras
) 0 0

t

t
+ / e 02 (5) [dL (3)|2, ds + / V=918 ()]l A r (5)[12edls

where 2/1/03 — v = ¢pA3 (see (4.20)). This estimate is similar to (5.12) and therefore we can
resume both the proofs of Lemma 5.3 and Proposition 5.4 to obtain that

t :
A%( [ eept >H%ﬁd7) < VA FEEL + VEKOE) + VKoL,

To conclude, we recall that [|[Pod} [l%, < ||Podl, [ so that a simple integration of (5.16)

gives that
t 3
(/O e—u(t—T)HPOd}L_,_l(TH%_hd7‘> SVA A+ BN +VeKoED + VKB, .
Adding these two estimates, one deduces (5.18). O

5.3. Convergence of the iteration scheme. We are now in position to conclude our analysis
by proving the convergence of the iteration scheme. In the sequel, we indicate with a same letter
C a positive constant depending on i, ¥ and A that may change from line to line. Suitably
adding (5.13) and (5.17) and taking the supremum in time, one has that

B SAEL +e VKo (BD+EL) (5.19)

where we used that yg > 2?v. Similarly, adding (5.14) and (5.18) and taking the supremum in

time it holds that
Erit SVA+eEh + VEKED + VKo By (5.20)

Let us define &, = B + E1 for n > 2. Adding the estimates (5.19) and (5.20), we conclude that
there exists C' > 0 such that &, < CvV Az + €41 + Cv/ Ko &,. Thus, choosing ¢ sufficiently
small such that C\/\; +¢ < %, we get that &,+1 < C'v/Kq &, from which

n+l (C\/ )n 1 Vn} 2

Choosing Ky < lCT < O~2 50 that

0:=CyKo<1

we deduce that, in the Banach space (B,

), one has form >n > 1,

— gnfl
[[(R9,, kb)) — (B, R < Z&H <hi—  0=CVKo.
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Whence the sequence {(h%, h,ll)} C Ay x X1 C B is a Cauchy sequence and it converges in
n

(B, || - Il) to a limit (h°, h') € Ay x Aj. Of course, such limit satisfies equations (4.4) and (4.5).

Thus, h = h® 4 h' is a solution to the inelastic Boltzmann problem (1.22). Such solution is unique

in the class of functions that we consider since, at essence, we proved that the problem is a

contraction on Xy x X7j. Let us write the conclusion as the main theorem of the section.

Theorem 5.6. Fix a nonnegative initial data F, = G, + € h;, € £ and assume that the initial
perturbation hi has zero total mass and momentum

/ hi, (t, z,v)dvdz = / hi, (t,z,v)vdvde = 0.

Tdx R4 Tdx R4

Then, there exist positive threshold values (t, AT, IC(TJ) fully determined by the initial mass and
energy Fi, (see Remark 1.1) such that if

Ihfalle < /K

and ¢ € (0,e"), \. € (0,\V), the inelastic Boltzmann equation (1.22) has a unique solution
he € C([0,00); ) satisfying fort >0

A t ,
Ih(t)lle < Clhillsexp (= 5t) and | lhe(r)lleydr < ClIAE e min {1+81+ -} .
2 0 )‘5

6. HYDRODYNAMIC LIMIT

In this last section, we will once again specify that h, h® and h! depend on ¢ by noting h = h.,
Ko = hg, W = h;. On the other hand, to lighten notations, we will write « for a(¢) but recall
that v = a(e) satisfies Assumption 1.2. Finally, we will consider m, k and g satisfying

m>d, m—1>2k>1 ¢q=>=5.

as well as the corresponding spaces £ and &£; defined in (4.1)-(4.3).

6.1. Compactness and convergence. We start this section recalling the expression for the

spectral projection 7 onto the kernel Ker(Lj) of the linearized collision operator L seen as
1

an operator acting in velocity only on the space L2(M™2). We recall that, with the notations of

Theorem 2.12,
d+2

mo(g) == Z </Rdg\11i dv> v, M, (6.1)

=1

2_
where Uy (v) = 1, ¥;(v) = \/%Tlvi_l (i=2,...,d+1)and Ugys(v) = |129|1\/§%1. Note that the
difference with respect to the spectral projection Py for the operator G . in (2.28) is that no

spatial integration is performed.
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Consider now h. = hY + h! the solution constructed in Section 5. One can prove the following
estimate for time-averages of (Id — 7)h<(7) in spaces which do not involve derivatives in the
v-variable:

Proposition 6.1. Forany (0 < 8 < m — 1 there exists C' > 0 independent of ¢ such that

to
/ ”(Id 7T0) ( )HLlWﬁQ( q)dTQC&‘ \/Komax{\/tg—tl,tg—tl} (6.2)

t1

holds true for any 0 < t1 < to.
Proof. For a given 0 < 8 < m — 1, we introduce the hierarchy of Hilbert spaces
Hy = L2WIA(M72(0)3),  s€eR,

setting simply H := Hy. Recall that —L; is (better than) coercive on (Id — ﬂo)ﬁ (see Briant
(2015) for instance) and denote by i the coercivity constant, namely

—(Li(Id — mo)g, (Id — mo)g) g = fu/(Id — Wo)ngql, g € .

In the space H, we can compute the inner product between 9;h! and (Id — m)h. where we
recall that h! solves

Oihl = Grehl + 71 Q1 (bl hY) + Ach?.
We obtain, thanks to Cauchy-Schwarz inequality, that

2 f1
th H (Id - Hg+€7ll(ld—7ro)hillih
< (e 1 (Q1(hl, hY) — (Id — m) (v Vzhl)) + (Id — m) (AhY), (Id — mo)hl) 5

<t (IlQuhd i)l + o Tahtll, ) IXd = mo)l | 5,
+ IARE] | (Xd = 7o)l .
We deduce easily then with a simple use of Young’s inequality on the right-hand-side of this
inequality that there is C' > 0 independent of € such that
(1 = o)Al 7 + %nad — m)hLll,
O Qu(ha, hONG | + llv-Vahelfy | + e ARl -

ai

Thus, for some different C' > 0, one has

d 2 f1
T |(Td — mo)hl () || 7 + =2 lIdd - mo)hz (1|7,
C (R3¢ + [R5, + [R2(D)]IZ) < CKo
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where the last estimate comes from the results obtained in Sections 4 and 5, Ky < 1 and also
|- l7 S |- |2 We integrate this inequality over (t1,t2) to get

B [ v w0 < 0 skl + Ok - )
1 < CKp max(1,te — 1),
where we used (4.34). Introduce now the space F = L%Wg’Q(wq). Noticing that
Iz < -lle and -z <1 la

and writing that h.(7) = hl(7) + h2(7), one has

= mhn)lgdr < [ (104 = w4 10d - m)r(r)lp)dr . (64

t1 t1

Using Cauchy-Schwarz inequality

/ /(T — 7o) e ()| il

svi=a ([ o= mopor) + [ o dT>%> |

From (6.3), the first integral involving h! is such that

( [ i dT) < Cev/Komax {1,vi — 11}

t1

whereas, to estimate the integral involving h? we use that h? € X as defined in Section 5 to get

to to
/ Ih2(r)|[E dr < sup |h2(7)|5/t 1h2(7)l|eydr
1

t1 t1<7<t2
220 < = Ko
This proves the result. 0

Remark 6.2. Notice that, if we are not interested in introducing a modulus of continuity in time for
the above integral, we can directly deduce from (6.3) and (6.4) that

T
/0 H(Id 7‘-0) ( )”LIWB (w +1)dt

T T
5/0 |1 — o) K1), dt+/0 |1 = mo) BL(1) 5,

T 2
ss\|\h2mo+ﬁ(/o [EEESTIPRTY
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which results in

/ 10 = 7o) e,y S VRl + VT (65)
forany0 < g <m—1.
We deduce the following convergence result:
Theorem 6.3 (Weak convergence). FixT > 0, and let
{h:}. c L' ((0,7); L};Wgn’z(wq))

be a sequence of solutions to the inelastic Boltzmann equation (1.22). Then, with the splitting
he = hY + hl, up to extraction of a subsequence, one has

{hg}E converges to 0 strongly in L' ((0,T) ; &)

(6.6)
{hl}_which converges to h weakly in L* ((O7 T); L2Wy-? (M‘%))
where h = my(h). In particular, there exist
o€ L2 ((0,T); WiA(T?), 0 L?((0,7); WrA(T)
ue L? ((O,T); (Wgﬂ(qrd))d>
such that
h(t,z,v) = <g(t,x) +u(t,z) v+ %0(t,:c)(]v|2 - d191)> M(v) (6.7)

where M is the Maxwellian distribution introduced in (1.15).

Proof. Let T' > 0 be fixed. We use the notations of Proposition 6.1. The estimates obtained in
Section 5, using the splitting he = h2(t) + hl(t) imply the following properties of the sequences
of time-dependent vector-valued mappings {h_}c, {h?}. and {h.}.:

{hl} c (L' NnL>®)((0,T);H)  isbounded (6.8)
T
| Il < < )
From (6.8) and since || - ||L%W;H’Q(M_%) < || - ||, we deduce that

{hl} is bounded in L2 ((O7 T); LgW?’Q(M*%D
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and therefore, admits a subsequence, say {h;, }6, which converges weakly to some h in the space
L? ((0, T); LgW?’Q(Mfé)). This, combined with (6.9) gives (6.6). From (6.3) we also have, for
that subsequence,

T
. 1 2 —
Elllglo ) H (Id — Tr()) h€/ (t) HL%W;"_LQ(M,%) dt =0
so that (Id — ) h = 0. This gives the result. O

Remark 6.4. As observed in the previous proof, the convergence (6.6) can be made even more precise
since we also have

{(1d — m) h;} converges strongly to 0 in L* ((0, T); L?)W;”_I’Q(M_%)) )
This means somehow that the only part of he which prevents the strong convergence towards h
is {ﬂ'oh; }E.

Because of Theorem 6.3 and for simplicity sake, from here on, we will write that our sequences
converge even if it is true up to an extraction.

The above mode of convergence implies the following convergence of velocity averages of h..
For any function f = f(¢,x,v) we denote the velocity average by

<f> —/Rdf(t,x,v)dv

recalling of course that this is a function depending on (¢, x). We have then the following:

Lemma 6.5. Let {h.} be converging to h in the sense of Theorem 6.3. Then, for any function
¥ = (v) such that

[P ()] S wog(v)
one has
<¢ h5> — <¢ h> in 7., (6.10)
whereas
<¢ o7 (e, h€)> —0 ing, (6.11)
where we set QT (he, he) = Q1(he, he) — Q1 (mohe, wohe) .

Proof. Let v be such that [¢)(v)| < o,(v) and let p = (¢, ) € C2°((0,T) x T?) be given. One

computes
T
L= /0 dt/Td o(t,z) (<¢ h5> - <¢h>) do =19+ 12
where

Igz/OTdt/Td<p(t,x)<whg>dx, Igz/OTdt/Td@(t,x) (<¢h;>—<¢h>) da.



76 RICARDO ALONSO, BERTRAND LODS, AND ISABELLE TRISTANI

T T
Because [2] < [lelzee i IM2ON1s wodt S Iellzze J 1A 13 12y dt. we deduce

from (6.6) that lim._,¢ [ g = 0. In the same way, one has

T
B= ] G@ME) ) (bta0) - hto0) de M @)
0 Td xRd

and, since the mapping

_1

(t,z,v) — (v) M(v) @(t,z) belongs to L*((0,T); L2W™?(M™2)), (6.12)

we deduce from (6.6) that lim. o Il = 0. This proves (6.10). To prove (6.11), one sets
T
J. = / dt/ olt, m)<¢ Q7 (he, h5)>dx.
0 T
One writes J. = J! + J2 where
T
J = / dt/ olt, x)<1/; Q1 ((1d — mo)he, (Id — Wo)h5)>dx
0 T

J2 = Q/OT dt /w go(t,x)<w 0 ((1d — ﬂo)hg,ﬂ'ohg)>dx

where we recall that O is defined in (1.23). One has

T
1721 S llellzgs, /O 1Q1 ((Ad = 7o) he, (Id — 7o) he ) 1y (em,) At

T
S lelloe / Q1 ((1d — w0)he, (Xd — m0) o)l 1 2 amy ) -
0
Noticing that
1Q1 ((1d = o)k, (1d = o)k )l 3 2 oy S Nellel] (T = )l g1

we deduce from (6.5) and the fact that sup,¢ g 1) [[he(t) e < oo that

(wwg+1)

lim [J}| = 0.
Lim |/ |
We prove exactly in the same way that
lim |JZ| = 0.
Lim |/
This proves the result. 0

Regarding the characterisation (6.7) of the limit h(t), note that

1
o(t, x) :/ h(t,z,v)dv, u(t,x) = / vh(t,z,v)dv,
R4 U1 Jra
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and

o(t,x) + 1 0(t, ) lv2h(t, z,v)dv.

:diﬂl Rd

Corollary 6.6. With the notations of Theorem 6.3, for any T > 0, the limit h(t, x,v) given by (6.7)
satisfies the incompressibility condition

divyu(t,z) =0, te(0,7), (6.13)

and Boussinesq relation
Ve(o+110) =0. (6.14)

As a consequence, introducing

E(t) = / 0(t, z)dw, te(0,7),
Td
one has strengthened Boussinesq relation
ot,z) +91 (0(t,z) — BE(t)) =0, fora.e (t,x) € (0,T) x T (6.15)

Proof. Set

1
0:(t, x) :/ he(t, z,v)dv, u:(t,x) = / v he(t, z,v)dv,
Rd 191 Rd

and, multiplying (1.22) with 1 and v and integrating in velocity, we get
€00 + V1divy (u:) =0, (6.16)

e Oyue + Divy (Je) = Z—aug , (6.17)

where J.(t, ) denotes the tensor

1
J.(t,z) = m/ﬂ@v@vha(t,m,v)dm

since both L, and Q,, conserve mass and momentum. The proof of (6.13) is straightforward since
£0y0e — 0 and div,(u:) — div,u in the distribution sense. Let us give the detail for the sake

of completeness. Multiplying (6.16) with a function ¢ € C2°((0,T) x T%) and integrating over
(0,T) x T we get that

T T
—/ dt [ Vze(t,z) u(t,x)dr = z-:/ dt/ 0 (t, x)Opp(t, x)dx,
0 Td 0 Td

which, taking the limit ¢ — 0 and because g. — ¢ and u. — u in %, , yields

T
/ dt [ Veolt,x)-ut,2)de =0, Ve e ®((0,T) x T,
0 Td
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Since u(t, ) € L2((0,T); (Wi»*(T%)%)), the incompressibility condition (6.13) holds true. In
the same way, for any i = 1,...,d and ¢ € C°((0,T) x T%), noticing that

T
51_1)161+€/0 u, Orp(t, x) x_gl_lgl+5/ dt/Td (t,x)p(t,z)de =0,

because rq = 1 — a < Ce? we get that

0—621(1]1+Z/ dt/TdJ”t:L‘ xgat:z:dm—Z/ dt/Td ’]t:n Oz, p(t, z)dz
where
T (4 2) = 1911/R vivy bty v)do = (ot ) + 10(t,2)) 6yys ivj=1,....d.
Therefore, forany ¢ = 1,...,d,
/OT i /T (o(t, 2) + 910(t, 7)) oot 2)dz =0, ¥ € C2((0,T) x T,

As before, this gives the Boussinesq relation (6.14). To show that Boussinesq relation can be
strengthened, one notices that

lim 0e(t,x)dx = / o(t,z)dz in 9]
e—0*t Jd Td
from which we deduce, from the conservation of mass for (6.19), that
/ o(t,x)dz =0, fora.e. t > 0.
Td
With the definition of F(t), this implies that
/ (o(t,z) + V1 (6(t,z) — E(t)))dz =0, forae.t >0,
Td
and, this combined with (6.14) yields the strengthened form (6.15). g

Remark 6.7. Using Boussinesq relation together with (6.7), one checks without major difficulty that
v-Vih = M ®wv): Vau+ %M (Jv]* = (d+2)91) v-V,0. (6.18)
Then, using the incompressibility condition (6.13) it holds that
/Rd\I/j(v)U-thdv:O, Vi=1,...,d+2,

that is, wo(v - Vi h) = 0. In particular, v -V, h € Range(Id — mp) C Range(L;) (see (Kato, 1980,
Eq. (6.34), p. 180)).
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6.2. Identification of the limit. We aim here to fully characterise the limit h(¢, z, v) obtained
in Theorem 6.3. To do so, we identify the limit equation satisfied by the macroscopic quantities
(0,u,0) in (6.7) following the path of Bardos et al. (1993); Golse & Saint-Raymond (2004) and
exploiting the fact that the mode of convergence in Theorem 6.3 is stronger than the one of Bardos
et al. (1993); Golse & Saint-Raymond (2004). The regime of weak inelasticity is central in the
analysis.

We denote by {h.} any subsequence which converges to h in the above Theorem 6.3. We
will see in the sequel, under some strong convergence assumption on the initial datum that all
subsequences will share the same limit and, as such, the whole sequence will be convergent.

Recall (1.22)
€0ihe +v-Vihe + £ '6aVy - (Vhe) = e ' Lghe + Qa(he, he), (6.19)

under the scaling hypothesis that & = 1 — X\ge2 +0(¢2), A9 > 0 (see Assumption 1.2). Multiplying
(6.19) respectively with 1, v, |v

<h5>, <vh5>, <%|v|2>, <%|v\2vh€>, and <v®vh5>,

are important. As in the classical elastic case, we write

2 we observe that the quantities

1
(vovh)=(Ah)+pId  p.=(lvfh).
where we introduce the traceless tensor
19
A= A(v) :U®U—a|’u| Id.

Properties of this tensor are established in Appendix C. In a more precise way, one obtains, after

integrating (6.19) against 1, v;, 1 |v|?,
8t<h€> n %divx<v h€> —0, (6.202)
(9t<v h€> + éDivm<A h€> n %vag - %@ h5> , (6.20b)
ou(SloPhe) + Laive (SoPohe) = 5 Falfer fo) + 2 (3lol?he) (6.20¢)

where

Half, f) =/Rd [Qa(f, f) — Qa(Ga, Go)] |v]*dv.



80 RICARDO ALONSO, BERTRAND LODS, AND ISABELLE TRISTANI

Notice that, using (6.7) as well as Corollary 6.6,
dd
divx<v h5> s 9ydivyu = 0, <%|v\2h8> — e+ 1),

1
Vape — SVa([oP'h) = 1 Va(o+ 110) = 0,

<Ah€> N <Ah> —0,

d+2 .
<%|’U|2’Uj h€> — <%|v\211j h> = %uj<|v|21;]2~./\/l> = Itu;, j=1,...,d,

where all the limits hold in 7 , and where <Ah> = Osince h € Ker(L;)and A € Range(I—m).
Moreover, under the above scaling

Ka

§<’U h€> — ’01)\0’&, in .@{w >

since A9 = lim,_, o+ € 2Kq. The limit of 73 Fa(fe, f) is handled in the following lemma.

Lemma 6.8. It holds that
1 :
g/a(fs,fs)—hﬁ ln'@t/,xa
where
_ 3 3
Jo(t,x) = —=XocV7 | o(t,z) + 1191 0(t, x)
for some positive constant ¢ depending only on the angular kernel b( -) and d. In particular,
5 1
Jo = —Xoc0? <E(t) - 49(t,x)> .
Proof. We recall, see (1.8), that
[P Qulg o=~ =) [ f)glen o - v.fdude,
Rd 4 Jrixpd
where 7, = %de,l (1—-u-0)b(u-o)do. Thus, for f. = G4 + € he we obtain

%1—042

1
5 Salferf) = =2

— Uk 3dv Vx
g2 </1Rd><Rd [he (V)G (Vi) + he(v4)Go(v)] |0 3dud

+ 6/ he(v)he(vi)|v — v*|3dvdv*> . (6.21)
R4 xR4

Recall that lim,_, ¢+ 1;—20‘ = Xo. It is clear from Minkowski’s integral inequality that the W/"?(T4)
norm of the last term in the right-side is controlled by | h.||%. Theorem 5.6 implies that the
last term in (6.21) is converging to 0 in L'((0, T); W4"?(T%)). One handles the first term in the
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right-side using Theorem 6.3 and the fact that G, — M strongly. Details are left to the reader.
We then easily obtain the convergence of e 3 _#,,(f-, f-) towards

Toi= =20 [ btz )Mo - o dedo.
R4 xR

The expression of Jj is then obtained by direct inspection from (6.7) with

2+/2 1
c=ma, a= \[d exp <—|v\2> lvPdv,
(2m)2 Jra 2

where

3
M()M(v,)|v — vi*dvdo, = 97 a,

R2d
2d+3 2
M(W)M(v) v — v ]Pdodo, = i V7 a.
R2d 2
We refer to (Mischler & Mouhot, 2009, Lemma A.1) for these identities. The second part of the
lemma follows from the strengthened Boussinesq relation (6.15). O

6.3. About the equations of motion and temperature. We give here some preliminary result
aiming at deriving the equations satisfied by the bulk velocity u(¢, ) and 6(t, z). As in Bardos
et al. (1993); Golse & Saint-Raymond (2004), in order to investigate the limiting behaviour of the
system (6.20) as € — 0T, we need to investigate the limit in the distributional sense of

5’1Div$<A h€> _ —a’lDivx<¢ L1h€> (6.22)

and
a*ldivx<b h5> - —5’1divx<1/1 L h5> (6.23)
where ¢ and ¢ are defined in Lemma C.1 and where we used that L is selfadjoint in L2(M~1/2).
Since the limiting vector-field v is divergence-free, it turns out enough to investigate only

the limit of PDiv,, <5*1A h€> where we recall that P is the Leray projection on divergence-free

vector fields’ . We begin with a strong compactness result

Lemma 6.9. Introduce
ue(t, x) = exp (—t%) Pu.(t, x)
€

and V. (t,x) = <%(|U\2 —(d+ 2)291)h5> ,te(0,T), zeT%

"Recall that, for a vector field u, Pu = u — VA™! (V- ). On the torus, it can be defined via Fourier expansion,

ifu = ZkeZd are’™® ' ®, aj, € C, then Pu = ZkeZd (Id - %) are™?.
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Then, {Oyu.}. and {09} are bounded in L' ((O,T) ; W?_Q’z(Td)) Consequently, up to the

extraction of a subsequence,

T
and
T
Eli%l_,_ 0 Hﬁs(tv ) - 190(75, .)|’W;n_272(j]‘d) dt =0 (6.25)
where
9 d+2
Do(t, ) = <%(!v|2 —(d+ 2)191)h> = S (olt,2) + V10(t, ) - S—dro(t, @)

In other words, {Pu.}. converges strongly tow in L' ((O, T); W?_Q’Q(Td)) and {VU. }. converges
strongly to ¥g in L' ((0, T); W?_Q’z(TdD .

Proof. We begin with the proof of (6.24). We apply the Leray projection P to (6.20b) to eliminate
the pressure gradient term. Then, we have that

Byte = — exp (—t“—g) P (191_1Div1<%A h5>> .
€
Notice that, since {h }¢ is bounded in L' ((0,T) ; £) by Minkowski’s integral inequality, one has
that
{uc}. is bounded in L' ((0, T); W?’Q(Td)> .

Moreover, since Ah. = A (Id — m() h. we deduce from Proposition 6.1 and Minkowski’s
integral inequality that

sup /OT P (Div.(tan.)) me_m(w) dt < oo.

In particular

{Oyu.}e is bounded in L' ((O, T); W;”_Q’z(’]l‘d)) .

Applying (Simon, 1987, Corollary 4) with X = W7"*(T4) and B = Y = W'~ **(T%) (so that the
embedding of X into B is compact by Rellich-Kondrachov Theorem (Taylor, 1996, Proposition 3.4,
p. 330)), we deduce that {u.}. is relatively compact in L' ((O, T); W?_Q’Q(’]Td)). The result of
strong convergence follows easily since we already now that Pu. converges to u in 7y ,, (see
Lemma 6.5 and recall © = Pu since u is divergence-free).
The proof of (6.25) is similar. We begin with observing that, multiplying (6.20a) with —%191
and add it to (6.20c) we obtain the evolution of ¥.(t, z)
O + édivx<b he) = g Salferfo) 2&<%\vl2hs> . (6.26)

€ g2
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Notice that {1, }. is bounded in L! ((O, T); W?’Z(Td)) while, because bh. = b (Id — mg) h.
we deduce from Proposition 6.1 by Minkowski’s integral inequality that

sup /OT |(diva(ton.)) Hw;n—w(w) dt < o,

It is easy to see that the right-hand side of (6.26) is also bounded in L' ((0, T), W?’Q(T‘i» SO
that {0;9.}. is bounded in L' ((O, T) ;W?_M(Td)) . Using again (Simon, 1987, Corollary 4)

together with Rellich-Kondrachov Theorem, we deduce as before that {4, } is relatively compact
in L ((O, T); Wi~ %%(T%)). Since we already know that 9. converges in the distributional

sense to Yy (see Lemma 6.5), we get the result of strong convergence. g

Remark 6.10. We will see later that the convergence of {Pu. }. and {9, }. can actually be strenghten
for well-prepared initial datum (see Proposition 6.18).

A first consequence of the above Lemma is the following which regards (6.22)

Lemma 6.11. In the distributional sense,

lim PDiv, <<5‘1A h5> - <¢ Q1 (mohe, mohe) >) — v Au (6.27)

e—0t

where v is defined in Lemma C.1.

Proof. When compared to the elastic case, Lij A, does not appear in (6.19). We add it, as well as
the quadratic elastic Boltzmann operator, by force and rewrite the latter as

eDthe + v-Vyhe — e 'Lyhe = Q1 (he, he) — e ko Ve - (vhe)+
e (Lahe — Lihe) 4+ Qa(he, he) — Q1(he, he).  (6.28)
We interpret the last three terms as a source term
S. = e ' (Lohe — Lihe) 4+ Qa(he, he) — Q1 (he, he) — e kaV,y - (vhe). (6.29)

Then, multiplying (6.28) by ¢ and integrating over R?, we get using (6.22) that, for any i, j =
1,...,d,

58t<¢)i’jh5> n divx<v i h£> _ 5*1<¢iﬂ'L1ha>
- <¢>w‘ Qi (he, h5)> + <¢"J SE> . (6.30)

One writes
Ql(h€7 ha) =0 (WOheyﬂ'Oha) + Q?(hay ha)
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so that (6.30) becomes
Eat<¢i’jhg> n divm<v i h5> et <¢M'L1ha>
= (67 Qu (mohe,mohe) ) + (@ Qf(heyhe) ) + (677 S
According to Lemma 6.5 we have that
sat<¢i’j h5> 0, divx<v B h5> s divx<v i h> ,
(69Q0(he,he)) — 0, (678.) —0,

where the limits are all meant in the distributional sense and where the last limit is deduced from
the strong convergence of S. to 0 in L'((0,T); L} L2(zw,_1)) (see Lemma C.6).
From Lemma C.4 in Appendix C, one has

vuj if i #j, =1,

o vV uy; if 1 # 4, £ =3,

(wgin)y=4 , " SR
—svup +2vuidy if i =j,

0 else.

Therefore, using the incompressibility condition,
divm<v ¢i’j h> =v (am].ui + 8riuj) .
We deduce that
lim (76" Lahe )+( 6" Qu (mohe, mohe) ) ) = v(D,ui + Or,u),

e—0t
in the distributional sense. Applying the Div, operator one deduces that, in 7 ,
lim Div, (5_1<¢ L1h€>+<¢ Q1 (mohe, wohe) >) N
e—0t
where we use the incompressibility condition to deduce that Divic (&,; Ui + &,;Z.Uj) = A,u;. This
proves the result. g

In the same spirit, we have the following which now regards (6.23).

Lemma 6.12. In the distributional sense,
2
lim (5_1divx<b h5> + divx<w Q1 (mohe, 7roh5>) - —d% AL, (6.31)

e—0t+

Proof. We recall that
1.. 1.,
gdlvz<b h€> - —gd1vx<L1(h€)@Z)>.
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Multiply (6.28) with 1); (recall that 1) is defined by (C.1)). As previously, it holds that
0 (Wihe )+ diva(vipihe ) — e (iLihe ) = (¥ Qi(he,he)) + (i S

and

o (wih) — 0, (¥iS.) —0,
in the distributional sense. Splitting again Q1 (he, he) = O (he, he) + Q1 (mohe, Tohe), one has
< i OF (he, h5)> converges to 0 in Z; , so that, in the distributional sense, it follows that

d+2
1 -1 . . = di . = — X
Eli\r(r]{r (5 <¢ZL1hE>+<¢ZQl(ﬂ'OhE, 7r0h5>> d1vx<v ¢zh> 5 v Oz, 0
thanks to Lemma C.5 in Appendix C. This gives the result. g

6.4. Convergence of the nonlinear terms. To determine the distributional limit of (6.22) and
(6.23), we “only” need now to explicit the limit of

PDivx<¢ Q. (mohe, ﬁ0h€)> and divx<¢Q1(7roh€, w0h€)>
respectively. Writing
1
7"Ohs = <Q€(t7 .’IJ) + Us(t,.ilf) U+ 59{5(15,.73) (‘,U’Q - dﬁl)) M(U)

we first observe that, according to Lemma C.3 and Lemma C.5 in Appendix C,

2
<¢ Q1 (Wohsa 7"'Ohs) > = 19% |:U’€ X Ue — d|u€|21d:|

and
d—+2

5 93 (6: u.) .

<¢ Q1 (mohe, Wohs)> =
Therefore,
PDiv, (6 Q1 (mohe, mohe) ) = V3PDiv, (u. @ u.)
since Div,, (|uc|?Id) is a gradient term and

. d+2
div, (¥ Qu(mohe, mohe) ) = =

One has the following whose proof is adapted from (Golse & Saint-Raymond , 2004, Corollary 5.7).

93 div, (0. u.) .

Lemma 6.13. In the distributional sense (in 7y ), one has
lim PDivx<¢ Q1 (mwohe, mohe) > = ¥2PDiv,(u ® u)
e—07t

and
d—+2

5 P - V0.

lim divx<1/; Ql(mhg,ﬂoha)> _

e—0t
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In particular

lim PDiVm<€_1A h5> = —vAyu+ 93PDiv, (u ® u) in 9, ,, (6.32)
e—0t )
while g9
. . -1 _ + 93, . . /
sli%i lem<€ b h5> =-—5 (v Azl — 9iu-V,0) in Dy ;. (6.33)

Proof. We write u. = Pu. + (Id — P)u.. Due to the strong convergence of Pu,. towards u in
Lt ((0, T); W;”‘z’2(1rd)) (see Lemma 6.9) and the weak convergence of u. (see Lemma 6.5), we
see that

PDiv, (ue ® ue — (Id — P)u. @ (Id — P)u.) — PDiv, (u ® u) in Z; .
So, to prove the first part of the Lemma, we only need to prove that
PDiv, ((Id — P)u. ® (Id — P)u.) — 0 (6.34)
in _@g’x. Moreover, as in (Golse & Saint-Raymond , 2004, Corollary 5.7), we set

1
ﬁa-—diﬁl

which is such that 6. = ﬁ <55 + %195) and

. 2 _ 1
dlvx(egug) = m <dlvx (,BEUE + 19111/5’[95))

2 i 2 . 1
- mdlvx (/65 (Id - P) '11,5) + m |:le33 </3573’U,5 + 191’“5295)] .

<|U\2ha> = 0: + U10:

Therefore, using the strong convergence of . towards ¥ in L' ((07 T) ;W?_QQ(TCZ)) given by
Lemma 6.9 together with the weak convergence of u. to u from Lemma 6.5, we get
2 2
(d+2)93 (d+2)93

whereas the strong convergence of Pu. to u with the weak convergence of 3. towards o + 16

divy(ud;) — divy(udp) in 7,

we get
divy(B:Pue) — divy (u(0+910)) =0  inZ/,
where we used both the incompressiblity condition (6.13) together with Boussinesq relation (6.14).
Notice that, thanks to (6.13), it holds
2 2
T _divy(udy) = —————
@1 =) = ooy

where we used the expression of ¥y together with Bousinesq relation (6.14). This shows that

u-Vethg =u-V,0

divy(f-u.) — divy (B: (Id — P)u.) — u-V,0 in @z{,x

2
(d+2)9,
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and, to get the second part of the result, we need to prove that
div, (B: (Id = P)u.) — 0 inZj,. (6.35)
Let us now focus on the proof of (6.34) and (6.35). One observes that, Equation (6.20b) reads
e Qs + VB = ’%“ue - 191_1Divx<A h5> (6.36)

whereas (6.20c) can be reformulated as

. 2
5at65 + dlvﬂﬁ <ﬁ|1}’2v h€> = Wj@(fsyfe) +

where we check easily that

2Kq

Be (6.37)

3

) 2 . d+2 ..
lex<dTl91’U|2U h5> = dele<bha> + Vhdivyu.
2 2

divx<b h€> + 2 29, div, (Id — P) ..
dvy

Recall that from Theorem 5.6, h. € L ((0,7); E) so that by Minkowski’s integral inequality,
B € L™ ((0, T); W?Q(Td)) and using (Majda & Bertozzi, 2002, Proposition 1.6, p. 33)), we can
write

(Id — Pu. = V,U.
with U, € L™ <(o, T); (W;”L?(Td))d). After applying (Id — P) to (6.36) and reformulat-
ing (6.37), we obtain that U, and 3. satisfy
e,V U + V3. = F.
(6.38)
c0B: + B2, A,U. = G.

with
F. = %Van — 97 (1d — P)Divz<A ha>
2 2 e
¢ = ———divy(bh, o o SallJes Je - Pe-
G =" v >+d19152/(f J)+—h
It is easy to see that
IEellromywp—22ay S8 and Gl oy w22 S &

so that both F. and G, converge strongly to 0 in L*((0,T); L2(T%)) and
U. € L((0,7); (W(T))%),  Be € L((0,7); LE(T)).

Then, according to the compensated compactness argument of Lions & Masmoudi (1999) recalled
in Proposition C.7 in Appendix C, we deduce that (6.34) and (6.35) hold true and this achieves
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the proof. The proofs of (6.32) and (6.33) follow then from an application of Lemmas 6.11 and
6.12. O

Coming back to the system of equations (6.20) and with the preliminary results of Section 6.2,
we get the following where we wrote PDiv,(u ® u) = Div,(u @ u) + 97 V.p, see (Majda &
Bertozzi, 2002, Proposition 1.6).

Proposition 6.14. The limit velocity u(t, x) in (6.7) satisfies

Oy — ﬂi Azu+ 4 Divy (u®u) + Vep = Aou (6.39)
1
while the limit temperature 0(t, x) in (6.7) satisfies
~ P 2\ 2 d
00 — — Apf+01u -V = ——— ——Et)+ ———=FE(t),
1= g Bal Ve = e Pt PO s g B

where
E(t) = / 0(t, x)dz, t>0.
Td

Notice that, due to (6.13), Divy(u ® u) = (u-Vy;)wu and (6.39) is nothing but a damped
Navier-Stokes equation associated to a divergence-free source term given by Agu.

Proof. The proof of (6.39) is a straightforward consequence of the previous limit. To obtain
investigate the evolution of 0, we recall that ¥, satisfies (6.26). We notice that

1 2Kq
S5 Falfer £+ S (S0P he) — Jo+ddido (o +016)

whereas " p
+
P — (3w = (d+2)0)h) = T (o +¥10) - =

where the convergence is meant in %; ,. We deduce from (6.33), performing the distributional
limit of (6.26), that
ddy d+2 d+2 d+2

Tat(g‘i‘ﬁla)_ 5 ﬁlaté)_?’YAxe‘f' 2

2
191@,

93 u- V0
= Jo +di1 Ao (0 + V10). (6.40)

Using the strengthened Boussinesq relation (6.15), we see that

O (0 +0) = 1911E(t), and Ojo= —V1 | 040 — iE(t) ,
dt dt
and get the result. g

Proposition 6.15. For anyt > 0, it follows that

E(t) = /Td o(t,z)dz =0,
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consequently, the limiting temperature 0(t, z) in (6.7) satisfies

y Ao €
_ A+ u -V = —2C 5. .
00— g Dabiu Vb = 5 00016 (6.41)

Moreover, the strong Boussinesq relation
ot,z) +910(t,z) =0, zeT?, (6.42)
holds true.

Proof. To capture the evolution of the temperature F(t), we average equation (6.40) over T and
using the incompressibility condition (6.13) we deduce get that

d 2

And, from Lemma 6.8, it holds that

d 3
aE(t) = Cp E(t), Co := 2\g — 27d)\05 v/,

so that,
E(t) = E(0) exp(cot) , t>0.

Now, return to the original equation (1.22) and recall that the solution f. (¢, z,v) is given by
fo(t) = Ga +ehe(t) = M+ (Go — M) +che(t), t>0,

where M has the same global mass, momentum and energy as the initial datum f.(0) = F},
independent of £ > 0. For any test-function ¢ = ¢(x,v) we get that

5—1/Td<(fs(t)—M)¢>dx—g—1/w<(GQ—M)¢>daz:/Td<h€(t)¢>d:n, £>0.

Using this equality for ¢(z,v) = 3|v|? and ¢ = 0 one is led to

e /Td@(c;a—m ]v|2>da::/w<§h5(0) of?)de

We recall that [|Go — M| 11 (,) < C(1 — @) < €2, consequently
EB(0) = [ 0(0,2)dz = lim | (he(0)3o]* )dz = 0.
Td e—=0 Jpd

Therefore, E(t) = 0 for all ¢ > 0. This observation and (6.41) lead us to the equation for the
energy and Boussinesq relation (6.42). g
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6.5. About the initial conditions. Before going into the proof of Theorem 1.5 and handle the
problem of initial datum of our limit system, we begin by proving that our limits « and 6 in (6.7)
are actually continuous on (0, 7).

Lemma 6.16. Consider the sequences {u.}c and {0.} defined in Lemma 6.9. The time-depending
mappings

t €10, T] — |[0-(t) and te€0,T] — |us(t)

||W;n—2,2(r]rd) ”W;H—Q,Q('H‘d)

are Holder continuous uniformly in €. As a consequence, the limiting mass o, velocity u and
temperature 0 in (6.7) are continuous on (0,T").

Proof. Recall that we set
Do(t,w) = (3 (0 = (d+2)01) e ).
For any test-function ¢ = ¢(z) € C°(T¢) and multi-index 3 with | 3| < m — 2, multiplying (6.26)

with 9%  and integrating in time and space, one deduces that for any 0 < ¢; < 9,

/T [89002,) — 80.(00,0)] (e = /t i /T dive(=" b Oh(1) Y p(a)da

to
N /t a /T 70 fulfe f)p(a)da

P
—l—% dt/ <%|v|28£h5>g0(x)dx. (6.44)
Td

e t1

Notice that
JRETRANESLE [(3lol02hc)

thanks to Minkowski’s integral inequality. Clearly, since e 2k, — Ag, there is C' > 0 such that

to to
[ at [ (SPothyela)ds] < Cllells [ 102yt
t1 Td t1 v

< CVKo(ta — t1)

from the general estimate in Theorem 5.6. In the same way, since

3% Folfer fo) = Fa@Pfer ) + Fulf-,05F.),

with f. = G, + € he, one deduces again from Theorem 5.6 that

< llellrz < llellzz || 5lvl07 e

L3 LyL3

2Kq
o2

to
/ at / e30%_go(fe, £)p(a)da
t1 Td

to
< Cllgllzz / 1e () 12y (14 WOyt gy ) At < CVEolts = ).
1
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Moreover, noticing that <bh5(t)> = <b(Id — Tr())hg(t)> for any ¢ > 0, one deduces easily from
Proposition 6.1 that

to
/ s’ldivx<b hg(t)>dt‘ <OV

t1

for any 0 < t9 — t; < 1. Since aﬁ commutes with 7y we deduce easily that there is C' > 0
independent of € such that forany 0 < 8 < m — 2,

to
/ 5_1divx<b 8fh€(t)>dt‘ <OVh—h (6.45)

t1

for any 0 < to — t; < 1. We conclude with (6.44) that

<CllellrzvVKovts —ta

. 2021 9300, i

for some positive constant independent of € and 0 < 9 — ¢; < 1. Since CKCOO(Td) is dense in
L%(T?), the previous estimate is true for any ¢ € L?(T?) and, taking the supremum over all
¢ € L%(T?), we deduce that

and, the time-depending mappings ¢t € [0,T] — H’lge(t)”wm72,2(r1rd) are thus Holder contin-

(t2) — 059.(t1) H <CVKoVR—h (6.46)

uous uniformly in e. Recall also that ¥.(t) converges in L*((0,7) ; W3 *?(T%)) towards
Po(t) = d% (0 +110) — %1919 from Lemma 6.9. As a consequence, there exists a subsequence
(9¢)er such that ||9. () — Do (1) HW;n—Q,Q(Td) converges towards 0 for almost every ¢ € [0, T']. Using
then the uniform in € H6lder continuity obtained above, we can deduce that ¢ is Holder con-
tinuous on (0, 7). Recalling that £/(0) = 0 according to Proposition 6.15, the strong Boussinesq
relation (6.42) holds true and

d+2 d+2

Vo(t) =

10(t) = —

V10(t)

which gives the regularity of both o and 6.
We recall that, setting

us(t,z) = ﬂiexp ( t%) P<Uh£>)

1

we have that

Orute —I—exp( ’;2 ) P <D1Vx< L:A h€>> =
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we multiply this identity by o2 ¢ and integrate in both time and space to get
/ [6fu5(t2, ) — OPug(ty, :1:)} o(z)dz
Td

= /:2 exp (—'Z—;t) dt /11‘01 P (Divx<ﬂ%aA 8£h5>) o(z)dx.

Arguing as in the proof of (6.45), we see that there is C' > 0 independent of € such that for any
0<[Bl<m =2,

to
/ s*lDivx<A 8£ha(t)>dt’ <CVig—t

t1

for any 0 < ¢ — t1 < 1. This gives easily

< Cllelpz vtz — tiv/ Ko,

/Trd [aﬁuf(b’x) - agua(tl,x)} p(x)dz

from which, as before, the time-depending mapping ¢t € [0, 7] — ||u.(¢) mefz,z(w) is Holder
continuous uniformly in . We deduce the result of regularity on w as previously done for ¢ and 6
noticing that the limit of u. is exp(—tA\g)Pu = exp(—tAg)u. O

Recall that, in Theorem 6.3, the convergence of h. to the solution h(t,z) given by (6.7) is
known to hold only for a subsequence and, in particular, different subsequences could converge
towards different initial datum and therefore (g, u, #) could be different solutions to the Navier-
Stokes system. We aim here to prescribe the initial datum by ensuring the convergence of the
initial datum h§, towards a single possible limit.

Recall that the initial datum for (6.28) is denoted by A, . We write h{, = mwoh{, + (Id — m)h§,
and introduce the following assumption.

Assumption 6.17. Assume that there exists

(00, w0, Bo) € WD) (W) v 2(me),
such that
ii_% lohs, — hOHL%W;"*Q(wq) =0,
where
ho(z,v) = (Q[)((L‘) + up(z) v+ %Qo(w)(Mz — d191)) M(v).

Under this assumption we can prescribe the initial value of the solution (o, u, #) and strengthen
the convergence.
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Proposition 6.18. We define the initial data for (o, u,0) as

_d o, 2
Td+2" (d+2)9

00,

oin = 0(0) := =016, (6.47)

Uin = U(O) = PUQ N ein = 0(0)

where we recall that Puyg is the Leray projection on divergence-free vector fields. Then, as a conse-
quence, for any T > 0, one has that

d+2

9e(t) = <%(|u\2— (d+2)191)h5> — e, i C ([O,T],W;"—w(qrd)) :

and

191179@ het)) —u, in C <[0,T], (W;n—Q»?(qrd))d) .

Proof. According to Lemma 6.16, we already have that the family of time-depending mappings
{t €10, 71— 190220y} (6.48)

is equicontinuous. At time ¢ = 0 according to Assumption 6.17,

0.0.0) = (307 = @+ 200)15) — 01 |5 00(0) - )]

and, by definition of 0(0, z), 6(0, ), we get that
€l_i>r(l)/l+ Hﬁg(o, ) - 190(0, . )HW;n72,2(Td) == O

In particular, the family {||J¢(0)]|m—2.2 (T4) }< is bounded and, since the family (6.48) is uniformly
in € Holder continuous, for any ¢ € [0, 7], the family {Hfﬁg(t)||Wmfz,2(1,d)}‘E is also bounded.
Since it is also equicontinuous, Arzela-Ascoli Theorem implies that the convergence holds in
c([0,T]; Wi~ **(T%)) and

9y € C([0,T]; Wy >*(T%)).
As in the proof of Lemma 6.16, it implies the continuity on [0, 7] of both o and 6.

We proceed in a similar way for the regularity of u. U

All the previous convergence results lead us to the fact the the limit
1
h(t,z,v) = <g(t,x) +u(t,x) v+ 50(t,x)(|v|2 - dﬂl)) M(v)

is such that
(0,u,0) € C([0,T); #pm—2) N L* ((0,T); #rm)
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solve the following incompressible Navier-Stokes-Fourier system where the right-hand-side acts as
a self-consistent forcing term

3tu—LAxu—Fﬁlu-qu—Fpr:)\ou,

V1

Ao €
000 — s Db Vol = NGNS (6.49)
1

(d+2)
div,u =0, o+ 60=0,

subject to the initial datum ( iy, Uin, fin). This proves Theorem 1.5 in full.

6.6. About the original problem in the physical variables. The above considerations allow
us to get a quite precise description of the asymptotic behaviour for the original physical problem
(1.10a). Indeed, recalling the relations (1.12) together with Theorem 1.5 one has

Fe(t,,v) = Ve(t) e (7e(8), @, Va(t)o)
= V(1) (G (Valt)) + € he (7o (1), 2, Ve(t)0) )
= Vo) (Go(o) (Ve()0) + £ h(ma(t), 2, Va(t)0) ) + £ ec(t, 2, 0),
where the error term e, is given by
eo(t,2,v) = V()" (he(ra(t), 2, V(£)0) — h(ra(t), 2, Ve(t)0))

Under Assumption 1.2, a relevant phenomenon occurs when considering the purely dissipative
case \g > 0. In such a case, the term e (¢, x, v) becomes a uniform in time error term. The reason
is that, when A\g > 0, the scaling V. (t) increases up to infinity. More precisely,

Vo) = (14 Xot), e< 1l
Indeed, Lemma B.1 guarantees that for any a € (0,1/2), up to an extraction of a subsequence if
necessary,
[(e<(t), [v]"@)| S Con/Ko Ve(t) ™%, peCly, 0<k<qg—1, (6.50)

where we denoted by C! » the set of C ! functions in v that are bounded as well as their first order
derivatives. Consequently,

F.(t,x,v) = V}(t)d<Ga(g)(V5(t)v) + € (Q(Tg(t), x) + u(r(t), ) - (Ve(t)v) oo
6.51
+ 500, 2) (V.0 = d2) MOV (0))) + O (V) )

in the weak sense described in (6.50). In particular, if ¢ = 1 and k = 2, one finds from (6.51) an
explicit expression for Haff’s law is obtained. That is, the optimal cooling rate of the temperature
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is described by
1
T (t) = — F.(t,z,v)v]|*dvdz
|T?| Jpdxpd

3

= Va(lt)2</Rd Go(v)|v|*dv + o] /Rd (Jo]? = dv1) |v]* M(v) dv /11‘4 O(7=(t), z) dx
+ \’IFZ\ /R P M(v)dv / Q(Ts(t),x)dgg> n o(v;(t)—Q—G)

Td

zvfél)? <1+ U;I <d191 /T G(Tg(t),x)dx—i-Q/w Q(Tg(t),x)dx> > t>>)\10.

Recalling that the fluctuation h, is such that the average mass and temperature both vanish at all

times, we deduce the precised Haft’s law

ddq 1
T.(l) ) —— t —.
=(t) TAGER >3
In the Appendix B we complement this discussion and, in particular, show that the Haff’s law
holds uniformly locally in space due to the boundedness of the solutions that we treat here. This

is not expected in a general context.

APPENDIX A. ABOUT GRANULAR GASES IN THE SPATIAL HOMOGENEOUS SETTING

A.1. The collision operator. We collect several results about the Boltzmann collision operator
Q,, for granular gases. We shall consider a collision operator with more general collision kernel
than the hard-spheres case considered in the paper, more precisely, a collision kernel B(u, o) of
the form

B(u,0) = ®(|ul)b(u - o). (A1)
The kinetic potential ®( - ) is a suitable nonnegative function in R? and the angular kernel b( -)
is assumed in L!(—1, 1). The associated collision operator Qp , is defined through the weak
formulation

1

[ QeattN@u@to =3 [ ) Apaldl(w v dude (a2
R4 Rd xRd

for any test function ¢ = v(v) where

Apalil(e, ) = [ (60) 4000 = vl0) - w(0.) ) Blu.)io

where the post-collisional velocities (v', v},) are given by

1
v':v—i—%ﬂma—u), vl = v,

1+a

= (julor - w),

R w (A.3)
where U=V — Vs, U= —.
|ul
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This allows to split Qg  into positive and negative parts
QB0 =9h0— 95
where QF and Q, are given, in strong form, by

1
+ v) =
0% (9, )(v) /R

a2

|/l|B(u, o-0)f(v)g("vs)do dv, (A4)
dxsd ’u‘

and

5.9, f)(v) = f(v) / 9(v.)B(u, o - 0)dv.do.

RdxSd—1

where, for & € S?1, /v and "v, denote the pre-collisional velocities
, v+, l—a n 1+ oz’ |
v = — U u|o
2 da 4o
, U+ Uy 1—« 1+ a| |
Ve = U — ulo U=V — Vs.
¥ 2 4o dov ’ *

A particularly relevant model is the one of hard-spheres corresponding to ®(|u|) = |u| which is
the model investigated in the core of the paper and, in that case, we simply denote the collision
operator Qp o by Q.

A.2. Alternative representation of the velocities. As well-known, the above collision opera-
tor is a well-accepted model that describes collisions in a system composed by a large number
of granular particles which are assumed to be hard-spheres with equal mass (that we take to
be m = 1) and that undertake inelastic collisions. The collision mechanism and the role of the
coefficient of normal restitution is easier to understand in an alternative representation of the
post-collisional velocities. More precisely, if v and v, denote the velocities of two particles before
collision, their respective velocities v’ and v/, after collision are such that

(u’-n) = —a(u'n) . (A.5)

The unitary vector n € S~ determines the impact direction, that is, n stands for the unit vector
that points from the v-particle center to the v,-particle center at the moment of impact. Here
above

U=V — Vs, v =v -0, (A.6)

denote respectively the relative velocity before and after collision. The velocities after collision v’
and v/, are given, in virtue of (A.5) and the conservation of momentum, by

, 1+« 14+«
v =v—

(u . n)n, vl = v, + (u . n)n (A7)

In particular, the energy relation and the collision mechanism can be written as

2 22 2 L—a? 2 /
[]* + |ve]® = [v]7 + |ve|* — 5 (u-n)”, u-n=—a(u-n). (A.8)
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Pre-collisional velocities ("v,’ v, ) (resulting in (v, v,) after collision) can be therefore introduced
through the relation

1+«

v g e,

v="v— u-n Ve ="vy + (1/4 . n)n, uw="v —"v, (A.9)

This representation is of course equivalent to the one given in (A.3) (so-called o-representation)
by setting, for a given pair of velocities (v, vy),
oc=1u-2(t-n)neSL.
Such a description provides an alternative parametrization of the unit sphere S?~! in which

the unit vector ¢ points in the post-collisional relative velocity direction in the case of elastic
collisions. In this case, the impact velocity reads

l1-u-0o
2

In the n-representation, we can also explicit the strong form of the collision operator Q. Namely,

lu-n| = lul[u-n| = |u|

for a given pair of distributions f = f(v) and g = ¢g(v) and a given collision kernel the Boltzmann
collision operator is defined as the difference of two nonnegative operators (gain and loss operators

respectively)
Qal9:f) = Qa (9. f) = Qa(9: f),
with
1 ~
Qx9N =5 [ Tuenlbof-n) f(o)g()and..

(A.10)
N (Qa f) (v) = f(v) /]Rd i |u-nlbo(u-n)g(ve)dndo,.

where the new angular collision kernel by( - ) is related to the original one b( - ) through the
relation
bo(u-n) = 2910 n|920(a- 0).
ie.
bo(z) = 297 |2|?72p(1 — 222),  ze[-1,1].
A3. Estimates on the collision operator. Using the above representation, we prove Lemma 2.1
in Section 2.1.

Proof of Lemma 2.1. Note that
Ql(guf)_Qa(g)f):Il(g7f)+12(g7f)7 (All)

where
1—a?

a2

Il(g7f) = - /]Rd /Sd—l g(/v*,a>f(/va) ‘un’ bo(ﬁﬂ)dnd'l}* ,
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and
Lo )= [ [ (000na)f o) = gCou) o) [a-nlbo(i-mdnds.

Here we adopt the notation ‘v and v, for the pre-collisional velocities associate to elastic (o« = 1)
and inelastic (0 < o < 1) interactions respectively in the n-representation (see (A.9)).

We begin with proving the estimates in the L setting. By classical means, there is a positive
¢q > 0 such that

11—«
1Z1(9: O3 () < —5— g b0l L1 (sa-1) 191 L1 (i) | f I L1 () -

We estimate then the difference g(v*,a)f(’va) — g('vs1) f('v1) by writing
9(vea) f(va) — g(ven) f(01) = g(ve1) (f (va) = F(01)) + (9(vea) — 9(ve1)) f (V) ,
and splitting Z»(g, f) accordingly into Z»(g, f) = Za (g, f) + Z3(g, f).

For the term ZJ (g, f), we first notice that, according to (A.9),

1 1
Vo = v — ;;éa(uwz)n, Vea =v—u+ 2—;@

1JrD‘U one has v, — 1 and

Therefore, using the change of variable w =

/ / 9(ve1) f(a) [u-n|bo(i-n)dndo,
Rd JS§d—1

20 d+1
< > / / f(v1) |u-n|bo(i-n)dndo,
1+a Rd Jsd— 1

2a +( ) , +1—a
u+ (u-n)n = v, U
1+a 1T T o

where

Vy =V —

Consequently,

zhg.0) = [ [ (25900 = o00)) Fn) el b n)dndu,
Rd JSd—1

20 d+1
= << ) >/ / 9(:) f('v1) [u-n|bo (- n)dndu,
14+« Rd Jsd— 1

4 / / (9(5.) —g(0.1)) £ Cor) Ju- ] bo(@ - n)dndu, = T (g, )+ TE2(g, f)
Rd Sd—l

For the first term, thanks to the mean-value theorem, one notices that

-1
(1—|—a)

l—«o

<d
1+«

, Va € (0,1)
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so that using the pre-post collisional change of variable (v, v) — (0, 1) (with Jacobian com-

1+a (1+a

d—1
5o ) ) one concludes that

puted as

1,1 ard—1
I1Zy7 (9, M)l 11 (eg) < (1 =) (B2)7 eq l1boll 2 sa-1y 90 L1 (g |1 23 (e 00)

for some positive ¢, depending only on ¢ and the dimension d. For the second term one uses
Taylor formula:

1 1— 1
9(5) = (0e) = (5.~ 0.0)- [ Vglouadt = 1w [ VoG
b b 0 b 1+a O b

where
11—«

1+ a

Vet =Vt + Ve (1 —1) ='veg — ut, vt € (0,1).

Consequently,

[ 125 pyran
R2d

1—a
1+a

/ e[ @ alan [ £l Van)] o) dv.do.

We can apply the pre-post collisional change of variable in the inner integral (vy, v) — (T4, V1)

14+« 14+« d71< 14+« a1
l+a+(l—a)t \l+a—-(1-a)t S\ 2a ’

with Jacobian

to obtain that

1+a\“'1-a
) ool o iy |8 23 1 L1 o

1,2
Iz (g,fm(wq)g( foyT e

for some positive constant c,. Regarding the term Z2(g, f), one invokes Taylor formula again

1
9(0ea) — 900s1) = (vua — vet) - / Volv..)dt
0

where we recall that, according to (A.9),

and, for 0 <t < 1,

et :/U*,a t+ 01 (1 —1t) =ven — (1—1)




100 RICARDO ALONSO, BERTRAND LODS, AND ISABELLE TRISTANI

Therefore,

/ 1Z3 (g, £)(v)|[{v)4dov
R2d
1

B 1

< O‘/ dt/ bo(a-n)m-n\2dn/ 1 i + o)) V9 (o) ]2 (0) dud
2a 0 §d—1 R2d

with

"o = oo — er =u—2(u-n)n — (1 +1)

—° (u-n)n.
Apply, for fixed n, the pre-post collisional change of variables (vy, u) — ("v4, Uq) (With Jacobian
Jo(t) =1+ (1 +t)52 > 1). Noticing that

2, -
"ol < T lal, 0] < Vol 4 Vol < 2 vxe] + 4Tl

lu| < |
it follows that

1—a L
2 4y < L S~ N2
L B nwlwra< e [ Ao [, wi@mfa-npan

L 1@+ )+ V(o) )7 dudo

11—«
< 5o Callbollzise) 1Lt (@) VI i) -

Gathering previous estimates proves the first assertion of the Lemma. The proof for higher norms
wht (oq) is simply obtained differentiating and applying the previous estimates for each suitable
difference.

Let us now see how to derive the estimates in the L? setting. One still starts with the rep-
resentation (A.11). To estimate Z; (g, f) in L2(zo,), we first use Cauchy-Schwarz inequality to
get

1Z1(9, P17 2 (e,
(1-a?)?

< C
~X K O[4

Lo e PG e (02 @)y (),
.

Cuim sup [ @) vdn = ol 1) s < o
veRE J R xSd—1

for K > %. We proceed then exactly as previously to obtain:

11—«
1Z1(9, F)L2 (0q) < ca—5— 00l L1 s-1) 1191 L2 (w0 o) 1| L2 (g g 1) -
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In a similar way, using Cauchy-Schwarz inequality, one can prove that

l—«
1300, H)lzaem) < oy

ol g1 ] aemyrn 1 it cm o
and
9 1-a
1Z5 (g, f)HLg(wq) < ¢ 2% ||b0||L1(Sd*1) ||g||wi’2(wq+n+2)||f||L%(wq+m+2)'

which gives the result for £ = 0. The proof for higher norms is obtained as before, differentiating
and applying the above estimate to each suitable difference. U

Let us now give the proof of Lemma 2.2 which is based on the o-representation. Note that it is
reminiscent of the proof of (Mischler & Mouhot, 2009, Proposition 3.2) and (Alonso & Lods , 2013,
Theorem 3.11) but that we face some additional difficulties due to the polynomial weight.

Proof of Lemma 2.2. We only prove the first estimate on Q1 (-, M) — Q, (-, M), the other one
can be treated exactly in the same way. Notice first that

Ql(f7M) - Qa<f7M) = Qi_(.ﬂM) - Q;(va)

As in the proofs of (Mischler & Mouhot, 2009, Proposition 3.2) and (Alonso & Lods , 2013,
Theorem 3.11), we set w := v + v, and @ := w/|w| and define y € [0, 7/2] through |cos x| :=
|- o|. Let § € (0,1) and R > 1 be fixed and let 5 € W1°(—1, 1) such that ns(s) = 1s(—s) for
any s € (0,1) and
1 if se(—1+251—20)
n5(s) = ,
0 if s¢(—-1+4+6,1-9)

with moreover

0<ns(s) <1 and In5(s)| < Vs e (—1,1).

3
5
Let us define also Or(r) = O(r/R) with O(z) = 1 on [0, 1
©(z) = 0 on [2,00). We define the set

A(9) == {o € 7L sin? x > 6}

,9(x) =1—xforz € [1,2] and

we split QF into
Qf =9f o+ b0t 9, a
where the collision kernels B;(u,u -0 ), i = [, r, a, are defined by
By (u,u-0) =ns(u-0)Or(u) [ulb(@-0), Bi(u,u-0):=14)(0) (1= Or(|u])[ulb(u-o)
and
Ba(u,ti-0) = |ulb(@-o) (1= ns(@-0)) Or(|ul) + (1= Or(|ul)) Lacs) -
This splitting corresponds to a splitting for small angles (corresponding to the kernel B,,), large

velocities (corresponding to B;) and the reminder term (corresponding to B,). The treatment of
small angles and of the truncated operator is similar to the one of (Mischler & Mouhot, 2009,
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Proposition 3.2) and we only recall the results obtained therein: there exists a constant C;, > 0
such that for any a € (0,1],6 € (0,1) and R € (1,0),

198, o(fs M)llL1my) < Cadll Il ()
and

R> R
19, 4(£:M) = @k, o (- Mgy < Cal1 = ) (55 + 5 ) 11110y

Let us now handle the case of large relative velocities. To this end, we will use the strong
formulation of the o-representation of our collision operator given in (A.4):

0, (1 M) (1) == | P By, 0), M) £ ) o

o? Réxgd-1 Ul
== ulb(@-0) 1 4(5)(0) (1 — Or(|u])) M(v) f(vs)dv.do.

(12 RdxSd—1

We first observe that

2
—~ u —~
(ulb(i- ) Loy () (1 = Or(lul)) < bl 014 (0) Lpapucony (A1)
We then remark that
b — o — 1+a(u—\u| )_g_l 1—au_ 1-|—a‘u|
- 1o 777979 24 20 9

Using now that, when sin? y > §, then |#-0| < V1 -6 < 1 — g, we have

2 da
1 1+4+a 0 1 -« 1 1T+a 0 l -«
> ol (2_ 4o (1_2>  da )—&—]m]z (2_ 4o (1_2) * 4o )

14+« l+a 11—«
>0 JP+ (6 - 2,
8o [ox +< 8o 200 )M

1 1+a ) 11—«
0> > Z(Iw\2 + [ul?) - o lwllul < o]?

Then, if § >

1+a’ we get:

1+a
16

5
[ouf? > 6=2 (o] + [0 f?) > 6P + o).

As a consequence,

2
[v]

M) (0,) 2@ g42(0) S € 0 oo (v)e " T (0,)2M3 () S

Mz2().  (A13)
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Using this, we can now estimate the norm of Q7; By ( 7 ./\/l) if§ > 8%:_—3 thanks to (A.12) to get
1

1950 (fs MLty S 3 /Rdxwxgd Nulb(@0) Lags) (0) M(0)|f (o) [ (v) dodv.du
1

/ ()| f (v )| (v)? wyt2(v)b(u- o)dodv.dv
dxRIxSd— 1
1

S / %( ) f () |b(@ - o)dodv,d
R§% JRixRixsi-1

1
5 5q+4 HfHL})
2

since b € L1(S?1) and M € L>®(R?). Gathering the previous estimates, we obtain if § > 8%:

19ua(F M) = 1 (. M) < (64— (B Y -2 Vg
alts AR Li(wq) ~ 5 53 nsEt Ly(w=gy1)

Picking now § = (1 — )P for some p € (0, 1) (so that the condition § > 81_7_—3 will be satisfied

for «v close enough to 1) and R = (1 — a) P~ 5P = (1-— a)_p¥, we then obtain for « close
enough to 1 that

1Qa(f: M) = Q1 (- M)l gy
S (R N S L R

23 ey )

and, with p = qT18’ 1—p(g+7) =pand
a+4
1Qalf; M) = Qi M)lizaemy) S (1= @) + (1= ) 57) [ Fly(em,
5 (1 - a)prHL},(wq+1)'
For higher norms, it is enough to differentiate and apply previous estimates for each suitable
difference. g

We now give the proof of Lemma 2.3 in Section 2.1 which is based on Lemma 2.1.

Proof of Lemma 2.3. We start with the case of wht (zog). To this end, we slightly modify here a
strategy adopted in Alonso & Lods (2013) which consists in combining a nonlinear estimate for
|Go — M Hwﬁ,l () together with non-quantitative convergence. We fix k, ¢ and we divide the
proof into three steps:

First step: non quantitative convergence. We prove that

Jim [|M = Ga g 0. (A.14)

(wq)
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We argue here as in (Alonso & Lods , 2013, Theorem 4.1). We sketch only the main steps. First, as
already noticed in Mischler & Mouhot (2009), there is g > 0 such that

sup ||Ga me ) < oo
a€(ap,l)

Then, there is a sequence (i, ),, converging to 1 such that (Gq,, ), converges weakly, in W' (og+1)
to some limit G (notice that, a priori, the limit function G depends on the choice of k£ and g).
Using the decay of (G,) and compact embedding for Sobolev spaces, this convergence is actually
strong, i.e. lim, ||G,, — GHfol(wq) = 0. According to (2.1), one necessarily has G = M and
one deduces easily that whole net (Gy,),, is converging to M. This proves (A.14).

Second step: nonlinear estimate. We first consider the Maxwellian M, with same mass, momentum
and energy of GG, and we consider the linearized elastic collision operator around that Maxwellian

Lg: Ql(gvMa)+Ql(Ma)g)v gEWﬁ’l(wq).
One simply notices that, since Q1 (M, M) =

L(Ga> - Ql(Ga - MonMa - Ga) + Qa(Ga; Ga) + |:Q1(Goca Ga) - Qa(Gom Ga):|

= Ql(Ga - MomMa - Ga) - (1 - a)vv : (UGa) + |:Q1(Gom Goc) - Qa(Ga; Goc):| .
Therefore, using classical estimates for Q; (see Alonso et al. (2010); Alonso & Gamba (2011))
HL(Ga)HWjjyl(wq) < ||Ql(Ga — Mo, Mo — Ga)HWl;,l(wq) + (1 - Oé) ”Ga||wﬁ+1,1(

+1Q1(Ga,Ga) — Qa(GavGa)Hkal (q)
+C(1 = a)|[Gallyrrn g, )+ C1(1 = a) [Gall;

Wa+1)

< C1]|Ga — Mal?

Wkl @, 1) )

where we used Lemma 2.1 for estimating the difference Q1(Go,Go) — Qa(Ga, Gq). Since
sup,, ||Ga ||Wk+1,1(w L) <00, we obtain that there is a positive constant Co > 0 such that
v q

k, 1
W™ (wwg42)

IL(Ga) by < Col = @) + Cal[ G~ Mo

WEL (g gn)”

We can write L(G,) = L(G, — M,) and, as G, — M, has zero mass, momentum and energy,
there is a positive constant ¢ > 0 (that can be taken independent of «) such that

|L(Ga — Ma)wayl(wq) > c||Ga — Ma||wgv1(wq+1)-
Recall that the constant ¢ > 0 is actually the norm of the inverse of L on the subspace of
functions with zero mass, momentum and energy; recall that this inverse maps wht (zoq) into

2(L) = W§71<Wq+1). Therefore, with C3 = Cy/c

|G = Mallyyir o, .y < Co(1 = @) + Cs| G — Mo a € (ag1). (A15)

)

W (wgi1)’
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Third step: conclusion. Setting

Vg 1= 1/ o2 My (v)dv = 1/ [v]? G (v)do,
d Rd d R4

one sees easily from (2.1) that [; — J,] < C(1 — «) and then, one can check without difficulty
that there is some positive constant C, , > 0 such that

| Mo — MH\Wﬁ’l(wq) < Crqe(l—a), a € [ag, 1]. (A.16)
Thanks to (A.14), we can then find as > «q such that
1
CsllCa = Mallws 0 < 5

where C3 > 0 is the positive constant in (A.15). Then, (A.15) reads simply as

|G — MaHWff’l(Wqﬂ) <203(1 - a), a ¢ [az, 1],

and, using (A.16), we end up with
1Ga — Mngal( ) S <C(1-a), a € [as, 1],

which gives also a quantitative lower bound on azs.
The estimate on the W§’2—norm actually comes from the W,’f’l—one and some Sobolev embed-
ding. Indeed for &’ > d, one can write that

|G = Malya ey < CillGa = Mallyi  1Ga ~ Ml |

< Chl|Ga — Mo |7 o lGa — M |7

Wk ! W5+k/’1(wq)

which allows us to conclude thanks to the first part of the proof. O
Finally, we state (Alonso et al. , 2010, Theorem 1) followed by an immediate corollary:

Theorem A.1 (Theorem 1, Alonso et al. (2010)). Consider ¢ > 1 and r € [1, 00| such that
condition (1.6) is satisfied. For any f € L!(w,) and g € L1 (wo,),

198 (Fs DIz (ey—) < Cr® Il e 191 L1 ()

and
194 (9, Dl g wy-1) < Cr®O)IF g () 19128 (w0
with .,
L1 — s\ 27 d=3
cr(b):2q?+i+ﬁ|sd—2|/ ( 5) T b(s) (1- %) 2 ds
-1
and

d

. b1 1—a)?1 I i3
Cr(b):2q§1+3-|Sd_2\/1< ‘2”+( 40‘) ‘2”> b(s) (1 s2) 2 ds
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Corollary A.2. Consider ¢ > 1 and r € [1, 00| such that condition (1.6) is satisfied. Then there
exists C'(r,q) > 0 such that

sup (]| (£, M)]

Lyt F 1192 (M 1))

L) <CO D zgemy)

a€(0,1]
and
s (195 (. Ga = Mll g, 1+ 1Q5(Ca = M) (1)) < CODNS gy

A.4. Dissipativity properties. We finally give the remaining part of the proof of Proposition 2.9.

Proof of Proposition 2.9. We need to prove the result in the space Wy, yyh? (wq) The proof follows
the same lines as the one presented earlier and in particular, we write again BY E( ) = ZZ 0 Ci(h).
As in the W52 W42 (zoq) case, there is no loss of generality in assuming ¢ = s.
e Assume first £ = 0. With obvious notations,

3

1h(-, )2 BEL(h) (@, 0)h(z, v) dx | wg(v)do=: Y Li(h).
oot (1, )

1=0
First, I;(h) = 0 since

/ (v-Vgh(z,v))h(z,v)de = 1/ vV h*(x,v)dz = 0.
Td 2 Td

According to (2.14), by taking J small enough so that Aél) (0) < 1 (which is possible since g > 2),
we have

Io(h) < € 200 (8q(8) = 1) 1Al 1 22 o) -

Moreover, it follows from Cauchy-Schwarz inequality and Corollary 2.6 that

= /Rd IPach(-, 0|2 g (v) dv < e ?Coq(1 - o)’ 17l 1 L2 (g 1)

Finally, for I3, one can compute
/ Hh(-,v)yy;;/ V- (vh(z, v)) h(z, v) da wg(v) dv
R4 *JTd
1 _
:d/ Hh(-,v)‘L%wq(U)dv—l—/ Hh(-’v)HLQI/dU-VUhQ(x,v)dqu(v)dU
zJT
=d [ Gl @) o+ 5 [ G0l 0Tl o) w0 do

/ [A (-, 0)|| 20 - Vyog(v) do.
Since v - Vg (v) = qmog(v) — qmog—2(v) we get

I3(h) < grae 2[Rl L2 L2 (e )- (A.17)
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Gathering the previous estimates, one obtains

= -1 Q) z,v)h(z,v)dx | w,(v)dv
zim [ It ol ([ B0 0o, 0) de) 00 "
<7 (Coglt = @) +00(Ag(6) = 1)+ ara) Al 1312 em, -

Recalling that ko, = 1 — o while lims_,o(Ag(d) — 1) = _% < 0 we can pick 510’07(1 small
enough and then 041070761 € (0,1) close enough to 1 so that
V1004 i= — inf {607(1(1 —a)% +09(Ag(8) — 1) + gria; & € (al g, 1), 6 € (0, 5}070761)} >0
and get the result.
Let us now consider the case £ = 1 and introduce the norm

IRl = Al L2 (wg) + Vbl L2 22(m0) + 1 Vbl L2 L2 ()

for some 1 > 0, the value of which shall be fixed later on. This norm is equivalent to the classical
W},’IW};Q(wq)—norm. We shall prove that for some v 11,4 > 0, Bt(f,; + e %v1 1,14 is dissipative
in Wy 'W1? (z,) for the norm || - ||. Notice first that the z-derivative commutes with all the
above terms C;(h), 1 =0,...,3, ie.

VIB&‘T)Eh(x, v) = Bglvxh(az, v)

so that, according to the previous step

/ IVeh(- )72 </ vxzsgfg(h)(x,v).vxh(x,u)dx> w,(v) dv (A1)

& 20100,l| Vel 11 13wy

Consider now the quantity

Ty = /Rd |V oh(- HL2 </ Vo B(‘S) z,v) - Vyh(z,v) d$> wog(v) dv.
Using the notations above, one notices that V,C1(h) = —e~ 'V h + C1(V,h), so that
Vo(BOh(z,v)) = e 2V (B h) — e 71V, h + C1(V,h)
+ 72V (Poh) + 2V, (Toh)
— e 2V, [ L h — S h]) — eV oh 4+ C1(Vyh)
+ €72V o (Poh) 4+ e 2V (Toh).

(A.20)

Then, it follows from Corollary 2.6 that

=~ P
I90(Pah) 322y < Cra(l = @) (Il raiemsn) + I Veklliraeyn ) - (A2)
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Now,
Vo[ LFh — Sh] = LBV oh) — SpVeh + R(R),
where
R(h) = Qu(h, VoM) + Q1(VoM, h) = (Vo AP (h) = AO(V,h).
From the proof of (Gualdani et al.,, 2017, Lemma 4.14), we have that

IR(M L1 22 (eg) < CollPllL1L2(cgs)-
From (Gualdani et al., 2017, Lemma 4.12), we also have that

’ (Vo) |l 1122 (o) < A O)IVohll 11 2 (o5 00)-

where A( )( ) was introduce in Lemma 2.7. Then, one has that

= 190l ([ 5a0) 19hta 0P e ) wy(0) do < Vbl 50
Therefore, recalling that § is such that Agl) (0) < 1 and that ¥ aq(v) = oo(v), we get

IVl () = Sad bl 313wy < Collbll g r2mgeny + 00 (A20) = 1) Vbl 22010

(A.22)
Finally, using the short-hand notation
V- (vVyh) = (VU-(U&th),--- ,VU'(U&Udh)),
we have
Voh -V (V- (0h)) = [Voh|* + [V - (v Vyh)] - Vyh.
Doing similar computations as the ones leading to (A.17), we obtain:
Voh(-, )72 </ Vo To(h)(x,v) - Vyh(x,v d:n) w,(v)dv
L 19antolgd ([ 9Tt Vihte. o) de ) w,(0) )

g (q - 1)’%@Hv0hHL%L%(wq+1)
Coming back to (A.20), Cauchy-Schwarz inequality and estimates (A.21), (A.22) and (A.23) give
that
Jo < 4(Cs + Crg(1 — ) )hllLa £2 ooy ) + € IVl 1112 (o)
“2(Crg(1— @)% + Crio +00(AD(8) = DIVl Ly 12 (e -

where we used that the contribution to 7, of the term C}(V,h) vanishes. Hence, combining this
estimate with (A.18) and (A.19) and using that £ < 1, it follows that

T4+ T +nTs < 5_2< [—VI,O,O,q +1n (Ca +Cr (1 - a)%)] 1ALy L2 (sg1)

ya
2

— (11,000~ MNVahll L L2 w0y )T {5'1,11(1 — @)% + Chiaq + oo (A () - 1)] HVvhHL,ng(qu))-
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Consequently, there exists aJ{ 14> Oand 51 1,4 > 0so that
Crq(1—a)+ Cra +0o(AD(8) =1) <0 Vae (a],,,1), 6€(0,8],,)

Choosing 1 > 0 small enough such that

V1,009 ~ 7] aX (17 sup Oa+51,q<1—ah,q>5) >0,
50,61, )

we finally obtain that there exists 11,1 4 > 0 such that for « € (ahﬂ, 1) and § € (0, 5171717(1),
I+ \7$ + 7]\7’1} g _572V171,1,q |:HhHL,‘1)L%(Wq+1) + HthHL%L‘%(Wq_‘_l) + 77 ||V'UhHL11)L%(Wq+1)
< =P gllhll-

This proves that B(()f)g + 8_21/171717(1 is hypo-dissipative in W})JW;’Q(WQ). We prove the result for
higher order derivatives in the same way considering now the norm

el =y 42 ‘v\fllv\xmlh‘ Pt
|B1|+|B2|<k v
for some 1 > 0 to be chosen sufficiently small. g

APPENDIX B. ABOUT THE ORIGINAL PROBLEM IN PHYSICAL VARIABLES

Let F.(t,x,v) be the solution of the Boltzmann equation (1.10a) with associated Knudsen
number . Recall that the time-scale functions 7.(t), V-(¢) that relate the problem in original
(physical) variables to its self-similar counterpart

F.(t,x,v) = Va(t)dfe (Ta(t),x, Vs(t)v)
are given by

1
T(t) ::c—ln(l—l-cgt), Ve(t) =1+cct, t >0,
€

where c. = 1_%2(5) It follows that the explicit equation for f, is given by

Or fe + 571w'vxfe = 572Q(f87f8) - 672(1 - a)vw(w fE) y W= Va(t) v

as observed in (1.22). Set fo(7,7,w) = Gu()(w) + €he(7, 7, w) and denote h(7,z,w) the
weak—x limit in the space L™ ((0, 00); 5) of the (sub-)sequence {h.}. Define

ec(t,x,v) = V(t)? (he(7(t), z, Va(t)v) — h(1(t), z, V(t)v)) .

The following error estimate holds.
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Lemma B.1. Under Assumption 1.2 and in the regimee < 1, A\g > 0, the following estimation
holds for any a € (0,1/2), up to possibly extracting a subsequence,

[(e<(t), [v]"0)| < Con/Ko Va(t) ™, peChyLy, 0<k<qg—1,

where we denoted by Cl , the set of C* functions in v that are bounded as well as their derivatives
and where for anyt > 0,

Va(t) = Vo(t) = (1 + Ao t), as € ~0.
Proof. After a change of variables it follows that, for any test-function ¢,
(e<(t), lv["e)

=V.(t)™" /Wde (hE(TE(t),iL‘,’U) — h(7(t), z, v)) |U|”(g0(x, Vs(t)_lv) — o(z, 0)) dvdz

+ V()" /Jl‘dx]Rd (hE(Tg(t),w,v) — h(Tg(t),x,v)> [v|"p(x,0) dvdx
= Zl(t) + Ig(t) .

Note that, up to a subsequence, h is the weak—x limit of {A.}. in L*°((0, 00); £). Thus, for any
t >0, |kl Loo((t,00); ) < liminfox o [|hel[ oo ((t,00); £)- Consequently, thanks to Theorem 4.13, it
holds that

Ae
Rl Lo ((t,00):6) < CV/Koe  E8, £>0. (B.1)
As a consequence, recalling that A\ ~ ¢, it follows that for any a € (0,1/2)
‘/ (hs(T,w,v) - h(T,x,U))|v\"“dv d:r‘
TexR4
Ae a
< Nhe(re() = h(r=(t))ll3 () < C VKo™ T < CVL(H) VKo,

where we used once again that || - || 11 (w,) S [ l22( y for k> 4. Now, in regard of Z; (t),

note that

Watr

ol Ve(0)0) = (2, 0) < Vo(0) ol supsup Dl )] = C(t) o,
so that the following holds:
IZ1(6)] < CpVe(t) ™ HIhe(7=(t)) = h(7e(t)) |3, () < Cp Ve() "7 VK -
Similarly,
T2(0)] < Cp V() VK,

which proves the desired estimate. g
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The above computations also allow to provide a local version of Haff’s Law. Namely, note
that

/ fo(re(t), 2, w)|w|*dw
R4

N

:/ Ga(w)|w]”dw+€/ he(7e(t), z,w)|w|"dw, 0< kK
R4 R4

Thanks to Sobolev embedding it holds that

sup/ he(1(t), z,w)|w|*dv
Rd

z€Td

q.

< Cllhe(m=(t)|le < Cu/Ko .

Therefore, for sufficiently small € > 0 there exists two positive constants C, and ¢,; such that
Cng/ fe(7e(t), ,w)|w|"dw < Cy, 0<k<gq, t20,
R4
which leads, for the physical problem, to

Ve(t) e, < / Fo(t,z,0)ol"do  Va(t) "Ch,  0< k< q, t30.
Rd

In particular, this estimate renders a local version of Haff’s law

/ F.(t,z,v)[v]|?dv ~ (1+c€t)_2, Vt>0, zeT
Rd

APPENDIX C. TooLs FOR THE HYDRODYNAMIC LIMIT

We collect several tools that are used in Section 6.2 to derive the modified incompressible
Navier-Stokes system. Various known computations regarding the elastic Boltzmann operator
are needed. As in the classical case, we introduce the traceless tensor

Av)=v®v— é|v\21d.
Notice that that (6.18) can be rewritten thanks to (6.13) as
v-Vzh = A(v)M(v) : Vyu+ b(v)M(v) -V, 0,
with

b(v) = % (Jo* = (d +2)91) v € RL

Lemma C.1. One has that A, b € Range(I—) and there exists two radial functions x; = x;(|v
i = 1,2, such that

$(v) = x1([v) A(v) € Aa(R), and (v) = x2(|v])b(v) € RY,

).

satisfy
Li(pM)=—-AM, Li(y M) =—-bM. (C1)
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Moreover,

<¢Z,JL1(¢HM)> E— <5ik(5j£ + 040041 — d5ij5kl>

d
(pla@iM)) = =205, igkle L), ©2)

with

1

vi= —m<¢ : L1(¢M)> =0,

2

yi= —m<¢ -Ll(w/\/l)> > 0.

Finally,
¢i7j(v) SWg(’U), 7/%(”) §W4(U)a Za.] € {Lvd}
Proof. The tensor A and the vector b satisfy
<Akvf\1/iM> —0, <b\piM> —0, Vi=1,...,d+2, ktle{l,....d, (C3)

from which we get that A, b € Range(I — 7). We refer to Desvillettes & Golse (1994) and
Bardos et al. (1993) for the proof of the second part of the Lemma, just mind that the linearized

Boltzmann operator considered in such references is defined as Lg = —M L1 (M g). We refer
to (Bardos et al. , 1993, Lemma 4.4) for the proof of (C.2). We refer to (Golse & Saint-Raymond ,
2005, Proposition 6.5) for the last estimates on ¢*/ and ). O

Remark C.2. Notice that if ( = ((|v|) is radially symmetric, then
<<AWM> - <gL1(¢M)> —0, Vij=1,....d
Lemma C.3. For h given by (6.7), it holds that
2 2, 2
<<Z5 Qi (h, h)> =] (u ®@u— g|u\ Id) ,
foranyi;j=1,...,d.

Proof. As observed in (Cercignani et al. , 1970, Eq. (60)), if gM € Ker(L;) then Q1 (g M, gM) =
—1L1(g?>M). Therefore, with g = o+ u-v + (|v[> — 201),

Q1(h,h) = —%Ll((u-v)2./\/l) — %GQLl(]vl4M) + 0 u-Li(3v[PoM). (C.9)

One checks that
(¢VLi(o*M)) =0,
whereas L; (3|v|>vM) = Ly (bM), from which

(6" (BloPoM) ) = (bLy(¢ M) ) = ~(b A M) =0,
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since b A%J is an even function. Therefore, we obtain that

gbi’j Ql(h, h,) = —1 Zukuﬁ gbi’le(Uk’UgM) = EZukW UkUgAi’j./\/l . (C.5)
2 ™ 2

) k0
As for (C.2), one checks that if i £ j

Zukw<vkngi’jM> = Z ukuz<v§v]2-./\/l> = 2uiuj<vi2’uj2/\/l> ,

k.l {k,l}={i,j}
whereas, for i = 7,
i 2 1
%uku£<vkng , ./\/l> = 2 ui <<U12v,%/\/l> — d<v,%|v|2/\/l>> )

Notice that a := <UZ2UJ2M> is independent of i, 7, thus, it is not difficult to check that

(d—1)a = 1/ v]* Mdw —/ viM(v)dv = (d — 1)97,
d JRrd R4

that is, a = ¥2. In the same way, for any k € {1,...,d}
1
(vRlolPM) = —(Jol* M) = (d+ )93,
whereas

= 992 i J
<v,%vi2./\/l> = <vf/\cil> ;91379% i :iz:

so that,

- d+2 2
E uku£<vkngl’zM> = g up + 30%u? — %|u|219% = 20%u? — gﬁ%|u|2
kel ki

Gathering these last computations, we get
(69 0a(tw 010, (- )00) = (s = 18,5 )
which, combined with (C.5) gives the result. O
Lemma C.4. Let h be given by (6.7). For anyi,j = 1,...,d it holds that
vuj if i # 3, £=1,
(vgny=2 , U P =g
=V ug+2vuidy  if i =7,

0 else.
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Proof. Using the fact that x; is radial, similar computations to that of Lemma C.3 imply that for

te{l,...,d},
(')

I
M~
M=

Uk<ka o™ M> = uk<vgvk P M>

=
Il
—
=
Il

1

SH

[
M~

Ug <<Ak’z ¢i’j/\/l> + <”U’2 ¢i’jM>5ké>

>
Il

1

|
M-

uk<¢i’jL1(¢k’€M)> :

o

=1

where we used that L; (M) = —AM and <]v[2q§i’j./\/l> = 0. This gives the result thanks to
(C.2). O
Lemma C.5. Let h be given by (6.7). For anyi =1, ...,d it holds that

(0 - 15

and, if o and 0 satisfies Boussinesq relation (6.14), then

divx<¢i hv> - ry¥aﬁ9.

Proof. On the one hand, using (C.4) it holds that

<w¢Q1(h,h)> —fu. <wiL1(%\v12vM)> —Gu- <¢i Ll(b/\/l)> ,

since, 1); being odd, one has <1/}iL1((u : U)QM)> = <wiL1(|v|4./\/l)> = 0. Now,

(viLi(OM)) = (bLy (M) = —(bMb; ),
and a direct computations show that
1

(bibi M) = =5 ( (Wl = (@+2))" P M) 5y = -

d+2

Tﬁi{) dij

which gives the expression for <¢z‘ Q1(h, h)> On the other hand, using symmetry properties,
one checks that

(vitvoe) = oM )i+ L0(i((ol? — dor)iM) b,
from which

divy (vihv) = (ViviM) dy,0 + %@i(\vﬁ — ) oM ) 0,,0.
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Writing % <1/JZ (Jv|?—dv, )vz./\/l> = <¢, bM > +94 <1/1Z v,'./\/l> and using Boussinesq relation (6.14),
one gets that

divx<1/zi hv> - <¢i biM> 0,0 = yﬁaﬁa,
where the identity <1/Jl bi./\/l> = —<1/JZL1(¢ZM)> was used together with (C.2). O

In Lemma 6.11, we study the convergence of some term involving the source term S, defined
in (6.29). To do that, we use the next Lemma which provides a strong convergence to 0 of this
source term.

Lemma C.6. Let S; defined in (6.29). We have that

ISellLro,r)L L2 (m00-1)) S €
Proof. We decompose S into three parts using the splitting h. = hY + hl; namely, S. =
SY + 8! + 82 with
S7:= e (Lahl — Lihl) + Qa(hl, hl) — Qi(hL, hl) — e kaVy - (vhl), j=0,1,
and

S2:=20,(h%, hl) — 201 (h, hl).

er've
The terms S0 and S? are treated using the estimate on h? and h! stated in (6.8)-(6.9). Indeed,
using standard estimates on Q. and Q; and Proposition 2.4, we have:
182 + S22 (o)L L2 (m0-1)) S €PN Lr (0580
+ 1Rl 1 o.mye) (Ih2lLoo(0,mys8) + 2l oo 0,my20)) + € IR L 0.my:80) S €7

Using now (6.8), Proposition 2.4 and Remark 3.5, we have:

ISHI L2 (0,721 L2 (g 1)) S ENPEN L1 ((0,7)520)

+ IR o,y 1hEl oo (0.1 70) + ENRE L1 0.)30) S &5

which yields the result. 0

To handle the convergence of nonlinear terms, we will need to resort to the following com-
pensated compactness result extracted from Lions & Masmoudi (1999) (see also (Golse & Saint-
Raymond , 2004, Lemma 13.1, Appendix D). The original result in Lions & Masmoudi (1999) is
proven in the whole space but is easily adapted to the case of the torus.

Proposition C.7. Let ¢ # 0 and T > 0. Consider two families {¢c}. and {1} bounded in
L>=((0,T) ; L2(T%)) and in L>=((0,T) ; W;’Q(Td)) respectively, such that

2 1
&:Vﬂ/)s + *vx(ﬁa = *Fe
g 13

1 1
at¢z—: + 7A£E¢€ = *Gs
g g
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where F. and G converge strongly in L'((0,T) ; L2(T9)). Then,
PDiv, (vst ® vst) — 0, div, (gbsv:ﬂ/}a) —0

in the sense of distributions on (0, T') x T¢.

APPENDIX D. PROOF OF THEOREM 2.12 AND PrOPOSITION 2.11

Theorem D.1 (See Theorem 2.1, Briant et al. (2019)). Let j = 1,2. There existseg € (0,1) such
that, for all{,s € N with{ > s and q > q; (where q; is defined in (2.17)) and any e € (0,€¢), the
full transport operator Gy . generates a Co-semigroup {V1-(t) ; t > 0} on Wf,’ijc’Q(wqj) such
that, for all t, > 0 there exist Co(t4), i+ > 0 satisfying

||V1,€(t)h — POhHWf,’ij;2(wq)
< C()(t*) exp(—u*t) ”h — P0h|’W§’jW§’2(wq) , Vt>te,j=1,2 (D.1)

holds true for any hy € W7 W52 (zoq),j = 1,2 wherePy is the spectral projection ontoKer (G, ) =
Ker(.%) which is independent of € and given by (2.28).

Note that a similar estimate also holds on the space wWilwe! (zq). The difference between
Theorems 2.12 and D.1 lies in the fact that, in Theorem 2.12, we allow t, = 0 in the decay
estimate (D.1). The “initial layer” dependence on ¢, > 0 in (D.1) is inherent to the method of the
enlargement semigroup theory of Gualdani et al. (2017) (see Remarks 2.13 and 2.14).

Theorem D.1 ensures that G . is the generator of a Cp-semigroup {V; () ; t > 0} on & as soon
as q > % and ¢ € (0,e9). We focus on extending (D.1) to ¢, := 0.

Proof of Theorem 2.12. We adopt the decomposition of the nonlinear part of Briant et al. (2019)
that we used in Section 4. Namely, for some fixed h € Wi’2W§’2(wq) we set

fin :=h —Poh,
and write f(t) = V1o(t) fin as f(t) = fO(t) + f1(t) with f° € W5*W5?(zo,) solution to
Oif°(t) = Buef®,  £200) = fin, (D2)
whereas f1 € H := W52 (M™2), is solution to
Of'(t) = Gref'(t) + Af0(1),  fH(0)=0. (D3)

As before, the same notations for the operators G ., V1 .(t) acting on various different spaces is
used. The definition should be clear from the context. Of course,

() = S1(t) fin »
and
”fo(t)HwinWgQ(wq) < Co eXp(_g_QV()t)Hfinuwgﬂwf;?(wq) ) (D4)
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since B . is €2y hypo-dissipative (19 depends on £, m). The constant Cj is independent of ¢.
Let us investigate || f!(¢)||3;. Notice that, since Pof = 0, Pof! = —Pyf (recall that the
projection is the same in H and Witwe? (,) and independent of €), the estimate for P f1 is
thus straightforward

[P0 (Ol < 1 exp(—= 0| inll gyt om, - 05)

where the constant (' differs from Cj just because the norm of the eigenfunctions are different
in 7 and W W4? (zo,,). We now focus on

G(t) = Py f1(t) = (Id — Po) f1(#).
One has
Bep(t) = Grep(t) + Py A= f0(1)

and, arguing as in (Briant , 2015, Section 7.2) (see also (Briant et al., 2019, Theorem 4.7 and
Remark 4.8)), one has

1 1 t
§Hw(t)H% < 2!w(0)!!%e“*t+/0 e [(5) |3 | PG Ac £O(s)||neds

with /1, > 0 independent of ¢ which is the size of the spectral gap of G .. Recalling that ¥(0) =
and ||.Ac ||@ WI2WE2 () H) S Cae™2, we get that
204 [t _ s
@3 < —- e Ee () 310 (5) o 22y 45

We use (D.4) to deduce that
200 Ca
g2

Il (®)117

Then, Young’s inequality leads to

CoCae ™Mt [t _vg_ g
Loz, < Sodae ™ /0 ¢~ (B105 s (5) 2,5

52
CoCAe Hxct

i (t—s) — s
[ T P

0

L]

t
il q)/o (s,

If e 2y > 241, we get after integration that

QCOC'Ae Hx t CoClae Mt [t v s
IOl < == = finllGys ey + =z /0 e~ () 5, ds.
With z(t) = et !||4(¢)||3, it follows that
2000,4 vo

x(t) <

CoCa ¢ ——9s
Vil ) + 2z /0 o Hu(s)ds,
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and Gronwall’s lemma gives

) ”finHWi’Qwﬁ’z(wq) eXP

with Cy > 0 independent of . Therefore

z(t) <

CoCa . 2
) Call gy

[EGIEES Cz”finHiWi,ngz(wq) exp(—px t).
This combined with (D.5) gives that

1P @I < (Co+ )il o, X110 0)

Overall, the estimates for f* and f! lead to

Hx
1F®lls < Call finllyggompe ey 0 (<551) . vEZ0,
with C3 independent of ¢ and given by Cy + 1/C7 + C3 as long as vpe 2 > . O

Proof of Proposition 2.11. We aim to prove here that, on the Banach space WiIwh? (zog),j =1,2,
the operator

Bg‘fg = Bfg + e 2Py + 7T,

with domain 2 (BE,?Q) = Withd Wﬁ+1’2(wq+1) generates a Cp-semigroup. Since we will resort
to an approach introduced in Alonso et al. (2020) and some computations made earlier in Canizo
& Lods (2016), it will be more convenient to prove that Bgz is the generator of a Cjy-semigroup
on the space

W WE2 (7, 6)

where T, g is the exponential weight
Mga,p(v) = exp (CL(v)ﬁ) ., wveRY a>0,8€(0,1)

and then use some enlargement result (Gualdani et al., 2017, Theorem 2.13). It is easy to adapt the
proof of Proposition 2.9 and find an equivalent norm on Wf}’lWﬁ’Z (Tnq,3) for which B((f,l + E_QW, s
is dissipative (see Tristani (2016) for useful computations in spaces with exponential weights
whenever ¢ = 1). According to Lumer-Phillips Theorem, see (Engel & Nagel , 1999, Proposition
3.14 & Theorem 3.15), in order to show that 8&2 generates a Cy-semigroup it suffices to prove
that there exists A > 0 large enough such that

Range(\ — BY)) = Wi W52 (i, s). (D.6)
Clearly, one can replace without loss of generality B&(i)s with 62882:. Denote for simplicity

X =Ws'Wh2(p,), B = e?BY)

e

omitting the dependence with respect to € and 4. It follows that
B, :flR’(S—EM —ev-Vy +Pa+T,.
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Introduce the following operator
Toh := —ev-Vyh+Toh — Xy h = —ev-Vih — kodivy(vh) — Epqh

with domain 2(Tg) = Wit Wi 2 ((. )M 3). It is not difficult to check that 7, generates a
Cp-semigroup in X given by

t
etTag(m,v) = exp <—/ dka + ZM(ve““(S_t))ds> g (1‘ _ = (1 - e_”"‘t) v,ve_“at> .
0

«
In particular,

Jim [R(A, Ta)lla(x) = 0- (D.7)
—00

Moreover, one has the following gain of integrability for the resolvent of 7: there is a; € (0,1)
such that, for o € (aq,1) thereis ¢ > 0 and A(a) > 0

1

IR Tl gz w2, oy ws w2 (mas) S 5 =am s VA Ma), (D)

where o is an explicit positive constant depending only on ¥ y. The proof of such a property
is an easy adaptation of Lemma C.14 in Alonso et al. (2020) whenever £ = s = 0 and extends
to k > s > 0 following techniques from Mouhot & Neumann (2006), we leave the details to the
reader. One also has the following result, see the proof of (Canizo & Lods , 2016, Lemma B.1 &
Proposition B.2): there exists 7(4) > 0 such that lims_,o 7(J) = 0 and

R,
|t

< 7(6), D.9
BWSWE (- VMg 5),We ' W2 (M4 5)) 7(9) (D.9)

while 92”11?;5 € #(X). With these two properties, introduce the sum C,, := fff + T with
domain 2(C,) = 2(T,). We have directly from the previous two properties (D.8) and (D.9)
7(9)

R,0
CROTS)| < . YA Aa),
Hgl’Jr R(A7a) B(X) 0 — Chq VA > Aa)
from which, choosing § > 0 sufficiently small such that gz(iza < 1, we obtain that (Id —

fffR(/\, Ta)) is invertible. We deduce that

RO Ca) = RN, Ta) (Id — LRIR(, ca))f1

=ROT) S [AYROTI] . ¥A> M),
n=0
simply observing that (A — C,,) = (Id — fff?’x’,()\, Ca))(X — T4). In particular,
1

BX)S T
HR(AaCa)Hﬁ(X) O — Chg — 7(5)

VA > ANa),

with
I oo =
Jim IR Ca)ll g(x) =0
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by virtue of (D.7). Set then
Cé = Cq + Pa.
With the estimate of P,
11—«
RN Co)|l, <C———
”Pa ( ) a)Hﬁ(X) O — Clo — 7(5)

and, choosing « sufficiently close to 1, the operator Id + PR (), C,) is invertible and so is A — C_.
Finally, since

B, =C -2,
one can chose A > 0 sufficiently large so that

1.2 R, CL)

RS
2x) < 4

2(x) IR, Cy)
and obtain that A\ — B,, is invertible. In particular, (D.6) holds true and this proves the result on
the space X. As said before, we deduce that B, . still generates a Cj-semigroup on the larger
spaces WZ’IWﬁQ(wq) and Wf}QWﬁ’Q(wq) under the assumptions thanks to Theorem 2.13 and
Remark 2.14 (i) of Gualdani et al. (2017). We leave the technical details to the reader. O

2x) <1
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