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FLUID DYNAMIC LIMIT OF BOLTZMANN EQUATION FOR GRANULAR

HARD–SPHERES IN A NEARLY ELASTIC REGIME

RICARDO J. ALONSO, BERTRAND LODS, AND ISABELLE TRISTANI

ABSTRACT. In this paper, we provide the first rigorous derivation of hydrodynamic equa-

tions from the Boltzmann equation for inelastic hard spheres with small inelasticity. The

hydrodynamic system that we obtain is an incompressible Navier-Stokes-Fourier system

with self-consistent forcing terms and, to our knowledge, it is thus the first hydrodynamic

system that properly describes rapid granular flows consistent with the kinetic formulation.

To this end, we write our Boltzmann equation in a non dimensional form using the dimen-

sionless Knudsen number which is intended to be sent to 0. There are several difficulties

in such derivation, the first one coming from the fact that the original Boltzmann equa-

tion is free-cooling and, thus, requires a self-similar change of variables to introduce an

homogeneous steady state. Such a homogeneous state is not explicit and is heavy-tailed,

which is a major obstacle to adapting energy estimates and spectral analysis. Addition-

ally, a central challenge is to understand the relation between the restitution coefficient,

which quantifies the energy loss at the microscopic level, and the Knudsen number. This is

achieved by identifying the correct nearly elastic regime to capture nontrivial hydrodynamic

behavior. We are, then, able to prove exponential stability uniformly with respect to the

Knudsen number for solutions of the rescaled Boltzmann equation in a close to equilibrium

regime. Finally, we prove that solutions to the Boltzmann equation converge in a specific

weak sense towards a hydrodynamic limit which depends on time and space variables only

through macroscopic quantities. Such macroscopic quantities are solutions to a suitable

modification of the incompressible Navier-Stokes-Fourier system which appears to be new

in this context.

Mathematics Subject Classification (2010): 76P05 Rarefied gas flows, Boltzmann equa-
tion [See also 82B40, 82C40, 82D05]; 76T25 Granular flows [See also 74C99, 74E20];
47H20 Semigroups of nonlinear operators [See also 37L05, 47J35, 54H15, 58D07], 35Q35
PDEs in connection with fluid mechanics; 35Q30 Navier-Stokes equations [See also 76D05,
76D07, 76N10].
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1. INTRODUCTION

1.1. Multiscale descriptions of granular gases. Granular materials are ubiquitous in
nature and understanding the behaviour of granular matter is a relevant challenge from
both the physics and mathematics viewpoints. Various descriptions of granular matter
have been proposed in the literature [28]. An especially relevant one consists in viewing
granular systems as clusters of a large number of discrete macroscopic particles (with size
exceeding 1 µm, significantly larger than the one of a typical particle described in classical
kinetic theory) suffering dissipative interactions. One speaks then of rapid granular flows
or gaseous granular matter. If the number of particles is large enough, it is then common
to adopt a kinetic modelling based upon suitable modification of the Boltzmann equation.
As usual in kinetic theory, it is then particularly relevant to deduce from this kinetic de-
scription the fluid behaviour of the system. This means, roughly speaking, that we look
at the granular gas at a scale larger than the mesoscopic and aim to capture the hydro-
dynamical features of it through the evolution of macroscopic quantities like density, bulk
velocity and temperature of the gas which satisfy suitable hydrodynamics equations.

One of the main objects of the present work is to make a first rigorous link between
these two co-existing descriptions by deriving a suitable modification of incompressible
Navier-Stokes equation from the Boltzmann equation for inelastic hard-spheres as the
Knudsen number goes to zero.

Recall that the Knudsen number ε is proportional to the mean free path between col-
lisions and in order to derive hydrodynamic equations from the Boltzmann equation, the
usual strategy consists, roughly speaking, in performing a perturbation analysis in the
limit ε → 0 (meaning that the mean free path is negligible when compared to the typical
physical scale length). We point out that these questions are perfectly understood in the
elastic case (molecular gases) for which rigorous results on the hydrodynamic limits of the
Boltzmann equation have been obtained, we refer to the next Section 1.6 for more details.

The picture in the context of granular gases is quite different. In fact, a satisfying hy-
drodynamic equation that properly describes rapid granular flow is still a controversial
issue among the physics community. The continuous loss of kinetic energy makes granu-
lar gases an open system as far as thermodynamics is concerned. Moreover, no non-trivial
steady states exist in granular gases without an external energy supply which makes gran-
ular gases a prototype of non-equilibrium systems. This is an important obstacle in the
derivation of hydrodynamical equations from the kinetic description since it is expected
that equilibrium states play the role of the typical hydrodynamic solution where time-space
dependence of the single-particle distribution function F (t, x, v) occurs only through suit-
able hydrodynamic fields like density ̺(t, x), bulk velocity u(t, x), and temperature θ(t, x).
An additional difficulty is related to the size of particles and scale separation. Recall that
granular gases involve macroscopic particles whose size is much larger than the ones de-
scribed by the usual Boltzmann equation with elastic interactions referred to as molecular
gases. As the hydrodynamic description occurs on large time scales (compared to the mean
free time) and on large spatial scales (compared to the mean free path) the mesoscopic –
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continuum scale separation is problematic to justify in full generality for granular gases.
We refer to [28, Section 3.1, p. 102] for more details on this point and observe here that
the main concern is related to the time scale induced by the evolution of the temperature
(see (1.9) herafter). In particular, as observed in [28], this problem can only be answered
with a fine spectral analysis of the linearized Boltzmann equation that ensures that the d+2
hydrodynamic modes associated to density, velocity and temperature decay more slowly
than the remaining kinetic excitations at large times. This is the only way that the hy-
drodynamic excitations emerge as the dominant dynamics. All these physically grounded
obstacles make the derivation of hydrodynamic equations from the Boltzmann equation
associated to granular gases a reputedly challenging open problem. Quoting [13]:

“the context of the hydrodynamic equations remains uncertain. What are
the relevant space and time scales? How much inelasticity can be described
in this way?”

The present paper is, to the best of our knowledge, the first rigorous answer to these
relevant problems, at least in dimension d > 2. We already mentioned that the key point
in our analysis is to identify the correct regime which allows to answer these questions:
nearly elastic. In this regime the energy dissipation rate in the systems happens in a con-
trolled fashion since the inelasticity parameter is compensated accordingly to the number
of collisions per time unit. This process mimics viscoelasticity as particle collisions be-
come more elastic as the collision dissipation mechanism increases in the limit ε → 0
(see Assumption 1.2 below). In this way, we are able to consider a re-scaling of the ki-
netic equation in which a peculiar intermediate asymptotic emerge and prevent the total
cooling of the granular gas.

Other regimes can be considered depending on the rate that the kinetic energy is dissi-
pated, for example, an interesting regime is the mono-kinetic which considers the extreme
case of infinite energy dissipation rate. In this way, the limit is formally described by plug-
ging in a Dirac mass solution in the kinetic equation yielding the pressureless Euler system
(corresponding to sticky particles). Such a regime has been rigorously addressed in the
one-dimensional framework in the interesting contribution [39]. It is an open question to
extend such analysis to higher dimensions since the approach of [39] uses the so-called
Bony functional which is a tool specifically tailored for 1D kinetic equations.

1.2. The Boltzmann equation for granular gases. We consider here the (freely cool-
ing) Boltzmann equation which provides a statistical description of identical smooth hard
spheres suffering binary and inelastic collsions:

∂tF (t, x, v) + v ·∇xF (t, x, v) = Qα(F,F ) (1.1)

supplemented with initial condition F (0, x, v) = Fin(x, v), where F (t, x, v) is the density

of granular gases having position x ∈ T
d and velocity v ∈ R

d at time t > 0. We consider
here for simplicity the case of flat torus

T
d
ℓ = R

d/(2π ℓZ)d (1.2)
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for some typical length-scale ℓ > 0. This corresponds to periodic boundary conditions:

F (t, x+ 2π ℓei, v) = F (t, x, v) i = 1, . . . , d

where ei is the i-th vector of the canonical basis of Rd. The collision operator Qα is defined
in weak form as

ˆ

Rd

Qα(g, f)(v)ψ(v)dv =
1

2

ˆ

R2d

f(v) g(v∗) |v − v∗|Aα[ψ](v, v∗)dv∗dv, (1.3)

where

Aα[ψ](v, v∗) =
ˆ

Sd−1

(ψ(v′) + ψ(v′∗)− ψ(v) − ψ(v∗))b(σ · q̄)dσ, (1.4)

and the post-collisional velocities (v′, v′∗) are given by

v′ = v +
1 + α

4
(|q|σ − q), v′∗ = v∗ −

1 + α

4
(|q|σ − q),

where q = v − v∗, q̄ = q/|q|.
(1.5)

Here, dσ denotes the Lebesgue measure on S
d−1 and the angular part b = b(cos θ) of

the collision kernel appearing in (1.4) is a non-measurable mapping integrable over Sd−1.
There is no loss of generality assuming

ˆ

Sd−1

b(σ · q̄)dσ = 1, ∀ q̄ ∈ S
d−1.

The fundamental distinction between the classical elastic Boltzmann equation and the
associated to granular gases lies in the role of the parameter α ∈ (0, 1), the coefficient
of restitution. This coefficient is given by the ratio between the magnitude of the normal
component (along the line of separation between the centers of the two spheres at contact)
of the relative velocity after and before the collision (see Appendix A.1 for the detailed
microscopic velocities). The case α = 1 corresponds to perfectly elastic collisions where
kinetic energy is conserved. However, when α < 1, part of the kinetic energy of the
relative motion is lost since

|v′|2 + |v′∗|2 − |v|2 − |v∗|2 = −1− α2

4
|q|2 (1− σ · q̄) 6 0.

It is assumed in this work that α is independent of the relative velocity q (refer to [1], [6],
and [7] for the viscoelastic restitution coefficient case). Notice that the microscopic de-
scription (1.5) preserves the momentum

v′ + v′∗ = v + v∗

and, taking ψ = 1 and then ψ(v) = v in (1.3) yields to the following conservation of
macroscopic density and bulk velocity

d

dt
R(t) =

d

dt

ˆ

Rd×Td
ℓ

F (t, x, v)dvdx = 0,
d

dt
U(t) =

d

dt

ˆ

Rd×Td
ℓ

vF (t, x, v)dvdx = 0 .

Consequently, there is no loss of generality in assuming that

R(t) = R(0) = 1, U(t) = U(0) = 0 ∀t > 0.
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As mentioned, the main contrast between elastic and inelastic gases is that in the latter
the granular temperature

T (t) :=
1

|Td
ℓ |

ˆ

Rd×Td
ℓ

|v|2F (t, x, v)dvdx

is constantly decreasing

d

dt
T (t) = −(1− α2)Dα(F (t), F (t)) 6 0 ,

where Dα(g, g) denotes the normalised energy dissipation associated to Qα, see [51],
given by

Dα(g, g) :=
γb
4

ˆ

Td
ℓ

dx

|Td
ℓ |

ˆ

Rd×Rd

g(x, v)g(x, v∗)|v − v∗|3dvdv∗ (1.6)

with

γb :=

ˆ

Sd−1

1− σ · q̄

2
b(σ · q̄)dσ = |Sd−2|

ˆ π

0
b(cos θ) (sin θ)d−2 sin2

(
θ

2

)
dθ.

In fact, it is possible to show that

lim
t→∞

T (t) = 0

which expresses the total cooling of granular gases. Determining the exact dissipation rate
of the granular temperature is an important question known as Haff ’s law [37].

1.3. Navier-Stokes scaling. To capture some hydrodynamic behaviour of the gas, we
need to write the above equation in nondimensional form introducing the dimensionless
Knudsen number

ε :=
mean free path

spatial length-scale

which is assumed to be small. We introduce then a rescaling of time and space to capture
the hydrodynamic limit and introduce the particle density

Fε(t, x, v) = F

(
t

ε2
,
x

ε
, v

)
, t > 0. (1.7)

In this case, we choose for simplicity ℓ = ε in (1.2) which ensures now that Fε is defined
on R

+ × T
d × R

d with T
d = T

d
1. It is well-know that this scaling leads to the incompress-

ible Navier-Stokes, however, other scalings are possible that yield different hydrodynamic
models. Under such a scaling, the typical number of collisions per particle per time unit
is ε−2, more specifically, Fε satisfies the rescaled Boltzmann equation

ε2∂tFε(t, x, v) + ε v ·∇xFε(t, x, v) = Qα(Fε, Fε), (x, v) ∈ T
d × R

d , (1.8a)

supplemented with initial condition

Fε(0, x, v) = F ε
in(x, v) = Fin(

x
ε , v) . (1.8b)
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Conservation of mass and density is preserved under this scaling, consequently, we assume
that

Rε(t) =

ˆ

Rd×Td

Fε(t, x, v)dvdx = 1, Uε(t) =

ˆ

Rd×Td

Fε(t, x, v)vdvdx = 0, ∀ t > 0,

whereas the cooling of the granular gas is given by the equation

d

dt
Tε(t) = −1− α2

ε2
Dα(Fε(t), Fε(t)), (1.9)

where Tε(t) =
1

|Td|
´

Rd×Td |v|2Fε(t, x, v)dvdx.

Remark 1.1. From now on we will always assume that

ˆ

Td×Rd

F ε
in(x, v)




1
v
|v|2


 dvdx =




1
0
Ein




with Ein > 0 fixed and independent of ε. It is important to emphasize that, in all the sequel,
all the threshold values on ε and the various constants involved are actually depending only
on this initial choice.

1.4. Self-similar variable and homogeneous cooling state. Various forcing terms have
been added to (1.8a) depending on the underlying physics. Forcing terms prevent the
total cooling of the gas (heated bath, thermal bath, see [61] for details) since they act
as an energy supply source to the system and induce the existence of a non-trivial steady
state. These are, however, systems different from the free-cooling Boltzmann equation
(1.8a) that we aim to investigate here.

To understand better this free-cooling scenario, it is still possible to introduce an in-
termediate asymptotic and a steady state to work with. This is done by performing a
self-similar change of variables

Fε(t, x, v) = Vε(t)
dfε
(
τε(t), x, Vε(t)v

)
, (1.10a)

with

τε(t) :=
1

cε
ln(1 + cε t) , Vε(t) = (1 + cε t) , t > 0, cε > 0 . (1.10b)

With the special choice

cε =
1− α

ε2
, (1.10c)

we can prove that fε satisfies

ε2∂tfε(t, x, v) + εv ·∇xfε(t, x, v) + κα ∇v · (vfε(t, x, v)) = Qα(fε, fε) , (1.11)

with initial condition

fε(0, x, v) = F ε
in(x, v).

Here

κα = 1− α > 0, ∀α ∈ (0, 1).
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The underlying drift term κα∇v · (vf(t, x, v)) acts as an energy supply which prevents the
total cooling down of the gas. Indeed, it has been shown in a series of papers [50, 51, 52]
that there exists a spatially homogeneous steady state Gα to (1.11) which is unique for
α ∈ (α0, 1) in an explicit threshold value α0 ∈ (0, 1). More specifically, for α ∈ (α0, 1),
there exists a unique solution Gα to the spatially homogeneous steady equation

κα∇v · (vGα(v)) = Qα(Gα, Gα) ,

with
ˆ

Rd

Gα(v)dv = 1,

ˆ

Rd

Gα(v) vdv = 0.

Moreover,

lim
α→1−

‖Gα −M‖L1
2
= 0 , (1.12)

where M is the Maxwellian distribution

M(v) = G1(v) = (2πϑ1)
−d/2 exp

(
−|v|2
2ϑ1

)
, v ∈ R

d , (1.13)

for some explicit temperature ϑ1 > 0. The Maxwellian distribution M(v) is a steady
solution for α = 1 and its prescribed temperature ϑ1 (which ensures (1.12) to hold)
will play a role in the rest of the analysis. We refer to Appendix A for more details and
explanation of the role of ϑ1.

Three main questions are addressed in this work regarding the solution to (1.11):

(Q1) First, we aim to prove the existence and uniqueness of solutions to (1.11) in a close
to equilibrium setting, i.e. solutions which are defined globally in time and such that

sup
t>0

‖fε(t)−Gα‖ 6 δ (1.14)

for some positive and explicit δ > 0 in a suitable norm ‖ · ‖ of a functional space
to be identified. The close to equilibrium setting is quite relevant for very small
Knudsen numbers given the large number of collisions per unit time which keep the
system thermodynamically relaxed.

(Q2) More importantly (though closely related), the scope here is to provide estimates
on the constructed solutions fε which are uniform with respect to ε. This means
that, in the previous point, δ > 0 is independent of ε. In fact, we are able to prove
exponential time decay for the difference ‖fε(t)−Gα‖.

(Q3) Finally, we aim to prove that, as ε → 0, the solution fε(t) converges towards some
hydrodynamic solution which depends on (t, x) only through macroscopic quantities
(̺(t, x), u(t, x), θ(t, x)) which are solutions to a suitable modification of the incom-
pressible Navier-Stokes system.

The central underlying assumption in the previous program is the following relation be-
tween the restitution coefficient and the Knudsen number.
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Assumption 1.2. The restitution coefficient α( · ) is a continuously decreasing function of the
Knudsen number ε satisfying the optimal scaling behaviour

α(ε) = 1− λ0ε
2 + o(ε2) (1.15)

with λ0 > 0.

Indeed, a careful spectral analysis of the linearized collision operator around Gα shows
that unless one assumes 1−α comparable to ε2 the eigenfunction associated to the energy
dissipation would explode and prevent (1.14) to hold true. In fact, we require λ0 to be
relatively small with respect to the eigenvalues associated to other kinetic excitations. As
mentioned before, in this regime the energy dissipation rate is controlled along time by
mimicking a viscoelastic property in the granular gas which is at contrast to other regimes
such as the mono-kinetic limit. In viscoelastic models, nearly elastic regimes emerges
naturally, see [11, 6, 7] for details.

Because ε → 0, Assumption 1.2 means that the limit produces a model of the cumula-
tive effect of nearly elastic collisions in the hydrodynamic regime. Two situations are of
interest in our analysis

Case 1: If λ0 = 0 the cumulative effect of the inelasticity is too weak in the hydrodynamic
scale and the expected model is the classical Navier-Stokes equations.

Case 2: If 0 < λ0 < ∞, the cumulative effect is visible in the hydrodynamic scale and
we expect a different model to the Navier-Stokes equation accounting for that.
As we mentioned, we require λ0 to be relatively small compared to some explicit
quantities completely determined by the mass and energy of the initial datum, say,
0 < λ0 ≪ 1 with some explicit upper bounds on λ0.

1.5. Main results. The main results are both concern with the solutions to (1.11). The
first one is the following Cauchy theorem regarding the existence and uniqueness of close-
to-equilibrium solutions to (1.11). Notations for the functional spaces are introduced in
Section 1.8.

Theorem 1.3. Assume Assumption 1.2. Let

m > 2d, m− 1 > k > 1, q > 4,

be fixed. There exist a triple (ε†, λ†,K†
0) depending only on the mass and energy of F ε

in and

m,k, q such that, for ε ∈ (0, ε†), λε ∈ (0, λ†), and K0 ∈ (0,K†
0), if

‖F ε
in −Gα(ε)‖Wm,1

x W
k,1
v (〈v〉q ) 6 ε

√
K0

then the inelastic Boltzmann equation (1.11) has a unique solution

fε ∈ C
(
[0,∞);Wm,1

x W
k,1
v (〈v〉q)

)
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satisfying for t > 0

∥∥fε(t)−Gα(ε)

∥∥
W

m,1
x W

k,1
v (〈v〉q) 6 Cε

√
K0 exp (−λε t) ,

and

ˆ t

0

∥∥fε(τ)−Gα(ε)

∥∥
W

m,1
x W

k,1
v (〈v〉q+1)

dτ 6 Cε
√
K0 min

{
1 + t, 1 + 1

λε

}
,

for some positive constant C > 0 independent of ε and where λε ≃ 1−α(ε)
ε2 is the energy

eigenvalue of the linearized operator (see Theorem 1.7 hereafter).

Theorem 1.3 completely answers queries (Q1) and (Q2) where the functional space is
chosen to be a L1-based Sobolev space

W
m,1
x W

k,1
v (〈v〉q)

and the close-to-equilibrium solutions are shown to decay with a rate that can be made
uniform with respect to the Knudsen number ε. Recall here that, since Assumption 1.2 is
met, the homogeneous cooling state depends on ε and Gα(ε) → M as ε→ 0.

The estimates on the solution fε provided by Theorem 1.3 are enough to answer (Q3).
This is done under some additional assumption on the initial datum. Namely

Theorem 1.4. Under the Assumptions of Theorem 1.3, set

fε(t, x, v) = Gα(ε) + ε hε(t, x, v) ,

with hε(0, x, v) = hεin(x, v) = ε−1
(
F ε
in −Gα(ε)

)
such that

lim
ε→0

‖π0h
ε
in − h0‖Wm,1

x L1
v
= 0 ,

where π0 stands for the projection over the elastic linearized Boltzmann operator (see Sec-
tion 6 for a precise definition)

h0(x, v) =
(
̺0(x) + u0(x) · v + 1

2θ0(x)(|v|
2 − dϑ1)

)
M(v) ,

with M being the Maxwellian distribution introduced in (1.13) and

(̺0, u0, θ0) ∈ Wm ,

where we set Wℓ := W
ℓ,1
x (Td)×

(
W

ℓ,1
x (Td)

)d
×W

ℓ,1
x (Td) for any ℓ ∈ N.

Then, for any T > 0 and {hε}ε converges in some weak sense to a limit h = h(t, x, v) which
is such that

h(t, x, v) =

(
̺(t, x) + u(t, x) · v +

1

2
θ(t, x)(|v|2 − dϑ1)

)
M(v) , (1.16)

where M is the Maxwellian distribution introduced in (1.13) and

(̺, u, θ) ∈ C([0, T ]; Wm−2) ∩ L1 ((0, T ); Wm) ,
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is solution to the following incompressible Navier-Stokes-Fourier system with forcing




∂tu− ν
ϑ1

∆xu+ ϑ1 u ·∇x u+∇xp = λ0u ,

∂t θ − γ
ϑ2
1
∆xθ+ϑ1 u ·∇xθ =

λ0 c̄

2(d+ 2)

√
ϑ1 θ ,

divxu = 0, ̺+ ϑ1 θ = 0 ,

(1.17)

subject to initial conditions (̺in, uin, θin) given by

uin =: u(0) = Pu0, θin = θ(0) =
d

d+ 2
θ0 −

2

(d+ 2)ϑ1
̺0, ̺in = ̺(0) := −ϑ1θin ,

where Pu0 is the Leray projection of u0 on divergence-free vector fields. The viscosity ν > 0
and heat conductivity γ > 0 are explicit and λ0 > 0 is the parameter appearing in (1.15).
The parameter c̄ > 0 is depending on the collision kernel b( · ).

The precise notion of weak convergence in the above Theorem 1.4 is very peculiar and
strongly related to the a priori estimates used for the proof of Theorem 1.3. The mode of
convergence is detailed in Theorem 6.3, see also Section 6.2 for more details.

It is classical for incompressible Navier-Stokes equations, see [48, Section 1.8, Chapter
I], that the pressure term p acts as a Lagrange multiplier due to the constraint divxu = 0
and it is recovered (up to a constant) from the knowledge of (̺, u, θ).

We point out that the above incompressible Navier-Stokes-Fourier system (1.17) with
the self-consistent forcing terms on the right-hand-side is a new system of hydrodynamic
equations that, to our knowledge, has never been rigorously derived earlier to describe
granular flows. We also notice that the last two identities in (1.17) give respectively
the incompressibility condition and a strong Boussinesq relation (see the discussion in
Section 6). It is important to point out that in the case λ0 = 0, one recovers the classi-
cal incompressible Navier-Stokes-Fourier system derived from elastic Boltzmann equation,
see [56]. This proves continuity with respect to the restitution coefficient α.

We finally mention that the above Theorem 1.4 together with the relations (1.10) pro-
vide also a quite precise description of the hydrodynamic behaviour of the original prob-
lem (1.8a) in physical variables. In this framework, the above mentioned Case 2 for which
λ0 > 0 enjoys some special features for which uniform-in-time error estimates can be ob-
tained. Turning back to the original problem (1.8a) not only gives a precise answer to
Haff ’s law (with an explicit cooling rate of the granular temperature Tε(t)) but also de-
scribes the cooling rate of the local temperature

´

Rd Fε(t, x, v)|v|2dv. We refer to Section 6.6
and Appendix A.2 for a more detailed discussion.

1.6. Hydrodynamic limits in the elastic case. The derivation of hydrodynamic limits
from the elastic Boltzmann equation is an important problem which received a lot of at-
tention and its origin can be traced back at least to D. Hilbert exposition of its 6th problem
at the 1900 International Congress of Mathematicians. We refer the reader to [56, 33]
for an up-to-date description of the mathematically relevant results in the field. Roughly
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speaking three main approaches are adopted for the rigorous derivation of hydrodynamic
limits.

A) Many of the early mathematical justifications of hydrodynamic limits of the Boltzmann
equation are based on (truncated) asymptotic expansions of the solution around some
hydrodynamic solution

Fε(t, x, v) = F0(t, x, v)

(
1 +

∑

n

εnFn(t, x, v)

)
(1.18)

where, typically

F0(t, x, v) =
̺(t, x)

(2πθ(t, x))d/2
exp

(
−|v − u(t, x)|2

2θ(t, x)

)
(1.19)

is a local Maxwellian associated to the macroscopic fields which is required to satisfy
the limiting fluid dynamic equation. This approach (or a variant of it based upon
Chapman-Enskog expansion) leads to the first rigorous justification of the compressible
Euler limit up to the first singular time for the solution of the Euler system in [17] (see
also [43] for more general initial data and a study of initial layers). In the same way, a
justification of the incompressible Navier-Stokes limit has been obtained in [22]. This
approach deals mainly with strong solutions for both the kinetic and fluid equations.

B) Another important line of research concerns weak solutions and a whole program on
this topic has been introduced in [8, 9]. The goal is to prove the convergence of
the renormalized solutions to the Boltzmann equation (as obtained in [24]) towards
weak solutions to the compressible Euler system or to the incompressible Navier-Stokes
equations. This program has been continued exhaustively and the convergence have
been obtained in important results (see [30, 31, 40, 44, 46, 47] to mention just a few).
We remark that, in the notion of renormalized solutions for the classical Boltzmann
equation, a crucial role is played by the entropy dissipation (H-theorem) which asserts
that the entropy of solutions to the Boltzmann equation is non increasing

d

dt

ˆ

Rd×Td

Fε log Fε(t, x, v)dvdx 6 0.

This a priori estimate is fully exploited in the construction of renormilized solutions to
the classical Boltzmann equation and is also fundamental in some justification argu-
ments for the Euler limit, see [57].

C) A third line of research deals with strong solutions close to equilibrium and exploits
a careful spectral analysis of the linearized Boltzmann equation. Strong solutions to
the Boltzmann equation close to equilibrium have been obtained in a weighted L2-
framework in the work [60] and the local-in-time convergence of these solutions to-
wards solution to the compressible Euler equations have been derived in [54]. For the
limiting incompressible Navier-Stokes solution, a similar result have been carried out
in [10] for smooth global solutions in R

3 with a small initial velocity field. The small-
ness assumption has been recently removed in [27] allowing to recover non global in
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time solutions to the Navier-Stokes equation. These results as well as [14] exploit a
very careful description of the spectrum of the linearized Boltzmann equation derived
in [26]. We notice that they are framed in the space L2(M−1) where the linearized
Boltzmann operator is self-adjoint and coercive.

We mention in particular two papers whose approaches are the closest to the ones adopted
here. The work [15] was the main inspiration to answer questions (Q1)-(Q2). Indeed,
in [15], the first estimates on the elastic Boltzmann equation in Sobolev spaces with poly-
nomial weight (based on L1) are obtained uniformly with respect to the Knudsen number ε.
Also, the work [41] deals with an energy method in L2(M−1) spaces (see also [35, 36])
in order to prove the strong convergence of the solutions to the Boltzmann equation to-
wards the incompressible Navier-Stokes equation without resorting to the work of [26].
We adopt a similar strategy to answer (Q3).

1.7. The challenge of hydrodynamic limits for granular gases. There are several rea-
sons which make the derivation of hydrodynamic limits for granular gases a challenging
question at the physical level. In regard of the mathematical aspects of the hydrody-
namical limit, several hurdles stand on way when trying to adapt the aforementioned
approaches:

I) With respect to the strategy given in A), the main difficulty lies in the identification of
the typical hydrodynamic solution. Such solution is such that the time-space depen-
dence of the one-particle distribution function F (t, x, v) occurs only through suitable
hydrodynamic fields like density ̺(t, x), bulk velocity u(t, x), and temperature θ(t, x).
This is the role played by the Maxwellian F0 in (1.19) whenever α = 1 and one won-
ders if the homogeneous cooling state Gα plays this role here. This is indeed the case
up to first order capturing the fat tails of inelastic distributions, yet surprisingly, a
suitable Maxwellian plays the role of the hydrodynamic solution in the ε-order cor-
rection. This Gaussian behaviour emerges in the hydrodynamic limit because of the

near elastic regime that we treat here.1

II) The direction promoted in B) appears for the moment out of reach in the context
of granular gases. Renormalized solutions in the context of the inelastic Boltzmann
equation (1.20) have not been obtained due to the lack of anH-Theorem for granular
gases. It is unclear if the classical entropy (or a suitable modification of it) remains
bounded in general for granular gases.

III) Homogeneous cooling states Gα are not explicit, this is a technical difficulty when
adapting the approach of [26] for the spectral analysis of the linearized inelastic
Boltzmann equation in the spatial Fourier variable. Partial interesting results have
been obtained in [55] (devoted to diffusively heated granular gases) but they do
not give a complete asymptotic expansion of eigenvalues and eigenfunctions up to
the order leading to the Navier-Stokes asymptotic. We mention that obtaining an

1See the interesting discussion in [61], especially the Section 2.8 entitled “What Is the Trouble with Non-

Gaussianity”
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analogue of the work [26] for granular gases would allow, in particular, to quantify
the convergence rate towards the limiting model as in the recent work [27].

IV) A major obstacle to adapt energy estimates and spectral approach lies in the choice
of functional spaces. While the linearized Boltzmann operator associated to elastic
interactions is self-adjoint and coercive in the weighted L2-space L2(M−1), there is
no such “self-adjoint” space for the inelastic case. This yields technical difficulties in

the study of the spectral analysis of the linearized operator 2. Moreover, the energy
estimates of [35, 36, 40, 41] are essentially based upon the coercivity of the linearized
operator. For granular gases, it seems that one needs to face the problem directly in a
L1-setting. Points III) and IV) make the approach C) difficult to directly adapt.

1.8. Notations and definition. Let us introduce some useful notations for function spaces.
For any nonnegative weight function m : Rd → R

+, we define, for all p > 1 and q > 0 the
space Lp(m) through the norm

‖f‖Lp(m) :=

(
ˆ

Rd

|f(ξ)|pm(ξ)pdξ

)1/p

,

We also define, for p > 1

W
k,p(m) =

{
f ∈ Lp(m) ; ∂βξ f ∈ Lp(m) ∀|β| 6 k

}

with the usual norm, i.e., for k ∈ N:

‖f‖p
Wk,p(m)

=
∑

|β|6k

‖∂βξ f‖
p
Lp(m).

For m ≡ 1, we simply denote the associated spaces by Lp and W
k,p. Notice that all the

weights we consider here will depend only on velocity, i.e. m = m(v).

We consider in the sequel the general weight

̟s(v) = (1 + |v|2) s
2 , v ∈ R

d, s > 0.

On the complex plane, for any a ∈ R, we set

Ca := {z ∈ C ; Rez > −a}, C
⋆
a := Ca \ {0}

and, for any r > 0, we set

D(r) = {z ∈ C ; |z| 6 r}.
We also introduce the following notion of hypo-dissipativity in a general Banach space.

Definition 1.5. Let (X, ‖ · ‖) be a given Banach space. A closed (unbounded) linear operator
A : D(A) ⊂ X → X is said to be hypo-dissipative on X if there exists a norm, denoted
by ||| · |||, equivalent to the ‖ · ‖–norm such that A is dissipative on the space (X, ||| · |||), that is,

|||(λ−A)h||| > λ |||h|||, ∀λ > 0, h ∈ D(A).

2Recall that the powerful enlargement techniques for the elastic Boltzmann equation are based on the

knowledge of the spectral structure in the space L2(M−1) (and Sobolev spaces built on it) which can be

extended to the more natural L1-setting.
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Remark 1.6. This is equivalent to the following, see [25, Proposition 3.23, p. 88]: if ||| · |||⋆
denotes the norm on the dual space X⋆, for all h ∈ D(A), there exists uh ∈ X⋆ such that

[uh, h] = |||h|||2 = |||uh|||2⋆ and Re [uh, Ah] 6 0,

where [ · , · ] denotes the duality bracket between (X⋆, ||| · |||⋆) and (X, ||| · |||).

For two tensors A = (Ai,j), B = (Bi,j) ∈ Md(R), we denote by A : B the scalar
(A : B) =

∑
i,j Ai,jBi,j ∈ R as the trace of the matrix product AB whereas, for a vec-

tor function w = w(x) ∈ R
d, the tensor (∂xi

wj)i,j is denoted as ∇xw. We also write

(DivxA)
i =

∑
j ∂xj

Ai,j(x).

1.9. Strategy of the proof. The strategy used to prove the main results Theorems 1.3
and 1.4 yields to several intermediate results of independent interest. The approach is
perturbative in essence since we are dealing with close to equilibrium solutions to (1.11).
This means that, in the study of (1.11), we introduce the fluctuation hε around the equi-
librium Gα defined through

fε(t, x, v) = Gα(v) + ε hε(t, x, v) ,

and hε satisfies




∂thε(t, x, v) +
1

ε
v ·∇xhε(t, x, v) −

1

ε2
Lαhε(t, x, v) =

1

ε
Qα(hε, hε)(t, x, v) ,

hε(0, x, v) = hinε (x, v) ,
(1.20)

where Lα is the linearized collision operator (local in the x-variable) defined as

Lαh(x, v) = Lα(h)(x, v) − κα∇v · (vh(x, v)) ,

with

Lα(h) = 2Q̃α(Gα, h) ,

where we set

Q̃α(f, g) =
1

2
{Qα(f, g) +Qα(g, f)} .

We also denote by L1 the linearized operator around G1 = M, that is,

L1(h) = L1(h) = Q1(M, h) +Q1(h,M).

The method of proof requires first a careful spectral analysis of the full linearized operator
appearing in (1.20):

Gα,εh := −ε−1v ·∇xh+ ε−2Lαh.

Such a spectral analysis has to be performed in a suitable L1-based Sobolev space and we
borrow for this idea from [34] and extended to the case ε 6= 1 in [15].
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A central point in the approach is that we treat Gα,ε as a perturbation3 of the elastic

linearized operator G1,ε. The spectrum of G1,ε in W
s,1
x W

k,1
v (〈v〉q) is well-understood [15],

so, it is possible to deduce from this characterisation the spectrum of Gα,ε using ideas
from [59]. We only study the spectrum of Gα,ε without requiring knowledge of the decay
of the semigroup associated to Gα,ε. This simplifies the technicalities of the spectral anal-
ysis performed in Section 3 related to Dyson-Phillips iterates which leads to the spectral
mapping theorem [34, 59]. Most notably, in this simplified approach one is able to identify
the optimal scaling (1.15) of the restitution coefficient.

The scaling (1.15) is precisely the one which allows to preserve exactly d+2 eigenvalues
in the neighbourhood of zero (recall that 0 is an eigenvalue of multiplicity d + 2 in the
elastic case). Recalling that, in any reasonable space, the elastic operator has a spectral
gap of size µ⋆ > 0, i.e.

S(G1,ε) ∩ {z ∈ C ; Rez > −µ⋆} = {0}
where 0 is an eigenvalue of algebraic multiplicity d + 2 associated to the eigenfunctions
{M, vjM, |v|2M , j = 1, . . . , d}, one can prove the following theorem.

Theorem 1.7. Set

X := W
ℓ,1
x W

s,1
v (̟q), ℓ ∈ N, s > 0, ℓ > s+ 1, q > 2

and assume that Assumption 1.2 is met. There exists some explicit ν∗ > 0 such that, if
µ ∈ (µ⋆ − ν∗, µ⋆), there is some explicit ε > 0 depending only on µ⋆ −µ and such that, for all
ε ∈ (0, ε), the linearized operator

Gα,ε : D(Gα,ε) ⊂ X → X

has the spectral property:

S(Gα,ε) ∩ {z ∈ C ; Rez > −µ} = {λ1(ε), . . . , λd+2(ε)} , (1.21)

where λ1(ε), . . . , λd+2(ε) are eigenvalues of Gε (not necessarily distinct) with

|λj(ε)| 6 µ⋆ − µ for j = 1, . . . , d+ 2.

More precisely, it follows that

S(Gα,ε) ∩ {z ∈ C ; Rez > −µ} = S(ε−2Lα) ∩ {z ∈ C ; Rez > −µ}
= {λ1(ε), . . . , λd+2(ε)} ,

with

λ1(ε) = 0, λj(ε) = ε−2κα(ε), j = 2, . . . , d+ 1 ,

and

λd+2(ε) = −λε = −1− α(ε)

ε2
+O(ε2) , for ε ≃ 0.

3This perturbation does not fall into the realm of the classical perturbation theory of the unbounded

operator as described in [42]. Typically, the domain of Gα,ε is much smaller than the one of G1,ε (because

of the drift term in velocity) and the relative bound between G1,ε and Gα,ε does not converges to zero in the

elastic limit α → 1.
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Remark 1.8. Notice that the eigenvalue λd+2(ε) = −λε can be seen as the energy eigenvalue
in the sense that

ˆ

Rd

Gα,εϕ(v) |v|2dv = −λε
ˆ

Rd

ϕ(v)|v|2dv

for any smooth test-function ϕ.

To prove Theorem 1.7, it is necessary to strengthen several results of [52] and obtain
sharp convergence rate in the elastic limit for the linearized operator. Typically, one needs
to prove that, for suitable topology

Lα − L1 ≃ (1− α)

which gives an estimate of the type

(Gα,ε − G1,ε) ≃
1− α

ε2
.

This is done in Section 2.

After the spectral analysis is performed, in order to prove Theorem 1.3 several a priori
estimates for the solutions to (1.11) are required. This is done in Section 4. The crucial
point in the analysis lies in the splitting of (1.11) into a system of two equations mimicking
a spectral enlargement method from a PDE perspective (see [53, Section 2.3] and [15] for
pioneering ideas on such a splitting). More precisely, the splitting performed in Sections 4
and 5 amounts to look for a solution of (1.20) of the form

hε(t) = h0ε(t) + h1ε(t)

where h1ε(t) is solution to the linearized elastic equation with a source term involving the
reminder h0ε(t), namely,

∂th
1
ε(t) = G1,εh

1
ε + ε−1Q1(h

1
ε, h

1
ε) +Aεh

0
ε (1.22)

having zero initial datum and where Aε is a regularizing operator (see Section 3 for a
precise definition). In this way we seek h1ε(t) in the Hilbert space

h1ε(t) ∈ W
m,2
x,v

(
M−1/2

)
=: H

with m > 2d and prove bounds of the type

sup
t>0

(
‖h1ε(t)‖2H +

ˆ t

0
e−ν(t−τ)‖h1ε(τ)‖2H1

dτ
)
6 CK0

where H1 is the domain of G1,ε in H, K0 depends only on the initial datum hεin and ν is
of the order of the spectral gap of G1,ε on H. With such a splitting, it is possible to fully
exploit the elastic problem and treat hε as a perturbation of this solution. This is the role
of Section 4.

In Section 5, we prove Theorem 1.3 introducing a suitable iterative scheme based upon
the coupling

(
h0ε(t), h

1
ε(t)
)
. We show in practice that the coupled system of kinetic equa-

tions satisfied by h0 and h1 is well-posed. It is fair to say that the bounds for h0ε and h1ε
given in sections 4 and 5 play the role of suitable energy estimates as the ones established
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in the purely Hilbert setting [35, 36, 41]. In particular, these bounds are sufficient to de-
duce a very peculiar type of weak convergence of hε(t) towards an element in the kernel of
the linearized operator L1, in particular, the limit of hε is necessarily of the form (1.16).
The notion of weak convergence we use here fully exploits the splitting hε = h0ε + h1ε
where we proved that h0ε converges to 0 strongly in L1((0, T );Wm,1

x L1
v(̟q)) whereas h1ε

converges to h weakly in L2((0, T ) ; Wm,2
x L2

v(M− 1
2 )).

Finally, in Section 6, the regularity of (̺, u, θ) obtained via a simple use of Ascoli-Arzela
Theorem and the identification of the limiting equations these macroscopic fields satisfy is
presented. With the notion of weak convergence at hand presented above, the approach
is simpler but reminiscent of the program established in [8, 9]. In particular, we can
adapt some of the main ideas of [30] regarding the delicate convergence of nonlinear
convection terms. Detailed computations are included to make the paper as much self-
contained as possible also because, even in the classical “elastic” case, it is difficult to find
a full proof of the convergence towards hydrodynamic limit for the weak solutions we
consider here. For such solutions, details of proof are scattered in the literature and full
proof of the convergence of nonlinear terms is sometimes only sketched where most of
the full detailed proofs are dealing with the more delicate case of renormalized solutions
[30, 31, 44]. In our framework, the terms involving the quadratic operator Qα(hε, hε)
are treated as source terms which converge in distributions to zero whereas the drift term
and the dissipation of energy function Dα are the objects responsible for the terms in the
right-side of the Navier-Stokes system (1.17). We also observe that the derivation of the
strong Boussinesq relation is not as straightforward as in the elastic case. Actually, the
classical Boussinesq relation

∇ (̺(t, x) + ϑ1θ(t, x)) = 0

is established as in the elastic case. In the elastic case, this relation implies the strong
form of Boussinesq mainly because the two functions ̺(t, x) and θ(t, x) have zero spatial
averages. This cannot be deduced directly in the granular context due to the dissipation
of energy.

1.10. Organization of the paper. The paper is divided into 6 Sections and three Appen-
dices. In the following Section 2, we collect several results regarding the collision operator
Lα(ε) and introduce the splitting of the operator in Lα(ε) = Aα + Bα as well as the split-

ting of the full linearized operator Gα,ε. Section 3 is devoted to the spectral analysis of
Gα,ε culminating with the proof of Theorem 1.7. In Section 4, we derive the fundamental
a priori estimates on the close-to-equilibrium solutions to (1.20). It is the most technical
part of the work and fully exploits the splitting of the operator Gα,ε as explained earlier.
Section 5 gives the proof of Theorem 1.3 whereas Section 6 gives the full proof of the
hydrodynamic limit (Theorem 1.4). In Appendix A, we recall some facts about the gran-
ular Boltzmann equation and gives the full proof of a technical result of Section 2. In
Appendix B, we collect some well-known properties useful for the hydrodynamic limit as
well as some technical proofs used in Section 6. Finally, Appendix C gives the proof of two
technical results of Section 2.
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2. SUMMARY OF USEFUL RESULTS ABOUT THE COLLISION OPERATOR

2.1. The linearized operators Lα and L1. In all the sequel, we will use well-known
estimates for the bilinear operator Qα(f, g) and Q1(f, g) in several different functional
spaces. We refer to [3, 4, 52] for precise statements. A crucial role in our analysis will
be played by the fact that, in some suitable sense, Lα is close to the elastic linearized
operator L1 for α ≃ 1. Let us begin with the following crucial observation which also jus-
tifies the optimal scaling (1.15) and optimise the rate of convergence previously derived in
[52, Proposition 3.1 (iii)] for weights different to the ones considered here. The technical
proof is postponed to Appendix A since it based upon the so-called n-representation of the
collision operator:

Lemma 2.1. Assume α ∈ (0, 1]. For all q > 2 there is a positive constant cq such that

‖Q1(g, f)−Qα(g, f)‖L1
v(̟q) 6 cq

1− α

α2
‖f‖

W
1,1
v (̟q+2)

‖g‖
W

1,1
v (̟q+2)

.

More generally, for k ∈ N and q > 2, there is a positive constant ck,q > 0 such that

‖Q1(g, f)−Qα(g, f)‖Wk,1
v (̟q)

6 ck,q
1− α

α2
‖f‖

W
k+1,1
v (̟q+2)

‖g‖
W

k+1,1
v (̟q+2)

.

Let us now investigate the rate of convergence of the equilibrium Gα towards M. An
optimal convergence rate in L1-spaces is given in [52, Step 2, proof of Lemma 4.4]: there
is C > 0 and α∗ > 0 such that

‖M−Gα‖L1
v(〈 · 〉m−1) 6 C(1− α) , α ∈ [α∗, 1] . (2.1)

for m(v) = exp(a |v|), a > 0 small enough. We need to extend this optimal rate of
convergence to the Sobolev spaces Ws,1(̟q) we are considering here.

Lemma 2.2. Let k ∈ N, q > 2 be given. There exist some explicit α⋆ ∈ (0, 1) and C > 0 such
that

‖M−Gα‖Wk,1
v (̟q+1)

6 C(1− α) , k ∈ N .
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Proof. We slightly modify here a strategy adopted in [5] which consists in combining a
nonlinear estimate for ‖Gα−M‖Wk,1(̟q) together with non-quantitative convergence. We

fix k, q and we divide the proof into three steps:

First step: non quantitative convergence. We prove that

lim
α→1

‖M−Gα‖Wk,1
v (̟q+1)

= 0. (2.2)

We argue here as in [5, Theorem 4.1]. We sketch only the main steps. First, as already
noticed in [52], there is α0 > 0 such that

sup
α∈(α0,1)

‖Gα‖Wk,1
v (̟q+1)

<∞.

Then, there is a sequence (αn)n converging to 1 such that (Gαn)n converges weakly, in

W
k,1
v (̟q+1) to some limit Ḡ (notice that, a priori, the limit function Ḡ depends on the

choice of k and q). Using the decay of (Gα) and compact embedding for Sobolev spaces,
this convergence is actually strong, i.e. limn ‖Gαn − Ḡ‖

W
k,1
v (̟q+1)

= 0. According to (2.1),

one necessarily has Ḡ = M and one deduces easily that whole net (Gα)α is converging
to M. This proves (2.2).

Second step: nonlinear estimate. We first consider the Maxwellian Mα with same mass,
momentum and energy of Gα and we consider the linearized elastic collision operator
around that Maxwellian

Lg = Q1(g,Mα) +Q1(Mα, g), g ∈ W
k,1
v (̟q+1).

One simply notices that, since Q1(Mα,Mα) = 0,

L(Gα) = Q1(Gα −Mα,Mα −Gα) +Qα(Gα, Gα) +

[
Q1(Gα, Gα)−Qα(Gα, Gα)

]

= Q1(Gα −Mα,Mα −Gα)− (1− α)∇ · (vGα) +

[
Q1(Gα, Gα)−Qα(Gα, Gα)

]
.

Therefore, using classical estimates for Q1 (see [3, 4])

‖L(Gα)‖Wk,1
v (̟q)

6 ‖Q1(Gα −Mα,Mα −Gα)‖Wk,1
v (̟q)

+ (1− α) ‖Gα‖Wk+1,1
v (̟q+1)

+ ‖Q1(Gα, Gα)−Qα(Gα, Gα)‖Wk,1
v (̟q)

6 C1 ‖Gα −Mα‖2Wk,1(̟q+1)
+ C(1− α)‖Gα‖Wk+1,1

v (̟q+1)
+ C1(1− α) ‖Gα‖2

W
k,1
v (̟q+2)

where we used Lemma 2.1 for estimating the difference Q1(Gα, Gα)−Qα(Gα, Gα). Since
supα ‖Gα‖Wk+1,1

v (̟q+2)
<∞, we obtain that there is a positive constant C2 > 0 such that

‖L(Gα)‖Wk,1
v (̟q)

6 C2(1− α) + C2‖Gα −Mα‖2
W

k,1
v (̟q+1)

.

We can write L(Gα) = L(Gα − Mα) and, as Gα − Mα has zero mass, momentum and
energy, there is a positive constant c > 0 (that can be taken independent of α) such that

‖L(Gα −Mα)‖Wk,1
v (̟q)

> c‖Gα −Mα‖Wk,1
v (̟q+1)

.
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Recall that the constant c > 0 is actually the norm of the inverse of L on the subspace of

functions with zero mass, momentum and energy; recall that this inverse maps W
k,1
v (̟q)

into D(L) = W
k,1
v (̟q+1). Therefore, with C3 = C2/c

‖Gα −Mα‖Wk,1
v (̟q+1)

6 C3(1− α) + C3‖Gα −Mα‖2
W

k,1
v (̟q+1)

, α ∈ (α0, 1). (2.3)

Third step: conclusion. Setting

ϑα :=
1

d

ˆ

Rd

|v|2 Mα(v)dv =
1

d

ˆ

Rd

|v|2Gα(v)dv,

one sees easily from (2.1) that |ϑ1 − ϑα| 6 C(1 − α) and then, one can check without
difficulty that there is some positive constant Ck,q > 0 such that

‖Mα −M‖
W

k,1
v (̟q)

6 Ck,q(1− α) , ∀α ∈ [α∗, 1]. (2.4)

Thanks to (2.2), we can then find α1 > α0 such that

C3‖Gα −Mα‖Wk,1
v (̟q+1)

6
1

2

where C3 > 0 is the positive constant in (2.3). Then, (2.3) reads simply as

‖Gα −Mα‖Wk,1
v (̟q+1)

6 2C3(1− α) , α ∈ (α1, 1) ,

and, using (2.4), we end up with

‖Gα −M‖
W

k,1
v (̟q+1)

6 C(1− α) , α ∈ (α1, 1) ,

which gives also a quantitative lower bound on α1. �

Remark 2.3. The existence of the self-similar profile Gα has been obtained in [51] and the
uniqueness in [52] for 1− α sufficiently small. The uniqueness of the profile has been proved
in spaces with exponential weights, but from the a posteriori estimates provided therein, any
self-similar profile Gα belongs to some L1-space with exponential weight. Therefore, self-
similar profiles are unique in spaces with polynomial weights ̟q as well, provided 1 − α is
sufficiently small.

We recall also the following spectral properties of Lα as established in [52].

Proposition 2.4. On the space

L1
v(̟q) ∩

{
h ∈ L1

v(̟1) ;

ˆ

Rd

h(v)dv =

ˆ

Rd

h(v) v dv = 0
}
, q > 2

the spectrum of Lα is such that there exists µ > 0 such that

S(Lα) ∩ {λ ∈ C ; Reλ > −µ } = {−µα} (2.5)

where µα is a simple eigenvalue of Lα with

µα = (1− α) + O((1− α)2) as α→ 1. (2.6)
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Moreover, denoting by φα the unique associated eigenfunction such that ‖φα‖L1
v(̟2) = 1 and

φα(0) < 0, it holds

lim
α→1

φα(v) = c0
(
|v|2 − dϑ1

)
M. (2.7)

Remark 2.5. We stress that the results of [52] have been established for exponential weights
m(v) = exp(a|v|). An elementary adaption can be made for the weights considered here. An
alternative route is to extend the spaces from L1(exp(a|v|)dv) to L1(̟q) using enlargement
techniques, see [34].

On the underlying space W
k,1
v (̟q), introduce the operator Tα : D(Tα) ⊂ W

k,1
v (̟q) →

W
k,1
v (̟q) defined by D(Tα) = W

k+1,1
v (̟q+1) and

Tαh(v) = −καdiv(v h(v)), h ∈ D(Tα).

One sees that the operator Tα is the one responsible for the discrepancy between the
domain of L1 and Lα. Because of this, we set

Pα : D(Pα) ⊂ W
k,1
v (̟q) → W

k,1
v (̟q)

as Pα = Lα − L1 with domain

D(Pα) = D(L1) = W
k,1
v (̟1+q).

One has then the following Proposition.

Proposition 2.6. For any k ∈ N, q > 0, there exists some explicit constant Ck,q > 0 such

that for any h ∈ W
k,1
v (̟1+q)

‖Pαh‖Wk,1
v (̟q)

= ‖Lαh− L1h‖Wk,1
v (̟q)

6 Ck,q(1− α) ‖h‖
W

k+1,1
v (̟2+q)

. (2.8)

As a consequence, for any h ∈ W
k+1,1
v (̟2+q)

‖Lαh− L1h‖Wk,1
v (̟q)

6 (Ck,q(1− α) + κα) ‖h‖Wk+1,1
v (̟2+q)

. (2.9)

Proof. Recall (see [3, 4]) that, for any q > 0, there is some universal positive constant
Cq > 0 such that

‖Qα(g, f)‖L1
v(̟q) 6 Cq‖g‖L1

v(̟q+1) ‖f‖L1
v(̟q+1), ∀f, g ∈ L1

v(̟q+1). (2.10)

Then, since

Lαh(v)−L1h(v) = Qα(h,Gα −M)(v) +Qα(Gα −M, h)(v)

+
[
Qα(h,M)(v) −Q1(M, h)(v)

]
+
[
Qα(M, h)(v) −Q1(h,M)(v)

]
,

(2.11)

one deduces from (2.10) and Lemma 2.1 that

‖Pαh‖L1
v(̟q) 6 2Cq‖h‖L1

v(̟1+q) ‖Gα −M‖L1
v(̟1+q)

+ 2 cq
1− α

α2
‖h‖

W
1,1
v (̟2+q)

‖M‖
W

1,1
v (̟2+q)

.

Using now Lemma 2.1, this proves (2.8) for k = 0 with C0,q = 2CqC +2cqα
−2
0 ‖M‖

W
1,1
v (̟2+q)

.
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In order to prove the result for higher-order derivatives, one argues using the fact that

∇vQα(g, f) = Qα(∇vg, f) +Qα(g,∇vf).

Then, using (2.11) with the help of the estimate

‖Tαh‖Wk,1
v (̟q)

6 κα‖h‖Wk+1,1
v (̟1+q)

one deduces (2.9) from (2.8). �

2.2. Decomposition of Lα. Let us now recall the following decomposition of L0 in-
troduced in [34, 59]. For any δ ∈ (0, 1), we consider the cutoff function 0 6 Θδ =
Θδ(ξ, ξ∗, σ) ∈ C∞(Rd × R

d × S
d−1), assumed to be bounded by 1, which equals 1 on

Jδ :=
{
(ξ, ξ∗, σ) ∈ R

d × R
d × S

d−1
∣∣∣ |ξ| 6 δ−1 , 2δ 6 |ξ − ξ∗| 6 δ−1 , | cos θ| 6 1− 2δ

}
,

and whose support is included in Jδ/2 (where cos θ = 〈 ξ−ξ∗
|ξ−ξ∗| , σ〉). We then set

L S,δ
1 h(ξ) =

ˆ

Rd×Sd−1

[
M(ξ′∗)h(ξ

′) +M(ξ′)h(ξ′∗)−M(ξ)h(ξ∗)
]

× |ξ − ξ∗|Θδ(ξ, ξ∗, σ)dξ∗dσ ,

L R,δ
1 h(ξ) =

ˆ

Rd×Sd−1

[
M(ξ′∗)h(ξ

′) +M(ξ′)h(ξ′∗)−M(ξ)h(ξ∗)
]

× |ξ − ξ∗| (1−Θδ(ξ, ξ, σ))dξ∗dσ ,

so that L1h = L S,δ
1 h+ L R,δ

1 h− hΣM where ΣM denotes the mapping

ΣM(ξ) =

ˆ

Rd

M(ξ∗)|ξ − ξ∗|dξ∗, ξ ∈ R
d. (2.12)

Introduce

A(δ)(h) := L S,δ
1 (h) and B(δ)

1 (h) := L R,δ
1 − ΣM

so that L1 = A(δ) + B(δ)
1 . Let us recall [34, Lemmas 4.12, 4.14 & Lemma 4.16]:

Lemma 2.7. For any k ∈ N and δ > 0, there are two positive constants Ck,δ > 0 and Rδ > 0

such that supp
(
A(δ)f

)
⊂ B(0, Rδ) and

‖A(δ)f‖
W

k,1
v (Rd)

6 Ck,δ‖f‖L1
v(̟1), ∀f ∈ L1(Rd,̟1(v)dv). (2.13)

Moreover, for any q > 2 and any δ ∈ (0, 1) it holds
ˆ

Td

dx

ˆ

Rd

〈ξ〉q sign(h)B(δ)
1 hdξ 6 (Λq(δ) − 1) ‖h‖L1

xL
1
ξ
(̟q+1) (2.14)

where Λq : (0, 1) → R
+ is some explicit function such that limδ→0 Λq(δ) =

4
q+2 .

This leads to the following decomposition of Lα:

Lα = B(δ)
α +A(δ) , where B(δ)

α = B(δ)
1 + [Lα − L1] .
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2.3. The complete linearized operator. The complete linearized operator is given by

Gα,εh = ε−2Lα(h)− ε−1v ·∇xh, ∀α ∈ (0, 1].

With previous decomposition, we have that

Gα,ε = A(δ)
ε + B(δ)

α,ε

where

A(δ)
ε = ε−2A(δ), B(δ)

α,ε = ε−2B(δ)
α − ε−1v ·∇x .

Notice that

B(δ)
α,ε − B(δ)

1,ε = Gα,ε − G1,ε = ε−2Pα + ε−2Tα.

One has the following properties of B(δ)
α,ε (see [59, Lemmas 2.7, 2.8, 2.9] for a similar

result).

Proposition 2.8. For any k > s > 0 and q > 2 there exist α†
ℓ,s,q > 0, δ†ℓ,s,q > 0 and νℓ,s,q > 0

such that

B(δ)
α,ε + ε−2νℓ,s,q is hypo–dissipative in W

ℓ,1
x W

s,1
v (̟q), ∀α ∈ (α†

ℓ,s,q, 1), δ ∈ (0, δ†ℓ,s,q).

Proof. Notice that derivatives with respect to the x-variable commute with the operator

B(δ)
α,ε and this allows to prove the result, without loss of generality, in the special case

ℓ = s. We divide the proof in several steps:

• We first consider the case ℓ = 0. We write B(δ)
α,ε(h) =

∑3
i=0 Ci(h) with

C0(h) = ε−2B(δ)
1 h, C1(h) = −ε−1v ·∇xh,

C2(h) = ε−2Pαh, C3(h) = ε−2Tαh = −ε−2κα∇v · (v h(x, v)) ,

and correspondingly and with obvious notations,

ˆ

Td

dx

ˆ

Rd

B(δ)
α,ε(h)(x, v) sign(h(v))̟q(v) dv =:

3∑

i=0

Ii(h).

First,

I1(h) = ε−1

ˆ

Td

dx

ˆ

Rd

sign(h(x, v)) v ·∇xh(x, v)̟q(v)dv

= ε−1

ˆ

Td

dx

ˆ

Rd

v ·∇x|h(x, v)|̟q(v)dv = 0

while, according to Eq. (2.14)

I0(h) 6 ε−2 (Λq(δ) − 1) ‖h‖L1
xL

1
v(̟q+1).

Moreover, it follows from Proposition 2.6 that

I2(h) 6 ε−2

ˆ

Td

‖Pαh(x, · )‖L1
v(̟q)dx 6 ε−2C0,q(1− α)‖h‖L1

xL
1
v(̟q+1).
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Finally, since h∇vsignh = 0, one has

I3(h) = −ε−2κα

ˆ

Td

dx

ˆ

Rd

divv(v|h(x, v)|)̟q(v) dv

= ε−2κα

ˆ

Td

dx

ˆ

Rd

|h(x, v)|v ·∇v̟q(v) dv

Since v ·∇v̟q(v) = q̟q(v)− q̟q−2(v) we get

I3(h) 6 qκαε
−2‖h‖L1

xL
1
v(̟q+1).

Gathering the previous estimates, one obtains

I :=

ˆ

Td

dx

ˆ

Rd

B(δ)
α,ε(h)(x, v) sign(h(x, v))̟q(v) dv

6 ε−2 (C0,q(1− α) + Λq(δ) − 1 + qκα) ‖h‖L1
xL

1
v(̟q+1).

(2.15)

Recalling that κα = 1 − α while limδ→0(Λq(δ) − 1) = − q−2
q+2 < 0 we can pick δ†0,0,q small

enough and then α†
0,0,q ∈ (0, 1) close enough to 1 so that

ν0,0,q := − inf
{
C0,q(1− α) + Λq(δ) − 1 + qκα ; α ∈ (α†

0,0,q, 1), δ ∈ (0, δ†0,0,q)
}
> 0

and get the result.

Let us investigate the case k = 1 first. We consider the norm

|||h||| = ‖h‖L1
xL

1
v(̟q) + ‖∇xh‖L1

xL
1
v(̟q) + η ‖∇vh‖L1

xL
1
v(̟q),

for some η > 0, the value of which shall be fixed later on. This norm is equivalent to

the classical W
1,1
x,v(̟q)-norm. We shall prove that for some ν1,1,q > 0, B(δ)

α,ε + ε−2ν1,1,q is

dissipative in W 1,1
x,v (̟q) for the norm ||| · |||. Notice first that the x-derivative commutes

with all the above terms Ci(h), i = 0, . . . , 3, i.e.

∇xB(δ)
α,εh(x, v) = B(δ)

α,ε∇xh(x, v)

so that, according to the previous step

Jx : =

ˆ

Td

dx

ˆ

Rd

∇xB(δ)
α,ε(h)(x, v) sign(∇xh(x, v))̟q(v) dv

6 −ε−2ν0,0,q‖∇xh‖L1
xL

1
v(̟q)

(2.16)

where we used the short-hand notation

sign(∇xh(x, v)) =
(
sign(∂x1h(x, v)), · · · , sign(∂xd

h(x, v))
)
.

Consider now the quantity

Jv :=

ˆ

Td

dx

ˆ

Rd

∇v(B(δ)
α,εh(x, v)) · sign(∇vh(x, v))̟q(v) dv.
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Using the notations above, one notices that ∇vC1(h) = −ε−1∇xh+C1(∇vh), so that

∇v(B(δ)
α,εh(x, v)) = ε−2∇v(B(δ)

1 h)− ε−1∇xh+ C1(∇vh)

+ ε−2∇v(Pαh) + ε−2∇v(Tαh)

= ε−2∇v[L
R,δ
1 h− ΣM h]− ε−1∇xh+ C1(∇vh)

+ ε−2∇v(Pαh) + ε−2∇v(Tαh).

(2.17)

Then, it follows from Proposition 2.6 that

‖∇v(Pαh)‖L1
v(̟q) 6 C1,q(1− α)

(
‖h‖L1

v(̟1+q) + ‖∇vh‖L1
v(̟1+q)

)
. (2.18)

Now,

∇v[L
R,δ
1 h− ΣMh] = L R,δ

1 (∇vh)−ΣM∇vh+R(h),

where

R(h) = Q1(h,∇vM) +Q1(∇vM, h)− (∇vA(δ))(h) −A(δ)(∇vh).

As in [59, p. 1942], an integration by parts leads to

‖(∇A(δ))(h)‖L1
v(̟q) + ‖A(δ)(∇vh)‖L1

v(̟q) 6 Cδ‖h‖L1
v(̟q),

for some constantCδ > 0. This and some classical estimates on Q1(h,∇vM)+Q1(∇vM, h)
yield

‖R(h)‖L1
v(̟q) 6 Cδ‖h‖L1

v(̟q+1).

Again, as in [59, Eq. (2.10)], one has

‖L R,δ
1 (∇vh)‖L1

v(̟q) 6 τ(δ)‖∇vh‖L1
v(̟q+1),

where lim
δ→0

τ(δ) = 0. Then, since ΣM(ξ) > σ0〈ξ〉, one has that

−
ˆ

Rd

ΣM(ξ)∇ξh(x, ξ) · sign(∇ξh(x, ξ))̟q(ξ) dξ = −
ˆ

Rd

ΣM(ξ) |∇ξh(ξ)|̟q(ξ) dξ

6 −σ0 ‖∇vh‖L1
v(̟q+1).

Therefore,

‖∇v[L
R,δ
1 (h)− ΣM h]‖L1

v(̟q) 6 Cδ‖h‖L1
v(̟q+1) + (τ(δ) − σ0) ‖∇vh‖L1

v(̟q+1) (2.19)

where limδ→0+ τ(δ) = 0. Finally,
ˆ

Rd

∇v(Tαh(x, v)) · sign(∇vh(v))̟q(v) dv = −(d+ 1)κα

ˆ

Rd

|∇vh(x, v)|̟q(v) dv

+ κα

ˆ

Rd

|∇vh(x, v)|∇v · (v̟q(v)) dv 6 C κα ‖∇vh‖L1
v(̟q+1).

(2.20)
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Combining (2.17) with the estimates (2.18), (2.19) and (2.20), one obtains that

Jv 6 ε−2(Cδ +C1,q(1− α))‖h‖L1
xL

1
v(̟q+1)

+ ε−2(C1,q(1− α) + Cκα + τ(δ) − σ0)‖∇vh‖L1
xL

1
v(̟q+1) ,

where we used that the contribution to Jv of the divergence term −ε−1∇xh + C1(∇vh)
vanishes. Hence, combining this estimate with (2.15) and (2.16) it follows that

I + Jx + η Jv 6 ε−2

([
− ν0,0,q + η(Cδ +C1,q(1− α))

]
‖h‖L1

xL
1
v(̟q+1)

− ν0,0,q‖∇xh‖L1
xL

1
v(̟q+1) + η

[
C1,q(1− α) +Cκα + τ(δ) − σ0

]
‖∇vh‖L1

xL
1
v(̟q+1)

)
.

Consequently, there exists α†
1,1,q > 0 and δ†1,1,q > 0 so that

C1,q(1− α) + Cκα + τ(δ) − σ0 < 0 ∀α ∈ (α†
1,1,q, 1), δ ∈ (0, δ†1,1,q).

Choosing η > 0 small enough such that ν0,0,q − η (Cδ +C1,q(1− α)) > 0, we finally obtain

I + Jx + η Jv 6 −ε−2ν1,1,q

[
‖h‖L1

xL
1
v(̟q+1) + ‖∇xh‖L1

xL
1
v(̟q+1) + η ‖∇vh‖L1

xL
1
v(̟q+1)

]

6 −ε−2ν1,1,q|||h|||,

with ν1,1,q := min(ν0,0,q − η (Cδ + C1,q(α)), σ0 − (C1,q(α) + Cκα + τ(δ))). This proves

that B(δ)
α,ε + ε−2ν1,1,q is hypo-dissipative in W

1,1
x,v(̟q). We prove the result for higher order

derivatives in the same way considering now the norm

|||h||| =
∑

|β1|+|β2|6k

η|β1|
∥∥∥∇|β1|

v ∇|β2|
x h

∥∥∥
L1
xL

1
v(̟q)

for some η > 0 to be chosen sufficiently small. �

Remark 2.9. It is important to notice that the equivalent norms constructed in the Proposi-

tion 2.8 are independent of ε. This means that the hypo-dissipativity of B(δ)
α,ε + ε−2νℓ,s,q on

W
ℓ,1
x W

s,1
v (̟q) can be re-written as

‖(λ− ε−2νℓ,s,q − B(δ)
α,ε)g‖Wℓ,1

x W
s,1
v (̟q)

> C λ‖g‖
W

ℓ,1
x W

s,1
v (̟q)

for any λ > 0, g ∈ D(B(δ)
α,ε), and some constant C > 0 depending on ℓ, s, q but not on ε.

2.4. The elastic semigroup. The spectral analysis of G1,ε and the generation of its associ-
ated semigroup has been performed in [15, Theorem 2.1]. We need a slightly more precise
estimate on the decay of the semigroup independently of ε. Our main result concerning
G1,ε is the following whose proof is postponed to Appendix C:
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Theorem 2.10. There exists ε0 ∈ (0, 1) such that, for all ℓ, s ∈ N with ℓ > s and q > 2 and
any ε ∈ (0, ε0), the full transport operator G1,ε generates a C0-semigroup {V1,ε(t) ; t > 0}
on W

ℓ,1
x W

s,1
v (̟q) and there exist C0 > 0 and µ⋆ > 0 (both independent of ε) such that

∥∥V1,ε(t) [h−P0h]
∥∥
W

ℓ,1
x W

s,1
v (̟q)

6 C0 exp(−µ⋆t) ‖h−P0h‖Wℓ,1
x W

s,1
v (̟q)

, ∀ t > 0 , (2.21)

holds true for any h ∈ W
ℓ,1
x W

s,1
v (̟q), where P0 is the spectral projection onto Ker(G1,ε) =

Ker(L1) which is independent of ε and given by

P0h =
d+2∑

i=1

(
ˆ

Td×Rd

hΨi dxdv

)
ΨiM (2.22)

where Ψ1(v) = 1, Ψi(v) =
1√
ϑ1
vi−1 (i = 2, . . . , d+ 1) and Ψd+2(v) =

|v|2−dϑ1

ϑ1

√
2d

(v ∈ R
d).

Remark 2.11. Theorem 2.10 is known to be true on the Hilbert space Hℓ
x,v(M− 1

2 ), see

[14, Theorem 2.1] whereas, in the present context, a similar result was obtained in [15,
Theorem 2.1] with the important difference that the estimate (2.21) was shown only for
t > t⋆ > 0. This actually comes from the use of a general enlargement theorem from [34]
which yields

‖V1,ε(t)h−P0h‖Wℓ,1
x W

s,1
v (̟q)

6 C0
tN

εN(2+s)
exp(−µ t) ‖h − P0h‖Wℓ,1

x W
s,1
v (̟q)

, t > 0

for some N ∈ N and s > 0 and µ > µ⋆. It is important for the rest of our analysis to be able
to remove this strong dependence on ε in the decay estimate of V1,ε(t)(Id−P0). This is done
in Appendix C.

An important consequence of the Theorem 2.10 is the following proposition.

Proposition 2.12. Let ℓ, s ∈ N with ℓ > s and q > 2. There exists C1 > 0 such that

‖R(λ,G1,ε)‖B(Wℓ,1
x W

s,1
v (̟q))

6 C1 max

(
1

|λ| ,
1

Reλ+ µ⋆

)
, ∀λ ∈ C

⋆
µ⋆
, ∀ ε ∈ (0, ε0) ,

where ε0 and µ⋆ have been defined in Theorem 2.10, C1 being independent of ε.

Proof. On the space W
ℓ,1
x W

s,1
v (̟q), the spectrum of G1,ε satisfies

S(G1,ε) ∩ {z ∈ C ; Rez > −µ⋆} = {0}
and the above projection P0 is nothing but the spectral projection of S(G1,ε) associated to
the zero eigenvalue given by

P0 =
1

2iπ

˛

γr

R(z,G1,ε)dz , γr := {z ∈ C ; |z| = r} , r < µ⋆.

Notice also

dim (Range(P0)) = dimKer(G1,ε) = d+ 2 ,



FLUID DYNAMIC LIMIT OF BOLTZMANN EQUATION FOR GRANULAR HARD–SPHERES 29

which means that the algebraic multiplicity of the zero eigenvalue coincides with its ge-
ometrical multiplicity and, as such, 0 is a simple pole of the resolvent R( · ,G1,ε) (see

[42, III.5]). Denote by ‖ · ‖ the operator norm in W
ℓ,1
x W

s,1
v (̟q) and fix µ ∈ (0, µ⋆). Since

R(λ,G1,ε) = R(λ,G1,ε)P0+R(λ,G1,ε)(Id−P0) and P0 commutes with G1,ε, we only need
to estimate independently

‖R(λ,G1,ε)P0‖ and ‖R (λ,G1,ε) [Id−P0] ‖
for any λ ∈ C

⋆
µ. Since the multiplicity of the pole 0 is one, one has R(λ,G1,ε)P0 = 1

λP0

and

‖R(λ,G1,ε)P0‖ 6
‖P0‖
|λ| , λ ∈ C

⋆
µ⋆
.

On the other hand, since for any λ ∈ Cµ⋆

R (λ,G1,ε) [Id−P0] =

ˆ ∞

0
e−λ tV1,ε(t) [Id−P0] dt ,

one deduces from Theorem 2.10 that

‖R (λ,G1,ε) [Id−P0] ‖ 6 C0

ˆ ∞

0
e−Reλ te−µ⋆ t‖Id−P0‖dt ,

which gives that

‖R (λ,G1,ε) [Id−P0] ‖ 6 C0‖Id−P0‖
1

Reλ+ µ⋆
, ∀λ ∈ Cµ⋆ .

This gives the desired estimate with C1 = ‖P0‖+C0‖Id−P0‖ independent of ε and µ. �

We end this section with the following semigroup generation result.

Proposition 2.13. For any ℓ > s > 0, q > 2, α ∈ (α†
ℓ,s,q, 1), δ ∈ (0, δ†ℓ,s,q) and ε > 0, the

operator

B(δ)
α,ε : D(B(δ)

α,ε) ⊂ W
ℓ,1
x W

s,1
v (̟q) −→ W

ℓ,1
x W

s,1
v (̟q)

is the generator of a C0-semigroup {S(δ)
α,ε(t) ; t > 0} in W

ℓ,1
x W

s,1
v (̟q) and there exist 0 <

ν∗ < νℓ,s,q and Cℓ,s,q > 0 such that
∥∥∥S(δ)

α,ε(t)
∥∥∥

B(Wℓ,1
x W

s,1
v (̟q))

6 Cℓ,s,q exp(−ε−2ν∗ t) , ∀ t > 0. (2.23)

As a consequence,

Gα,ε : D(Gα,ε) ⊂ W
ℓ,1
x W

s,1
v (̟q) −→ W

ℓ,1
x W

s,1
v (̟q)

is the generator of a C0-semigroup {Vα,ε(t) ; t > 0} in W
ℓ,1
x W

s,1
v (̟q).

Proof. The fact that B(δ)
α,ε is a generator of a C0-semigroup in W

ℓ,1
x W

s,1
v (̟q) is proven in

Appendix C. Since we already proved that B(δ)
α,ε + ε−2νℓ,s,q is hypo-dissipative, we deduce

directly (2.23). Finally, because A(δ)
ε is a bounded operator in W

ℓ,1
x W

s,1
v (̟q), we deduce

from the bounded perturbation theorem that Gα,ε = A(δ)
ε +B(δ)

α,ε generates a C0-semigroup

in W
ℓ,1
x W

s,1
v (̟q). �
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3. LINEAR THEORY IN THE WEAKLY INELASTIC REGIME

The final goal of this section is to prove Theorem 1.7, so, in the sequel we define

X := W
ℓ,1
x W

s,1
v (̟q), Y := W

ℓ,1
x W

s+1,1
v (̟q+2)

ℓ, s ∈ N, ℓ > s+ 1 and q > 2

so that Y ⊂ X.
We recall that, in the space X, the full linearized operator is given by

Gα,εh = ε−2Lα(h)− ε−1v ·∇xh, ∀α ∈ (0, 1] ,

with domain D(Gα,ε) = W
ℓ+1
x W

s+1,1
v (̟q+1) .

Clearly, any spatially homogeneous eigenfunction of Lα associated to an eigenvalue λ ∈ C

is an eigenfunction to Gα,ε with associated eigenvalue ε−2λ. In particular

Ker(Lα) ⊂ Ker(Gα,ε).

Notice that, in contrast to [14, 15], it is not clear whether such spaces agree. We deduce
in particular from Proposition 2.4 that, on the space L1

xL
1
v(̟q),

−ε−2µα ∈ S(Gα,ε)

with associated eigenfunction φα, that is,

Gα,εφα = −ε−2 µαφα.

For the eigenvalue −ε−2 µα to stay sufficiently close to 0, we assume that α = α(ε) satisfies
Assumption 1.2 and write

Gε = Gα(ε),ε ,

and keep the notation G1,ε for the elastic operator. Similarly, for all the operators intro-
duced in Section 2.1 the double subscript (α, ε) will be replaced by ε except when α = 1.
More precisely, to fix notations, we have

Gεh = ε−2Lα(ε)h− ε−1v ·∇xh ,

with

Lα(ε)h = Lα(ε)h− κα(ε)∇v · (vh) ,

and

Lα(ε)h = Qα(ε)(h,Gα(ε)) +Qα(ε)(Gα(ε), h).

In the sequel, since ℓ, s, q are fixed, we set

δ† := min
{
δ†ℓ,s,q , δ

†
ℓ,s+1,q+2

}
, α† := max

{
α†
ℓ,s,q , α

†
ℓ,s+1,q+2

}
,

so that, for δ ∈ (0, δ†) and α ∈ (α†, 1), the results of the previous section hold in both the

spaces X, Y. Moreover, we denote by ε† > 0 the unique solution to

α(ε†) = α†.

We consider δ ∈ (0, δ†), ε ∈ (0, ε†) (which implies α(ε) ∈ (α†, 1)), and write

Aε = A(δ)
ε , Bε = B(δ)

α,ε.
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One has the following result which is similar to [59, Lemma 2.16]. We adapt and dras-
tically simplify the proof given there by exploiting the fact that the difference operator
Gε − G1,ε does not involve any spatial derivatives:

Proposition 3.1. For all λ ∈ C
⋆
µ⋆

, let

Jε(λ) = (Gε − G1,ε)R(λ,G1,ε)AεR(λ,Bε).

Then, Jε(λ) ∈ B(X). Furthemore, for any µ ∈ (0, µ⋆) and

λ ∈ Cµ \ D(µ⋆ − µ) = {z ∈ C ; Rez > −µ , |z| > µ⋆ − µ} ,
it holds that

‖Jε(λ)‖B(X) 6
C

µ⋆ − µ

1− α(ε)

ε2
(3.1)

for a universal constant C > 0.

In addition, there exists ε⋆ ∈ (0, ε†) such that Id−Jε(λ) and λ−Gε are invertible in X with

R(λ,Gε) = Γε(λ)(Id− Jε(λ))
−1, λ ∈ Cµ \ D(µ⋆ − µ) , ε ∈ (0, ε⋆) , (3.2)

where Γε(λ) = R(λ,Bε) +R(λ,G1,ε)AεR(λ,Bε). Finally, there exists some constant C > 0
such that

‖R(λ,Gε)‖B(X) 6
C

µ⋆ − µ
, ∀λ ∈ Cµ \D(µ⋆ − µ) , ε ∈ (0, ε⋆). (3.3)

Proof. We adapt the method of [59, Lemma 2.16] but simplifies it in several aspects. For
Reλ > −µ⋆, λ 6= 0, one knows from Proposition 2.12 that R(λ,G1,ε) ∈ B(Y) since we

assumed k > s+ 1 and there is C1 > 0 such that, for any ε ∈ (0, ε†), it holds that

‖R(λ,G1,ε)‖B(Y) 6 C1max

(
1

|λ| ,
1

Reλ+ µ⋆

)
, λ ∈ C

⋆
µ⋆
.

Moreover, from Proposition 2.8, there is ν > 0 such that Bε + ε−2ν is hypo-dissipative in
both Y and X. In particular (see Remark 2.9) there exists C2 > 0, independent of ε, such
that

‖R(λ,Bε)‖B(X) 6
C2

Reλ+ ε−2ν
, ∀Reλ > −µ⋆ .

Therefore, as soon as ε−2ν > 2µ⋆, one gets

‖R(λ,Bε)‖B(X) 6
C2 ε

2

ε2Reλ+ ν
6 C3 ε

2, ∀Reλ > −µ⋆, (3.4)

with C3 = 2C2/ν. A similar estimate holds true if X is replaced with Y. Notice that the
regularization properties of Aε in both velocity regularity and tail behaviour implies that
there exists C > 0 (independent of ε) such that ‖Aε‖B(X,Y) 6 Cε−2 from which

‖AεR(λ,Bε)‖B(X,Y) 6 C4 , ∀Reλ > −µ⋆,
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with C4 = C3C. Finally, notice that in the difference Gε − G1,ε = ε−2
[
Lα(ε) − L1

]
, the

transport term v ·∇x vanishes and, according to (2.9), Gε − G1,ε ∈ B(Y,X) for ε ∈ (0, ε†)
with

‖Gε − G1,ε‖B(Y,X) 6 C0
1− α(ε)

ε2
(3.5)

for some positive constant C0 independent of ε. We deduce with this that, for any Reλ >
−µ⋆, λ 6= 0, the operator Jε(λ) ∈ B(X) is well-defined and, for any r ∈ (0, µ⋆)

‖Jε(λ)‖B(X) 6 ‖Gε − G1,ε‖B(Y,X) ‖R(λ,G1,ε)‖B(Y) ‖AεR(λ,Bε)‖B(X,Y)

6 C5
1− α(ε)

ε2
max

(
1

|λ| ,
1

Reλ+ µ⋆

)
, λ ∈ C

⋆
µ⋆
,

with C5 := C0C1C4 > 0 independent of ε. Then, for µ ∈ (0, µ⋆) it holds

‖Jε(λ)‖B(X) 6 C5
1− α(ε)

ε2
max

(
1

|λ| ,
1

µ⋆ − µ

)
, λ ∈ C

⋆
µ , (3.6)

which gives (3.1). With this, under Assumptions 1.2, one can choose ε⋆ small enough,
depending on the difference |µ⋆ − µ|, so that

ρ(ε) =
C5

µ⋆ − µ

1− α(ε)

ε2
< 1, ∀ε ∈ (0, ε⋆). (3.7)

Under such an assumption, one sees that, for all λ ∈ Cµ\D(µ⋆−µ), Id−Jε(λ) is invertible
in X with

(Id−Jε(λ))
−1 =

∞∑

p=0

[Jε(λ)]
p , ∀ε ∈ (0, ε⋆).

Let us fix then ε ∈ (0, ε⋆) and λ ∈ Cµ \ D(µ⋆ − µ). The range of Γε(λ) is clearly included
in D(Bε) = D(G1,ε). Then, writing Gε = Aε + Bε we easily get that

(λ− Gε)Γε(λ) = Id− Jε(λ)

i.e. Γε(λ)(Id−Jε(λ))
−1 is a right-inverse of (λ−Gε). To prove that λ− Gε is invertible, it

is therefore enough to prove that it is one-to-one. Consider the eigenvalue problem

Gεh = λh, h ∈ D(Gε),

Writing this as (λ− G1,ε)h = Gεh− G1,εh, there is a positive constant C6 > 0 independent
of ε such that

‖h‖X = ‖R(λ,G1,ε)(Gε − G1,ε)h‖X 6 C6
1− α(ε)

ε2
‖h‖Y (3.8)

where we used Proposition 2.12 to estimate ‖R(λ,G1,ε)‖B(X) on Cµ \D(µ⋆ − µ) and (3.5)

for the difference (Gε − G1,ε)h. Let us now estimate ‖h‖Y. Since Gεh = λh, one has
(λ− Bε)h = Aεh and h = R(λ,Bε)Aεh, so that, thanks to (3.4),

‖h‖Y 6 ‖R(λ,Bε)‖B(Y) ‖Aεh‖Y 6 C3ε
2‖Aεh‖Y 6 C3‖A‖B(X,Y)‖h‖X
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where we recall that Aε = ε−2A ∈ B(X,Y). Combining this with the above estimate
(3.8), we end up with

‖h‖X 6 C7
1− α(ε)

ε2
‖h‖X

with C7 := C6C3‖A‖B(X,Y) independent of ε. One sees that, up to reducing ε⋆, one can

assume that C7
1−α(ε)

ε2
< 1 for ε ∈ (0, ε⋆) which implies that h = 0. This proves that λ−Gε is

one-to-one and its right-inverse is, actually, its inverse. Thus, for ε ∈ (0, ε⋆), Cµ \D(µ⋆−µ)
belongs to the resolvent set of Gε and this shows (3.2). To estimate now ‖R(λ,Gε)‖B(X)

one simply notices that

‖(Id− Jε(λ))
−1‖B(X) 6

∞∑

p=0

‖Jε(λ)‖pB(X)
6

1

1− ρ(ε)
, ∀λ ∈ Cµ \ D(µ⋆ − µ) (3.9)

from which, as soon as λ ∈ Cµ \ D(µ⋆ − µ),

‖R(λ,Gε)‖B(X) 6
1

1− ρ(ε)
‖Γε(λ)‖B(X) .

One checks, using the previous computations, that for λ ∈ Cµ \D(µ⋆ − µ),

‖Γε(λ)‖B(X) 6 C3ε
2 + C3‖A‖B(X)‖R(λ,G1,ε)‖B(X) (3.10)

and deduces (3.3). This achieves the proof. �

Remark 3.2. Of course, the above result is relevant mainly for 1
2µ⋆ < µ < µ⋆ for which

D(µ⋆ − µ) ⊂ Cµ, see Figure 1. Notice also that, in previous statement, the parameter ε⋆ is
depending only on the gap

χ := µ⋆ − µ .

From (3.7) we consider ε for which

λ0 := lim
ε→0+

1− α(ε)

ε2
≪ χ ,

therefore, λ0 is a fraction of χ.

A first obvious consequence of Proposition 3.1 is that, for any µ ∈ (0, µ⋆), there is

ε⋆ ∈ (0, ε†) depending only on χ = µ⋆ − µ such that

S(Gε) ∩ {λ ∈ C ; Reλ > −µ} ⊂ {z ∈ C ; |z| 6 µ⋆ − µ}, ∀ ε ∈ (0, ε⋆).

We denote by Pε the spectral projection associated to the set

Sε := S(Gε) ∩Cµ = S(Gε) ∩ D(µ⋆ − µ).

One can deduce then the following lemma whose proof is similar to [59, Lemma 2.17].

Lemma 3.3. For any µ ∈ (0, µ⋆) there is some ε⋆0 ∈ (0, ε⋆) depending only on µ⋆ − µ and
such that

‖Pε −P0‖B(X) < 1, ∀ ε ∈ (0, ε⋆0).

In particular,

dimRange(Pε) = dimRange(P0) = d+ 2, ∀ ε ∈ (0, ε⋆0). (3.11)
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Proof. Let µ⋆

2 < µ < µ⋆ and 0 < r < χ := µ⋆ − µ. Recall that ε⋆ depends only on χ. One
has D(r) ⊂ C

⋆
µ. We set γr := {z ∈ C ; |z| = r}. Recall that

Pε :=
1

2iπ

˛

γr

R(λ,Gε)dλ, P0 :=
1

2iπ

˛

γr

R(λ,G1,ε)dλ.

For λ ∈ γr, set

Zε(λ) = R(λ,G1,ε)AεR(λ,Bε)

so that Γε(λ) = R(λ,Bε) + Zε(λ). Recall from (3.2) that, for λ ∈ γr,

R(λ,Gε) = R(λ,Bε)(Id− Jε(λ))
−1 + Zε(λ)(Id− Jε(λ))

−1

= R(λ,Bε) +R(λ,Bε)Jε(λ)(Id− Jε(λ))
−1 + Zε(λ)(Id− Jε(λ))

−1

where we wrote (Id − Jε(λ))
−1 = Id + Jε(λ)(Id − Jε(λ))

−1. In the same way, one sees
that

R(λ,G1,ε) = R(λ,B1,ε) +R(λ,G1,ε)AεR(λ,B1,ε)

= R(λ,B1,ε) +R(λ,G1,ε)Aε [R(λ,B1,ε)−R(λ,Bε)] + Zε(λ).

Since the mappings λ ∈ D(r) 7→ R(λ,Bε) and λ ∈ D(r) 7→ R(λ,B1,ε) are analytic, one has
˛

γr

R(λ,Bε)dλ =

˛

γr

R(λ,B1,ε)dλ = 0 ,

so that

Pε =
1

2iπ

˛

γr

R(λ,Bε)Jε(λ)(Id− Jε(λ))
−1dλ+

1

2iπ

˛

γr

Zε(λ)(Id− Jε(λ))
−1dλ ,

whereas

P0 =
1

2iπ

˛

γr

R(λ,G1,ε)Aε [R(λ,B1,ε)−R(λ,Bε)] dλ+
1

2iπ

˛

γr

Zε(λ)dλ.

Consequently, one easily obtains that

Pε −P0 =
1

2iπ

˛

γr

Γε(λ)Jε(λ)(Id− Jε(λ))
−1dλ

+
1

2iπ

˛

γr

R(λ,G1,ε)Aε [R(λ,Bε)−R(λ,B1,ε)] dλ.

Using (3.6), (3.9), and (3.3), one notices that there exists C > 0 independent of ε such
that ∥∥Γε(λ)Jε(λ)(Id− Jε(λ))

−1
∥∥

B(X)
6

C

r2(1− ρ(ε))

1− α(ε)

ε2
, ∀λ ∈ γr ,

where we used that 0 < r < µ⋆ − µ and noticed that ‖Γε(λ)‖B(X) 6 C/r by virtue of

(3.10). Moreover, from Proposition 2.12, it follows that

‖R(λ,G1,ε)Aε [R(λ,Bε)−R(λ,B1,ε)]‖B(X) 6
C1

r
‖AεR(λ,Bε)−AεR(λ,B1,ε)‖B(X)
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for any λ ∈ γr, from which

‖Pε −P0‖B(X) 6
C0

r2(1− ρ(ε))

(
1− α(ε)

ε2
+ sup

λ∈γr
‖AεR(λ,Bε)−AεR(λ,B1,ε)‖B(X)

)

for some positive constant C0 > 0 independent of ε. We only need to estimate

‖AεR(λ,Bε)−AεR(λ,B1,ε)‖B(X)

for λ ∈ γr. Observe that, for λ ∈ γr,

AεR(λ,Bε)−AεR(λ,B1,ε) = AεR(λ,Bε) [Bε − B1,ε]R(λ,B1,ε)

and, with the notations of the proof of Proposition 3.1,

‖AεR(λ,Bε)−AεR(λ,B1,ε)‖B(X)

6 ‖AεR(λ,Bε)‖B(Y,X) ‖Bε −B1,ε‖B(X,Y) ‖R(λ,B1,ε)‖B(X)

where, as in Proposition 3.1, there is a positive constant C > 0 independent of ε such that

‖AεR(λ,Bε)‖B(Y,X) 6 C , ‖R(λ,B1,ε)‖B(X) 6 C , λ ∈ γr ,

whereas

‖Bε −B1,ε‖B(X,Y) = ‖Gε − G1,ε‖B(X,Y) 6 C
1− α(ε)

ε2
.

Gathering the previous estimates, it follows that, for any 0 < r < χ = µ⋆ − µ,

‖Pε −P0‖B(X) 6
C

r2(1− ρ(ε))

1− α(ε)

ε2
:= ℓ(ε) (3.12)

and, thanks to Assumption 1.2, one can find ε⋆ depending only on χ such that ℓ(ε) < 1 for
any ε ∈ (0, ε⋆). In particular, we deduce (3.11) from [42, Paragraph I.4.6]. �

With Lemma 3.3 we can prove Theorem 1.7

Proof of Theorem 1.7. The structure of the spectrum of S(Gε) ∩ Cµ in the space X comes
directly from Lemma 3.3 together with Proposition 3.1. To describe more precisely the
spectrum, one first recalls that

S(Lα(ε)) ∩ {z ∈ C ; Rez > −µ} ⊂ S(Gε) ∩ {z ∈ C ; Rez > −µ}.
Since, for ε small enough, the spectral projection ΠLα(ε)

associated to S(Lα(ε)) ∩ Cµ

satisfies

dim(Range(ΠLα(ε)
)) = dim(Range(ΠL1)) = d+ 2 = dim(Range(Pε)) ,

we get that

S(Lα(ε)) ∩Cµ = S(Gε) ∩ Cµ , (3.13)

that is, the eigenvalues λj(ε) are actually eigenvalues of Lα(ε). In particular, one has that

λd+2(ε) = −ε−2µα(ε) = −1− α(ε)

ε2
+O

((
1− α(ε)

ε

)2
)
, for ε ≃ 0 ,
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O

D(µ⋆ − µ)

χ

χ

−µ⋆ −µ Reλ

Imλ

−λε

Cµ \ D(µ⋆ − µ)

FIGURE 1. The set Cµ \ D(µ⋆ − µ) and the eigenvalue −λε.

according to (2.5) and (2.6). We set

λε := −λd+2(ε) > 0, λε ≃ −ε−2(1− α(ε)).

For the other eigenvalues, one notices that
ˆ

Rd

Lα(ε)ϕ(v)dv = 0 , ∀ϕ ∈ D(Lα(ε)) ⊂ Y ,

where we recall that Y = W
ℓ,1
x W

s+1,1
v (̟q+2). Of course, the spatial variable x plays no

role here since Lα(ε) is local in x. We begin with understanding the eigenfunctions in

X0 = L1
xL

1
v(̟q).

Recall that
ˆ

Rd

Lα(ε)ϕ(v)dv = 0 , ∀ϕ ∈ D(Lα(ε)) ⊂ X0 ,

which implies that

〈Lα(ε)ϕ,̟
−1
q 〉X0,X⋆

0
= 0

where 〈 · , · 〉X0,X⋆
0

denotes the duality bracket between X0 and its dual X⋆
0. This proves that

̟−1
q ∈ D(L ⋆

α(ε)) with L ⋆
α(ε)(̟

−1
q ) = 0,

that is, 0 is an eigenvalue of L ⋆
α(ε) in X

⋆
0 and therefore an eigenvalue of Lα(ε) in X0. With

the same reasoning, since
ˆ

Rd

Lα(ε)ϕ(v) vidv = −ε−2κα(ε)

ˆ

Rd

vi∇ · (vϕ(v))dv = ε−2κα(ε)

ˆ

Rd

vi ϕ(v)dv
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one sees that, for any i = 1, . . . , d, m⋆
i (v) := vi̟

−1
q (v) ∈ D(L ⋆

α(ε)) satisfies

L ⋆
α(ε)m

⋆
i = ε−2κα(ε)m

⋆
i ,

that is, ε−2κα(ε) is an eigenvalue of L ⋆
α(ε) of multiplicity d and, as such, an eigenvalue of

Lα(ε) with same multiplicity in the space X0. With this, we found d + 1 eigenvalues of

Lα(ε) in the space X0. To prove that these d+ 1 eigenvalues are still eigenvalues of Lα(ε)

in the smaller space X, we proceed as follows. Let ḡ be an eigenfunction of Lα(ε) in X0

associated to the ε−2κα(ε) eigenvalue, i.e

Lα(ε) ḡ = ε−2κα(ε)ḡ, ḡ ∈ D(Lα(ε)) ∩ X0.

With the splitting Lα(ε) = Bδ
α +A(δ), where we recall α = α(ε) and δ is sufficiently small,

one deduces from this that
(
ε−2κα(ε) − Bδ

α

)
ḡ = A(δ)ḡ.

Using the fact that for ε−2κα(ε) < µ⋆ − µ < ν∗ the operator ε−2κα(ε) − Bδ
α is invertible in

both X and X0 thanks to Proposition 2.13 and

ḡ = R(ε−2κα(ε) , B(δ)
α )A(δ)ḡ .

Because ḡ is depending on the velocity only, using the regularizing effect of A(δ) and the

hypo-dissipativity property of the operator ε−2κα(ε) − Bδ
α one concludes that A(δ)ḡ ∈ X

and, by previous identity, so is ḡ. Therefore, any eigenfunction of Lα(ε) associated to the

eigenvalue ε−2κα(ε) in X0 lies in X as well, consequently, it is an eigenvalue of Lα(ε) in X.

It has the same multiplicity d as in X0 since the reasoning is valid for any eigenfunction
ḡ. In the same way, we prove that 0 is a simple eigenvalue of Lα(ε) in X. We just found

exactly d+1 eigenvalues and exhausted S(Lα(ε))∩Cµ = S(Lα(ε))∩D(µ⋆ −µ) under the

assumption that ε−2κα(ε) < µ⋆ − µ which gives the desired result. �

4. NONLINEAR ANALYSIS

We now apply the results obtained so far to the study of Eq. (1.20). In all this section
we assume that

E = W
m,1
x W

k,1
v (̟q) (4.1)

with

m > 2d, m− 1 > k > 1, q > 4 , (4.2)

and introduce also the Hilbert space on which L1 is symmetric

H := W
m,2
x,v

(
M−1/2

)
.

We recall here that M is the steady state of L1 whereas H is a Hilbert space on which the
elastic Boltzmann equation is well-understood [14].
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We also denote

E1 := W
m,1
x W

k,1
v (̟q+1), E2 := W

m,1
x W

k+1,1
v (̟q+2)

H1 := W
m,2
x,v

(
M−1/2〈 · 〉1/2

)
and E−1 := W

m,1
x W

k,1
v (̟q−1) (4.3)

where k,m, q satisfy (4.2).

The analysis of the elastic case in [15, 14] holds in W
β,2
x,v(M−1/2) for β > d. We need,

however, the H-norm to control the E-norm, which constrains β > m. At the same time,
it is needed that Aε ∈ B(E ,H) and, because Aε has no regularisation effect on the spatial
variable, we are forced to choose β 6 m. This explains the choice of β = m. Moreover,
we need the constraint m > 2d to carry out our nonlinear analysis, more precisely, we use

that the embedding W
m/2,1
x (Td) →֒ L∞

x (Td) is continuous if m/2 > d which provides us an
algebra structure. Notice that the analysis of [14] is in particular valid under this condition

since it only required m > d to ensure that the embedding W
m/2,2
x (Td) →֒ L∞

x (Td) is
continuous. Taking q > 3 would be enough to control the dissipation of kinetic energy
´

Rd Qα(f, f)|v|2dv but we require q > 4 in order to be able to control some terms in the
study of the hydrodynamic limit (see Subsection 6.3). Finally, the restriction k 6 m − 1
in (4.2) implies the continuous embedding H →֒ E2 and the restriction k > 1 is due to the
loss of one derivative in the estimate of Qα −Q1 (see Lemma 2.1).

For A,B > 0, we will indicate in the sequel A . B whenever there is a positive
constant C > 0 depending on the mass and energy of the h(0), but not on parameters like
t, ε or ∆0, such that A 6 CB.

We adapt the approach of [15] and decompose the solution hε into

hε(t, x, v) = h0(t, x, v) + h1(t, x, v)

where h0 = h0ε ∈ E and h1 = h1ε ∈ H are the solutions to the following system of equations




∂th
0 = Bα(ε),εh

0 + ε−1Qα(ε)(h
0, h0) + ε−1

[
Qα(ε)(h

0, h1) +Qα(ε)(h
1, h0)

]

+
[
Gεh

1 − G1,εh
1
]
+ ε−1

[
Qα(ε)(h

1, h1)−Q1(h
1, h1)

]
,

h0(0, x, v) = hεin(x, v) ∈ E .

(4.4)

and {
∂th

1 = G1,εh
1 + ε−1Q1(h

1, h1) +Aεh
0 ,

h1(0, x, v) = 0 .
(4.5)

In this section, we omit the dependence on ε for h0 and h1. We recall that
ˆ

Td×Rd

F ε
in(x, v)

(
1
v

)
dvdx = 0 =⇒

ˆ

Td×Rd

fε(t, x, v)

(
1
v

)
dvdx =

(
1
0

)
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and, in particular, the fluctuation hε(t, x, v) also satisfies
ˆ

Td×Rd

hε(t, x, v)

(
1
v

)
dxdv =

(
0
0

)
. (4.6)

4.1. Estimating h0. For the part of the solution h0(t) in E we have the following estimate.

Proposition 4.1. Assume that h0 ∈ E , h1 ∈ E1 are such that

sup
t>0

(
‖h0(t)‖E + ‖h1(t)‖E1

)
6 ∆0 <∞ .

Let ν0 := νm,k,q given in Proposition 2.8. Then, for µ0 ∈ (0, ν0) there exists an explicit ε1 > 0
(that can be chosen less than ε0 defined in Theorem C.1) such that:

‖h0(t)‖E . ‖h0(0)‖E e−
µ0
ε2

t + λε

ˆ t

0
e−

µ0
ε2

(t−s)‖h1(s)‖E2 ds

+ ελε

ˆ t

0
e−

µ0
ε2

(t−s)‖h1(s)‖2E2 ds , ∀ ε ∈ (0, ε1) .

(4.7)

As a consequence, for any ε ∈ (0, ε1),

‖h0(t)‖2E . ‖h0(0)‖2E e−
2µ0
ε2

t +
1

µ0

(
ε λε

)2
ˆ t

0
e−

µ0
ε2

(t−s)‖h1(s)‖2E2 ds

+
1

µ0

(
ε2 λε

)2
ˆ t

0
e−

µ0
ε2

(t−s)‖h1(s)‖4E2 ds .
(4.8)

Proof. In the subsequent proof, we denote by ‖ · ‖E1 and ‖ · ‖E the norms on E1 and E that
are equivalent to the standard ones (with multiplicative constants independent of ε) and
that make ε−2ν0 + Bα(ε),ε dissipative. The conclusion with standard norms will simply

follows by equivalence. We first observe that

d

dt
‖h0(t)‖E 6 −ν0

ε2
‖h0(t)‖E1 + ε−1

(
‖Qα(ε)(h

0(t), h0(t))‖E + ‖Qα(ε)(h
0(t), h1(t))‖E

+ ‖Qα(ε)(h
1(t), h0(t))‖E

)
+
∥∥Gεh

1(t)− G1,εh
1(t)
∥∥
E

+ ε−1
∥∥Qα(ε)(h

1(t), h1(t))−Q1(h
1(t), h1(t))

∥∥
E .

Using classical estimates for Qα(ε) and Q1, (see [3, 4]), together with Lemma 2.1, there

exist C > 0 independent of ε such that

‖Qα(ε)(h
0(t), h0(t))‖E + ‖Qα(ε)(h

0(t), h1(t))‖E
+ ‖Qα(ε)(h

1(t), h0(t))‖E 6 C
(
‖h0(t)‖E + ‖h1(t)‖E1

)
‖h0(t)‖E1 ,

and
∥∥Gεh

1(t)− G1,εh
1(t)
∥∥
E + ε−1

∥∥Qα(ε)(h
1(t), h1(t))−Q1(h

1(t), h1(t))
∥∥
E

6 C(1− α(ε))‖h1(t)‖E2
(
ε−2 + ε−1‖h1(t)‖E2

)
.
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Notice that such estimate is exactly what motivated the definition of E2. We conclude that

d

dt
‖h0(t)‖E 6 −ε−2

(
ν0 − εC

(
‖h0(t)‖E + ‖h1(t)‖E1

))
‖h0(t)‖E1

+ C(1− α(ε))ε−2‖h1(t)‖E2 + C(1− α(ε))ε−1‖h1(t)‖2E2 .
For any µ0 ∈ (0, ν0), we pick ε1 ∈ (0, ε0) as ν0 − ε1 C∆0 ≥ µ0. Therefore,

ν0 − εC
(
‖h0(t)‖E + ‖h1(t)‖E1

)
> µ0 , ∀ ε ∈ (0, ε1) .

Consequently, we obtain that

d

dt
‖h0(t)‖E 6 −µ0

ε2
‖h0(t)‖E1 + C(1− α(ε))ε−2‖h1(t)‖E2

+ C(1− α(ε))ε−1‖h1(t)‖2E2 ,

6 −µ0
ε2

‖h0(t)‖E1 + Cλε‖h1(t)‖E2 + Cελε‖h1(t)‖2E2 , ∀ t > 0,

(4.9)

where we used that ε2λε ≃ 1 − α(ε) which gives (4.7) after integration. To prove (4.8),
we use the fact that, for any nonnegative mapping t 7→ ζ(t) and α > 0

(
ˆ t

0
e−α (t−s)ζ(s)ds

)2

6

ˆ t

0
e−α (t−s) ds

ˆ t

0
e−α (t−s)ζ(s)2 ds

6
1

α

ˆ t

0
e−α (t−s)ζ(s)2 ds , ∀ t > 0 ,

(4.10)

which gives the result. �

On the basis of Theorem 1.7, there exist Ψj
ε, with j = 1, . . . , d+2, linearly independent

and such that

GεΨ
j
ε = Lα(ε)Ψ

j
ε = λj(ε)Ψ

j
ε

with moreover Ψd+2
ε = φα(ε). We denote by Πε the spectral projection associated to

λd+2(ε) = −λε and Pε = Pε −Πε, that is,

Range(Pε) = Span{Ψ1
ε, . . . ,Ψ

d+1
ε }, Range(Πε) = Span(Ψd+2

ε ).

In the same way, with the notations of Theorem C.1, we introduce

P0h =
d+1∑

i=1

(
ˆ

Td×Rd

hΨi dxdv

)
ΨiM , Π0h =

(
ˆ

Td×Rd

hΨd+2 dxdv

)
Ψd+2 M , (4.11)

where recall that

Ψ1 = 1 , Ψi =
vi−1√
ϑ1

for i = 2, . . . , d+ 1 , and Ψd+2 =
1

ϑ1
√
2d

(|v|2 − dϑ1).

Of course, see (2.22), one has P0 = P0 − Π0. Recall that the eigenfunctions Ψj are such
that

ˆ

R3

Ψi(v)Ψj(v)M(v)dv = δi,j i, j = 1, . . . , d+ 2 ,
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which in particular implies that, in the Hilbert space H4, one has Id−P0 = P
⊥
0 .

Remark 4.2. Notice that, since Ψd+2
ε = φα(ε) one deduces from (2.7) that

lim
ε→0

‖Πε −Π0‖B(E) = 0 .

The rate of convergence is actually explicit (see [52, Lemma 5.17]). For any s ∈ N, p > 0,
there is C > 0 such that

‖Πε −Π0‖B(Wℓ,1
x W

s,1
v (̟p))

6 C(1− α(ε)) , ℓ > 0 .

Lemma 4.3. For i = 1, . . . , d+ 1, it holds that
∣∣∣∣
ˆ

Td×Rd

h1(t, x, v)Ψi(v)dvdx

∣∣∣∣ 6 max

(
1,

1√
ϑ1

)
‖h0(t)‖E .

As a consequence,

‖P0h
1(t)‖E 6 C‖h0(t)‖E ,

for some constant C > 0 depending only on M.

Proof. Note that total mass and momentum conservation leads to

0 =

ˆ

Td×Rd

h(t, x, v)Ψi(v)dvdx =

ˆ

Td×Rd

h0(t, x, v)Ψi(v)dvdx

+

ˆ

Td×Rd

h1(t, x, v)Ψi(v)dvdx , i = 1, . . . , d+ 1.

Thus, for any i = 1, . . . , d+ 1,
∣∣∣∣
ˆ

Td×Rd

h1(t, x, v)Ψi(v)dvdx

∣∣∣∣ =
∣∣∣∣
ˆ

Td×Rd

h0(t, x, v)Ψi(v)dvdx

∣∣∣∣ 6 max

(
1,

1√
ϑ1

)
‖h0(t)‖E

since |Ψi(v)| 6 max
(
1, 1√

ϑ1

)
̟q(v) for any i = 1, . . . , d + 1. Regarding the estimate for

the projection, it follows from the previous inequality and (4.11) by taking for example
C := maxi=1,...,d+1 ‖ΨiM‖E . �

4.2. Estimating P0h
1(t). One has the following fundamental estimate for P0h

1(t).

Lemma 4.4. We have that

‖P0h
1(t)‖E−1 . ‖Πεh(0)‖Ee−λεt +

(
1− α(ε)

)
‖h1(t)‖E + ‖h0(t)‖E

+ ε−1
(
1− α(ε)

) ˆ t

0
e−λε(t−s)

(
‖h1(s)‖2E + ‖h0(s)‖2E

)
ds

for any t > 0.

4Recall here that, on the space L2
v(M

− 1

2 ) the inner product is 〈f, g〉 =
´

Rd f(v)g(v)M−1(v)dv.
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Proof. The equation for h is given by

∂th = Gεh+ ε−1Qα(ε)(h, h) .

Thus,

∂t
(
Πεh

)
= Gε

(
Πεh

)
+ ε−1ΠεQα(ε)(h, h) .

Therefore,

Πεh(t) = Πεh(0) e
−λε t + ε−1

ˆ t

0
e−λε (t−s)ΠεQα(ε)(h(s), h(s))ds . (4.12)

Observe the following facts
∥∥ΠεQα(ε)(h(s), h(s))

∥∥
E−1

6
∥∥(Πε −Π0

)
Qα(ε)(h(s), h(s))

∥∥
E−1

+
∥∥Π0Qα(ε)(h(s), h(s))

∥∥
E−1

,

where ∥∥(Πε −Π0

)
Qα(ε)(h(s), h(s))

∥∥
E−1

. (1− α(ε))‖Qα(ε)(h(s), h(s))‖E−1

. (1− α(ε))‖h(s)‖2E .
Notice that, according to (4.11), Π0Qα(ε) is explicit with

∥∥Π0Qα(ε)(h(s), h(s))
∥∥
E−1

= (1− α2(ε))
∣∣∣Dα(ε)(h(s), h(s))

∣∣∣
∥∥Ψd+2M

∥∥
E−1

,

where Dα(g, g) denotes the normalised energy dissipation associated to Qα, namely,

Dα(g, g) = − 1

1− α2

ˆ

Td×Rd

Ψd+2(v)Qα(g, g)dvdx

= − 1

ϑ1
√
2d

1

1− α2

1

ϑ1
√
2d

ˆ

Td

dx

ˆ

Rd

Qα(g, g)|v|2dv

= γb

ˆ

Td

dx

ˆ

Rd×Rd

g(x, v)g(x, v∗)|v − v∗|3dvdv∗

for some nonnegative γb independent of α, see [52]. Therefore,
∥∥Π0Qα(ε)(h(s), h(s))

∥∥
E−1

. (1− α(ε))‖h(s)‖2E
because ̟q(v) > 〈v〉3 for any v ∈ R

3.

Thus, applying the ‖ · ‖E−1-norm in (4.12) one obtains

∥∥Πεh(t)
∥∥
E−1

. ‖Πεh(0)‖E e−λε t + ε−1(1− α(ε))

ˆ t

0
e−λε(t−s)‖h(s)‖2E ds

where we recall that λε = −λd+2(ε) > 0. Consequently, using again Remark 4.2, we
conclude that

‖Π0h(t)‖E−1 . ‖Πεh(0)‖E e−λε t + (1− α(ε))‖h(t)‖E

+ ε−1(1− α(ε))

ˆ t

0
e−λε(t−s)‖h(s)‖2E ds .

(4.13)
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According to (4.6), one has P0h(t) = 0 for any t > 0 from which we deduce that

P0h(t) = Π0h(t), ∀ t > 0.

Since P0h
1(t) = P0h(t) − P0h

0(t), we can reformulate the above (4.13) in terms of the
relevant functions h1 and h0 to obtain that

‖P0h
1(t)‖E−1 . ‖Πεh(0)‖E e−λε t + (1− α(ε))

(
‖h1(t)‖E + ‖h0(t)‖E

)
+ ‖h0(t)‖E

+ ε−1(1− α(ε))

ˆ t

0
e−λε(t−s)

(
‖h0(s)‖2E + ‖h1(s)‖2E

)
ds ,

which is the desired lemma. �

Remark 4.5. Since ελε ≃ 1−α(ε)
ε , we get

1−α2(ε)
ελε

≃ ε(1 + α(ε)) ≃ 2ε as ε→ 0. Therefore,

(1− α2(ε))

ε λε
. ε.

Proposition 4.6. There exists an explicit ε2 ∈ (0, ε1) such that for any ε ∈ (0, ε2) and t > 0,
it holds that

‖P0h
1(t)‖E−1 .

(
‖Πεh(0)‖E + ‖h0(0)‖E + ε3λε

µ0
‖h0(0)‖2E

)
e−λεt + ε2λε‖h1(t)‖E

+ λε

ˆ t

0
e−

µ0
ε2

(t−s)‖h1(s)‖E2 ds+ ελε

ˆ t

0
e−

µ0
ε2

(t−s)‖h1(s)‖2E2 ds

+ ελε
(
1 + µ−2

0 ε4λ2ε
) ˆ t

0
e−λε(t−s)‖h1(s)‖2Eds

+ µ−2
0 ε7 λ3ε

ˆ t

0
e−λε(t−s)‖h1(s)‖4E2 ds .

Proof. We insert the bound for ‖h0(t)‖iE for i = 1, 2 in (4.7) and (4.8) in the estimate of

Lemma 4.4. Assuming µ0 > 2ε2λε and recalling that 1 − α(ε) ≃ ε2λε, we first deduce
from (4.7) that

‖P0h
1(t)‖E−1 .

(
‖Πεh(0)‖E + ‖h0(0)‖E

)
e−λεt + ε2λε‖h1(t)‖E

+ λε

ˆ t

0
e−

µ0
ε2

(t−s)‖h1(s)‖E2 ds+ ελε

ˆ t

0
e−

µ0
ε2

(t−s)‖h1(s)‖2E2 ds

+ ελε

ˆ t

0
e−λε(t−s)‖h1(s)‖2Eds+ ελε

ˆ t

0
e−λε(t−s)‖h0(s)‖2E ds . (4.14)
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Now, using (4.8) for the last integral, we obtain

ˆ t

0
e−λε(t−s)‖h0(s)‖2E ds . ‖h0(0)‖2E

ˆ t

0
e−

2µ0
ε2

s−λε(t−s) ds

+ µ−1
0

(
ε λε

)2
ˆ t

0
e−λε(t−s) ds

ˆ s

0
e−

µ0
ε2

(s−τ)‖h1(τ)‖2E2dτ

+ µ−1
0

(
ε2 λε

)2
ˆ t

0
e−λε(t−s) ds

ˆ s

0
e−

µ0
ε2

(s−τ)‖h1(τ)‖4E2 ds .

Using that, for any β > α > 0 and nonnegative mapping t 7→ ζ(t)
ˆ t

0
e−α(t−s) ds

ˆ s

0
e−β(s−τ)ζ(τ)dτ = e−α t

ˆ t

0
eβτζ(τ)dτ

ˆ t

τ
e−(β−α)s ds

6
1

β − α

ˆ t

0
e−α(t−τ)ζ(τ)dτ

(4.15)

we have, for µ0 > 2ε2λε, that
ˆ t

0
e−λε(t−s) ds

ˆ s

0
e−

µ0
ε2

(s−τ)‖h1(τ)‖2iE2dτ 6
2ε2

µ0

ˆ t

0
e−λε(t−s)‖h1(s)‖2iE2 ds, i = 1, 2 ,

so that
ˆ t

0
e−λε(t−s)‖h0(s)‖2E ds .

ε2

µ0
‖h0(0)‖2Ee−λε t + µ−2

0 ε4λ2ε

ˆ t

0
e−λε(t−s)‖h1(s)‖2E2 ds

+ µ−2
0

(
ε3 λε

)2
ˆ t

0
e−λε(t−s)‖h1(s)‖4E2 ds .

Inserting this in (4.14) gives the desired estimate. �

Remark 4.7. We will also need an estimate for ‖P0h
1(t)‖2E−1

. This is easy to do using

Cauchy-Schwarz inequality as we did for the proof of (4.8). We obtain that

‖P0h
1(t)‖2E−1

.
(
‖Πεh(0)‖2E + ‖h0(0)‖2E + (ε3λε)2

µ2
0

‖h0(0)‖4E
)
e−2λεt + ε4λ2ε‖h1(t)‖2E

+
(ε λε)

2

µ0

ˆ t

0
e−

µ0
ε2

(t−s)‖h1(s)‖2E2 ds+
(ε2λε)

2

µ0

ˆ t

0
e−

µ0
ε2

(t−s)‖h1(s)‖4E2 ds

+ ε2λε

(
1 + µ−2

0

(
ε2λε

)2)2
ˆ t

0
e−λε(t−s)‖h1(s)‖4E2 ds

+ µ−4
0 ε4

(
ε2λε

)5
ˆ t

0
e−λε(t−s)‖h1(s)‖8E2 ds .

4.3. Estimating the complement (Id−P0)h
1. Let us focus on an estimate on P

⊥
0 h

1(t)

with P
⊥
0 = Id−P0, the orthogonal projection onto (Ker(G1,ε))

⊥ in the Hilbert space

L2
x,v(M−1/2). The same notation for the operator G1,ε in the spaces E and H is used. We

begin with the following lemma where, we recall, ΣM(ξ) is defined in (2.12).
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Proposition 4.8. With the notations of Theorem C.1, let ε ∈ (0, ε0), µ ∈ (0, µ⋆) and assume
that

sup
t>0

(
‖h0(t)‖E + ‖h1(t)‖H

)
6 ∆0

with ∆0 6 1 small enough so that

ν :=
2µ

σ20
− c0∆

2
0 > 0 (4.16)

where σ0 := infξ∈Rd ΣM(ξ) > 0 and c0 > 0 is a universal constant depending only on M
defined in (4.19). Set

Ψ(t) = h1(t)−P0h
1(t) , ∀ t > 0.

Then, there exists C0 > 0 independent of ε > 0 such that

‖Ψ(t)‖2H 6 ‖Ψ(0)‖2He−ν t + C0

ˆ t

0
e−ν(t−s)‖P0h

1(s)‖4E−1
ds

+
C0

ε2

ˆ t

0
e−ν(t−s)‖h1(s)‖H ‖h0(s)‖E ds (4.17)

for any t > 0.

Proof. One checks from (4.5) that

∂tΨ = G1,εΨ+P
⊥
0

(
ε−1Q1(h

1, h1) +Aεh
0
)
= G1,εΨ+ ε−1Q1(h

1, h1) +P
⊥
0 Aεh

0 ,

where for the later we used that P0Q1(h
1, h1) = 0. Using [15, Theorem 4.7], one obtains

as in [15, Eq. (4.8)] that, for any µ ∈ (0, µ⋆) there is some positive constant C > 0 such
that

d

dt
‖Ψ(t)‖2H 6 −2µ

σ20
‖Ψ(t)‖2H1

+ C‖h1(t)‖2H ‖h1(t)‖2H1
+ ‖Ψ(t)‖H ‖P⊥

0 Aεh
0(t)‖H. (4.18)

Writing h1 = P0h
1 +Ψ, we obtain

‖h1(t)‖2H ‖h1(t)‖2H1
6 2‖h1(t)‖2H

(
‖P0h

1(t)‖2H1
+ ‖Ψ(t)‖2H1

)

6 2∆2
0‖Ψ(t)‖2H1

+ 4‖P0h
1(t)‖2H1

(
‖P0h

1(t)‖2H + ‖Ψ(t)‖2H
)
.

In particular, since there exists a positive constant c > 0 depending only on M such that

‖P0h
1(t)‖2H1

6 c‖P0h
1(t)‖2E−1

,

we deduce that

‖h1(t)‖2H‖h1(t)‖2H1
6 c0‖P0h

1(t)‖4E−1
+ c0∆

2
0‖Ψ(t)‖2H1

(4.19)

for some universal constant c0 > 0 depending only on M. Therefore, assuming that ∆0 is
small enough so that

ν :=
2µ

σ20
− c0∆

2
0 > 0
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we deduce that

d

dt
‖Ψ(t)‖2H 6 −ν ‖Ψ(t)‖2H1

+ C‖P0h
1(t)‖4E−1

+ ‖Ψ(t)‖H ‖P⊥
0 Aεh

0(t)‖H, ∀ t > 0

for some C > 0 independent of t and ε. Moreover, we also have that

‖P⊥
0 Aεh

0(t)‖H .
1

ε2
‖h0(t)‖E , ‖Ψ(t)‖H . ‖h1(t)‖H , ∀ t > 0 ,

from which we get the desired estimate after integration of the previous differential in-
equality. �

Lemma 4.9. With the notation of Proposition 4.8, there is an explicit ε3 ∈ (0, ε2) such that
for for any δ > 0, ε ∈ (0, ε3), and t > 0

ε−2

ˆ t

0
e−ν(t−s)‖h1(s)‖H ‖h0(s)‖E ds. δ

ˆ t

0
e−ν(t−s)‖h1(s)‖2H ds+

1

δ µ0
‖h0(0)‖2Ee−ν t

+
δ

ε2

ˆ t

0
e−ν(t−s)−µ0

ε2
s‖h1(s)‖2H ds+

1

δµ20
λ2ε

ˆ t

0
e−ν(t−s)‖h1(s)‖2E2 ds

+
1

δµ20
(ελε)

2

ˆ t

0
e−ν(t−s)‖h1(s)‖4E2 ds .

Proof. We use the estimate of ‖h0(s)‖E provided in (4.7) which gives

ε−2

ˆ t

0
e−ν(t−s)‖h1(s)‖H ‖h0(s)‖E ds . I1(t) + I2(t) + I3(t)

with

I1(t) = ε−2

ˆ t

0
e−ν(t−s)‖h1(s)‖H ‖h0(0)‖Ee−

µ0
ε2

s ds,

I2(t) = ε−2λε

ˆ t

0
e−ν(t−s)‖h1(s)‖H ds

ˆ s

0
e−

µ0
ε2

(s−τ)‖h1(τ)‖E2dτ ,

and

I3(t) = ε−1λε

ˆ t

0
e−ν(t−s)‖h1(s)‖H ds

ˆ s

0
e−

µ0
ε2

(s−τ)‖h1(τ)‖2E2dτ.

Using Young’s inequality, for any δ > 0 it holds that

‖h1(s)‖H‖h0(0)‖E 6 δ ‖h1(s)‖2H +
1

4δ
‖h0(0)‖2E ,

so that, since µ0 − ε2ν > µ0

2 ,

I1(t) 6 δε−2

ˆ t

0
e−ν(t−s)−µ0

ε2
s‖h1(s)‖2H ds+

1

4δ ε2
‖h0(0)‖2E

ˆ t

0
e−ν(t−s)−µ0

ε2
s ds

6 δε−2

ˆ t

0
e−ν(t−s)−µ0

ε2
s‖h1(s)‖2H ds+

1

2δµ0
‖h0(0)‖2Ee−ν t.
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Similarly, Young’s inequality implies, for any δ > 0, that

I2(t) 6 δ

ˆ t

0
e−ν(t−s)‖h1(s)‖2H ds

+
(ε−2λε)

2

4δ

ˆ t

0
e−ν(t−s) ds

(
ˆ s

0
e−

µ0
ε2

(s−τ)‖h1(τ)‖E2dτ
)2

,

and, using (4.10) and (4.15) to estimate the square of the last integral, we get for µ0 >
2ε2ν that

I2(t) 6 δ

ˆ t

0
e−ν(t−s)‖h1(s)‖2H ds+

1

2δµ20
λ2ε

ˆ t

0
e−ν(t−s)‖h1(s)‖2E2 ds.

In the same way, it follows that

I3(t) 6 δ

ˆ t

0
e−ν(t−s)‖h1(s)‖2H ds+

1

2δµ20
(ελε)

2

ˆ t

0
e−ν(t−s)‖h1(s)‖4E2 ds.

Combining these estimates yields the result. �

It remains to estimate the term involving ‖P0h
1‖4E−1

in (4.17). This is done in the

following lemma.

Lemma 4.10. Under the assumptions and notations of Proposition 4.8, there areexplicits
ε4 ∈ (0, ε3) and λ4 > 0 such that, for any δ > 0, ε ∈ (0, ε4) and λε ∈ (0, λ4),

ˆ t

0
e−ν(t−s)‖P0h

1(s)‖4E−1
ds . ν−1

(
‖Πεh(0)‖4E + ‖h0(0)‖4E + (ε3λε)4

µ4
0

‖h0(0)‖8E
)
e−4λε t

+ (ε2λε)
4C0(ε, µ0,∆0)

ˆ t

0
e−ν(t−s)‖h1(s)‖2Hds

+ ε4λεC1(ε, µ0, ν,∆0)

ˆ t

0
e−λε(t−s)‖h1(s)‖2Hds

with C0(ε, µ0,∆0) := ∆2
0 +

∆2
0

µ4
0
+ ε4

µ4
0
∆6

0 and

C1(ε, µ0, ν,∆0) :=
(ε3λε)

8

ν µ80
∆14

0 + ν−1
(
1 + µ−2

0 (ε2λε)
2
)4

∆6
0.

Remark 4.11. Since ε λε ≪ 1 and ∆0 6 1, it follows that for ε small enough

C0(ε, µ0,∆0) .
(
1 + µ−4

0

)
∆2

0 and C1(ε, µ0, ν,∆0) . ν−1
(
1 + µ−8

0

)
∆2

0.
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Proof. We start with the estimate for ‖P0h
1‖2E−1

in Remark 4.7 which gives

‖P0h
1(s)‖4E−1

.
(
‖Πεh(0)‖4E + ‖h0(0)‖4E + (ε3λε)4

µ4
0

‖h0(0)‖8E
)
e−4λε s + ε8λ4ε‖h1(t)‖4E

+
(ε λε)

4

µ20

(
ˆ s

0
e−

µ0
ε2

(s−τ)‖h1(τ)‖2E2 dτ
)2

+
(ε2λε)

4

µ20

(
ˆ s

0
e−

µ0
ε2

(s−τ)‖h1(τ)‖4E2 dτ
)2

+ ε4λ2ε

(
1 + µ−2

0

(
ε2λε

)2)4
(
ˆ s

0
e−λε(s−τ)‖h1(τ)‖4E2 dτ

)2

+ µ−8
0 ε8

(
ε2λε

)10
(
ˆ s

0
e−λε(s−τ)‖h1(τ)‖8E2 dτ

)2

.

A repeated use of (4.10) gives

‖P0h
1(s)‖4E−1

.
(
‖Πεh(0)‖4E + ‖h0(0)‖4E + (ε3λε)4

µ4
0

‖h0(0)‖8E
)
e−4λε s + ε8λ4ε‖h1(s)‖4E

+
(ε λε)

4

µ30
ε2
ˆ s

0
e−

µ0
ε2

(s−τ)‖h1(τ)‖4E2 dτ +
(ε2λε)

4

µ30
ε2
ˆ s

0
e−

µ0
ε2

(s−τ)‖h1(τ)‖8E2 dτ

+ ε4λε

(
1 + µ−2

0

(
ε2λε

)2)4
ˆ s

0
e−λε(s−τ)‖h1(τ)‖8E2 dτ

+ λ−1
ε µ−8

0 ε8
(
ε2λε

)10
ˆ s

0
e−λε(s−τ)‖h1(τ)‖16E2 dτ .

Multiplying this inequality with e−ν(t−s), using (4.15) and integrating over (0, t) yields

ˆ t

0
e−ν(t−s)‖P0h

1(s)‖4E−1
ds . ν−1

(
‖Πεh(0)‖4E + ‖h0(0)‖4E + (ε3λε)4

µ4
0

‖h0(0)‖8E
)
e−4λε t

+ (ε2λε)
4

ˆ t

0
e−ν(t−s)‖h1(s)‖4Eds+

(ε2λε)
4

µ40

ˆ t

0
e−ν(t−s)‖h1(s)‖4E2ds

+
(ε3λε)

4

µ40

ˆ t

0
e−ν(t−s)‖h1(s)‖8E2ds

+ ν−1 ε4λε

(
1 + µ−2

0

(
ε2λε

)2)4
ˆ t

0
e−λε(t−τ)‖h1(τ)‖8E2 dτ

+ ν−1λ−1
ε µ−8

0 ε8
(
ε2λε

)10
ˆ t

0
e−λε(t−τ)‖h1(τ)‖16E2 dτ

as soon as µ0 > 2ε2ν and ν > 2λε. Using now the estimates

‖ · ‖E2 . ‖ · ‖H , and ‖h1‖i+2
H 6 ∆i

0 ‖h1‖2H , i > 0 , (4.20)

we obtain the result. �

Proposition 4.12. There exist ε5 ∈ (0, ε4), λ5 ∈ (0, λ4), C1 is a positive universal constant
and C2 is a positive constant that depends on µ0 and ν such that, for any δ > 0, t > 0,
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ε ∈ (0, ε5) and λε ∈ (0, λ5),

‖h1(t)‖2H 6 C1K0e
−2λεt + C2

(
δ +

λ2ε
δµ20

)
ˆ t

0
e−ν(t−s)‖h1(s)‖2Hds

+ C2 ε
2λε∆

2
0

ˆ t

0
e−λε(t−s)‖h1(s)‖2H ds+ C2

δ

ε2

ˆ t

0
e−ν(t−s)−µ0

ε2
s‖h1(s)‖2H ds , (4.21)

where

K0 : = ‖h1(0)‖2H +
1

δ µ0
‖h0(0)‖2E

+
1

ν
‖Πεh(0)‖4E +

1

ν
‖h0(0)‖4E +

1

νµ40
‖h0(0)‖8E

+ ‖Πεh(0)‖2E + ‖h0(0)‖2E +
1

µ20
‖h0(0)‖4E

depends only on h(0), µ0 and ν.

Proof. Combining the two previous Lemmas with Proposition 4.8, we first have the follow-
ing estimate for ‖Ψ(t)‖2H. For simplicity, we set

bε := ‖Πεh(0)‖2E + ‖h0(0)‖2E + (ε3λε)2

µ2
0

‖h0(0)‖4E ,

which depends only on h(0) and µ0. Using again (4.20) to estimate ‖h1‖E2 in Lemma 4.9,
we get that there exists a positive constant C > 0 such that, for any δ > 0,

‖Ψ(t)‖2H .

[
‖Ψ(0)‖2H +

1

δ µ0
‖h0(0)‖2E

]
e−ν t + ν−1 b2εe

−4λεt

+

(
δ + (ε2λε)

4C0(ε, µ0,∆0) +
λ2ε
δµ20

(1 + ε2∆2
0)

)
ˆ t

0
e−ν(t−s)‖h1(s)‖2Hds

+ ε4λεC1(ε, µ0, ν,∆0)

ˆ t

0
e−λε(t−s)‖h1(s)‖2Hds+

δ

ε2

ˆ t

0
e−ν(t−s)−µ0

ε2
s‖h1(s)‖2Hds.

Therefore, for ε sufficiently small, using Remark 4.11, since (ε2λε)
4 ≪ (ε2λε)

2 ≪ ε4λε ≪
ε2λε and 4λε < ν, one obtains

‖Ψ(t)‖2H .

[
‖Ψ(0)‖2H +

1

δ µ0
‖h0(0)‖2E + ν−1 b2ε

]
e−4λεt

+

(
δ + (ε2λε)

2
(
1 + µ−4

0

)
∆2

0 +
λ2ε
δµ20

)
ˆ t

0
e−ν(t−s)‖h1(s)‖2Hds

+ ν−1ε2λε
(
1 + µ−8

0

)
∆2

0

ˆ t

0
e−λε(t−s)‖h1(s)‖2Hds+

δ

ε2

ˆ t

0
e−ν(t−s)−µ0

ε2
s‖h1(s)‖2Hds.

Adding ‖P0h
1(t)‖2H to both sides and, since

‖h1(t)‖2H 6 ‖P0h
1(t)‖2H + ‖Ψ(t)‖2H . ‖P0h

1(t)‖2E−1
+ ‖Ψ(t)‖2H ,
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we obtain, using the estimate of ‖P0h
1(t)‖2E−1

in Remark 4.7, that

‖h1(t)‖2H .

[
‖h1(0)‖2H +

1

δ µ0
‖h0(0)‖2E + ν−1 b2ε + bε

]
e−2λεt + ε4λ2ε‖h1(t)‖2E

+

(
δ + (ε2λε)

2
(
1 + µ−4

0

)
∆2

0 +
λ2ε
δµ20

+
ε2λ2ε
µ0

+
(ε2λε)

2

µ0
∆2

0

)
ˆ t

0
e−ν(t−s)‖h1(s)‖2Hds

+ ε2λε∆
2
0

(
ν−1

(
1 + µ−8

0

)
+
(
1 + µ−4

0

)
+ µ−4

0 ε4
(
ε2λε

)4
∆4

0

)ˆ t

0
e−λε(t−s)‖h1(s)‖2H ds

+
δ

ε2

ˆ t

0
e−ν(t−s)−µ0

ε2
s‖h1(s)‖2Hds,

where we used that ν 6 µ0

ε2 . Therefore, there exist positive universal constants C0 and C1

and a positive constant C2 that depends on µ0 and ν, for ε sufficiently small, such that

(1− C0ε
4λ2ε)‖h1(t)‖2H 6 C1

[
‖h1(0)‖2H +

1

δ µ0
‖h0(0)‖2E + ν−1 b2ε + bε

]
e−2λεt

+ C2

(
δ +

λ2ε
δµ20

)
ˆ t

0
e−ν(t−s)‖h1(s)‖2Hds

+ C2 ε
2λε∆

2
0

ˆ t

0
e−λε(t−s)‖h1(s)‖2H ds+ C2

δ

ε2

ˆ t

0
e−ν(t−s)−µ0

ε2
s‖h1(s)‖2H ds .

Take ε small enough so that 1− C0ε
4λ2ε >

1
2 to deduce the result. �

Corollary 4.13. There exist ε6 ∈ (0, ε5), λ6 ∈ (0, λ5), and C > 0 depending on ν, µ0,∆0

such that
‖h1(t)‖2H 6 C K0 exp (−λε t) , ∀ t > 0 , (4.22)

for any ε ∈ (0, ε6)) and λε ∈ (0, λ6). Here K0 is given in Proposition 4.12.

Proof. Set for simplicity

x(t) := eλε t‖h1(t)‖2H, t > 0.

Inequality (4.21) yields

1

c1
x(t) 6 K0 +

(
δ +

λ2ε
δµ20

)
ˆ t

0
e−(ν−λε)(t−s)x(s)ds

+ ε2λε∆
2
0

ˆ t

0
x(s) ds+

δ

ε2

ˆ t

0
e−

µ0
ε2

s
x(s) ds .

We use a Gronwall type argument to prove the result. For notational simplicity introduce

Cδ(λε) = c1

(
δ +

λ2ε
δµ0

)
, A0 = c1K0, ξ(t) = c1ε

2λε∆
2
0 +

c1δ

ε2
e−

µ0
ε2

t, t > 0 ,

from which one obtains that

0 6 x(t) 6 A0 + Cδ(λε)

ˆ t

0
e−(ν−λε)(t−s)x(s)ds+

ˆ t

0
ξ(s)x(s)ds =: Υ(t) . (4.23)
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Thus,

d

dt
Υ(t) = −(ν − λε)Cδ(λε)

ˆ t

0
e−(ν−λε)(t−s)x(s)ds+ (Cδ(λε) + ξ(t))x(t)

= −(ν − λε)

(
Υ(t)−A0 −

ˆ t

0
ξ(s)x(s)ds

)
+ (Cδ(λε) + ξ(t))x(t).

Using (4.23), which reads x(t) 6 Υ(t), we deduce that

d

dt
Υ(t) 6 (ν − λε)A0 + [Cδ(λε)− (ν − λε) + ξ(t)]Υ(t) + (ν − λε)

ˆ t

0
ξ(s)Υ(s)ds .

Clearly, it is possible to choose δ⋆ > 0 sufficiently small depending only on ν, and λ⋆
sufficiently small depending only on ν, µ0, ∆0, so that

Cδ(λε)− (ν − λε) + ξ(t) 6 −ν
2
+
δ c1
ε2

e−
µ0
ε2

t, ∀ t > 0,

holds true for any δ ∈ (0, δ⋆) and λε ∈ (0, λ⋆). Fixing δ and λε in this range, we introduce

z(t) = −ν
2
t+

δ c1
ε2

ˆ t

0
e−

µ0
ε2

sds

to deduce that

d

dt

(
e−z(t)Υ(t)

)
6 (ν − λε)A0 e

−z(t) + (ν − λε)e
−z(t)

ˆ t

0
ξ(s)Υ(s)ds

6 ν A0 e
−z(t) + ν e−z(t)

ˆ t

0
ξ(s)Υ(s)ds .

Integration of this differential inequality yields (recalling that Υ(0) = A0)

Υ(t) 6 A0e
z(t) + ν A0

ˆ t

0
ez(t)−z(s)ds+ ν

ˆ t

0
ez(t)−z(s)ds

ˆ s

0
ξ(τ)Υ(τ)dτ

= A0e
z(t) + ν A0

ˆ t

0
ez(t)−z(s)ds+ ν

ˆ t

0
ξ(τ)Υ(τ)

(
ˆ t

τ
ez(t)−z(s)ds

)
dτ .

Notice that z(t)− z(s) 6 δ c1
µ0

− ν
2 (t− s), for 0 6 s 6 t, from which we conclude that

ˆ t

τ
ez(t)−z(s)ds 6

2

ν
e
δ c1
µ0 , 0 6 τ 6 t .

Consequently,

Υ(t) 6 3A0 e
δ c1
µ0 + 2e

δ c1
µ0

ˆ t

0
ξ(s)Υ(s)ds ,

which, thanks to Gronwall lemma, implies that

Υ(t) 6 3A0 e
δ c1
µ0 exp

(
2e

δ c1
µ0

ˆ t

0
ξ(s)ds

)
.
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Noticing that
ˆ t

0
ξ(s)ds 6 c1ε

2λε∆
2
0 t+

c1δ

µ0
,

one can choose ε⋆ > 0 sufficiently small so that

2e
δ c1
µ0 c1ε

2∆2
0 6

1

2
for any ε ∈ (0, ε⋆) . (4.24)

Consequently,

Υ(t) 6 CA0 e
λε
2
t

for some positive constant C depending only on ν, µ0, ∆0. Recalling the definition of A0,
such estimate combined with (4.23) gives that

‖h1(t)‖2H 6 C K0 exp

(
−λε

2
t

)
, ∀ t > 0 . (4.25)

One can upgrade the relaxation rate up to λε by bootstrapping. To see this, one suitably
uses (4.25) instead of (4.20), namely

‖h1(t)‖4H 6 C K0 exp
(
− λε

2
t
)
‖h1(t)‖2H .

Then, (4.21) changes to

1

c1
‖h1(t)‖2H 6 K0e

−2λεt +

(
δ +

λ2ε
δµ20

)
ˆ t

0
e−ν(t−s)‖h1(s)‖2Hds

+ ε2λεC K0

ˆ t

0
e−λε(t−s)e−

λε
2
s‖h1(s)‖2H ds+

δ

ε2

ˆ t

0
e−ν(t−s)−µ0

ε2
s‖h1(s)‖2H ds .

Consequently, one can redo the argument above with ξ̃(t) instead of ξ(t), where

ξ̃(t) = c1ε
2λεC K0 e

−λε
2
t +

c1δ

ε2
e−

µ0
ε2

t .

Since,
ˆ t

0
ξ̃(s)ds 6 2c1ε

2C K0 +
c1δ

µ0
6 2

c1δ

µ0
,

provided ε ∈ (0, ε⋆) for sufficiently small ε⋆ := ε⋆(ν, µ0,∆0), one is led to (4.22). �

Estimate (4.22) leads to the main result of this section.

Theorem 4.14. There exist ε† ∈ (0, ε6), λ
† ∈ (0, λ6), and C > 0 depending on ν, µ0,∆0 such

that

‖h(t)‖2E 6 C
(
‖h(0)‖2E + ‖h(0)‖4E + ‖h(0)‖8E

)
exp (−λεt) , ∀ t > 0 ,

for any ε ∈ (0, ε†) and λε ∈ (0, λ†).
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Proof. Using estimate (4.22) in estimate (4.8), it follows that

‖h0(t)‖2E 6 2‖h0(0)‖2E e−
2µ0
ε2

t +
CK0

µ20
ε2
(
ε λε

)2
e−λεt 6 C K0 e

−λεt . (4.26)

Consequently,

‖h(t)‖2E 6 2
(
‖h0(t)‖2E + ‖h1(t)‖2E

)
6 C

(
‖h0(t)‖2E + ‖h1(t)‖2H

)
6 C K0 e

−λεt . (4.27)

Recalling that h0(0) = h(0) and h1(0) = 0 in the definition of K0, estimate (4.27) gives
the result. �

We also point out the gain of decay in h in the following corollary.

Corollary 4.15. Under the same conditions of Theorem 4.14 it follows that

ˆ t

0
‖h(τ)‖E1dτ 6 C

√
K0min

{
1 + t, 1 + 1

λε

}
, ∀ t > 0 .

In particular, ‖h( · )‖E1 is integrable and exists a.e. in (0, T ) for any T > 0.

Proof. After performing time integration of equation (4.9) in [0, t] one finds that

‖h0(t)‖E +
µ0
ε2

ˆ t

0
‖h0(τ)‖E1dτ

6 ‖h0(0)‖E + C

ˆ t

0

(
λε‖h1(τ)‖E1 + ε λε‖h1(τ)‖2E1

)
dτ

6 C
(√

K0 + εK0

)
, ∀ t > 0 ,

(4.28)

where we used estimate (4.22) in the latter inequality. Thus,

ˆ t

0
‖h(τ)‖E1dτ 6

ˆ t

0
‖h0(τ)‖E1dτ +

ˆ t

0
‖h1(τ)‖E1dτ

6 C
(√

K0 + εK0

)
+ C

√
K0

ˆ t

0
e−

λε
2
τdτ ,

which gives the result. �

Remark 4.16. Of course, for a fixed ε > 0, one can replace min
{
1+t, 1+ 1

λε

}
with 1+ 1

λε
and

the above estimate shows that h(t) = hε(t) ∈ L1([0,∞), E1). However, in the case in which
limε→0 λε = 0 then the bound is not uniform with respect to ε. In practice, two situations
occur according to the value of λ0 in Assumption 1.2:

a) If λ0 > 0, then the family {hε(t)}ε>0 is bounded in L1([0,∞), E1),

b) If λ0 = 0 then for any T > 0, the family {hε(t)}ε>0 is bounded in L1([0, T ], E1).
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5. CAUCHY THEORY

In this section, we will use the functional spaces introduced at the beginning of Sec-
tion 4. Based on the a priori estimates derived in the previous section, we show in this
section the well-posedness of the system (4.4)-(4.5).

5.1. Iteration scheme. Let us follow the iteration scheme of [59, Section 3] with suitable
modifications. We are seeking to approximate the solution to the inelastic Boltzmann
equation using the iteration scheme





∂thn+1(t) = Gεhn+1(t) + ε−1Qα(ε)(hn(t), hn(t)) , n > 1

∂th1(t) = Gεh1(t) ,

hn(0) = h(0) ∈ E , n > 1,

(5.1)

where the initial perturbation h(0) has zero mass and momentum. This is done using the
decomposition of previous section. More precisely, writing hn = h0n + h1n we consider
solutions with the coupled system




∂th
0
n+1 = Bα(ε),εh

0
n+1 + ε−1Qα(ε)(h

0
n, h

0
n) + ε−1

[
Qα(ε)(h

0
n, h

1
n) +Qα(ε)(h

1
n, h

0
n)
]

+
[
Gεh

1
n+1 − G1,εh

1
n+1

]
+ ε−1

[
Qα(ε)(h

1
n, h

1
n)−Q1(h

1
n, h

1
n)
]
,

h0n+1(0) = h0(0) ∈ E ,

(5.2)

and {
∂th

1
n+1 = G1,εh

1
n+1 + ε−1Q1(h

1
n, h

1
n) +Aεh

0
n+1 ,

h1n+1(0) = h1(0) ∈ H .
(5.3)

Motivated by the a priori estimates of Section 4, we introduce the following norms

|||g|||0 := sup
t>0

(
‖g(t)‖E + ε−2

ˆ t

0
e−ν(t−τ)‖g(τ)‖E1dτ

)
, g ∈ C([0,∞), E) ,

and

|||g|||1 := sup
t>0

(
‖g(t)‖2H +

ˆ t

0
e−ν(t−τ)‖g(τ)‖2H1

dτ
) 1

2
, g ∈ C([0,∞),H) ,

where ν ∼ µ/σ20 > 0 was computed in (4.16) and we recall that E1, E , H and H1 are

defined in (4.3). Notice that
(
C([0,∞), E) ; ||| · |||0

)
and

(
C([0,∞),H) ; ||| · |||1

)
are Banach

spaces. In particular, the space

B := C([0,∞), E) × C([0,∞),H)

endowed with the norm

|||(g, h)||| := |||g|||0 + |||h|||1 for (g, h) ∈ B,
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is a Banach space. Define then

X0 =
{
h0 ∈ C

(
[0,∞); E

) ∣∣∣
∣∣∣∣∣∣h0

∣∣∣∣∣∣
0
6 C

√
K0

}
,

X1 =
{
h1 ∈ C

(
[0,∞);H

) ∣∣∣
∣∣∣∣∣∣h1

∣∣∣∣∣∣
1
6 C

√
K0

}
, (5.4)

for some positive constant C > 0 which can be explicitly estimated from the subsequent
computations. The system (5.2)-(5.3) is a simplified coupled version of the system (4.4)-
(4.5) with all nonlinear terms as sources. Notice however that the coupling between h0n+1

and h1n+1 in the system makes it nonlinear. However, because Gε is the generator of a
C0-semigroup in E , equation (5.1) is well-posed and

hn+1(t) = Vε(t)h(0) + ε−1

ˆ t

0
Vε(t− s)Qα(ε)(hn(s), hn(s))ds

where {Vε(t) ; t > 0} is the C0-semigroup in E generated by Gε (i.e., with the notations of
Prop. 2.13, Vε(t) = Vα(ε),ε(t), t > 0). With this at hands, substitute in (5.2) the term h1n+1

by hn+1 − h0n+1 and look at hn+1(t) as an additional source term. In the same way for

(5.3), the system (5.2)-(5.3) becomes linear (in terms of h0n+1 and h1n+1) and admits, for
any n ∈ N, a unique solution. One can use a slight modification of the ideas of Section 4
to check that the iteration scheme is stable, that is, the mapping

(
h0n, h

1
n

)
∈ X0 × X1 7→

(
h0n+1, h

1
n+1

)
∈ X0 × X1

is well defined. Indeed, existence of the scheme is guaranteed by the linear theory as the
iteration scheme is based on the linear equation. Moreover, note that (5.1) preserves the
conservation laws: mass conservation and vanishing momentum, which were essential for
the a priori estimates related to P0h

1. Thus, stability holds true under the conditions of
the a priori estimates, that is, for ε ∈ (0, ε†) (where ε† is defined in Theorem 4.14) and

sup
t>0

(
‖h1n(t)‖H + ‖h0n(t)‖E

)
6 C

√
K0 6 ∆0 , n ∈ N .

This latter condition is possible by taking K0 smaller than a threshold depending only on

the initial mass and energy Ein
5

K0 6 (∆0/C)2 =: K†
0.

We leave the details to the reader and focus in the next subsections on the convergence
of the scheme.

5.2. Estimating ‖h0n+1−h0n‖E and ‖h1n+1−h1n‖H. To prove the convergence of the scheme,
we define for n ∈ N

d0n+1 = h0n+1 − h0n, d1n+1 = h1n+1 − h1n.

5since all the threshold values appearing here are prescribed by the choice of the initial mass and energy,

see Remark 1.1.
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Then, one deduces from (5.2) and (5.3)




∂td
0
n+1 = Bα(ε),εd

0
n+1 +

[
Gεd

1
n+1 − G1,εd

1
n+1

]
+ ε−1F0

n ,

d0n+1(0) = 0 ,
(5.5)

and {
∂td

1
n+1 = G1,εd

1
n+1 +Aεd

0
n+1 + ε−1F1

n ,

d1n+1(0) = 0 .
(5.6)

The sources F i
n, for i ∈ {0, 1}, correspond to the bilinear terms and depend only on the

previous iterations {hin, hin−1}, for i ∈ {0, 1} and n > 2 (see (5.9) and (5.11) for the
precise expression). We introduce

{
Ψ1

n(t) = ‖h0n(t)‖E2 + ‖h0n−1(t)‖E2
Ψ∞

n (t) = ‖h0n(t)‖E + ‖h0n−1(t)‖E + ‖h1n(t)‖H + ‖h1n−1(t)‖H ,
which satisfy

sup
t>0

(
Ψ∞

n (t) + ε−2

ˆ t

0
e−ν(t−τ)Ψ1

n(τ)dτ
)
6 C

√
K0 , n > 2 , (5.7)

for h0n, h
0
n−1 ∈ X0, and h1n, h

1
n−1 ∈ X1. Consequently, the following estimate for d0n+1

follows under suitable modifications of the arguments leading to Proposition 4.1 (keep in
mind that ‖ · ‖E2 . ‖ · ‖H).

Lemma 5.1. Let ε ∈ (0, ε†) and K0 6 K†
0. Then, we have that

‖d0n+1(t)‖E . λε

ˆ t

0
e−

µ0
ε2

(t−s)‖d1n+1(s)‖H ds

+ ε−1

ˆ t

0
e−

µ0
ε2

(t−s)Ψ1
n(s)

(
‖d0n(s)‖E + ‖d1n(s)‖H

)
ds

+

ˆ t

0
e−

µ0
ε2

(t−s)Ψ∞
n (s)

(
ε−1‖d0n(s)‖E1 + ελε‖d1n(s)‖H

)
ds .

(5.8)

Proof. Here again, as in the proof of Proposition 4.1, we denote by ‖ · ‖E1 and ‖ · ‖E the
norms on E1 and E that are equivalent to the standard ones (with multiplicative constants
independent of ε) and that make ε−2ν0 + Bα(ε),ε dissipative so that

d

dt
‖d0n+1(t)‖E 6 −ν0

ε2
‖d0n+1(t)‖E1 + ε−1‖F0

n(t)‖E +
∥∥Gεd

1
n+1(t)− G1,εd

1
n+1(t)

∥∥
E

6 −ν0
ε2

‖d0n+1(t)‖E1 + ε−1‖F0
n(t)‖E + Cλε‖d1n+1(t)‖H.

We need to estimate ‖F0
n(t)‖E . One has,

F0
n = Qα(ε)(d

0
n, h

0
n) +Qα(ε)(h

0
n−1, d

0
n) + 2Q̃α(ε)(d

0
n, h

1
n) + 2Q̃α(ε)(h

0
n−1, d

1
n)

+
(
Qα(ε)(d

1
n, h

1
n)−Q1(d

1
n, h

1
n)
)
+
(
Qα(ε)(h

1
n−1, d

1
n)−Q1(h

1
n−1, d

1
n)
)
.

(5.9)
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Therefore, since 1−α(ε) . ε2 λε, using Lemma 2.1 and the usual estimates for Qα and Q1:

‖F0
n‖E . ‖d0n‖E1

(
‖h0n‖E + ‖h0n−1‖E

)
+ ‖d0n‖E

(
‖h0n‖E1 + ‖h0n−1‖E1

)

+ ‖d0n‖E‖h1n‖E1 + ‖d0n‖E1‖h1n‖E + ‖d1n‖E1 ‖h0n−1‖E
+ ‖d1n‖E ‖h0n−1‖E1 + ε2λε‖d1n‖E2

(
‖h1n‖E2 + ‖h1n−1‖E2

)
.

Using that ‖ · ‖E2 . ‖ · ‖H we get

‖F0
n(t)‖E . ‖d0n(t)‖E1Ψ∞

n (t) + Ψ1
n(t)

(
‖d0n(t)‖E + ‖d1n(t)‖H

)
+ ε2λε‖d1n(t)‖E2Ψ∞

n (t).

This leads to the desired estimate since µ0 < ν0 (see the proof of Proposition 4.1). �

Regarding the projection P0d
1
n+1(t), since the difference hn+1 − hn = d0n+1 + d1n+1 has

zero mass and momentum, one can follow the line of proof of Lemma 4.4 to deduce that

‖P0d
1
n+1(t)‖E−1 .

(
1− α(ε)

)
‖d1n+1(t)‖E + ‖d0n+1(t)‖E

+ ελε

ˆ t

0
e−λε(t−s)Ψ∞

n (s)
(
‖d0n(s)‖E + ‖d1n(s)‖E

)
ds .

Consequently, plugging (5.8) in the second term in the right side and recalling that

‖P0d
1
n+1(t)‖H . ‖P0d

1
n+1(t)‖E−1 . ‖P0d

1
n+1(t)‖H

we obtain the following lemma.

Lemma 5.2. For any t ≥ 0, we have that

‖P0d
1
n+1(t)‖H . λεε

2‖d1n+1(t)‖H + λε

ˆ t

0
e−

µ0
ε2

(t−s)‖d1n+1(s)‖H ds

+ ε−1

ˆ t

0
e−

µ0
ε2

(t−s)Ψ1
n(s)

(
‖d0n(s)‖E + ‖d1n(s)‖H

)
ds

+

ˆ t

0
e−

µ0
ε2

(t−s)Ψ∞
n (s)

(
ε−1‖d0n(s)‖E1 + ελε‖d1n(s)‖H

)
ds

+ ελε

ˆ t

0
e−λε(t−s)Ψ∞

n (s)
(
‖d0n(s)‖E + ‖d1n(s)‖H

)
ds .

Let us focus on estimating P
⊥
0 d

1
n+1(t). To do so, we introduce the functions Φ1

n and Φ∞
n

defined by

Φ1
n(t) = ‖h1n(t)‖2H1

+ ‖h1n+1(t)‖2H1
and Φ∞

n = ‖h1n(t)‖2H + ‖h1n+1(t)‖2H
which satisfy

sup
t>0

(
Φ∞
n (t) +

ˆ t

0
e−ν(t−τ)Φ1

n(τ)dτ
)
6 CK0 , n > 2. (5.10)

One has the following lemma.
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Lemma 5.3. Let ε ∈ (0, ε†) and K0 6 K†
0. Then,

‖P⊥
0 d

1
n+1(t)‖2H .

ˆ t

0
e−ν(t−s)Φ1

n(s)‖d1n(s)‖2Hds

+

ˆ t

0
e−ν(t−s)Φ∞

n (s)‖d1n(s)‖2H1
ds+

λε
µ0

ˆ t

0
e−ν(t−s)‖d1n+1(s)‖2Hds

+
1

µ0ε

(
sup
t>0

‖d1n+1(t)‖H
)
ˆ t

0
e−ν(t−τ) Ψ1

n(τ)
(
‖d0n(τ)‖E + ‖d1n(τ)‖H

)
dτ

+
1

µ0

(
sup
t>0

‖d1n+1(t)‖H
)
ˆ t

0
e−ν(t−τ) Ψ∞

n (τ)
(
ε−1‖d0n(τ)‖E + ε λε‖d1n(τ)‖H

)
dτ.

Proof. One deduces from (5.6) that P⊥
0 d

1
n+1(t) is such that

∂tP
⊥
0 d

1
n+1(t) = G1,εP

⊥
0 d

1
n+1(t) +P

⊥
0 Aεd

0
n+1(t) + F1

n

where

F1
n = Q1(h

1
n, h

1
n)−Q1(h

1
n−1, h

1
n−1) = Q1(d

1
n, h

1
n) +Q1(h

1
n−1, d

1
n) . (5.11)

Following the argument leading to inequality (4.18) (see also [15, Lemma 4.6, Theorem
4.7]) one deduces that

‖P⊥
0 d

1
n+1(t)‖2H .

ˆ t

0
e−ν(t−s)Φ1

n(s)‖d1n(s)‖2Hds+
ˆ t

0
e−ν(t−s)Φ∞

n (s)‖d1n(s)‖2H1
ds

+

ˆ t

0
e−ν(t−s)‖d1n+1(s)‖H ‖Aεd

0
n+1(s)‖Hds . (5.12)

The latter term in the right side of (5.12) can be estimated using (5.8) and recalling that
‖Aεd

0
n+1‖H . ε−2 ‖d0n+1‖E . Thus,

ˆ t

0
e−ν(t−s)‖d1n+1(s)‖H ‖Aεd

0
n+1(s)‖Hds .

3∑

i=1

Ti ,

with

T1 =
λε
ε2

ˆ t

0
e−ν(t−s)‖d1n+1(s)‖H

(
ˆ s

0
e−

µ0
ε2

(s−τ)‖d1n+1(τ)‖H dτ

)
ds,

T2 = ε−3

ˆ t

0
e−ν(t−s)‖d1n+1(s)‖H

[
ˆ s

0
e−

µ0
ε2

(s−τ)Ψ1
n(τ)

(
‖d0n(τ)‖E + ‖d1n(τ)‖H

)
dτ

]
ds

T3 = ε−2

ˆ t

0
e−ν(t−s)‖d1n+1(s)‖H

[
ˆ s

0
e−

µ0
ε2

(s−τ)Ψ∞
n (τ)

(
ε−1‖d0n(τ)‖E1 + ελε‖d1n(τ)‖H

)
dτ

]
ds.

It is easy to check, using (4.15), that

T2 6
2

µ0ε

(
sup
t>0

‖d1n+1(t)‖H
)
ˆ t

0
e−ν(t−τ) Ψ1

n(τ)
(
‖d0n(τ)‖E + ‖d1n(τ)‖H

)
dτ
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and

T3 6
2

µ0

(
sup
t>0

‖d1n+1(t)‖H
)
ˆ t

0
e−ν(t−τ)Ψ∞

n (τ)
(
ε−1‖d0n(τ)‖E1 + ε λε‖d1n(τ)‖H

)
dτ.

The estimate for T1 is a bit more involved. Thanks to Cauchy-Schwarz inequality one first
has

T1 6
λε
ε2

(
ˆ t

0
e−ν(t−s)‖d1n+1(s)‖2Hds

)1
2
(
ˆ t

0
e−ν(t−s)Y 2(s)ds

) 1
2

where

Y (s) :=

ˆ s

0
e−

µ0
ε2

(s−τ)‖d1n+1(τ)‖Hdτ, s ∈ (0, t).

Thanks to (4.10),

Y 2(s) 6
ε2

µ0

ˆ s

0
e−

µ0
ε2

(s−τ)‖d1n+1(τ)‖2Hdτ

and, using now (4.15) for µ0 > 2ε2ν,

ˆ t

0
e−ν(t−s)Y 2(s)ds 6

ε2

µ0

ˆ t

0
e−ν(t−s)ds

ˆ s

0
e−

µ0
ε2

(s−τ)‖d1n+1(τ)‖2Hdτ

6
ε2

µ0
(µ0

ε2
− ν
)
ˆ t

0
e−ν(t−s)‖d1n+1(s)‖2Hds 6

2ε4

µ20

ˆ t

0
e−ν(t−s)‖d1n+1(s)‖2Hds.

We deduce finally that

T1 6
√
2λε
µ0

ˆ t

0
e−ν(t−s)‖d1n+1(s)‖2Hds

and this, together with the estimates for T2 and T3, gives the result. �

Introducing now the quantities

Ξ
0
n = sup

t>0

(
‖d0n(t)‖E + ε−2

ˆ t

0
e−ν(t−τ)‖d0n(τ)‖E1dτ

)
,

Ξ
1
n = sup

t>0

(
‖d1n(t)‖2H +

ˆ t

0
e−ν(t−τ)‖d1n(τ)‖2H1

dτ
) 1

2
, n > 2 ,

we can gather the three previous lemmas and use (5.7) to obtain the following result.

Proposition 5.4. For any n ∈ N and t > 0

‖d0n+1(t)‖E .
ε2λε
µ0

Ξ
1
n+1 +

√
K0 ε

(
Ξ

0
n +Ξ

1
n(1 + µ−1

0 )
)
. (5.13)

while

‖P0d
1
n+1(t)‖H . ε2λε

(
1 + µ−1

0

)
Ξ

1
n+1 +

√
K0 ε

(
Ξ

0
n +Ξ

1
n(1 + µ−1

0 )
)
, (5.14)
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and

‖P⊥
0 d

1
n+1(t)‖H .

√
λε

νµ0
+ ε Ξ1

n+1 +
1
µ0

√
εK0 Ξ

0
n +

(√
(1+ν−1)ε

µ0
+ 1
)√

(1 + ν−1)K0 Ξ
1
n .

(5.15)
In particular,

‖d1n+1(t)‖H .
(
(1 + µ−1

0 )
√
ε+

√
λε

νµ0

)
Ξ

1
n+1 + (1 + µ−1

0 )
√
εK0 Ξ

0
n

+
√

1 + ν−1
(√

1 + ν−1(1 + µ−1
0 )

√
ε+ 1

)√
K0Ξ

1
n ,

(5.16)

as long as ε ∈ (0, ε†), K0 6 K†
0.

Proof. We give a detailed proof of inequality (5.15). Notice directly from Lemma 5.3 that

‖P⊥
0 d

1
n+1(t)‖2H .

λε
µ0

[
Ξ

1
n+1

]2
ˆ t

0
e−ν(t−s)ds

+
[
Ξ

1
n

]2
(
ˆ t

0
e−ν(t−s)Φ1

n(s)ds+ sup
t>0

Φ∞
n (t)

ˆ t

0
e−ν(t−s)ds

)

+
1

µ0ε
Ξ

1
n+1

(
Ξ

0
n +Ξ

1
n

) ˆ t

0
e−ν(t−τ)Ψ1

n(τ)dτ

+
1

µ0
Ξ

1
n+1(sup

t>0
Ψ∞

n (t))
(
εΞ0

n + ν−1ελεΞ
1
n

)

since
´ t
0 e

−ν(t−s)ds 6 ν−1. We can thus invoke (5.7) and (5.10) to deduce that

‖P⊥
0 d

1
n+1(t)‖2H . (1 + ν−1)K0

[
Ξ

1
n

]2
+

λε
νµ0

[
Ξ

1
n+1

]2
+

ε

µ0

√
K0

(
Ξ

0
n +Ξ

1
n

(
1 + ν−1)

))
Ξ

1
n+1

where we used that ελε < ε. From Young’s inequality, we deduce that

‖P⊥
0 d

1
n+1(t)‖2H .

(
λε
νµ0

+ ε

)[
Ξ

1
n+1

]2

+(1 + ν−1)K0

(
1 +

ε

µ20
(1 + ν−1)

)[
Ξ

1
n

]2
+

ε

µ20
K0

[
Ξ

0
n

]2
.

This proves (5.15). The other inequalities are easier to prove along the same lines,
with (5.13) easily deduced from Lemma 5.1 and (5.14) deduced from Lemma 5.2 together
with (5.7). The proof of (5.16) comes from the fact that ‖d1n+1(t)‖2H = ‖P0d

1
n+1(t)‖2H +

‖P⊥
0 d

1
n+1(t)‖2H. �

Proposition 5.5. For any t > 0, we have that

(µ0
ε2

− ν
)ˆ t

0
e−ν(t−s)‖d0n+1(s)‖E1ds . ν−1λεΞ

1
n+1 + ε

√
K0

(
Ξ

0
n + (1 + ν−1)Ξ1

n

)
(5.17)
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(
ˆ t

0
e−ν(t−τ)‖P0d

1
n+1(τ)‖2H1

dτ

)1
2

. ν−1/2(1 + µ−1
0 )ε2λεΞ

1
n+1

+ ν−1/2
√

K0 ε
(
Ξ

0
n +Ξ

1
n(1 + µ−1

0 )
)
.

(5.18)

whereas

∆2
0

(
ˆ t

0
e−ν(t−τ)‖P⊥

0 d
1
n+1(τ)‖2H1

dτ

) 1
2

.
√

λε

νµ0
+ ε Ξ1

n+1 +
1
µ0

√
εK0 Ξ

0
n

+
(√

(1+ν−1)ε

µ0
+ 1
)√

(1 + ν−1)K0 Ξ
1
n .

(5.19)

In particular

∆2
0

(
ˆ t

0
e−ν(t−τ)‖d1n+1(τ)‖2H1

dτ

) 1
2

.
(
(1 + ν−1/2)(1 + µ−1

0 )
√
ε+

√
λε

νµ0

)
Ξ

1
n+1

+(ν−1/2 + µ−1
0 )
√
εK0 Ξ

0
n +

√
1 + ν−1

(√
1 + ν−1(1 + µ−1

0 )
√
ε+ 1 + µ−1

0

)√
K0 Ξ

1
n .

(5.20)

Proof. To prove (5.17), we follow the argument that led to Lemma 5.1 and thus in the
subsequent proof, we again denote by ‖ · ‖E1 and ‖ · ‖E the norms on E1 and E that are
equivalent to the standard ones independently of ε and that make ε−2ν0+Bα(ε),ε dissipative

so that we can write

d

dt
‖d0n+1(t)‖E 6 −ν0

ε2
‖d0n+1(t)‖E1 + ε−1‖F0

n(t)‖E + Cλε‖d1n+1(t)‖H ,

which implies that,

d

dt
‖d0n+1(t)‖E + ν ‖d0n+1(t)‖E1 6 −

(µ0
ε2

− ν
)
‖d0n+1(t)‖E1

+ ε−1‖F0
n(t)‖E + Cλε‖d1n+1(t)‖H

where we used that µ0 < ν0. After integration over [0, t], using that d0n+1(0) = 0, we get
that

‖d0n+1(t)‖E 6 −
(µ0
ε2

− ν
)ˆ t

0
e−ν(t−s)‖d0n+1(s)‖E1ds+ ε−1

ˆ t

0
e−ν(t−s)‖F1

n(s)‖Eds

+ Cλε

ˆ t

0
e−ν(t−s)‖d1n+1(s)‖Hds ,
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and, recalling that F0
n is given by (5.9), we estimate ‖F0

n(s)‖E as in Lemma 5.1 to obtain
that

(µ0
ε2

− ν
)ˆ t

0
e−ν(t−s)‖d0n+1(s)‖E1ds . λε

ˆ t

0
e−ν(t−s)‖d1n+1(s)‖H ds

+ ε−1

ˆ t

0
e−ν(t−s)Ψ1

n(s)
(
‖d0n(s)‖E + ‖d1n(s)‖H

)
ds

+

ˆ t

0
e−ν(t−s)Ψ∞

n (s)
(
ε−1‖d0n(s)‖E1 + ελε‖d1n(s)‖H

)
ds.

This yields (5.17). In the same way, we adapt the proof of Lemma 5.3 to get that

(2µ
σ20

− ν
)ˆ t

0
e−ν(t−τ)‖P⊥

0 d
1
n+1(τ)‖2H1

dτ .

ˆ t

0
e−ν(t−s)Φ1

n(s)‖d1n(s)‖2Hds

+

ˆ t

0
e−ν(t−s)Φ∞

n (s)‖d1n(s)‖2H1
ds+

ˆ t

0
e−ν(t−s)‖d1n+1(s)‖H ‖Aεd

0
n+1(s)‖Hds

where 2µ/σ20 − ν = c0∆
2
0 (see (4.16)). This estimate is similar to (5.12) and therefore

we can resume both the proofs of Lemma 5.3 and Proposition 5.4 to conclude to (5.19).
Recalling that ‖P0d

1
n+1‖H1 . ‖P0d

1
n+1‖H, a simple integration of (5.14) gives (5.18). �

5.3. Convergence of the iteration scheme. In this Subsection, we do not mention any-
more the dependences of positive multiplicative constants in terms of µ0, ν and ∆0 so that
they may depend on these parameters. We are in position to conclude our analysis and
prove the convergence of the iteration scheme. Suitably adding (5.13) and (5.17) and
taking the supremum in time, one has that

Ξ
0
n+1 . λεΞ

1
n+1 + ε

√
K0

(
Ξ

0
n +Ξ

1
n

)
(5.21)

where we used that µ0 ≥ 2ε2ν. Similarly, adding (5.16) and (5.20) and taking the supre-
mum in time it holds that

Ξ
1
n+1 .

√
λε + ε Ξ1

n+1 +
√
εK0 Ξ

0
n +

√
K0 Ξ

1
n . (5.22)

Let us define En = Ξ
0
n + Ξ

1
n, for n > 2. Adding the estimates (5.21) and (5.22), we

conclude that there exists C > 0 such that En+1 6 C(λε+
√
λε + ε)En+1+C

√
K0 En. Thus,

choosing ε sufficiently small such that C
(
λε +

√
λε + ε

)
< 1

2 , we get that En+1 6 C
√
K0 En

from which

En+1 6
(
C
√
K0

)n−1
E2 , ∀n > 2 .

Whence, in the Banach space (B, ||| · |||), one has for m > n > 1,

∣∣∣∣∣∣(h0m, h1m)− (h0n, h
1
n)
∣∣∣∣∣∣ 6

m−1∑

i=n

Ei+1 6 E2
θn−1

1− θ
, θ := C

√
K0 .

Therefore, choosing K0 6 K†
0 < C−2 so that θ < 1, we conclude that the sequence{

(h0n, h
1
n)
}
n
⊂ X0 × X1 ⊂ B is a Cauchy sequence. Hence, it converges in (B, ||| · |||) to a
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limit (h0, h1) ∈ X0 × X1. Of course, such limit satisfies equations (4.4) and (4.5). Thus,
h = h0 + h1 is a solution to the inelastic Boltzmann problem (1.20). Such solution is
unique in the class of functions that we consider since, at essence, we proved that the
problem is a contraction on X0 × X1. Let us write the conclusion as the main theorem of
the section.

Theorem 5.6. Fix a nonnegative initial data F ε
in = Gα + ε hεin ∈ E and assume that the

initial perturbation hεin has zero total mass and momentum
ˆ

Td×Rd

hεin(t, x, v)dvdx =

ˆ

Td×Rd

hεin(t, x, v) v dvdx = 0 .

Then, there exist positive threshold values (ε†, λ†,K†
0) fully determined by the initial mass and

energy Ein (see Remark 1.1) such that if

‖hεin‖E 6

√
K†

0 ,

and ε ∈ (0, ε†), λε ∈ (0, λ†), the inelastic Boltzmann equation (1.20) has a unique solution

hε ∈ C
(
[0,∞); E

)
satisfying for t > 0

‖hε(t)‖E 6 C‖hεin‖E exp (−λεt) and

ˆ t

0
‖hε(τ)‖E1dτ 6 C‖hεin‖E min

{
1 + t, 1 + 1

λε

}
.

6. HYDRODYNAMIC LIMIT

In this last section, we will once again specify that h, h0 and h1 depend on ε by noting
h = hε, h

0 = h0ε, h1 = h1ε. On the other hand, to lighten notations, we will write α
for α(ε) but recall that α = α(ε) satisfies Assumption 1.2. Finally, we will consider m
and q satisfying (4.2) as well as the spaces E and E1 defined in (4.1)-(4.3).

6.1. Compactness and convergence. We start this section recalling the expression for
the spectral projection π0 onto the kernel Ker(L1) of the linearized collision operator L1

seen as an operator acting in velocity only on the space L2
v(M− 1

2 ). We recall that, with the
notations of Theorem 2.10,

π0(g) :=

d+2∑

i=1

(
ˆ

Rd

gΨi dv

)
ΨiM , (6.1)

where Ψ1(v) = 1, Ψi(v) = 1√
ϑ1
vi−1 (i = 2, . . . , d + 1) and Ψd+2(v) = |v|2−dϑ1

ϑ1

√
2d

. Note that

the difference with respect to the spectral projection P0 for the operator G1,ε in (2.22) is
that no spatial integration is performed.

Consider now hε = h0ε + h1ε the solution constructed in Section 5. One can prove the
following estimate for time-averages of (Id − π0)hε(τ) in spaces which do not involve
derivatives in the v-variable:
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Proposition 6.1. For any 0 6 β 6 m− 1 there exists C > 0 independent of ε such that
ˆ t2

t1

‖(Id− π0)hε(τ)‖Wβ,1
x L1

v(̟q)
dτ 6 C ε

√
K0

√
t2 − t1 exp

(ν
2
(t2 − t1)

)
(6.2)

holds true for any 0 6 t1 6 t2.

Proof. For a given 0 6 β 6 m− 1, we introduce the hierarchy of Hilbert spaces

H̃s = W
β,2
x L2

v(M− 1
2 〈v〉 s

2 ), s ∈ R ,

setting simply H̃ := H̃0. Recall that −L1 is (better than) coercive on (Id−π0)H̃ (see [14]
for instance) and denote by µ̃1 the coercivity constant, namely

−〈L1(Id− π0)g , (Id− π0)g〉H̃ > µ̃1‖(Id− π0)g‖2H̃1
, g ∈ H̃1.

In the space H̃, we can compute the inner product between ∂th
1
ε and (Id − π0)h

1
ε where

we recall that h1ε solves

∂th
1
ε = G1,εh

1
ε + ε−1Q1(h

1
ε, h

1
ε) +Aεh

0
ε .

We obtain, thanks to Cauchy-Schwarz inequality, that

1

2

d

dt

∥∥(Id− π0)h
1
ε

∥∥2
H̃
+
µ̃1
ε2

‖(Id− π0)h
1
ε‖2H̃1

6 〈ε−1
(
Q1(h

1
ε, h

1
ε)− (Id− π0)(v ·∇xh

1
ε)
)
+ (Id− π0)(Aεh

0
ε), (Id− π0)h

1
ε〉H̃

6 ε−1
(
‖Q1(h

1
ε, h

1
ε)‖H̃−1

+ ‖v ·∇xh
1
ε‖H̃−1

)
‖(Id− π0)h

1
ε‖H̃1

+ ‖Aεh
0
ε‖H̃‖(Id− π0)h

1
ε‖H̃ .

We deduce easily then with a simple use of Young’s inequality on the right-hand-side of
this inequality that there is C > 0 independent of ε such that

1

2

d

dt

∥∥(Id− π0)h
1
ε

∥∥2
H̃
+
µ̃1
2ε2

‖(Id− π0)h
1
ε‖2H̃1

6 C
(
‖Q1(h

1
ε, h

1
ε)‖2H̃−1

+ ‖v ·∇xh
1
ε‖2H̃−1

+ ε2‖Aεh
0
ε‖2H̃

)
.

Thus, for some different C > 0, one has

d

dt

∥∥(Id− π0)h
1
ε(t)
∥∥2
H̃
+
µ̃1
ε2

‖(Id− π0)h
1
ε(t)‖2H̃1

6 C
(
‖h1ε(t)‖4H + ‖h1ε(t)‖2H + ‖h0ε(t)‖2E

)
6 CK0

where the last estimate comes from the results obtained in Sections 4 and 5, K0 . 1
and ‖ · ‖H̃ . ‖ · ‖H. We integrate this inequality over (t1, t2) to get

µ̃1
ε2

ˆ t2

t1

‖(Id− π0)h
1
ε(t)‖2H̃1

dt 6 ‖(Id− π0)h
1
ε(t1)‖2H̃ + CK0(t2 − t1)

6 CK0 max(1, t2 − t1) ,

(6.3)
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where we used (4.25). Introduce now the space Ẽ = W
β,1
x L1

v(̟q). Noticing that

‖ · ‖Ẽ . ‖ · ‖E and ‖ · ‖Ẽ . ‖ · ‖H̃
and writing that hε(τ) = h1ε(τ) + h0ε(τ), one has
ˆ t2

t1

‖(Id− π0)hε(τ)‖Ẽ dτ 6

ˆ t2

t1

(
‖(Id− π0)h

1
ε(τ)‖Ẽ + ‖(Id− π0)h

0
ε(τ)‖Ẽ

)
dτ . (6.4)

Using Cauchy-Schwarz inequality
ˆ t2

t1

‖(Id− π0)hε(τ)‖Ẽdτ

.
√
t2 − t1

((
ˆ t2

t1

‖(Id− π0)h
1
ε(τ)‖2H̃ dτ

)1
2

+

(
ˆ t2

t1

‖h0ε(τ)‖2E dτ
)1

2

)
.

From (6.3), the first integral involving h1ε is such that

(
ˆ t2

t1

‖(Id− π0)h
1
ε(τ)‖2H̃ dτ

)1
2

6 Cε
√

K0max
{
1,
√
t2 − t1

}

whereas, to estimate the integral involving h0ε we use that h0ε ∈ X0 as defined in Section 5
to get

ˆ t2

t1

‖h0ε(τ)‖2E dτ 6 sup
t16τ6t2

‖h0ε(τ)‖E
ˆ t2

t1

‖h0ε(τ)‖E1dτ

6 eν(t2−t1) ε2
∣∣∣∣∣∣h0ε

∣∣∣∣∣∣2
0
6 Cε2 eν(t2−t1)K0.

This proves the result. �

Remark 6.2. Notice that, if we are not interested in introducing a modulus of continuity in
time for the above integral, we can directly deduce from (6.3) and (6.4) that

ˆ T

0
‖(Id− π0) hε(t)‖Wβ,1

x L1
v(̟q+1)

dt

.

ˆ T

0

∥∥(Id− π0)h
0
ε(t)
∥∥
E1 dt+

ˆ T

0

∥∥(Id− π0)h
1
ε(t)
∥∥
H̃1

dt

. ε
∣∣∣∣∣∣h0ε

∣∣∣∣∣∣
0
+

√
T

(
ˆ T

0

∥∥(Id− π0) h
1
ε(t)
∥∥2
H̃1

dt

)1
2

which results in
ˆ T

0
‖(Id− π0) hε(t)‖Wβ,1

x L1
v(̟q+1)

dt . ε (6.5)

for any 0 6 β 6 m− 1.

We deduce the following convergence result:
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Theorem 6.3 (Weak convergence). Fix T > 0, and let

{hε}ε ⊂ L1
(
(0, T );Wm,1

x L1
v(̟q)

)

be a sequence of solutions to the inelastic Boltzmann equation (1.20). Then, with the splitting
hε = h0ε + h1ε, up to extraction of a subsequence, one has





{
h0ε
}
ε

converges to 0 strongly in L1((0, T ) ; E1)

{
h1ε
}
ε

which converges to h weakly in L2
(
(0, T ) ; Wm,2

x L2
v

(
M− 1

2

)) (6.6)

where h = π0(h). In particular, there exist

̺ ∈ L2
(
(0, T ); Wm,2

x (Td)
)
, θ ∈ L2

(
(0, T ); Wm,2

x (Td)
)
,

u ∈ L2

(
(0, T );

(
W

m,2
x (Td)

)d)

such that

h(t, x, v) =

(
̺(t, x) + u(t, x) · v +

1

2
θ(t, x)(|v|2 − dϑ1)

)
M(v) (6.7)

where M is the Maxwellian distribution introduced in (1.13).

Proof. Let T > 0 be fixed. We use the notations of Proposition 6.1. The estimates obtained
in Section 5, using the splitting hε = h0ε(t) + h1ε(t) imply the following properties of the
sequences of time-dependent vector-valued mappings {h1ε}ε, {h0ε}ε and {hε}ε:

{h1ε} ⊂
(
L1 ∩ L∞)((0, T );H

)
is bounded (6.8)

ˆ T

0
‖h0ε(t)‖E1dt . ε2 (6.9)

From (6.8) and since ‖ · ‖
W

m,2
x L2

v(M− 1
2 )

. ‖ · ‖H, we deduce that

{h1ε} is bounded in L2
(
(0, T ) ; Wm,2

x L2
v(M− 1

2 )
)

and therefore, admits a subsequence, say
{
h1ε′
}
ε′

which converges weakly to some h in

L2
(
(0, T );Wm,2

x L2
v(M− 1

2 )
)
. This, combined with (6.9) gives (6.6). From (6.3) we also

have, for that subsequence,

lim
ε′→0

ˆ T

0

∥∥(Id− π0) h
1
ε′(t)

∥∥2
W

m−1,2
x L2

v(M− 1
2 )

dt = 0

so that (Id− π0)h = 0. This gives the result. �

Remark 6.4. As observed in the previous proof, the convergence (6.6) can be made even more
precise since we also have

{
(Id− π0) h

1
ε

}
converges strongly to 0 in L2

(
(0, T ) ; Wm−1,2

x L2
v(M− 1

2 )
)
.
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This means somehow that the only part of hε which prevents the strong convergence towards
h is

{
π0h

1
ε

}
ε
.

Because of Theorem 6.3 and for simplicity sake, from here on, we will write that our
sequences converge even if it is true up to an extraction.

The above mode of convergence implies the following convergence of velocity averages
of hε. For any function f = f(t, x, v) we denote the velocity average by

〈
f
〉
=

ˆ

Rd

f(t, x, v)dv

recalling of course that this is a function depending on (t, x). We have then the following:

Lemma 6.5. Let {hε} be converging to h in the sense of Theorem 6.3. Then, for any function
ψ = ψ(v) such that

|ψ(v)| . ̟q(v)

one has 〈
ψ hε

〉
−→

〈
ψ h
〉

in D ′
t,x (6.10)

whereas 〈
ψQr

1(hε, hε)
〉
−→ 0 in D ′

t,x (6.11)

where we set Qr
1(hε, hε) = Q1(hε, hε)−Q1 (π0hε,π0hε) .

Proof. Let ψ be such that |ψ(v)| . ̟q(v) and let ϕ = ϕ(t, x) ∈ C∞
c ((0, T ) × T

d) be given.
One computes

Iε :=

ˆ T

0
dt

ˆ

Td

ϕ(t, x)
(〈
ψ hε

〉
−
〈
ψ h
〉)

dx = I0ε + I1ε

where

I0ε =

ˆ T

0
dt

ˆ

Td

ϕ(t, x)
〈
ψ h0ε

〉
dx, I1ε =

ˆ T

0
dt

ˆ

Td

ϕ(t, x)
(〈
ψ h1ε

〉
−
〈
ψ h
〉)

dx.

Because |I0ε | . ‖ϕ‖L∞
t,x

´ T
0 ‖h0ε(t)‖L1

xL
1
v(̟q)dt, we deduce from (6.6) that limε→0 I

0
ε = 0. In

the same way, one has

I1ε =

ˆ T

0
dt

ˆ

Td×Rd

(ψ(v)M(v)ϕ(t, x))
(
h1ε(t, x, v)− h(t, x, v)

)
dxM−1(v)dv

and, since the mapping

(t, x, v) 7−→ ψ(v)M(v)ϕ(t, x) belongs to L2((0, T ) ; Wm,2
x L2

v(M− 1
2 )), (6.12)

we deduce from (6.6) that limε→0 I
1
ε = 0. This proves (6.10). To prove (6.11), one sets

Jε :=

ˆ T

0
dt

ˆ

Td

ϕ(t, x)
〈
ψQr

1(hε, hε)
〉
dx.
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One writes Jε = J1
ε + J2

ε where

J1
ε =

ˆ T

0
dt

ˆ

Td

ϕ(t, x)
〈
ψQ1((Id− π0)hε, (Id− π0)hε)

〉
dx

J2
ε = 2

ˆ T

0
dt

ˆ

Td

ϕ(t, x)
〈
ψ Q̃1((Id− π0)hε,π0hε)

〉
dx

One has

|J1
ε | . ‖ϕ‖L∞

t,x

ˆ T

0
‖Q1 ((Id− π0)hε, (Id− π0)hε)‖L1

x,v(̟q)
dt.

Noticing that

‖Q1 ((Id− π0)hε, (Id− π0)hε)‖L1
x,v(̟q)

. ‖hε‖E‖(Id− π0)hε‖Wm−1,1
x L1

v(̟q+1)
.

we deduce from (6.5) and the fact that supt∈(0,T ) ‖hε(t)‖E <∞ that

lim
ε→0

|J1
ε | = 0.

We prove exactly in the same way that

lim
ε→0

|J2
ε | = 0.

This proves the result. �

Regarding the characterisation (6.7) of the limit h(t), note that

̺(t, x) =

ˆ

Rd

h(t, x, v)dv, u(t, x) =
1

ϑ1

ˆ

Rd

v h(t, x, v)dv ,

and

̺(t, x) + ϑ1θ(t, x) =
1

dϑ1

ˆ

Rd

|v|2h(t, x, v)dv .

Corollary 6.6. With the notations of Theorem 6.3, for any T > 0, the limit h(t, x, v) given
by (6.7) satisfies the incompressibility condition

divxu(t, x) = 0 , t ∈ (0, T ) , (6.13)

and Boussinesq relation

∇x (̺+ ϑ1θ) = 0 . (6.14)

As a consequence, introducing

E(t) =
1

|Td|

ˆ

Td

θ(t, x)dx, t ∈ (0, T ) ,

one has strengthened Boussinesq relation

̺(t, x) + ϑ1 (θ(t, x)− E(t)) = 0 , for a.e (t, x) ∈ (0, T )× T
d. (6.15)
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Proof. Set

̺ε(t, x) =

ˆ

Rd

hε(t, x, v)dv, uε(t, x) =
1

ϑ1

ˆ

Rd

v hε(t, x, v)dv ,

and, multiplying (1.20) with 1 and v and integrating in velocity, we get

ε∂t̺ε + ϑ1divx (uε) = 0 , (6.16)

ε ∂tuε +Divx (Jε) =
κα
ε
uε , (6.17)

where Jε(t, x) denotes the tensor

Jε(t, x) :=
1

ϑ1

ˆ

Rd

v ⊗ v hε(t, x, v)dv ,

since both Lα and Qα conserve mass and momentum. The proof of (6.13) is straightfor-
ward since ε∂t̺ε → 0 and divx(uε) → divxu in the distribution sense. Let us give the detail

for the sake of completeness. Multiplying (6.16) with a function ϕ ∈ C∞
c ((0, T ) × T

d) and

integrating over (0, T ) × T
d we get that

−
ˆ T

0
dt

ˆ

Td

∇xϕ(t, x) ·uε(t, x)dx = ε

ˆ T

0
dt

ˆ

Td

̺ε(t, x)∂tϕ(t, x)dx ,

which, taking the limit ε→ 0 and because ̺ε → ̺ and uε → u in D ′
t,x, yields

ˆ T

0
dt

ˆ

Td

∇xϕ(t, x) · u(t, x)dx = 0 , ∀ϕ ∈ C∞
c ((0, T ) × T

d).

Since u(t, x) ∈ L2((0, T ) ; Wm,2
x (Td)), the incompressibility condition (6.13) holds true. In

the same way, for any i = 1, . . . , d and ϕ ∈ C∞
c ((0, T ) × T

d), noticing that

lim
ε→0+

ε

ˆ T

0
ui
ε ∂tϕ(t, x)dx = lim

ε→0+

κα
ε

ˆ T

0
dt

ˆ

Td

ui
ε(t, x)ϕ(t, x)dx = 0 ,

because κα = 1− α 6 Cε2 we get that

0 = lim
ε→0+

d∑

j=1

ˆ T

0
dt

ˆ

Td

J i,j
ε (t, x)∂xj

ϕ(t, x)dx =

d∑

j=1

ˆ T

0
dt

ˆ

Td

J
i,j
0 (t, x)∂xj

ϕ(t, x)dx ,

where

J
i,j
0 (t, x) =

1

ϑ1

ˆ

Rd

vi vj h(t, x, v)dv = (̺(t, x) + ϑ1θ(t, x)) δij , i, j = 1, . . . , d.

Therefore, for any i = 1, . . . , d,

ˆ T

0
dt

ˆ

Td

(̺(t, x) + ϑ1θ(t, x)) ∂xi
ϕ(t, x)dx = 0 , ∀ϕ ∈ C∞

c ((0, T ) × T
d).
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As before, this gives the Boussinesq relation (6.14). To show that Boussinesq relation can
be strengthened, one notices that

lim
ε→0+

ˆ

Td

̺ε(t, x)dx =

ˆ

Td

̺(t, x)dx in D ′
t

from which we deduce, from the conservation of mass for (6.19), that
ˆ

Td

̺(t, x)dx = 0 , for a.e. t > 0.

With the definition of E(t), this implies that
ˆ

Td

(̺(t, x) + ϑ1 (θ(t, x)− E(t)))dx = 0 , for a.e. t > 0 ,

and, this combined with (6.14) yields the strengthened form (6.15). �

Remark 6.7. Using Boussinesq relation together with (6.7), one checks without major diffi-
culty that

v ·∇xh = M(v ⊗ v) : ∇xu+
1

2
M
(
|v|2 − (d+ 2)ϑ1

)
v ·∇xθ . (6.18)

Then, using the incompressibility condition (6.13) it holds that
ˆ

Rd

Ψj(v) v ·∇xh dv = 0, ∀j = 1, . . . , d+ 2 ,

that is, π0(v ·∇xh) = 0. In particular, v ·∇xh ∈ Range(Id − π0) ⊂ Range(L1) (see [42,
Eq. (6.34), p. 180]).

6.2. Identification of the limit. We aim here to fully characterise the limit h(t, x, v) ob-
tained in Theorem 6.3. To do so, we identify the limit equation satisfied by the macro-
scopic quantities (̺, u, θ) in (6.7) following the path of [9, 30] and exploiting the fact that
the mode of convergence in Theorem 6.3 is stronger than the one of [9, 30]. The regime
of weak inelasticity is central in the analysis.

We denote by {hε} any subsequence which converges to h in the above Theorem 6.3.
We will see in the sequel, under some strong convergence assumption on the initial da-
tum, all subsequences will share the same limit and, as such, the whole sequence will be
convergent.

Recall (1.20)

ε∂thε + v ·∇xhε + ε−1κα∇v · (vhε) = ε−1
Lαhε +Qα(hε, hε) , (6.19)

under the scaling hypothesis that α = 1 − λ0ε
2 + o(ε2), λ0 > 0. Multiplying (6.19)

respectively with 1, v, 1
2 |v|2, we observe that the quantities

〈
hε

〉
,
〈
vhε

〉
,
〈
1
2 |v|

2
〉
,
〈
1
2 |v|

2v hε

〉
, and

〈
v ⊗ v hε

〉
,

are important. As in the classical case, we write
〈
v ⊗ v hε

〉
=
〈
Ahε

〉
+ pεId, pε =

〈1
d
|v|2 hε

〉
,
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where we introduce the traceless tensor

A = A(v) = v ⊗ v − 1

d
|v|2Id.

Properties of this tensor are established in Appendix B. In a more precise way, one obtains,
after integrating (6.19) against 1, vi,

1
2 |v|2,

∂t

〈
hε

〉
+

1

ε
divx

〈
v hε

〉
= 0 , (6.20a)

∂t

〈
v hε

〉
+

1

ε
Divx

〈
Ahε

〉
+

1

ε
∇xpε =

κα
ε2

〈
v hε

〉
, (6.20b)

∂t

〈
1
2 |v|2hε

〉
+

1

ε
divx

〈
1
2 |v|2v hε

〉
=

1

ε3
Jα(fε, fε) +

2κα
ε2

〈
1
2 |v|2hε

〉
, (6.20c)

where

Jα(f, f) =

ˆ

Rd

[Qα(f, f)−Qα(Gα, Gα)] |v|2dv.

Notice that, using (6.7) as well as Corollary 6.6,

divx

〈
v hε

〉
−→ ϑ1divxu = 0,

〈
1
2 |v|

2hε

〉
−→ dϑ1

2
(̺+ ϑ1θ) ,

∇xpε −→
1

d
∇x

〈
|v|2h

〉
= ϑ1∇x(̺+ ϑ1θ) = 0 ,

〈
Ahε

〉
−→

〈
Ah

〉
= 0 ,

〈
1
2 |v|

2vj hε

〉
−→

〈
1
2 |v|

2vj h
〉
= 1

2uj

〈
|v|2v2jM

〉
=
d+ 2

2
ϑ21uj, j = 1, . . . , d ,

where all the limits hold in D ′
t,x and where

〈
Ah
〉

= 0 since h ∈ Ker(L1) and A ∈
Range(I− π0). Moreover, under the above scaling

κα
ε2

〈
v hε

〉
−→ ϑ1λ0u , in D ′

t,x ,

since λ0 = limε→0+ ε
−2κα. The limit of ε−3Jα(fε, fε) is handled in the following lemma.

Lemma 6.8. It holds that

1

ε3
Jα(fε, fε) −→ J0 in D ′

t,x ,

where

J0(t, x) = −λ0 c̄ ϑ
3
2
1

(
̺(t, x) +

3

4
ϑ1 θ(t, x)

)

for some positive constant c̄ depending only on the angular kernel b( · ) and d. In particular,

J0 = −λ0 c̄ ϑ
5
2
1

(
E(t)− 1

4
θ(t, x)

)
.
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Proof. We recall, see (1.6), that
ˆ

Rd

|v|2Qα(f, f)dv = −(1− α2)
γb
4

ˆ

Rd×Rd

f(v)f(v∗) |v − v∗|3dvdv∗

where γb :=
1
2

´

Sd−1 (1− q̄ ·σ) b(q̄ · σ)dσ (q̄ ∈ S
d−1). Thus, for fε = Gα + ε hε we obtain

1

ε3
Jα(fε, fε) = −γb

4

1− α2

ε2

(
ˆ

Rd×Rd

[hε(v)Gα(v∗) + hε(v∗)Gα(v)] |v − v∗|3dvdv∗

+ ε

ˆ

Rd×Rd

hε(v)hε(v∗)|v − v∗|3dvdv∗
)
. (6.21)

Recall that limε→0+
1−α
ε2

= λ0. It is clear that the W
m,1
x (Td) norm of the last term in

the right-side is controlled by ‖hε‖2E . Theorem 5.6 implies that the last term in (6.21) is

converging to 0 in L1((0, T );Wm,1
x (Td)). One handles the first term in the right-side using

Theorem 6.3 and the fact that Gα → M strongly. Details are left to the reader. We then
easily obtain the convergence of ε−3Jα(fε, fε) towards

J0 := −λ0 γb
ˆ

Rd×Rd

h(t, x, v)M(v∗)|v − v∗|3dvdv∗.

The expression of J0 is then obtained by direct inspection from (6.7) with

c̄ = γb a, a =
2
√
2

(2π)
d
2

ˆ

Rd

exp

(
−1

2
|v|2
)
|v|3dv ,

where
ˆ

R2d

M(v)M(v∗)|v − v∗|3dvdv∗ = ϑ
3
2
1 a ,

ˆ

R2d

M(v)M(v∗)|v|2|v − v∗|3dvdv∗ =
2d+ 3

2
ϑ

5
2
1 a.

We refer to [52, Lemma A.1] for these identities. The second part of the lemma follows
from the strengthened Boussinesq relation (6.15). �

6.3. About the equations of motion and temperature. We give here some preliminary
result aiming at deriving the equations satisfied by the bulk velocity u(t, x) and θ(t, x). As
in [9, 30], in order to investigate the limiting behaviour of the system (6.20) as ε → 0+,
we need to investigate the limit in the distributional sense of

ε−1Divx

〈
Ahε

〉
= −ε−1Divx

〈
φL1hε

〉
(6.22)

and

ε−1divx

〈
bhε

〉
= −ε−1divx

〈
ψL1hε

〉
(6.23)

where φ and ψ are defined in Lemma B.1 and where we used that L1 is selfadjoint

in L2
v(M−1/2).
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Since the limiting vector-field u is divergence-free, it turns out enough to investigate

only the limit of PDivx

〈
ε−1Ahε

〉
where we recall that P is the Leray projection on

divergence-free vector fields6 . We begin with a strong compactness result

Lemma 6.9. Introduce

uε(t, x) = exp
(
−tκα

ε2

)
Puε(t, x)

and ϑε(t, x) =
〈
1
2

(
|v|2 − (d+ 2)ϑ1

)
hε

〉
, t ∈ (0, T ), x ∈ T

d.

Then, {∂tuε}ε and {∂tϑε}ε are bounded in L1
(
(0, T ) ; Wm−2,1

x (Td)
)

. Consequently, up to

the extraction of a subsequence,

lim
ε→0

ˆ T

0
‖Puε(t)− u(t)‖

W
m−2,1
x (Td)

dt = 0 (6.24)

and

lim
ε→0+

ˆ T

0
‖ϑε(t, · )− ϑ0(t, · )‖

W
m−2,1
x (Td)

dt = 0 (6.25)

where

ϑ0(t, x) =
〈
1
2(|v|

2 − (d+ 2)ϑ1)h
〉
=
dϑ1
2

(̺(t, x) + ϑ1θ(t, x))−
d+ 2

2
ϑ1̺(t, x) .

In other words, {Puε}ε converges strongly to u in L1
(
(0, T ) ; Wm−2,1

x (Td)
)

and {ϑε}ε con-

verges strongly to ϑ0 in L1
(
(0, T ) ; Wm−2,1

x (Td)
)
.

Proof. We begin with the proof of (6.24). We apply the Leray projection P to (6.20b) to
eliminate the pressure gradient term. Then, we have that

∂tuε = − exp
(
−tκα

ε2

)
P
(
ϑ−1
1 Divx

〈
1
εAhε

〉)
.

Notice that, since {hε}ε is bounded in L1((0, T ) ; E), one has that

{uε}ε is bounded in L1
(
(0, T ) ; Wm,1

x (Td)
)
.

Moreover, since Ahε = A (Id− π0) hε we deduce from Proposition 6.1 that

sup
ε

ˆ T

0

∥∥∥P
(
Divx

〈
1
εAhε

〉)∥∥∥
W

m−2,1
x (Td)

dt <∞.

In particular

{∂tuε}ε is bounded in L1
(
(0, T ) ; Wm−2,1

x (Td)
)
.

6Recall that, for a vector field u, Pu = u − ∇∆−1(∇ ·u). On the torus, it can be defined via Fourier

expansion, if u =
∑

k∈Zd ake
ik ·x, ak ∈ C

d, then Pu =
∑

k∈Zd

(

Id − k⊗k

|k|2

)

ake
ik · x.
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Applying [58, Corollary 4] with X = W
m,1
x (Td) and B = Y = W

m−2,1
x (Td) (so that

the embedding of X into B is compact by Rellich-Kondrachov Theorem [38, Theorem 2.9,

p. 37]), we deduce that {uε}ε is relatively compact in L1
(
(0, T ) ; Wm−2,1

x (Td)
)

. The result

of strong convergence follows easily since we already now that Puε converges to u in D ′
t,x

(see Lemma 6.5 and recall u = Pu since u is divergence-free).
The proof of (6.25) is similar. We begin with observing that, multiplying (6.20a)

with −d+2
2 ϑ1 and add it to (6.20c) we obtain the evolution of ϑε(t, x)

∂tϑε +
1

ε
divx

〈
bhε

〉
=

1

ε3
Jα(fε, fε) +

2κα
ε2

〈
1
2 |v|

2hε

〉
. (6.26)

Notice that {ϑε}ε is bounded in L1
(
(0, T ) ; Wm,1

x (Td)
)

while, because bhε = b (Id− π0) hε

we deduce from Proposition 6.1 that

sup
ε

ˆ T

0

∥∥∥
(
divx

〈
1
εbhε

〉)∥∥∥
W

m−2,1
x (Td)

dt <∞.

It is easy to see that the right-hand side of (6.26) is also bounded in L1
(
(0, T ) , Wm,1

x (Td)
)

so that {∂tϑε}ε is bounded in L1
(
(0, T ) ; Wm−2,1

x (Td)
)
. Using again [58, Corollary 4]

together with Rellich-Kondrachov Theorem, we deduce as before that {ϑε}ε is relatively

compact in L1
(
(0, T ) ; Wm−2,1

x (Td)
)

. Since we already know that ϑε converges in the

distributional sense to ϑ0 (see Lemma 6.5), we get the result of strong convergence. �

Remark 6.10. We will see later that the convergence of {Puε}ε and {ϑε}ε can actually be
strenghten for well-prepared initial datum (see Proposition 6.18).

A first consequence of the above Lemma is the following which regards (6.22)

Lemma 6.11. In the distributional sense,

lim
ε→0+

PDivx

(〈
ε−1Ahε

〉
−
〈
φQ1 (π0hε,π0hε)

〉)
= −ν∆xu (6.27)

where ν is defined in Lemma B.1.

Proof. When compared to the elastic case, L1hε does not appear in (6.19). We add it, as
well as the quadratic elastic Boltzmann operator, by force and rewrite the latter as

ε∂thε + v ·∇xhε − ε−1
L1hε = Q1(hε, hε)− ε−1κα∇v · (vhε)+

ε−1 (Lαhε − L1hε) +Qα(hε, hε)−Q1(hε, he). (6.28)

We interpret the last three terms as a source term

Sε := ε−1 (Lαhε − L1hε) +Qα(hε, hε)−Q1(hε, hε)− ε−1κα∇v · (vhε). (6.29)
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Then, multiplying (6.28) by φ and integrating over R
d, we get using (6.22) that, for

any i, j = 1, . . . , d,

ε∂t

〈
φi,jhε

〉
+ divx

〈
v φi,jhε

〉
− ε−1

〈
φi,jL1hε

〉

=
〈
φi,j Q1(hε, hε)

〉
+
〈
φi,j Sε

〉
. (6.30)

One writes

Q1(hε, hε) = Q1 (π0hε,π0hε) +Qr
1(hε, hε)

so that (6.30) becomes

ε∂t

〈
φi,jhε

〉
+ divx

〈
v φi,jhε

〉
− ε−1

〈
φi,jL1hε

〉

=
〈
φi,j Q1 (π0hε,π0hε)

〉
+
〈
φi,j Qr

1(hε, hε)
〉
+
〈
φi,j Sε

〉
.

According to Lemma 6.5 we have that

ε∂t

〈
φi,j hε

〉
−→ 0, divx

〈
v φi,j hε

〉
−→ divx

〈
v φi,j h

〉
,

〈
φi,jQr

1(hε, hε)
〉
−→ 0 ,

〈
φi,j Sε

〉
−→ 0 ,

where the limits are all meant in the distributional sense and where the last limit is de-
duced from the strong convergence of Sε to 0 in L1((0, T );L1

xL
1
v(̟q)) (see Lemma B.6).

From Lemma B.4 in Appendix B, one has

〈
vℓ φ

i,j h
〉
=





ν uj if i 6= j, ℓ = i,

ν ui if i 6= j, ℓ = j,

−2
dν uℓ + 2ν uiδiℓ if i = j ,

0 else.

Therefore, using the incompressibility condition,

divx

〈
v φi,j h

〉
= ν

(
∂xj

ui + ∂xi
uj
)
.

We deduce that

lim
ε→0+

(
ε−1
〈
φi,j L1hε

〉
+
〈
φi,j Q1 (π0hε,π0hε)

〉)
= ν(∂xj

ui + ∂xi
uj),

in the distributional sense. Applying the Divx operator one deduces that, in D ′
t,x

lim
ε→0+

Divix

(
ε−1
〈
φL1hε

〉
+
〈
φQ1 (π0hε,π0hε)

〉)
= ν∆xui ,

where we use the incompressibility condition to deduce that Divix
(
∂xj

ui + ∂xi
uj
)
= ∆xui.

This proves the result. �

In the same spirit, we have the following which now regards (6.23).
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Lemma 6.12. In the distributional sense,

lim
ε→0+

(
ε−1divx

〈
bhε

〉
+ divx

〈
ψQ1(π0hε,π0hε

〉)
= −d+ 2

2
γ∆xθ . (6.31)

Proof. We recall that
1

ε
divx

〈
bhε

〉
= −1

ε
divx

〈
L1(hε)ψ

〉
.

Multiply (6.28) with ψi (recall that ψ is defined by (B.1)). As previously, it holds that

ε∂t

〈
ψihε

〉
+ divx

〈
v ψihε

〉
− ε−1

〈
ψiL1hε

〉
=
〈
ψiQ1(hε, hε)

〉
+
〈
ψi Sε

〉
,

and

ε∂t

〈
ψihε

〉
−→ 0,

〈
ψi Sε

〉
−→ 0 ,

in the distributional sense. Splitting again Q1(hε, hε) = Qr
1(hε, hε) +Q1 (π0hε,π0hε), one

has
〈
ψi Qr

1(hε, hε)
〉

converges to 0 in D ′
t,x so that, in the distributional sense, it follows

that

lim
ε→0+

(
ε−1
〈
ψiL1hε

〉
+
〈
ψiQ1(π0hε,π0hε

〉)
= divx

〈
v ψih

〉
=
d+ 2

2
γ ∂xi

θ

thanks to Lemma B.5 in Appendix B. This gives the result. �

6.4. Convergence of the nonlinear terms. To determine the distributional limit of (6.22)
and (6.23), we “only” need now to explicit the limit of

PDivx

〈
φQ1(π0hε,π0hε)

〉
and divx

〈
ψQ1(π0hε,π0hε)

〉

respectively. Writing

π0hε =

(
̺ε(t, x) + uε(t, x) · v +

1

2
θε(t, x)

(
|v|2 − dϑ1

))
M(v)

we first observe that, according to Lemma B.3 and Lemma B.5 in Appendix B,
〈
φQ1 (π0hε,π0hε)

〉
= ϑ21

[
uε ⊗ uε −

2

d
|uε|2Id

]

and 〈
ψQ1(π0hε,π0hε)

〉
=
d+ 2

2
ϑ31 (θε uε) .

Therefore,

PDivx

〈
φQ1 (π0hε,π0hε)

〉
= ϑ21PDivx (uε ⊗ uε)

since Divx
(
|uε|2Id

)
is a gradient term and

divx

〈
ψQ1(π0hε,π0hε)

〉
=
d+ 2

2
ϑ31 divx (θε uε) .

One has the following whose proof is adapted from [30, Corollary 5.7].
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Lemma 6.13. In the distributional sense (in D ′
t,x ), one has

lim
ε→0+

PDivx

〈
φQ1 (π0hε,π0hε)

〉
= ϑ21PDivx(u⊗ u)

and

lim
ε→0+

divx

〈
ψQ1(π0hε,π0hε)

〉
=
d+ 2

2
ϑ31u ·∇xθ.

In particular

lim
ε→0+

PDivx

〈
ε−1Ahε

〉
= −ν∆xu+ ϑ21PDivx(u⊗ u) in D ′

t,x (6.32)

while

lim
ε→0+

divx

〈
ε−1bhε

〉
= −d+ 2

2

(
γ∆xθ − ϑ31u ·∇xθ

)
in D ′

t,x. (6.33)

Proof. We write uε = Puε + (Id − P)uε. Due to the strong convergence of Puε towards

u in L1
(
(0, T ) ; Wm−2,1

x (Td)
)

(see Lemma 6.9) and the weak convergence of uε (see

Lemma 6.5), we see that

PDivx (uε ⊗ uε − (Id− P)uε ⊗ (Id− P)uε) −→ PDivx (u⊗ u) in D ′
t,x.

So, to prove the first part of the Lemma, we only need to prove that

PDivx ((Id− P)uε ⊗ (Id− P)uε) −→ 0 (6.34)

in D ′
t,x. Moreover, as in [30, Corollary 5.7], we set

βε :=
1

dϑ1

〈
|v|2hε

〉
= ̺ε + ϑ1θε

which is such that θε =
2

(d+2)ϑ1

(
βε +

1
ϑ1
ϑε

)
and

divx(θεuε) =
2

(d+ 2)ϑ1

(
divx

(
βεuε +

1

ϑ1
uεϑε

))

=
2

(d+ 2)ϑ1
divx (βε (Id− P)uε) +

2

(d+ 2)ϑ1

[
divx

(
βεPuε +

1

ϑ1
uεϑε

)]

Therefore, using the strong convergence of ϑε towards ϑ0 in L1
(
(0, T ) ; Wm−2,1

x (Td)
)

given by Lemma 6.9 together with the weak convergence of uε to u from Lemma 6.5, we
get

2

(d+ 2)ϑ21
divx(uεϑε) −→

2

(d+ 2)ϑ21
divx(uϑ0) in D ′

t,x

whereas the strong convergence of Puε to u with the weak convergence of βε towards
̺+ ϑ1θ we get

divx(βεPuε) −→ divx (u (̺+ ϑ1θ)) = 0 in D ′
t,x
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where we used both the incompressiblity condition (6.13) together with Boussinesq rela-
tion (6.14). Notice that, thanks to (6.13), it holds

2

(d+ 2)ϑ21
divx(uϑ0) =

2

(d+ 2)ϑ21
u ·∇xϑ0 = u ·∇xθ

where we used the expression of ϑ0 together with Bousinesq relation (6.14). This shows
that

divx(θεuε)−
2

(d+ 2)ϑ1
divx (βε (Id− P)uε) −→ u ·∇xθ in D ′

t,x

and, to get the second part of the result, we need to prove that

divx (βε (Id− P)uε) −→ 0 in D ′
t,x. (6.35)

Let us now focus on the proof of (6.34) and (6.35). One observes that, Equation (6.20b)
reads

ε ∂tuε +∇xβε =
κα
ε
uε − ϑ−1

1 Divx

〈
Ahε

〉
(6.36)

whereas (6.20c) can be reformulated as

ε∂tβε + divx

〈
1

dϑ1
|v|2v hε

〉
=

2

dϑ1ε2
Jα(fε, fε) +

2κα
ε

βε (6.37)

where we check easily that

divx

〈
1

dϑ1
|v|2v hε

〉
=

2

dϑ1
divx

〈
bhε

〉
+
d+ 2

d
ϑ1divxuε

=
2

dϑ1
divx

〈
bhε

〉
+
d+ 2

d
ϑ1divx (Id− P)uε.

Recall that from Theorem 5.6, hε ∈ L∞ ((0, T ); E) so that βε ∈ L∞
(
(0, T );Wm,1

x (Td)
)

and

using [48, Proposition 1.6, p. 33]), we can write

(Id− P)uε = ∇xUε

with Uε ∈ L∞
(
(0, T );

(
W

m−1,1
x (Td)

)d)
. After applying (Id− P) to (6.36) and reformu-

lating (6.37), we obtain that Uε and βε satisfy




ε∂t∇xUε +∇xβε = Fε

ε∂tβε +
d+2
d ϑ1∆xUε = Gε

(6.38)

with

Fε :=
κα
ε
∇xUε − ϑ−1

1 (Id− P)Divx

〈
Ahε

〉

Gε := − 2

dϑ1
divx

〈
bhε

〉
+

2

dϑ1ε2
Jα(fε, fε) +

2κα
ε

βε.
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It is easy to see that

‖Fε‖L1((0,T ) ;Wm−2,1
x (Td)) . ε, and ‖Gε‖L1((0,T ) ;Wm−2,1

x (Td)) . ε.

Since the embeddings W
m,1
x (Td) →֒ W

m−2,1
x (Td) →֒ L2

x(T
d) are continuous (recall m >

2d), we see that both Fε and Gε converge strongly to 0 in L1((0, T );L2
x(T

d)) and Uε ∈
L∞((0, T ); (W1,2

x (Td))d), βε ∈ L∞((0, T );L2
x(T

d)). Then, according to the compensated
compactness argument of [45] recalled in Proposition B.7 in Appendix B, we deduce
that (6.34) and (6.35) hold true and this achieves the proof. The proofs of (6.32) and (6.33)
follow then from an application of Lemmas 6.11 and 6.12. �

Coming back to the system of equations (6.20) and with the preliminary results of

Section 6.2, we get the following where we wrote PDivx(u⊗u) = Divx(u⊗u)+ϑ−1
1 ∇xp,

see [48, Proposition 1.6].

Proposition 6.14. The limit velocity u(t, x) in (6.7) satisfies

∂tu− ν

ϑ1
∆xu+ ϑ1Divx (u⊗ u) +∇xp = λ0u (6.39)

while the limit temperature θ(t, x) in (6.7) satisfies

∂tθ −
γ

ϑ21
∆xθ+ϑ1 u ·∇xθ =

2

(d+ 2)ϑ21
J0 +

2dλ0
d+ 2

E(t) +
2

d+ 2

d

dt
E(t) ,

where

E(t) =
1

|Td|

ˆ

Td

θ(t, x)dx, t > 0 .

Notice that, due to (6.13), Divx(u⊗u) = (u ·∇x)u and (6.39) is nothing but a damped
Navier-Stokes equation associated to a divergence-free source term given by λ0u.

Proof. The proof of (6.39) is a straightforward consequence of the previous limit. To obtain
investigate the evolution of θ, we recall that ϑε satisfies (6.26). We notice that

1

ε3
Jα(fε, fε) +

2κα
ε2

〈
1
2 |v|2hε

〉
−→ J0 + dϑ1λ0 (̺+ ϑ1θ) ,

whereas

ϑε −→
〈
1
2 (|v|

2 − (d+ 2)ϑ1)h
〉
=
dϑ1
2

(̺+ ϑ1θ)−
d+ 2

2
ϑ1̺ ,

where the convergence is meant in D ′
t,x. We deduce from (6.33), performing the distribu-

tional limit of (6.26), that

dϑ1
2
∂t (̺+ ϑ1θ)−

d+ 2

2
ϑ1∂t̺−

d+ 2

2
γ∆xθ+

d+ 2

2
ϑ31 u ·∇xθ

= J0 + dϑ1λ0 (̺+ ϑ1θ) . (6.40)

Using the strengthened Boussinesq relation (6.15), we see that

∂t (̺+ ϑ1θ) = ϑ1
d

dt
E(t), and ∂t̺ = −ϑ1

(
∂tθ −

d

dt
E(t)

)
,
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and get the result. �

Proposition 6.15. For any t > 0, it follows that

E(t) =
1

|Td|

ˆ

Td

θ(t, x)dx = 0 ,

consequently, the limiting temperature θ(t, x) in (6.7) satisfies

∂t θ −
γ

ϑ21
∆xθ+ϑ1 u ·∇xθ =

λ0 c̄

2(d + 2)

√
ϑ1 θ. (6.41)

Moreover, the strong Boussinesq relation

̺(t, x) + ϑ1θ(t, x) = 0 , x ∈ T
d , (6.42)

holds true.

Proof. To capture the evolution of the temperature E(t), we average equation (6.40)

over Td and using the incompressibility condition (6.13) we deduce get that

d

dt
E(t) =

2

dϑ21

ˆ

Td

J0(t, x)
dx

|Td| + 2λ0E(t). (6.43)

And, from Lemma 6.8, it holds that

d

dt
E(t) = c̄0E(t), c̄0 := 2λ0 −

3

2d
λ0c̄

√
ϑ1 ,

so that,

E(t) = E(0) exp(c̄0t) , t > 0.

Now, return to the original equation (1.20) and recall that the solution fε(t, x, v) is given
by

fε(t) = Gα + ε hε(t) = M+
(
Gα −M

)
+ ε hε(t) , t > 0 ,

where M has the same global mass, momentum and energy as the initial datum fε(0) =
F ε
in, independent of ε > 0. For any test-function φ = φ(x, v) we get that

ε−1

ˆ

Td

〈(
fε(t)−M)φ

〉
dx− ε−1

ˆ

Td

〈(
Gα −M

)
φ
〉
dx =

ˆ

Td

〈
hε(t)φ

〉
dx , t > 0 .

Using this equality for φ(x, v) = 1
2 |v|2 and t = 0 one is led to

−ε−1

ˆ

Td

〈
1
2

(
Gα −M

)
|v|2
〉
dx =

ˆ

Td

〈
1
2hε(0) |v|

2
〉
dx .

We recall that ‖Gα −M‖L1
v(̟2) 6 C(1− α) ∼ Cε2, consequently

E(0) =
1

|Td|

ˆ

Td

θ(0, x)dx = lim
ε→0

1

|Td|

ˆ

Td

〈
hε(0)

1
2 |v|

2
〉
dx = 0 .

Therefore, E(t) ≡ 0 for all t > 0. This observation and (6.41) lead us to the equation for
the energy and Boussinesq relation (6.42). �
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6.5. About the initial conditions. Before going into the proof of Theorem 1.4 and handle
the problem of initial datum of our limit system, we begin by proving that our limits u
and θ in (6.7) are actually continuous on (0, T ).

Lemma 6.16. Consider the sequences {uε}ε and {ϑε}ε defined in Lemma 6.9. The time-
depending mappings

t ∈ [0, T ] 7−→ ‖ϑε(t)‖Wm−2,1
x (Td)

and t ∈ [0, T ] 7−→ ‖uε(t)‖Wm−2,1
x (Td)

are Hölder continuous uniformly in ε. As a consequence, the limiting mass ̺, velocity u and
temperature θ in (6.7) are continuous on (0, T ).

Proof. Recall that we set

ϑε(t, x) =
〈
1
2

(
|v|2 − (d+ 2)ϑ1

)
hε

〉
.

For any test-function ϕ = ϕ(x) ∈ C∞
c (Td) and multi-index β with |β| 6 m − 2, multiply-

ing (6.26) with ∂βxϕ and integrating in time and space, one deduces that for any 0 6 t1 6
t2,

ˆ

Td

[
∂βxϑε(t2, x)− ∂βxϑε(t1, x)

]
ϕ(x)dx =

ˆ t2

t1

dt

ˆ

Td

divx

〈
ε−1b ∂βxhε(t)

〉
ϕ(x)dx

+

ˆ t2

t1

dt

ˆ

Td

ε−3∂βxJα(fε, fε)ϕ(x)dx

+
2κα
ε2

ˆ t2

t1

dt

ˆ

Td

〈
1
2 |v|

2∂βxhε

〉
ϕ(x)dx. (6.44)

Clearly, since ε−2κα → λ0, there is C > 0 such that

2κα
ε2

∣∣∣∣
ˆ t2

t1

dt

ˆ

Td

〈
1
2 |v|

2∂βxhε

〉
ϕ(x)dx

∣∣∣∣ 6 C‖ϕ‖∞
ˆ t2

t1

‖hε(t)‖Wm−1,1
x L1

v(̟2)
dt

6 C
√
K0(t2 − t1)

from the general estimate in Theorem 5.6. In the same way, since

∂βxJα(fε, fε) = Jα(∂
β
xfε, fε) + Jα(fε, ∂

β
xfε) ,

with fε = Gα + ε hε, one deduces again from Theorem 5.6 that

∣∣∣∣
ˆ t2

t1

dt

ˆ

Td

ε−3∂βxJα(fε, fε)ϕ(x)dx

∣∣∣∣

6 C‖ϕ‖∞
ˆ t2

t1

‖hε(t)‖Wm−1,1
x L1

v(̟3)

(
1 + ‖hε(t)‖Wm−1,1

x L1
v(̟3)

)
dt 6 C

√
K0(t2 − t1).
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Moreover, noticing that
〈
bhε(t)

〉
=
〈
b(Id − π0)hε(t)

〉
for any t > 0, one deduces easily

from Proposition 6.1 that
∣∣∣∣
ˆ t2

t1

ε−1divx

〈
bhε(t)

〉
dt

∣∣∣∣ 6 C
√
t2 − t1

for any 0 6 t2 − t1 6 1. Since ∂βx commutes with π0 we deduce easily that there is C > 0
independent of ε such that for any 0 6 β 6 m− 2,

∣∣∣∣
ˆ t2

t1

ε−1divx

〈
b ∂βxhε(t)

〉
dt

∣∣∣∣ 6 C
√
t2 − t1 (6.45)

for any 0 6 t2 − t1 6 1. We conclude with (6.44) that
∣∣∣∣
ˆ

Td

[
∂βxϑε(t2, x)− ∂βxϑε(t1, x)

]
ϕ(x)dx

∣∣∣∣ 6 C ‖ϕ‖∞
√

K0

√
t2 − t1

for some positive constant independent of ε and 0 6 t2 − t1 6 1. Taking the supremum
over all ϕ ∈ L∞(Td), we deduce that

∥∥∥∂βxϑε(t2)− ∂βxϑε(t1)
∥∥∥
L1
x(T

d)
6 C

√
K0

√
t2 − t1 (6.46)

and, the time-depending mappings t ∈ [0, T ] 7−→ ‖ϑε(t)‖Wm−2,1
x (Td)

are thus Hölder contin-

uous uniformly in ε. Recall also that ϑε(t) converges in L1((0, T ) ; Wm−2,1
x (Td)) towards

ϑ0(t) = dϑ1
2 (̺+ ϑ1θ) − d+2

2 ϑ1̺ from Lemma 6.9. As a consequence, there exists a sub-
sequence (ϑε′)ε′ such that ‖ϑε′(t)− ϑ0(t)‖Wm−2,1

x (Td) converges towards 0 for almost every

t ∈ [0, T ]. Using then the uniform in ε Hölder continuity obtained above, we can deduce
that ϑ0 is Hölder continuous on (0, T ). Recalling that E(0) = 0 according to Proposi-
tion 6.15, the strong Boussinesq relation (6.42) holds true and

ϑ0(t) =
d+ 2

2
ϑ21θ(t) = −d+ 2

2
ϑ1̺(t) ,

which gives the regularity of both ̺ and θ.
We recall that, setting

uε(t, x) =
1

ϑ1
exp

(
−tκα

ε2

)
P
〈
vhε

〉
,

we have that

∂tuε + exp
(
−tκα

ε2

)
P
(
Divx

〈
1

ϑ1ε
Ahε

〉)
= 0 .

we multiply this identity by ∂βxϕ and integrate in both time and space to get
ˆ

Td

[
∂βxuε(t2, x)− ∂βxuε(t1, x)

]
ϕ(x)dx

=

ˆ t2

t1

exp
(
−κα
ε2
t
)
dt

ˆ

Td

P
(
Divx

〈
1

ϑ1ε
A ∂βxhε

〉)
ϕ(x)dx.
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Arguing as in the proof of (6.45), we see that there is C > 0 independent of ε such that
for any 0 6 β 6 m− 2,

∣∣∣∣
ˆ t2

t1

ε−1Divx

〈
A ∂βxhε(t)

〉
dt

∣∣∣∣ 6 C
√
t2 − t1

for any 0 6 t2 − t1 6 1. This gives easily∣∣∣∣
ˆ

Td

[
∂βxuε(t2, x)− ∂βxuε(t1, x)

]
ϕ(x)dx

∣∣∣∣ 6 C‖ϕ‖∞
√
t2 − t1

√
K0 ,

from which, as before, the time-depending mappings t ∈ [0, T ] 7−→ ‖uε(t)‖Wm−2,1
x (Td)

are

Hölder continuous uniformly in ε. We deduce the result of regularity on u as previously
done for ̺ and θ noticing that the limit of uε is exp(−tλ0)Pu = exp(−tλ0)u. �

Recall that, in Theorem 6.3, the convergence of hε to the solution h(t, x) given by (6.7)
is known to hold only for a subsequence and, in particular, different subsequences could
converge towards different initial datum and therefore (̺, u, θ) could be different solutions
to the Navier-Stokes system. We aim here to prescribe the initial datum by ensuring the
convergence of the initial datum hεin towards a single possible limit.

Recall that the initial datum for (6.28) is denoted by hεin. We write hεin = π0h
ε
in + (Id −

π0)h
ε
in and introduce the following assumption.

Assumption 6.17. Assume that there exists

(̺0, u0, θ0) ∈ W
m,1
x (Td)×

(
W

m,1
x (Td)

)d
×W

m,1
x (Td) ,

such that
lim
ε→0

‖π0h
ε
in − h0‖Wm,1

x L1
v(̟q)

= 0 ,

where
h0(x, v) =

(
̺0(x) + u0(x) · v + 1

2θ0(x)(|v|2 − dϑ1)
)
M(v) .

Under this assumption we can prescribe the initial value of the solution (̺, u, θ) and
strengthen the convergence.

Proposition 6.18. We define the initial data for (̺, u, θ) as

uin = u(0) := Pu0 , θin = θ(0) =
d

d+ 2
θ0 −

2

(d+ 2)ϑ1
̺0 ,

̺in = ̺(0) := −ϑ1θin , (6.47)

where we recall that Pu0 is the Leray projection on divergence-free vector fields. Then, as a
consequence, for any T > 0, one has that

ϑε(t) =
〈
1
2

(
|v|2 − (d+ 2)ϑ1

)
hε

〉
−→ d+ 2

2
ϑ21θ , in C

(
[0, T ] , Wm−2,1

x (Td)
)
,

and
1

ϑ1
P
〈
v hε(t)

〉
−→ u , in C

(
[0, T ] ,

(
W

m−2,1
x (Td)

)d)
.
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Proof. According to Lemma 6.16, we already have that the family of time-depending map-
pings

{
t ∈ [0, T ] 7−→ ‖ϑε(t)‖Wm−2,1

x (Td)

}
ε

(6.48)

is equicontinuous. At time t = 0 according to Assumption 6.17,

ϑε(0, x) =
〈
1
2

(
|v|2 − (d+ 2)ϑ1

)
hεin

〉
−→ ϑ1

[
dϑ1
2
θ0(x)− ̺0(x)

]
,

and, by definition of ̺(0, x), θ(0, x), we get that

lim
ε→0+

‖ϑε(0, · )− ϑ0(0, · )‖
W

m−2,1
x (Td) = 0.

In particular, the family {‖ϑε(0)‖Wm−2,1
x (Td)}ε is bounded and, since the family (6.48) is

uniformly in ε Hölder continuous, for any t ∈ [0, T ], the family {‖ϑε(t)‖Wm−2,1
x (Td)}ε is

also bounded. Since it is also equicontinuitous, Arzelà-Ascoli Theorem implies that the

convergence holds in C([0, T ] ; Wm−2,1
x (Td)) and

ϑ0 ∈ C([0, T ] ; Wm−2,1
x (Td)).

As in the proof of Lemma 6.16, it implies the continuity on [0, T ] of both ̺ and θ.

We proceed in a similar way for the regularity of u. �

All the previous convergence results lead us to the fact the the limit

h(t, x, v) =

(
̺(t, x) + u(t, x) · v +

1

2
θ(t, x)(|v|2 − dϑ1)

)
M(v)

is such that

(̺, u, θ) ∈ C([0, T ];Wm−2) ∩ L2 ((0, T );Wm) ,

solve the following incompressible Navier-Stokes-Fourier system where the right-hand-side
acts as a self-consistent forcing term





∂tu− ν
ϑ1

∆xu+ ϑ1 u ·∇x u+∇xp = λ0u ,

∂t θ − γ
ϑ2
1
∆xθ+ϑ1 u ·∇xθ =

λ0 c̄

2(d+ 2)

√
ϑ1 θ ,

divxu = 0, ̺+ ϑ1 θ = 0 ,

(6.49)

subject to the initial datum (̺in, uin, θin). This proves Theorem 1.4 in full.

6.6. About the original problem in the physical variables. The above considerations
allow us to get a quite precise description of the asymptotic behaviour for the original



FLUID DYNAMIC LIMIT OF BOLTZMANN EQUATION FOR GRANULAR HARD–SPHERES 85

physical problem (1.8a). Indeed, recalling the relations (1.10) together with Theorem 1.4
one has

Fε(t, x, v) = Vε(t)
dfε
(
τε(t), x, Vε(t)v

)

= Vε(t)
d
(
Gα(ε)(Vε(t)v) + ε hε(τε(t), x, Vε(t)v)

)

= Vε(t)
d
(
Gα(ε)(Vε(t)v) + εh(τε(t), x, Vε(t)v)

)
+ ε eε(t, x, v) ,

where the error term eε is given by

eε(t, x, v) = Vε(t)
d
(
hε(τε(t), x, Vε(t)v) − h(τε(t), x, Vε(t)v)

)
.

Under Assumption 1.2, a relevant phenomenon occurs when considering the purely dissi-
pative case λ0 > 0. In such a case, the term eε(t, x, v) becomes an uniform in time error
term. The reason is that, when λ0 > 0, the scaling Vε(t) increases up to infinity. More
precisely,

Vε(t) ≈
(
1 + λ0 t

)
, ε≪ 1.

Indeed, Lemma A.1 guarantees that for any a ∈ (0, 1/2), up to an extraction of a subse-
quence if necessary,

∣∣〈eε(t), |v|κϕ〉
∣∣ 6 Cϕ

√
K0 Vε(t)

−κ−a , ϕ ∈ L∞
x C1

v,b , 0 6 κ 6 q − 1 , (6.50)

where we denoted by C1
v,b the set of C1 functions in v that are bounded as well as their

first order derivatives. Consequently,

Fε(t, x, v) = Vε(t)
d
(
Gα(ε)(Vε(t)v) + ε

(
̺(τε(t), x) + u(τε(t), x) · (Vε(t)v)

+
1

2
θ(τε(t), x)(|Vε(t)v|2 − dϑ1)

)
M(Vε(t)v)

)
+O

(
Vε(t)

−κ−a
)
,

(6.51)

in the weak sense described in (6.50). In particular, if ϕ = 1 and κ = 2, one finds
from (6.51) an explicit expression for Haff ’s law is obtained. That is, the optimal cool-
ing rate of the temperature is described by

Tε(t) =
1∣∣Td
∣∣
ˆ

Td×Rd

Fε(t, x, v)|v|2dv dx

=
1

Vε(t)2

(
ˆ

Rd

Gα(v)|v|2dv +
ε

2
∣∣Td
∣∣
ˆ

Rd

(
|v|2 − dϑ1

)
|v|2M(v) dv

ˆ

Td

θ(τε(t), x) dx

+
ε∣∣Td
∣∣
ˆ

Rd

|v|2M(v)dv

ˆ

Td

̺(τε(t), x)dx

)
+O

(
Vε(t)

−2−a
)

≈ dϑ1
Vε(t)2

(
1 +

ε∣∣Td|

(
dϑ1

ˆ

Td

θ(τε(t), x)dx+ 2

ˆ

Td

̺(τε(t), x)dx

))
, t≫ 1

λ0
.

Recalling that the fluctuation hε is such that the average mass and temperature both vanish
at all times, we deduce the precised Haff’s law

Tε(t) ≈
dϑ1
Vε(t)2

, t≫ 1

λ0
.
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In the Appendix A.2 we complement this discussion and, in particular, show that the Haff’s
law holds uniformly locally in space due to the boundedness of the solutions that we treat
here. This is not expected in a general context.

APPENDIX A. ABOUT GRANULAR GASES IN THE SPATIAL HOMOGENEOUS SETTING

We collect several result about the Boltzmann collision operator Qα for granular gases.
We recall the definition given in the weak form

ˆ

Rd

Qα(g, f)(v)ψ(v)dv =
1

2

ˆ

R2d

f(v) g(v∗) |v − v∗|Aα[ψ](v, v∗)dv∗dv,

where

Aα[ψ](v, v∗) =
ˆ

Sd−1

(ψ(v′) + ψ(v′∗)− ψ(v) − ψ(v∗))b(σ · q̄)dσ,

and the post-collisional velocities (v′, v′∗) are given by

v′ = v +
1 + α

4
(|q|σ − q), v′∗ = v∗ −

1 + α

4
(|q|σ − q),

where q = v − v∗, q̄ = q/|q|.
(A.1)

A.1. Alternative representation of the velocities. As well-known, the above collision
operator is a well-accepted model that describes collisions in a system composed by a
large number of granular particles which are assumed to be hard-spheres with equal mass
(that we take to be m = 1) and that undertake inelastic collisions. The collision mech-
anism and the role of the coefficient of normal restitution is easier to understand in an
alternative representation of the post-collisional velocities. More precisely, if v and v∗ de-
note the velocities of two particles before collision, their respective velocities v′ and v′∗
after collision are such that (

u′ ·n
)
= −α

(
u ·n

)
. (A.2)

The unitary vector n ∈ S
d−1 determines the impact direction, that is, n stands for the unit

vector that points from the v-particle center to the v∗-particle center at the moment of
impact. Here above

u = v − v∗, u′ = v′ − v′∗, (A.3)

denote respectively the relative velocity before and after collision. The velocities after
collision v′ and v′∗ are given, in virtue of (A.2) and the conservation of momentum, by

v′ = v − 1 + α

2

(
u ·n

)
n, v′∗ = v∗ +

1 + α

2

(
u ·n

)
n. (A.4)

In particular, the energy relation and the collision mechanism can be written as

|v|2 + |v∗|2 = |′v|2 + |′v∗|2 −
1− α2

2

(′
u ·n

)2
, u ·n = −α

(′
u ·n

)
. (A.5)

Pre-collisional velocities (′v,′ v∗) (resulting in (v, v∗) after collision) can be therefore intro-
duced through the relation

v =′v − 1 + α

2

(′
u ·n

)
n , v∗ =

′v∗ +
1 + α

2

(′
u ·n

)
n, ′u =′v −′v∗ (A.6)
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This representation is of course equivalent to the one given in (A.1) (so-called σ-
representation) by setting, for a given pair of velocities (v, v∗),

σ = û− 2 (û ·n)n ∈ S
d−1.

Such a description provides an alternative parametrization of the unit sphere S
d−1 in

which the unit vector σ points in the post-collisional relative velocity direction in the
case of elastic collisions. In this case, the impact velocity reads

|u · n| = |u| |û ·n| = |u|
√

1− û · σ

2
.

In the n-representation, we can explicit the strong form of the collision operator Qα.
Namely, for a given pair of distributions f = f(v) and g = g(v) and a given collision kernel
the Boltzmann collision operator is defined as the difference of two nonnegative operators
(gain and loss operators respectively)

Qα

(
g, f
)
= Q+

α

(
g, f
)
−Q−

α

(
g, f
)
,

with

Q+
α

(
g, f
)
(v) =

1

α2

ˆ

Rd×Sd−1

|u ·n| b0(û ·n) f(′v)g(′v∗)dv∗dn ,

Q−
α

(
g, f
)
(v) = f(v)

ˆ

Rd×Sd−1

|u ·n|b0(û ·n)g(v∗)dv∗dn.
(A.7)

where the new angular collision kernel b0( · ) is related to the original one b( · ) through
the relation

b0
(
û ·n

)
= 2d−1|û ·n|d−2b(û ·σ).

i.e.

b0(x) = 2d−1|x|d−2b(1− 2x2), x ∈ [−1, 1].

Using this representation we prove Lemma 2.1 in Section 2.1.

Proof of Lemma 2.1. Note that

Q1(g, f)−Qα(g, f) = I1(g, f) + I2(g, f) ,
where

I1(g, f) = −1− α2

α2

ˆ

Rd

ˆ

Sd−1

g(′v∗,α)f(
′vα) |u ·n| b0(û ·n)dndv∗ ,

and

I2(g, f) =
ˆ

Rd

ˆ

Sd−1

(
g(′v∗,α)f(

′vα)− g(′v∗,1)f(
′v1)
)
|u ·n| b0(û ·n)dndv∗ .

Here we adopt the notation ′v1 and ′vα for the pre-collisional velocities associate to elastic
(α = 1) and inelastic (0 < α < 1) interactions respectively in the n-representation (see
(A.6) in Appendix A.1). Therefore, by classical means, there is a positive cq > 0 such that

‖I1(g, f)‖L1
v(̟q) 6

1− α

α2
cq ‖b0‖L1(Sd−1)‖g‖L1

v(̟q+1)‖f‖L1
v(̟q+1) .
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We estimate then the difference g(′v∗,α)f(′vα)− g(′v∗)f(′v) thanks to Taylor formula

g(′v∗,α)f(
′vα)− g(′v∗)f(

′v) = g(′v∗)
(
f(′vα)− f(′v)

)
+
(
g(′v∗,α)− g(′v∗)

)
f(′vα)

= g(′v∗)(
′vα −′v) ·

ˆ 1

0
∇f(′vt)dt+ f(′vα) (

′v∗,α −′v∗) ·

ˆ 1

0
∇g(′v∗,t)dt

where we recall that, according to (A.6) in Appendix A.1

′vα −′v = −1− α

2α
(u ·n)n , ′v∗,α −′v∗ =

1− α

2α
(u ·n)n ,

and, for 0 < t < 1,

′vt =
′vα t+

′v(1 − t) =′v − t
1− α

2α
(u ·n)n ,

′v∗,t =
′v∗,α t+

′v∗ (1− t) =′v∗,α − (1− t)
1− α

2α
(u ·n)n .

We split I2(g, f) accordingly into I2(g, f) = I1
2 (g, f) + I2

2(g, f). For the term I1
2 (g, f), we

first notice that
ˆ

Rd

∣∣I1
2(g, f)(v)

∣∣〈v〉qdv

6
1− α

2α

ˆ 1

0
dt

ˆ

Sd−1

b0(û ·n)|û ·n|2dn
ˆ

R2d

|g(′vt −′ ũ)| |∇f(′vt)| |u|2〈v〉qdudv.

We set
′ũ :=′vt −′v∗ = u− 2(u · n)n− t

1− α

2α
(u ·n)n

and apply, for fixed n, the change of variables (v, u) → (′vt,′̃u) (with Jacobian Jα(t) =
1 + t1−α

2α > 1). Together with the fact that

|u| 6 |′ũ| , |v| 6 |′v|+ |′v∗| 6 2|′vt|+ 2|′ũ| ,
we obtain that
ˆ

Rd

∣∣I1
2(g, f)(v)

∣∣〈v〉qdv 6
1− α

2α
cq

ˆ 1

0

1

Jα(t)
dt

ˆ

Sd−1

b0(û ·n)|û ·n|2dn
ˆ

R2d

|g(v − u)〈v − u〉q+2| |∇f(v)〈v〉q+2|dudv

6
1− α

2α
cq ‖b0‖L1(Sd−1) ‖g‖L1

v(̟q+2)‖f‖W1,1
v (̟q+2)

.

For the term I2
2 (g, f) we begin with observing that

ˆ

R2d

∣∣I2
2 (g, f)(v)

∣∣〈v〉qdv

6
1− α

2α

ˆ 1

0
dt

ˆ

Sd−1

b0(û ·n)|û ·n|2dn
ˆ

R2d

|f(′ũα +′ v∗,t)| |∇g(′v∗,t)| |u|2〈v〉qdudv
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and set
′ũα :=′ vα −′ v∗,t = u− 2(u · n)n− (1 + t)

1− α

2α
(u ·n)n

and apply, for fixed n, the change of variables (v∗, u) → (′v∗,t,′ ũα) (with Jacobian J̃α(t) =
1 + (1 + t)1−α

2α > 1). Noticing that

|u| 6 |′uα| 6
2

1 + t
|′ũα| , |v| 6 |′vα|+ |′v∗,α| 6 2|′v∗,t|+ 4|′ũα| ,

it follows that
ˆ

Rd

∣∣I2
2(g, f)(v)

∣∣〈v〉qdv 6
1− α

2α
cq

ˆ 1

0

1

J̃α(t)
dt

ˆ

Sd−1

b0(û ·n)|û ·n|2dn
ˆ

R2d

|f(v + u)〈v + u〉q+2| |∇g(v)〈v〉q+2 |dudv

6
1− α

2α
cq ‖f‖L1

v(̟q+2)‖g‖W1,1
v (̟q+2)

.

Gathering previous estimates proves the first assertion of the Lemma. For higher norms
simply differentiate and apply previous estimates for each suitable difference. �

A.2. About the original problem in physical variables. Let Fε(t, x, v) be the solution of
the Boltzmann equation (1.8a) with associated Knudsen number ε. Recall that the time-
scale functions τε(t), Vε(t) that relate the problem in original (physical) variables to its
self-similar counterpart

Fε(t, x, v) = Vε(t)
dfε
(
τε(t), x, Vε(t)v

)

are given by

τε(t) :=
1

cε
ln(1 + cε t) , Vε(t) = 1 + cε t , t > 0,

where cε =
1−α(ε)

ε2
. It follows that the explicit equation for fε is given by

∂τfε + ε−1w ·∇xfε = ε−2Q(fε, fε)− ε−2(1− α)∇w(w fε) , w = Vε(t) v

as observed in (1.20). Set fε(τ, x, w) = Gα(ε)(w) + ε hε(τ, x, w) and denote h(τ, x, w) the

weak−⋆ limit in the space L∞((0,∞); E
)

of the (sub-)sequence {hε}. Define

eε(t, x, v) = Vε(t)
d
(
hε(τε(t), x, Vε(t)v) − h(τε(t), x, Vε(t)v)

)
.

The following error estimate holds.

Lemma A.1. Under Assumption 1.2 and in the regime ε≪ 1 , λ0 > 0, the following estima-
tion holds for any a ∈ (0, 1/2), up to possibly extracting a subsequence,

∣∣〈eε(t), |v|κϕ〉
∣∣ 6 Cϕ

√
K0 Vε(t)

−κ−a , ϕ ∈ L∞
x C1

v,b , 0 6 κ 6 q − 1 ,

where we denoted by C1
v,b the set of C1 functions in v that are bounded as well as their

derivatives and where for any t > 0,

Vε(t) ≈ V0(t) =
(
1 + λ0 t

)
, as ε ≈ 0 .
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Proof. After a change of variables it follows that, for any test-function ϕ,

〈eε(t), |v|κϕ〉

= Vε(t)
−κ

ˆ

Td×Rd

(
hε(τε(t), x, v) − h(τε(t), x, v)

)
|v|κ
(
ϕ(x, Vε(t)

−1v)− ϕ(x, 0)
)
dv dx

+ Vε(t)
−κ

ˆ

Td×Rd

(
hε(τε(t), x, v) − h(τε(t), x, v)

)
|v|κϕ(x, 0) dv dx

= I1(t) + I2(t) .

Note that, up to a subsequence, h is the weak−⋆ limit of {hε}ε in L∞((0,∞); E
)
. Thus,

for any t > 0, ‖h‖L∞((t,∞) ; E) 6 lim infεց0 ‖hε‖L∞((t,∞) ; E). Consequently, thanks to Theo-

rem 4.14, it holds that

‖h‖L∞((t,∞) ; E) 6 C
√
K0 e

−λε
2
t , t > 0 . (A.8)

As a consequence, recalling that λε ≃ cε, it follows that for any a ∈ (0, 1/2)
∣∣∣
ˆ

Td×Rd

(
hε(τ, x, v) − h(τ, x, v)

)
|v|κdv dx

∣∣∣

6 ‖hε(τε(t)) − h(τε(t))‖L1
x,v(̟q) 6 C

√
K0 e

−λε
2
τε(t) 6 C Vε(t)

−a
√
K0 .

Now, in regard of I1(t), note that
∣∣ϕ(x, Vε(t)−1v)− ϕ(x, 0)

∣∣ 6 Vε(t)
−1|v| sup

x
sup
v

∣∣∂vϕ(x, v)
∣∣ = CϕVε(t)

−1|v| ,

so that the following holds:
∣∣I1(t)

∣∣ 6 CϕVε(t)
−κ−1‖hε(τε(t))− h(τε(t))‖L1

x,v(̟q) 6 Cϕ Vε(t)
−κ−1−a

√
K0 .

Similarly,
∣∣∣I2(t)

∣∣∣ 6 Cϕ Vε(t)
−κ−a

√
K0 ,

which proves the desired estimate. �

The above computations also allow to provide a local version of Haff’s Law. Namely,
note that

ˆ

Rd

fε(τε(t), x, w)|w|κdw

=

ˆ

Rd

Gα(w)|w|κdw + ε

ˆ

Rd

hε(τε(t), x, w)|w|κdw , 0 6 κ 6 q .

Thanks to Sobolev embedding it holds that
∣∣∣∣ sup
x∈Td

ˆ

Rd

hε(τε(t), x, w)|w|κdv
∣∣∣∣ 6 Cκ‖hε(τε(t))‖E 6 Cκ

√
K0 .
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Therefore, for sufficiently small ε > 0 there exists two positive constants Cκ and cκ such
that

cκ 6

ˆ

Rd

fε(τε(t), x, w)|w|κdw 6 Cκ , 0 6 κ 6 q , t > 0 ,

which leads, for the physical problem, to

Vε(t)
−κcκ 6

ˆ

Rd

Fε(t, x, v)|v|κdv 6 Vε(t)
−κCκ , 0 6 κ 6 q , t > 0 .

In particular, this estimate renders a local version of Haff’s law
ˆ

Rd

Fε(t, x, v)|v|2dv ∼
(
1 + cε t

)−2
, ∀t > 0, x ∈ T

d.

APPENDIX B. TOOLS FOR THE HYDRODYNAMIC LIMIT

We collect several tools that are used in Section 6.2 to derive the modified incompress-
ible Navier-Stokes system. Various known computations regarding the elastic Boltzmann
operator are needed. As in the classical case, we introduce the traceless tensor

A(v) = v ⊗ v − 1

d
|v|2Id .

Notice that that (6.18) can be rewritten thanks to (6.13) as

v ·∇xh = A(v)M(v) : ∇xu+ b(v)M(v) ·∇x θ ,

with

b(v) =
1

2

(
|v|2 − (d+ 2)ϑ1

)
v ∈ R

d.

Lemma B.1. One has that A, b ∈ Range(I − π0) and there exists two radial functions
χi = χi(|v|), i = 1, 2, such that

φ(v) = χ1(|v|)A(v) ∈ Md(R) , and ψ(v) = χ2(|v|)b(v) ∈ R
d ,

satisfy

L1(φM) = −AM , L1(ψM) = −bM . (B.1)

Moreover,

〈
φi,jL1(φ

k,ℓM)
〉
= −ν

(
δikδjℓ + δiℓδjk −

2

d
δijδkl

)

〈
ψiL1(ψjM)

〉
= −d+ 2

2
γ δij , i, j, k, ℓ ∈ {1, . . . , d} , (B.2)

with

ν := − 1

(d− 1)(d + 2)

〈
φ : L1(φM)

〉
> 0, γ := − 2

d(d+ 2)

〈
ψ ·L1(ψM)

〉
> 0.

Finally,

φi,j(v) . ̟3(v), ψi(v) . ̟4(v), i, j ∈ {1, . . . , d}.
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Proof. The tensor A and the vector b satisfy
〈
Ak,ℓΨiM

〉
= 0,

〈
bΨiM

〉
= 0 , ∀i = 1, . . . , d+ 2, k, ℓ ∈ {1, . . . , d} , (B.3)

from which we get that A, b ∈ Range(I−π0). We refer to [23] and [9] for the proof of the
second part of the Lemma, just mind that the linearized Boltzmann operator considered
in such references is defined as Lg = −M−1

L1(M g). We refer to [9, Lemma 4.4] for the
proof of (B.2). We refer to [32, Proposition 6.5] for the last estimates on φi,j and ψ. �

Remark B.2. Notice that if ζ = ζ(|v|) is radially symmetric, then
〈
ζAi,j M

〉
=
〈
ζ L1(φM)

〉
= 0, ∀ i, j = 1, . . . , d.

Lemma B.3. For h given by (6.7), it holds that
〈
φQ1(h,h)

〉
= ϑ21

(
u⊗ u− 2

d
|u|2Id

)
,

for any i, j = 1, . . . , d.

Proof. As observed in [21, Eq. (60)], if gM ∈ Ker(L1) then Q1(gM, gM) = −1
2L1(g

2M).

Therefore, with g = ̺+ u · v + 1
2(|v|2 − 2ϑ1),

Q1(h,h) = −1

2
L1((u · v)2M)− 1

8
θ2L1(|v|4M) + θ u ·L1(

1
2 |v|

2vM). (B.4)

One checks that 〈
φi,jL1(|v|4M)

〉
= 0 ,

whereas L1(
1
2 |v|2vM) = L1(bM), from which
〈
φi,jL1(

1
2 |v|

2vM)
〉
=
〈
bL1(φ

i,jM)
〉
= −

〈
bAi,jM

〉
= 0 ,

since bAi,j is an even function. Therefore, we obtain that
〈
φi,jQ1(h,h)

〉
= −1

2

∑

k,ℓ

ukuℓ

〈
φi,jL1(vkvℓM)

〉
=

1

2

∑

k,ℓ

ukuℓ

〈
vkvℓA

i,jM
〉
. (B.5)

As for (B.2), one checks that if i 6= j
∑

k,ℓ

ukuℓ

〈
vkvℓA

i,jM
〉
=

∑

{k,ℓ}={i,j}
ukuℓ

〈
v2i v

2
jM

〉
= 2uiuj

〈
v2i v

2
jM

〉
,

whereas, for i = j,

∑

k,ℓ

ukuℓ

〈
vkvℓA

i,iM
〉
=

d∑

k=1

u2k

(〈
v2i v

2
kM

〉
− 1

d

〈
v2k|v|2M

〉)
.

Notice that a :=
〈
v2i v

2
jM

〉
is independent of i, j, thus, it is not difficult to check that

(d− 1)a =
1

d

ˆ

Rd

|v|4Mdv −
ˆ

Rd

v41M(v)dv = (d− 1)ϑ21 ,
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that is, a = ϑ21. In the same way, for any k ∈ {1, . . . , d}
〈
v2k|v|2M

〉
=

1

d

〈
|v|4M

〉
= (d+ 2)ϑ21 ,

whereas
〈
v2kv

2
iM

〉
=

{
a = ϑ21 if k 6= i ,〈

v4iM
〉
= 3ϑ21 if k = i ,

so that,

∑

k,ℓ

ukuℓ

〈
vkvℓA

i,iM
〉
= ϑ21

∑

k 6=i

u2k + 3ϑ21u
2
i −

d+ 2

d
|u|2ϑ21 = 2ϑ21u

2
i −

2

d
ϑ21|u|2 .

Gathering these last computations, we get

〈
φi,jQ1((u · v)M, (u · v)M)

〉
= ϑ21

(
uiuj −

2

d
|u|2δi,j

)
,

which, combined with (B.5) gives the result. �

Lemma B.4. Let h be given by (6.7). For any i, j = 1, . . . , d it holds that

〈
vℓ φ

i,j h
〉
=





ν uj if i 6= j, ℓ = i,

ν ui if i 6= j, ℓ = j,

−2
dν uℓ + 2ν uiδiℓ if i = j,

0 else.

Proof. Using the fact that χ1 is radial, similar computations to that of Lemma B.3 imply
that for ℓ ∈ {1, . . . , d},

〈
vℓ φ

i,j h
〉
=

d∑

k=1

uk

〈
vℓvk φ

i,j M
〉
=

d∑

k=1

uk

〈
vℓvk φ

i,j M
〉

=
d∑

k=1

uk

(〈
Ak,ℓ φi,j M

〉
+

1

d

〈
|v|2 φi,j M

〉
δkℓ

)

= −
d∑

k=1

uk

〈
φi,jL1(φ

k,ℓM)
〉
,

where we used that L1(φM) = −AM and
〈
|v|2φi,jM

〉
= 0. This gives the result thanks

to (B.2). �

Lemma B.5. Let h be given by (6.7). For any i = 1, . . . , d it holds that

〈
ψiQ1(h,h)

〉
=
d+ 2

2
ϑ31 (θ ui) ,
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and, if ̺ and θ satisfies Boussinesq relation (6.14), then

divx

〈
ψi h v

〉
= γ

d+ 2

2
∂xi
θ.

Proof. On the one hand, using (B.4) it holds that
〈
ψiQ1(h,h)

〉
= θ u ·

〈
ψiL1(

1
2 |v|

2vM)
〉
= θ u ·

〈
ψi L1(bM)

〉
,

since, ψi being odd, one has
〈
ψiL1((u · v)2M)

〉
=
〈
ψiL1(|v|4M)

〉
= 0. Now,

〈
ψi L1(bM)

〉
=
〈
bL1(ψiM)

〉
= −

〈
bM bi

〉
,

and a direct computations show that
〈
bjbi M

〉
= − 1

4d

〈 (
|v|2 − (d+ 2)ϑ1

)2 |v|2M
〉
δij = −d+ 2

2
ϑ31 δij ,

which gives the expression for
〈
ψiQ1(h,h)

〉
. On the other hand, using symmetry prop-

erties, one checks that
〈
ψih vℓ

〉
= ̺
〈
ψiviM

〉
δiℓ +

1

2
θ
〈
ψi(|v|2 − dϑ1)viM

〉
δiℓ ,

from which

divx

〈
ψi h v

〉
=
〈
ψiviM

〉
∂xi
̺+

1

2

〈
ψi

(
|v|2 − dϑ1

)
viM

〉
∂xi
θ.

Writing 1
2

〈
ψi(|v|2 − dϑ1)viM

〉
=
〈
ψi biM

〉
+ ϑ1

〈
ψi viM

〉
and using Boussinesq rela-

tion (6.14), one gets that

divx

〈
ψi h v

〉
=
〈
ψi biM

〉
∂xi
θ = γ

d+ 2

2
∂xi

θ ,

where the identity
〈
ψi biM

〉
= −

〈
ψiL1(ψiM)

〉
was used together with (B.2). �

In Lemma 6.11, we study the convergence of some term involving the source term Sε

defined in (6.29). To do that, we use the next Lemma which provides a strong convergence
to 0 of this source term.

Lemma B.6. Let Sε defined in (6.29). We have that

‖Sε‖L1((0,T );L1
xL

1
v(̟q) . ε.

Proof. We decompose Sε into three parts using the splitting hε = h0ε+h
1
ε: Sε = S0

ε+S1
ε+S2

ε

with

Sj
ε := ε−1

(
Lαh

j
ε − L1h

j
ε

)
+Qα(h

j
ε, h

j
ε)−Q1(h

j
ε, h

j
ε)− ε−1κα∇v · (vhjε), j = 0, 1,

and

S2

ε := 2Q̃α(h
0
ε , h

1
ε)− 2Q̃1(h

0
ε , h

1
ε).
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The terms S0
ε and S2

ε are treated using the estimate on h0ε and h1ε stated in (6.8)-(6.9).
Indeed, using standard estimates on Qα and Q1, we have:

‖S0

ε + S2

ε ‖L1((0,T );L1
xL

1
v(̟q)) . ‖h0ε‖L1((0,T );E1)

+ ‖h0ε‖L1((0,T );E1)(‖h0ε‖L∞((0,T );E) + ‖h1ε‖L∞((0,T );H)) + ε ‖h0ε‖L1((0,T );E1) . ε2.

Using now (6.8) and Lemma 2.1, we have:

‖S1

ε ‖L1((0,T );L1
xL

1
v(̟q)) . ε‖h1ε‖L1((0,T );H)

+ ε2‖h1ε‖L1((0,T );H)‖h1ε‖L∞((0,T );H) + ε‖h1ε‖L1((0,T );H) . ε

which yields the result. �

To handle the convergence of nonlinear terms, we will need to resort to the following
compensated compactness result extracted from [45] (see also [30, Lemma 13.1, Appen-
dix D]. The original result in [45] is proven in the whole space but is easily adapted to the
case of the torus.

Proposition B.7. Let c 6= 0 and T > 0. Consider two families {φε}ε and {ψε} bounded in

L∞((0, T ) ;L2
x(T

d)) and in L∞((0, T ) ; W1,2
x (Td)) respectively, such that





∂t∇xψε +
c2

ε
∇xφε =

1

ε
Fε

∂tφε +
1

ε
∆xψε =

1

ε
Gε

where Fε and Gε converge strongly in L1((0, T ) ; L2
x(T

d)). Then,

PDivx (∇xψε ⊗∇xψε) −→ 0, divx (φε∇xψε) −→ 0

in the sense of distributions on (0, T )× T
d.

APPENDIX C. PROOF OF THEOREM 2.10 AND PROPOSITION 2.13

Theorem C.1 (See Theorem 2.1, [15]). There exists ε0 ∈ (0, 1) such that, for all ℓ, s ∈ N

with ℓ > s and q > 2 and any ε ∈ (0, ε0), the full transport operator G1,ε generates a C0-

semigroup {V1,ε(t) ; t > 0} on W
ℓ,1
x W

s,1
v (̟q) such that, for all t⋆ > 0 there exist C0(t⋆),

µ⋆ > 0 such that

‖V1,ε(t)h−P0h‖Wℓ,1
x W

s,1
v (̟q)

6 C0(t⋆) exp(−µ⋆t) ‖h −P0h‖Wℓ,1
x W

s,1
v (̟q)

, ∀ t > t⋆ , (C.1)

holds true for any h0 ∈ W
ℓ,1
x W

s,1
v (̟q), where P0 is the spectral projection onto Ker(G1,ε) =

Ker(L1) which is independent of ε and given by (2.22).
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The difference between Theorems 2.10 and C.1 lies in the fact that, in Theorem 2.10,
we allow t⋆ = 0 in the decay estimate (C.1). The “initial layer” dependence on t⋆ > 0 in
(C.1) is inherent to the method of the enlargement semigroup theory of [34].

Theorem C.1 ensures that G1,ε is the generator of a C0-semigroup {V1,ε(t) ; t > 0} on E as
soon as q > 2 and ε ∈ (0, ε0). We focus on extending (C.1) to t⋆ := 0.

Proof of Theorem 2.10. We adopt the decomposition of the nonlinear part of [15] that we

used in Section 4. Namely, for some fixed h ∈ W
ℓ,1
x W

s,1
v (̟q) we set

fin := h−P0h ,

and write f(t) = V1,ε(t)fin as f(t) = f0(t) + f1(t) with f0 ∈ W
ℓ,1
x W

s,1
v (̟q) solution to

∂tf
0(t) = B1,εf

0, f0(0) = fin , (C.2)

whereas f1 ∈ H := Hℓ
x,v(M− 1

2 ), is solution to

∂tf
1(t) = G1,εf

1(t) +Aεf
0(t), f1(0) = 0. (C.3)

As before, the same notations for the operators G1,ε, V1,ε(t) acting on various different
spaces is used. The definition should be clear from the context. Of course,

f0(t) = S1,ε(t)fin ,

and

‖f0(t)‖
W

ℓ,1
x W

s,1
v (̟q)

6 C0 exp(−ε−2ν0t)‖fin‖Wℓ,1
x W

s,1
v (̟q)

, (C.4)

since B1,ε is ε−2ν0 hypo-dissipative (ν0 depends on ℓ,m). The constant C0 is independent

of ε. Let us investigate ‖f1(t)‖H. Notice that, since P0f = 0, P0f
1 = −P0f

0 (recall that

the projection is the same in H and W
ℓ,1
x W

s,1
v (̟q) and independent of ε), the estimate for

P0f
1 is straightforward

‖P0f
1(t)‖H 6 C1 exp(−ε−2ν0t)‖fin‖Wℓ,1

x W
s,1
v (̟q)

, (C.5)

where the constant C1 differs from C0 just because the norm of the eigenfunctions are

different in H and W
ℓ,1
x W

s,1
v (̟q). We focus on

ψ(t) = P
⊥
0 f

1(t) = (Id−P0)f
1(t).

One has

∂tψ(t) = G1,εψ(t) +P
⊥
0 Aεf

0(t) ,

and, arguing as in [14, Section 7.2] (see also [15, Theorem 4.7 and Remark 4.8]) one has

1

2
‖ψ(t)‖2H 6

1

2
‖ψ(0)‖2He−µ⋆ t +

ˆ t

0
e−µ⋆(t−s)‖ψ(s)‖H ‖P⊥

0 Aε f
0(s)‖Hds

with µ⋆ > 0 independent of ε which is the size of the spectral gap of G1,ε. Recalling that

ψ(0) = 0 and ‖Aε‖B(Wℓ,1
x W

s,1
v (̟q),H)

6 CAε
−2, we get that

‖ψ(t)‖2H 6
2CA

ε2

ˆ t

0
e−µ⋆(t−s)‖ψ(s)‖H‖f0(s)‖

W
ℓ,1
x W

s,1
v (̟q)

ds.
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We use (C.4) to deduce that

‖ψ(t)‖2H 6
2C0CA

ε2

ˆ t

0
e−µ⋆(t−s)e−

ν0
ε2

s‖ψ(s)‖H‖fin‖Wℓ,1
x W

s,1
v (̟q)

ds.

Then, Young’s inequality leads to

‖ψ(t)‖2H 6
C0CAe

−µ⋆ t

ε2

ˆ t

0
e−(

ν0
ε2

−µ⋆)s‖ψ(s)‖2Hds

+
C0CAe

−µ⋆ t

ε2
‖fin‖2

W
ℓ,1
x W

s,1
v (̟q)

ˆ t

0
e−(

ν0
ε2

−µ⋆)sds.

If ε−2ν0 > 2µ⋆ we get after integration that

‖ψ(t)‖2H 6
2C0CAe

−µ⋆ t

ν0
‖fin‖2

W
ℓ,1
x W

s,1
v (̟q)

+
C0CAe

−µ⋆ t

ε2

ˆ t

0
e−(

ν0
ε2

−µ⋆)s‖ψ(s)‖2Hds.

With x(t) = eµ⋆ t‖ψ(t)‖2H it follows that

x(t) 6
2C0CA

ν0
‖fin‖2

W
ℓ,1
x W

s,1
v (̟q)

+
C0CA

ε2

ˆ t

0
e−

ν0
ε2

sx(s)ds ,

and Gronwall’s lemma gives

x(t) 6
2C0CA

ν0
‖fin‖2

W
ℓ,1
x W

s,1
v (̟q)

exp

(
C0CA

ν0

)
= C2‖fin‖2

W
ℓ,1
x W

s,1
v (̟q)

,

with C2 > 0 independent of ε. Therefore

‖ψ(t)‖2H 6 C2‖fin‖2
W

ℓ,1
x W

s,1
v (̟q)

exp(−µ⋆ t).

This combined with (C.5) gives that

‖f1(t)‖2H 6 (C2 + C1)‖fin‖2
W

ℓ,1
x W

s,1
v (̟q)

exp(−µ⋆ t).

Overall, the estimates for f0 and f1 lead to

‖f(t)‖E 6 C3‖fin‖Wℓ,1
x W

s,1
v (̟q)

exp
(
−µ⋆

2
t
)
, ∀ t > 0 ,

with C3 independent of ε and given by C0 +
√
C1 + C2 as long as ν0ε

−2 > µ⋆. �

Proof of Proposition 2.13. Notations are those of Proposition 2.13. We recall here that, on

the Banach space W
ℓ,1
x W

s,1
v (̟q),

B(δ)
α,ε = B(δ)

1,ε + ε−2Pα + ε−2Tα

with domain D(B(δ)
α,ε) = W

ℓ+1,1
x W

s+1,1
v (̟q+1). Recall that we can find an equivalent norm

on W
ℓ,1
x W

s,1
v (̟q) for which B(δ)

α,ε + ε−2νℓ,s is dissipative. According to Lumer-Phillips The-

orem, see [25, Proposition 3.14 & Theorem 3.15], in order to show that B(δ)
α,ε generates a

C0-semigroup it suffices to prove that there exists λ > 0 large enough such that

Range(λ− B(δ)
α,ε) = W

ℓ,1
x W

s,1
v (̟q). (C.6)
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Clearly, one can replace without loss of generality B(δ)
α,ε with ε2B(δ)

α,ε. Denote for simplicity

X = W
ℓ,1
x W

s,1
v (̟q), Bα := ε2B(δ)

α,ε ,

omitting the dependence with respect to ε and δ. It follows that

Bα = L R,δ
1 − ΣM − εv ·∇x + Pα + Tα .

Introduce the following operator

Tαh := −εv ·∇xh+ Tαh− ΣM h = −εv ·∇xh− καdivv(vh) − ΣMh

with domain D(Tα) = W
ℓ+1,1
x W

s+1,1
v (̟q+1). It is not difficult to check that Tα generates a

C0-semigroup in X given by

etTαg(x, v) = exp

(
−
ˆ t

0
dκα +ΣM(veκα(s−t))ds

)
g

(
x− ε

κα

(
1− e−καt

)
v, ve−καt

)
.

In particular,

lim
λ→∞

‖R(λ,Tα)‖B(X) = 0. (C.7)

Moreover, one has the following gain of integrability for the resolvent of Tα: there is
α1 ∈ (0, 1) such that, for α ∈ (α1, 1) there is c > 0 and λ(α) > 0

‖R(λ,Tα)‖B(Wℓ,1
x W

s,1
v (̟q),W

ℓ,1
x W

s,1
v (̟q+1))

6
1

σ − cκα
, ∀λ > λ(α) , (C.8)

where σ is an explicit positive constant depending only on ΣM. The proof of such a
property is an easy adaptation of [2, Lemma C.14] whenever k = s = 0 and extends to
k > s > 0 following techniques from [49], we leave the details to the reader. One also
has the following result, see the proof of [18, Lemma B.1 & Proposition B.2]: there exists
τ(δ) > 0 such that limδ→0 τ(δ) = 0 and

∥∥∥L R,δ
1,+

∥∥∥
B(Wℓ,1

x W
s,1
v (̟q+1),W

ℓ,1
x W

s,1
v (̟q))

6 τ(δ) , (C.9)

while L R,δ
1,− ∈ B(X). With these two properties, introduce the sum Cα := L R,δ

1,+ + Tα with

domain D(Cα) = D(Tα). We have directly from the previous two properties (C.8) and
(C.9) ∥∥∥L R,δ

1,+R(λ,Tα)
∥∥∥

B(X)
6

τ(δ)

σ − cκα
, ∀λ > λ(α) ,

from which, choosing δ > 0 sufficiently small such that
τ(δ)

σ−cκα
< 1, we obtain that (Id −

L R,δ
1,+R(λ,Tα)) is invertible. We deduce that

R(λ, Cα) = R(λ,Tα)
(
Id− L R,δ

1,+R(λ, Cα)
)−1

= R(λ,Tα)
∞∑

n=0

[
L R,δ

1,+R(λ,Tα)
]n

, ∀λ > λ(α) ,
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simply observing that (λ− Cα) = (Id− L R,δ
1,+R(λ, Cα))(λ− Tα). In particular,

‖R(λ, Cα)‖B(X) 6
1

σ − cκα − τ(δ)
, ∀λ > λ(α) ,

with
lim
λ→∞

‖R(λ, Cα)‖B(X) = 0

by virtue of (C.7). Set then

C1
α := Cα + Pα.

With the estimate of Pα

‖PαR(λ, Cα)‖B(X) 6 C
1− α

σ − cκα − τ(δ)

and, choosing α sufficiently close to 1, the operator Id + PαR(λ, Cα) is invertible and so
is λ− C1

α. Finally, since

Bα = C1
α − L R,δ

1,− ,

one can chose λ > 0 sufficiently large so that

‖L R,δ
1,−R(λ, C1

α)‖B(X) 6 ‖L R,δ
1,− ‖B(X) ‖R(λ, C1

α)‖B(X) < 1

and obtain that λ − Bα is invertible. In particular, (C.6) holds true and this proves the
result. �
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