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Abstract

We give a functional analytic L1 approach to L2 form-bounds for
many-body convolution type Hamiltonians and explore new aspects of
Kato classes for convolution semigroups. These classes are explored in
terms of L1 weak compactness properties and also in terms of asymp-
totics of averages over suitable shells. In particular, various member-
ship criteria are given.
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1 Introduction

This paper is an abridged and improved version of the recent preprint [22].
It is well-known that the mathematical theory of Schrödinger operators was
born in 1951 with Kato�s famous self-adjointness theorem [13] for atomic
Hamiltonians in L2(R3N )

�
NX
i=1

(2�i)
�14i +

NX
i=1

V i(xi) +
X
i<j

V ij(xi � xj) (1)

on the domain H2(R3N ) provided that V i; V ij 2 L2(R3) + L1(R3); (4i is
the Laplacian with respect to the variable xi 2 R3 and the �i�s are positive
constants). Indeed, in this case, the potential

NX
i=1

V i(xi) +
X
i<j

V ij(xi � xj)

(as a multiplication operator) has zero relative operator bound with respect
to
PN
i=1(2�i)

�14i and the self-adjointness property follows from the Kato-
Rellich theorem. Of course, the perturbed Hamiltonian can be de�ned in
terms of quadratic forms (via the KLMN theorem) for much more general
potentials, see e.g. [8]. The literature on the subject is considerable and
cannot be summarized; to get an idea, see e.g. [27][28][26][7][23][11].

If we stay within the realm of L1loc potentials, a su¢ cient (but not neces-
sary) condition is that the negative parts of the potentials belong to the Kato
class. Besides its interest for self-adjointness (see the second famous Kato�s
paper [14]), this class of potentials turns out to play also a key role in the
exploration of "Schrödinger semigroups" as shown in the classical paper by
M. Aizenman and B. Simon [1] where the connections of the Kato class with
Brownian motion, Harnack�s inequality and Lp properties of Schrödinger
semigroups are analyzed; we refer to the survey [29] and to [31][9][10] for
more information. We note that this Kato class is attached to the Laplacian
but other Kato classes are attached to di¤erent generators, see R. Carmona,
W. Ch. Masters and B. Simon [4]. The present paper revisits these Kato
classes in di¤erent new directions. Actually, our object here is twofold:

1. We give �rst general (abstract) form-bound estimates by means of
L1 functional analytic tools.

2. Secondly, we explore new aspects of Kato classes relative to general
convolution semigroups. In particular, we explore them in terms of L1 weak
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compactness properties and also in terms of asymptotics of averages over
suitable spherical shells.

This paper improves, in several directions, some previous results [18] and
an unpublished work on multi-particle convolution Hamiltonians [19]. This
is an abridged and improved version of a recent preprint [22]; (see Remark
13 below).

We deal with many-body Hamiltonians on L2(R3N )

H := �
NX
i=1

T(i) +
NX
i=1

V i(xi) +
X
i<j

V ij(xi � xj) (2)

where T(i) is a generator (with respect to the variable xi 2 R3) of a general
symmetric convolution semigroup

�
S(i)(t)

�
t�0 depending a priori of the index

i (1 � i � N) and V i; V ij : R3 ! R are measurable potentials. The
introduction of this general class of Hamiltonians is motivated by both the
non-relativistic Hamiltonian (1) and the quasi-relativistic one where

T(i) = �
�q

�c2h24i +m2
i c
4 �mic

2

�
(see [15] Chapter 8) and also by the combination of the two (see [11] Example
2.6). The self-adjointness of H is of course a prerequisite to build the unitary
group

�
e�itH

�
t2R which solves the Schrödinger equation

i
df

dt
= Hf; f(0) = f0 2 L2(R3N ):

Section 2 is devoted to some useful reminders; in particular, on symmetric
convolution semigroups

�
S1(t)

�
t�0 on L

1(Rd)

S1(t) : f 2 L1(Rd)!
Z
Rd
f(x� y)mt(dy) 2 L1(Rd)

where fmtgt�0 are Borel sub-probability measures on Rd (see Section 2
below for the details). Our main assumption is that the resolvent of the
generator T 1 is a kernel operator

(�� T 1)�1f =
Z
Rd
E�(x� y)f(y)dy

where
E�(:) 2 L1(Rd) (3)
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is the so-called �-potential kernel; in particular, we do not need a priori
that

R
Rd e

�tF (�)d� < +1 (t > 0) where F (:) is the characteristic exponent
(see Section 2 below). For the simplicity of notations (and depending on
the context), E� will denote both the �-potential kernel and the resolvent
operator (�� T 1)�1

E� : L
1(Rd) 3 f !

Z
Rd
E�(x� y)f(y)dy 2 L1(Rd):

Our main result on form-perturbation theory is the following general state-
ment:

Let V i� and V
ij
� (e.g. the negative parts of V i and V ij) be T(i)-bounded

in L1(R3) and let

�i := lim
�!+1

r�
�
V i�(�� T(i))�1

�
; �ij := lim

�!+1
r�

h
V ij� (�� T(i))�1

i
where r� refers to the spectral radius in L1(R3): Then the multiplication
operator on L2(R3N ) by

�V�(x1; :::; xN ) := �
NX
i=1

V i�(xi)�
X
i<j

V ij� (xi � xj)

is form-bounded with respect to the positive free Hamiltonian

�T := �
NX
i=1

T(i)

with relative form bound less than or equal to

� := max
1�i�N

(�i) + max
1�i�N�1

(b�i)
where b�i =PN

j=i+1 �ij (i � N � 1); (see Theorem 4). This result is derived
from a preliminary L1-generation result, see the proof of Theorem 1. (We
give also another hilbertian result on the identi�cation of two self-adjoint op-
erators, see Theorem 3.) We note that if � < 1 then the form-sum operators
on L2(R3N )

(�T )� (�V�) (4)

we obtain admit C1c (R3N ) and S(R3N ) as form-cores; (see Remark 6). In
particular, this is the case when

lim
�!+1

V i�(�� T(i))�1L(L1(Rd)) = lim
�!+1

V ij� (�� T(i))�1L(L1(Rd)) = 0
4



i.e. when V i� and V
ij
� are Kato class potentials relative to T(i) in L1(R3);

(see below for more information). It is quite standard (see e.g. [8] Theorem
4.1, p. 24) to capture (2) as a form-sum of the positive potential

NX
i=1

V i+(xi) +
X
i<j

V ij+ (xi � xj)

and the lower bounded Hamiltonian (4); however, if V i+; V
ij
+ 2 L1loc(R3); the

question whether C1c (R3N ) is a core of the new form desserves a separate
study which is not considered here.

Section 5 is devoted to the exploration in various new directions of
the Kato classes relative to general convolution semigroups

�
S1(t)

�
t�0 with

generators T 1. We recall that a measurable potential

V : Rd ! R+

belongs to the Kato class (relative to
�
S1(t)

�
t�0) if V is T 1-bounded in

L1(Rd) and V ��� T 1��1
L(L1(Rd))

! 0 (�! +1): (5)

As far as we know, the most general class of convolution semigroups whose
Kato class is analyzed is the one such thatZ

Rd
e�tF (�)d� < +1 (t > 0)

(F (:) is the characteristic exponent) and mt(dy) = kt(y)dy is such that kt(:)
is radial and nonincreasing, i.e.

kt(y) = bkt(jyj) and �! bkt(�) nonincreasing.
Indeed, in this case, a Kato class potential is characterized by

lim
"!0

sup
y2Rd

Z
fjzj�"g

V (y + x)E�(x)dx = 0 (� > 0); (6)

(see [4] Theorem III1).
We show here that (6) is still a su¢ cient membership criterion to the

Kato class for the more general class of convolution semigroups admitting
just a �-potential kernel E�(:) bounded outside any neighborhood of the
origin provided we restrict ourselves a priori to potentials V of the form

V 2
j=mX
j=1

Lpj (Rd); pj 2 [1;+1] (7)
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(see Theorem 9 for a more detailled statement). Note that (7) is a very
general condition which is easily checkable in practice by decomposing V
according to its di¤erent singularities.

For the sequel, we call Kato potentials those satisfying (6) (regardless of
the occurrence of (5)) and local Kato potentials those satisfying

lim
"!0

sup
jyj�C

Z
fjzj�"g

V (y + x)E�(x)dx = 0 (� > 0; C > 0): (8)

We provide di¤erent (new) characterizations of local Kato potentials. In-
deed, we show that (8) is equivalent to

V E� : L
1(Rd)! L1loc(R

d) is weakly compact (9)

or to
V E� : L

1(Rd)! L1loc(R
d) is compact. (10)

Furthemore, these properties are also equivalent to the following local equi-
integrability property

lim
j
j!0


�B(0;R)

sup
jyj�C

�Z


V (x)E�(x� y)dx

�
= 0 (C > 0) (11)

where j
j is the Lebesgue measure of 
; (see Theorem 10). Note that (10)
extends to more general operators a known characterization of the local
Kato class of the Laplacian ([1] Theorem 4.18) while (9) and (11) are new
even for the Laplacian.

We provide also di¤erent (su¢ cient) weak compactness criteria. Indeed,
note that the T 1-boundedness of V can be formulated as

sup
y2Rd

Z
Rd
Vy(z)E�(z)dz < +1

where
Vy : z 2 Rd ! V (y + z):

In particular

sup
y2Rd

Z
jzj�1

Vy(z)E�(z)dz < +1

i.e.
�
Vy; y 2 Rd

	
is a bounded subset of L1 (B(0; 1); �(dz)) where

�(dz) = E�(z)dz:
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We show �rst that V is a local Kato potential once

Rd 3 y ! Vy 2 L1 (B(0; 1); �(dz)) is continuous;

(see Theorem 14). This result extends a result in the same spirit for the
Laplacian ([1] Theorem 4.15).

More generally, we show that V is a Kato (resp. a local Kato) poten-
tial provided that

�
Vy; y 2 Rd

	
(resp. fVy; j yj � Cg ; C > 0) is an equi-

integrable subset of L1 (B(0; 1); �(dz)); (see Theorem 16). It follows that
V is a Kato (resp. a local Kato) potential provided there exists p > 1 such
that

sup
y2Rd

Z
jzj�1

Vy(z)
pE�(z)dz < +1 (resp. sup

j yj�C

Z
jzj�1

Vy(z)
pE�(z)dz < +1; C > 0);

(see Corollary 17).
We give other membership criteria to Kato classes in terms of asymp-

totics of averages over suitable spherical shells. When E�(:) is radially de-
creasing, i.e.

E�(z) = bE�(jzj) and �! bE�(�) is nonincreasing,
we check that V is a Kato potential in terms of asymptotics (k !1) of

�k(y) :=

Z
2�(k+1)�jzj�2�k

Vy(z)dz; (y 2 Rd; k 2 N):

Indeed, we show that V is a Kato potential if and only if the series

1X
j=1

� bE�(2�j)� �j(y)
converges uniformly in y 2 Rd; in particular when

lim sup
k!1

(b�k) 1k < �lim sup
k!1

� bE�(2�k)� 1
k

��1
where b�k := sup

y2Rd
�k(y);

(see Theorem 20).
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The parameter lim supk!1
�cE�(2�k)� 1

k
is also estimated

lim sup
k!1

�cE�(2�k)� 1
k � 2

d
s

where

s := sup

(
p � 1;

Z
fjxj�1g

(E�(x))
p dx < +1

)
;

(see Lemma 21). It follows that V is a Kato class potential provided that

lim sup
j!1

�b�j� 1j < 2� d
s ; (12)

(see Corollary 23). In the usual examples,

cE�(�) s 1

�d��
(�! 0) (0 < � � 2); (13)

(� = 2 for the heat semigroup, 0 < � < 2 for the �-stable semigroup and
� = 1 for the relativistic semigroup) so V is a Kato class potential provided
that

lim sup
k!1

(b�k) 1k < 2�(d��);
(see Remark 24).

It is well known ([1] Theorem 1.4 (iii)) that for the Laplacian, V is a
Kato class potential provided that V 2 Lploc;unif , i.e.

sup
y2Rd

Z
fjxj�1g

(V (y + x))p dx < +1;

for some p > d
2 : Of course, this result can also be formulated, with p >

d
� ;

for general generators satisfying (13). We can derive this last result from the
membership criterion (12); (see Theorem 25). We can derive it also from the
�(dz)-equi-integrability criterion given in Theorem 16; (see Remark 26).

As far as we know, our results are new and appear here for the �rst
time. Finally, we mention that a part of this work extends to higher-order
elliptic systems where the loss of positivity is compensated by the existence
of suitable kernel estimates [21].
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2 Reminders on absorption semigroups

Before giving our results, we recall some facts on the theory of absorption
semigroups [31]. (Other properties of absorption semigroups are given in
[20] but we do not need them here.) Let (Sp(t))t�0 be a positive contraction
C0-semigroup on some Lp(
;�) space with generator T p and let V : 
 !
R be measurable. We assume that V = V+ � V� is decomposed as a
di¤erence of two nonnegative measurable functions V� (not necessarily the
positive and negative parts of V ) such that V�(x) < +1 �-a.e. To de�ne
"T p�V+" as a generator (for the time being we are not interested in "T p�
V "), we approximate V+ monotonically from below by V+ ^ j (j 2 N); the
corresponding sequence of semigroups converges strongly to a semigroup�
SpV+(t)

�
t�0

which need not be strongly continuous at t = 0. We say that

V+ is admissible if
�
SpV+(t)

�
t�0

is strongly continuous and denote by T pV+ its

generator. In this case,
T pV+ � T

p � V+
([31] Cor 2.7); this occurs e.g. if

D(T p) \D(V+) is dense in Lp(�)

([31] Prop 2.9). Note that if p = 1, if
�
S1(t)

�
t�0 is mass preserving and if

D(T 1)\D(V+) is a core for T 1 then T 1V+ = T
1 � V+ ([31] Cor 4.3 and Prop

4.4). If (S(t))t�0 is a symmetric sub-Markov semigroup, i.e. acts in all L
p(�)

spaces as a positive contraction C0-semigroup (Sp(t))t�0 with generator T
p

and
�
S2(t)

�
t�0 is self-adjoint then the admissibility of V+ is p-independent,

the dual of
�
SpV+(t)

�
t�0

is equal to
�
SqV+(t)

�
t�0

(q is the conjugate exponent)

and
�
S2V+(t)

�
t�0

is self-adjoint ([31] Prop 3.2). Moreover,

SrV+(t)jLp\Ls = S
s
V+(t)jLp\Ls

([31] Prop 3.1). To avoid cumbersome notations, we write
�
Sp+(t)

�
t�0 un-

stead of
�
SpV+(t)

�
t�0

and T p+ unstead of T
p
V+
: We consider now symmetric

convolution semigroups

Sp(t) : f 2 Lp(Rd)!
Z
Rd
f(x� y)mt(dy) 2 Lp(Rd)

where fmtgt�0 are (symmetric with respect to the origin) Borel sub-probability
measures on Rd such that m0 = �0 (Dirac measure at zero), mt �ms = mt+s
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and mt ! m0 vaguely as t ! 0+. Such convolution semigroups are re-
lated to Lévy processes and cover many examples of practical interest such
as Gaussian semigroups, �-stable semigroups, relativistic Schrödinger semi-
groups etc. Note that (Sp(t))t�0 is a positive contraction C0-semigroup on
Lp(Rd) (1 � p < +1) with generator

T p : D(T p) � Lp(Rd)! Lp(Rd):

The sub-probability measures fmtgt>0 are characterized by

cmt(�) := (2�)
� d
2

Z
e�i�:xmt(dx) = (2�)

� d
2 e�tF (�); � 2 Rd

where F , the so-called characteristic exponent, is a continuous negative def-
inite function (see [12] De�nition 3.6.5, p. 122) and has the representation

F (�) = c+ �:C� +

Z
Rdnf0g

[1� cos(x:�)]�(dx)

with c > 0, C is a real symmetric matrix such that �:C� > 0 8� 2 Rd and
�; the so-called Lévy measure, is a positive (symmetric with respect to the
origin) Borel measure on Rdnf0g such that

R
min(1; jxj2)�(dx) < +1: Note

that fmtgt�0 are probability measures if F (0) = 0, i.e. c = 0:We recall that
F > 0 and F (�) � cF (1 + j�j2): Note that

T 2' = �(2�)�
d
2

Z
Rd
ei�:xF (�)b'(�)d�

with domain
D(T 2) =

n
' 2 L2(Rd); F b' 2 L2(Rd)o :

We refer e.g. to [11][12] for more information on convolution semigroups.
Finally, we recall that S(Rd) is a core of T p ([6] Thm 2.1.15, p. 38). In par-
ticular, if V+ 2 L1loc(Rd) then C1c (Rd) � D(T1)\D(V+) so V+ is admissible
with respect to

�
S1(t)

	
t�0 and therefore with respect to fS

p(t)gt�0 for all
p � 1: Note �nally that if mt(dy) is a probability measure then

�
S1(t)

	
t�0

is mass preserving. It follows that if S(Rd) � D(V+) then D(T1)\D(V+) is
a core of T 1 and T 1V+ = T

1 � V+:
Note �rst that (�� T 1)�1 is a convolution operator

(�� T 1)�1f =
Z
Rd
f(x� y)m�(dy)

10



where m� =
R +1
0 e��tmtdt (� > 0) is a vaguely convergent integral, i.e.Z

Rd
f(x)m�(dx) :=

Z +1

0
e��t

�Z
Rd
f(x)mt(dx)

�
dt; f 2 C0(RN ):

Our general assumption here is thatm� is absolutely continuous with respect
to Lebesgue measure, i.e.

m�(dx) = E�(x)dx; E�(:) 2 L1(Rd) (14)

so that

(�� T 1)�1f =
Z
Rd
E�(x� y)f(y)dy; f 2 L1(Rd) (15)

and E�(:) is called the �-potential kernel according to the terminology in
[4]. We recall that for the usual examples we haveZ

Rd
e�tF (�)d� < +1 (t > 0) (16)

so that the bounded measuremt (t > 0) is absolutely continuous with respect
to Lebesgue measure, i.e.

mt(dx) = kt(x)dx (t > 0) (17)

where kt 2 L1+(Rd) \ C0(Rd) is even and

E�(z) =

Z +1

0
e��tkt(z)dt (� > 0):

Note however that we do not assume (16) in this paper.

3 Form-bounds for one-body Hamiltonians

As noted in the previous section, if

V+ 2 L1loc(Rd) (18)

then we can de�ne an absorption convolution semigroup
�
Sp+(t)

	
t�0 on

Lp(Rd) with generator T p+: We assume that V� is T1-bounded in L
1(Rd)

i.e.

sup
y2Rd

Z
Rd
V�(x)E�(x� y)dx < +1 (� > 0) (19)

11



where E�(x�y) is the kernel of (��T1)�1. Note that (19) is �-independent.
Of course, (19) implies that for any � > 0

sup
y2Rd

Z
fjx�yj��g

V�(x)E�(x� y)dx < +1 (� > 0): (20)

According to Desch�s theorem [5] (see also [32] or [16] Chapter 8), if

lim
�!+1

r�
�
V�(�� T 1)�1

�
< 1

then A1 := T 1+ + V� with domain D(A
1) = D(T 1+) generates a positive C0-

semigroup
�
W 1(t)

	
t�0 on L

1(Rd). Moreover, W 1(t) maps L1(Rd)\L1(Rd)
into itself and, for any p > 1;

W 1(t) : L1(Rd) \ L1(Rd)! Lp(Rd)

extends uniquely to a C0-semigroup fW p(t)gt>0 on Lp(Rd); see [18]. If we
denote by Ap its generateur thenn

f 2 D(T 1+) \ Lp(Rd); T 1+f + V�f 2 Lp(Rd)
o

is a core of Ap and A2 is self-adjoint; see [18] for the details. The follow-
ing result is already given in ([18] Theorem 21) under the assumption that
V� 2 L2Loc. We aim here at removing this L2Loc assumption by using an
approximation argument combined to suitable a priori spectral estimates.

Theorem 1 Let � := lim�!+1 r�
�
V�(�� T 1+)�1

�
< 1 and let (14)(18)(19)

be satis�ed. Then V� is form-bounded with respect to �T 2+ in L2(Rd) with
relative form-bound less than or equal to �:

Proof. Let
s(A1) = sup

�
Re�;� 2 �(A1)

	
be the spectral bound of A1:We recall that the type of a positive semigroup
in Lp spaces coincides with the spectral bound of its generator, see e.g. [33].
We introduce now a nondecreasing sequence of bounded potentials

�
V n�
	
n

converging pointwisely to V�, e.g. we can choose V n� = V� ^n:We note the
uniform bound

r�
�
V n� (�� T 1+)�1

�
� r�

�
V�(�� T 1+)�1

�
8n:

Similarly,
A1n = T

1
+ + V

n
� : D(T

1
+) � L1(Rd)! L1(Rd)

12



is a generator of a positive C0-semigroup
�
W 1
n(t)

	
t�0 in L

1(Rd): More-
over, V n� � V� implies W 1

n(t) � W 1(t) and then s(A1n) � s(A1) 8n: By
a symmetry argument,

�
W 1
n(t)

	
t�0 interpolates on all L

p(Rd) providing C0-
semigroups fW p

n(t)gt�0 in Lp(Rd) with generator A
p
n where A2n is self-adjoint

in L2(Rd). Actually, since V n� is bounded A2n is nothing but

T 2+ + V
n
� : D(T

2
+)! L2(Rd):

On the other hand, since s(A1n) is the type of
�
W 1
n(t)

	
t�0 then for every

" > 0 there exists C" such thatW 1
n(t)


L(L1(R3)) � C"e

(s(A1n)+")t

(W 1
n(t))

0
L(L1(R3)) � C"e

(s(A1n)+")t

where(W 1
n(t))

0 is the dual semigroup on L1(Rd): Riesz-Thorin�s interpola-
tion theorem implies

kW p
n(t)kL(L2(R3)) � C"e

(s(A1n)+")t

showing thus that s(A2n) � s(A1n) since " > 0 is arbitrary. Finally we get
the uniform estimate

s(A2n) � s(A1) 8n:

Since V n� is bounded then

(A2n';') � s(A1) k'k
2
L2(Rd) 8' 2 D(T

2
+) 8n:

If we choose c arbitrarily such that 1 < c < 1
� then

lim
�!+1

r�
�
cV�(�� T1)�1

�
= c� < 1

and then, arguing as previously,

A2;cn := T 2+ + cV
n
� : D(T

2
+)! L2(Rd)

is self-adjoint and

(A2;cn ';') � s(Ac1) k'k
2
L2(Rd) 8' 2 D(T

2
+) 8n

where s(Ac1) denotes the spectral bound of

Ac1 = T
1
+ + cV : D(T1) � L1(Rd)! L1(Rd):

13



Thus

(A2;cn ';') = (T
2
+'+ cV

n
�';') = �

q�T 2+'2 + cZ V n� j'j
2 dx

so that, by the density of D(T 2+) in D(
q
�T 2+) (for the graph norm ofq

�T 2+),

c

Z
V n� j'j

2 dx �
q�T 2+'2 + s(Ac1) k'k2L2(Rd) 8n; 8' 2 D(

q
�T 2+):

Letting n!1 we getZ
V� j'j2 dx � c�1

q�T 2+'2 + c�1s(Ac1) k'k2L2(Rd) 8' 2 D(
q
�T 2+):

This ends the proof since c�1 can be chosen as close to � as we want.

Corollary 2 If V� is T 1+-bounded in L
1(Rd) then V� is form-bounded with

respect to �T 2+ in L2(Rd):

Proof. The limit � := lim�!+1 r�
�
V�(�� T 1+)�1

�
always exists. Let " > 0

and V �+"� = (� + ")�1 V�. Then

lim
�!+1

r�

h
V �+"� (�� T 1+)�1

i
= (� + ")�1 � < 1

so by theorem 1 (� + ")�1 V� is form-bounded with respect to �T 2+ in L2(Rd)
with relative form-bound less than or equal to (� + ")�1 �.

According to Theorem 1, we can de�ne�
�T 2+

�
� (�V�)

(a form-sum operator) via the KLMN theorem (see e.g. [30] Theorem 6. 24,
p. 150). A very natural conjecture is that this operator coincides with the
self-adjoint operator �A2 where A2 was obtained previously by interpolation
argments from A1: Indeed, this is the case.

Theorem 3 Let � := lim�!+1 r�
�
V�(�� T 1+)�1

�
< 1 and let (14)(18)(19)

be satis�ed. Then �A2 is equal to
�
�T 2+

�
� (�V�) :

14



Proof. The �rst observation is

(�� T 1+ � V n� )�1 ! (�� T 1+ � V�)�1 (n! +1)

strongly in L1(Rd): Indeed, let " > 0 and let � be large enough so that

r�
�
V�(�� T 1+)�1

�
< � + " < 1:

Then r�
�
V n� (�� T1)�1

�
� r�

�
V�(�� T1)�1

�
8n and for all ' 2 L1+(Rd)

(�� T 1+ � V n� )�1' = (�� T 1+)�1
1X
j=0

�
Vn(�� T 1+)�1

�j
'

! (�� T 1+)�1
1X
j=0

�
V (�� T 1+)�1

�j
' = (�� T 1+ � V )�1'

by the monotone convergence theorem and we are done since L1+(Rd) is
generating. It follows by Riesz-Thorin�s interpolation theorem that

(��A2n)�1 ! (��A2)�1 strongly in L2(Rd): (21)

On the other hand, since V n� is a bounded operator then �A2n is also the
form-sum �A2n = (�T 2+)�

�
�V n�

�
: A key point is that the resolvent of the

form-sum operator (�T 2+)�
�
�V n�

�
is given by

(�+ (�T 2+)�
�
�V n�

�
)�1 = (�� T 2+)�

1
2 (I � Cn(�))�1(�� T 2+)�

1
2

(see [30] Theorem 6.25, p. 150) where Cn(�) is the positive bounded self-
adjoint operator on L2(Rd) de�ned by the positive bounded quadratic form

' 2 L2(R3)!
Z
Rd
V n�

���(�� T 2+)� 1
2'
���2

with kCn(�)kL(L2(Rd)) � c�1 for � large enough (see [30] Theorem 6.25, p.
150). Similarly, the resolvent of the form-sum operator (�T 2+) � (�V�) is
given by

(�+ (�T 2+)� (�V�))�1 = (�� T 2+)�
1
2 (I � C(�))�1(�� T 2+)�

1
2

where C(�) is the positive bounded self-adjoint operator on L2(Rd) de�ned
by the positive bounded quadratic form

' 2 L2(R3)!
Z
Rd
V�

���(�� T 2+)� 1
2'
���2

15



and kC(�)kL(L2(Rd)) � c�1 < 1 for � large enough (see [30] Theorem 6.25,
p. 150). The monotonic convergence of the quadratic forms

(Cn(�)';') =

Z
Rd
V n�

���(�� T 2+)� 1
2'
���2 ! (C(�)';') =

Z
Rd
V�

���(�� T 2+)� 1
2'
���2

implies the strong convergence (I � Cn(�))�1 ! (I � C(�))�1 (n ! +1)
(see e.g. [25] Theorem S. 14, p. 373) and �nally the strong convergence

(��T 2+)�
1
2 (I �Cn(�))�1(��T 2+)�

1
2 ! (��T 2+)�

1
2 (I �C(�))�1(��T 2+)�

1
2

( n! +1) which shows the equality

(��A2)�1 = (�+
�
�T 2+

�
� (�V�))�1

i.e. �A2 =
�
�T 2+

�
� (�V�) :

4 Form-bounds for many-body Hamiltonians

We show now how to de�ne (form-sum) Hamiltonians of the form 
�

NX
i=1

T(i)

!
�

0@� NX
i=1

V i�(xi)�
X
i<j

V ij� (xi � xj)

1A
where, for each i (1 � i � N), T(i) acts on the variable xi 2 R3 only as a
generator of a symmetric convolution semigroup depending a priori on the
index i. Thus, we consider a family of symmetric convolution semigroups on
L2(R3) indexed by an integer j (1 � j � N) (N > 2)

S2j (t) : f 2 L2(R3)!
Z
R3
f(x� y)mj

t (dy) 2 L2(R3):

Let T 2j be the generator of
�
S2j (t)

�
t>0

and let Fj be the corresponding

characteristic exponent. (We denote by
�
S1j (t)

�
t>0

its realization L1(R3)

and denote by T 1j its generator.)
On L2((R3)N ); we de�ne(

T(j)' = �(2�)�
3N
2

R
R3N e

i�:xFj(�j)b'(�)d�
D(T(j)) =

�
' 2 L2((R3)N ); Fj(�j)b'(�) 2 L2((R3)N )	

16



and (
T ' = �(2�)� 3N

2

R
R3N e

i�:x eF (�)b'(�)d�
D(T ) =

n
' 2 L2((R3)N ); eF (�)b'(�) 2 L2((R3)N )o (22)

where eF (�) = NX
j=1

Fj(�j)

(the �j�s are the component of � 2 (R3)N ). Note that eF is also a continuous
negative de�nite function on (R3)N ([12] Lemma 3.6.7, p. 123). Let

V i; V ij : R3 ! R; (i; j � N)

be measurable and
��V i(z)��+ ��V ij(z)�� < +1 a.e. Let

V i = V i+ � V i�; V ij = V ij+ � V ij�

be decompositions into di¤erences of nonnegative functions (which need not
be the standard positive and negative parts) and let

V�(x1; :::; xN ) :=
NX
i=1

V i�(xi) +
X
i<j

V ij� (xi � xj): (23)

We are ready to state our main (abstract) form-perturbation result.

Theorem 4 Let (14) be satis�ed by all T 1i . We assume that V
i
� and V

ij
�

are T 1i -bounded in L
1(R3). Let

�i := lim
�!+1

r�
�
V i�(�� T 1i )�1

�
; �ij := lim

�!+1
r�

h
V ij� (�� T 1i )�1

i
(where r� refers to spectral radius of bounded operators on L1(R3)) and letb�i =PN

j=i+1 �ij (i � N � 1): If

� := max
1�i�N

(�i) + max
1�i�N�1

(b�i) < 1
then the multiplication operator on L2(R3N ) by the potential �V� is form-
bounded with respect to the positive self-adjoint operator �T with relative
form bound less than or equal to �:

17



Proof. According to Theorem 1, V i� is form-bounded (with respect to T
2
i )

with relative form-bound less than or equal to �i: Thus, for each " > 0
there exists ci" > 0 such that (for x1; :::; xi�1; xi+1; :::; xN �xed) and for all
f 2 C1c (R3N )Z

R3
V i�(xi) jf(x1; :::; xi�1; xi; xi+1; :::; xN )j

2 dxi

� (�i + ")

Z
R3

����q�T 2i f ����2 dxi + ci" Z
R3
jf(x1; :::; xi�1; xi; xi+1; :::; xN )j2 dxi

so that integrating with respect to the remaining variables x1; :::; xi�1; xi+1; :::; xNZ
R3N

V i� jf j
2 dx � (�i + ")

q�T(i)f2
L2(R3N )

+ ci"

Z
R3N

jf j2 dx

= (�i + ")

Z
R3N

Fi(�i)
��� bf(�)���2 d� + ci" Z

R3N
jf j2 dx

and
NX
i=1

Z
R3N

V i� jf j
2 dx � (max

i
(�i) + ")

Z
R3N

eF (�) ��� bf(�)���2 d� + ( NX
i=1

ci") kfk
2
L2(R3N )

= (max
i
(�i) + ")

Z
R3N

���p�Tf ���2 dx+ ( NX
i=1

ci") kfk
2
L2(R3N ) :

Similarly, V ij� is form-bounded (with respect to T 2i ) with relative form-bound
less than or equal to �ij : Thus, for each " > 0 there exists c

ij
" > 0 such that

(for x1; :::; xi�1; xi+1; :::; xN �xed)Z
R3
V �ij (z) jf(x1; :::; xi�1; z; xi+1; :::; xN )j

2 dz

� (�ij + ")

Z
R3

����q�T 2i f ����2 dz + cij" Z
R3
jf(x1; :::; xi�1; z; xi+1; :::; xN )j2 dz

whenceZ
R3
V �ij (xi � xj) jf(x1; :::; xi�1; xi; xi+1; :::; xN )j

2 dxi (24)

=

Z
R3
V �ij (z) jf(x1; :::; xi�1; z + xj ; xi+1; :::; xN )j

2 dz

� (�ij + ")

Z
R3

����q�T 2i fxj ����2 dz + cij" Z
R3

��fxj (x1; :::; xi�1; z; xi+1; :::; xN )��2 dz
= (�ij + ")

Z
R3

����q�T 2i f ����2 dz + cij" Z
R3
jf(x1; :::; xi�1; z; xi+1; :::; xN )j2 dz

18



(where fxj : z ! f(x1; :::; xi�1; z; xi+1; :::; xN ) is the translation by xj) since
the quadratic form is invariant by translation. By integrating (24) with
respect to the remaining variables x1; :::; xi�1; xi+1; :::; xN we getZ

R3N
V �ij jf j

2 dx � (�ij + ")

Z
R3N

���q�T(i)f ���2 dx+ cij" kfk2L2(R3N )
= (�ij + ")

Z
R3N

Fi(�i)
��� bf(�)���2 d� + cij" Z

R3N
jf j2 dx

and X
i<j

Z
R3N

V �ij jf j
2 dx

� sup
i

NX
j=i+1

(�ij + ")

Z
R3N

eF (�) ��� bf(�)���2 d� + (X
i<j

cij" )

Z
R3N

jf j2 dx

= sup
i

NX
j=i+1

(�ij + ")
p�Tf2

L2(R3N )
+ (
X
i<j

cij" ) kfk
2
L2(R3N ) :

Finally

NX
i=1

Z
R3N

V �i jf j
2 dx+

X
i<j

Z
R3N

V �ij jf j
2 dx

�

24(max
i
(�i) + ") + sup

i

NX
j=i+1

(�ij + ")

35p�Tf2
L2(R3N )

+

24 NX
i=1

ci" +
X
i<j

cij"

35 kfk2L2(R3N )
which ends the proof since " > 0 is arbitrary.

Remark 5 By using Corollary 2, one sees that once the V i��s and the V
ij
� �s

are T 1i -bounded in L
1(R3) then ���1V� is form-bounded with respect to the

positive self-adjoint operator �T with relative form bound < 1 where � is
given by max1�i�N (�i) + max1�i�N�1(b�i):
Remark 6 Note that C1c (R3N ) and S(R3N ) are cores of �T (see e.g. [18]
Theorem 2 (iii)). Since D(�T ) is a also core of

p
�T then C1c (R3N ) and

S(R3N ) are cores of
p
�T , i.e. C1c (R3N ) and S(R3N ) are form-cores of

�T : It follows from ([25] Theorem X.17, p. 167) that (�T )� (�V�) admits
C1c (R3N ) and S(R3N ) as form-cores.
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5 The Kato classes revisited

In this section, we explore various new aspects of Kato classes. Let
�
S1(t)

	
t�0

be a convolution semigroup on L1(Rd) with generator T 1 satisfying (14) and
let

V : Rd ! R+

be T 1-bounded in L1(Rd): According to (20)

sup
y2Rd

Z
fjzj�"g

V (y + x)E�(x)dx < +1 (" � 0):

De�nition 7 We say that V is a Kato class potential relative to T 1 ifV ��� T 1��1
L(L1(Rd))

! 0 (�! +1):

5.1 On membership to Kato classes

We start with a known characterization of the Kato class for a suitable class
of convolution semigroups.

Theorem 8 ([4] Thm III1). Let (16) be satis�ed and let kt(x) (given in
(17)) be radial and non-increasing in jxj : Then V is a Kato class potential
relative to T 1 if and only if

lim
"!0

sup
y2Rd

Z
fjzj�"g

V (y + x)E�(x)dx = 0: (25)

We show now that (25) is a su¢ cient criterion of membership to the
Kato class for more general convolution semigroups provided we a priori
restrict slightly the class of potentials.

Theorem 9 Let (14) be satis�ed.
(i) Let E�(:) be bounded outside any neighborhood of the origin and let

V 2
Pj=m
j=1 L

pj (Rd) where pj 2 (1;+1] : Then V is a Kato class potential
relative to T 1 provided that (25) is satis�ed for some � > 0:

(ii) Let lim�!+1 supjxj�"E�(x) = 0 (" > 0) and V 2
Pj=m
j=1 L

pj (Rd)
where pj 2 [1;+1] : Then V is a Kato class potential relative to T 1 provided
that (25) is satis�ed for some � > 0:

(iii) If (16) is satis�ed and if kt(x) (given in (17)) is radial and non-
increasing in jxj then lim�!+1 supjxj�"E�(x) = 0 (" > 0):
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Proof. Note �rst thatV ��� T 1��1
L(L1(Rd))

= sup
y2Rd

Z
Rd
V (x)E�(x�y)dx = sup

y2Rd

Z
Rd
V (y+x)E�(x)dx:

Since

sup
y2Rd

Z
Rd
V (y+x)E�(x)dx � sup

y2Rd

Z
jxj�"

V (y+x)E�(x)dx+sup
y2Rd

Z
jxj>"

V (y+x)E�(x)dx 8" > 0

then

sup
y2Rd

Z
Rd
V (y + x)E�(x)dx � sup

y2Rd

Z
jxj�"

V (y + x)E�(x)dx

+ sup
y2Rd

Z
jxj>"

V (y + x)E�(x)dx 8" > 0; 8� � �:

If

sup
y2Rd

Z
jxj>"

V (y + x)E�(x)dx! 0 (�! +1) 8" > 0 (26)

then

lim
�!+1

V ��� T 1��1
L(L1(Rd))

� sup
y2Rd

Z
jxj�"

V (y + x)E�(x)dx 8" > 0

and consequently

lim
�!+1

V ��� T 1��1
L(L1(Rd))

� lim
"!0

sup
y2Rd

Z
jxj�"

V (y + x)E�(x)dx = 0:

It su¢ ces to check (26). It follows easily from (15) that

kE�kL1(Rd) =
��� T 1��1

L(L1(Rd))
� 1

�
! 0 (�! +1):

Since 1fjxj>"gE� 2 L1(Rd) then, by an interpolation argument

1fjxj>"gE� 2 Lp(Rd) and
1fjxj>"gE�Lp(Rd) ! 0 (�! +1) 8p 2 [1;+1) :

If V 2 Lpj (Rd) for some pj 2 (1;+1] thenZ
jxj>"

V (y + x)E�(x)dx �
 Z

jxj>"
V (y + x)pjdx

! 1
pj 1fjxj>"gE�Lp�j (Rd)

�
�Z

Rd
V (y + x)pjdx

� 1
pj 1fjxj>"gE�Lp�j (Rd)

=

�Z
Rd
V (x)pjdx

� 1
pj 1fjxj>"gE�Lp�j (Rd)
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and

sup
y2Rd

Z
jxj>"

V (y+x)E�(x)dx � kV kLpj (Rd)
1fjxj>"gE�Lp�j (Rd) ! 0 (�! +1):

The case V 2
Pj=m
j=1 L

pj (Rd) follows by linearity. This proves (i).
If V 2 L1(Rd) then, arguing similarly, the assumption1fjxj>"gE�L1(Rd) ! 0 (�! +1)

ends the proof of (ii).
Consider (iii). Since kt(z) = bkt(jzj) with bkt(�) nonincreasing in � then

E�(z) =

Z +1

0
e��tkt(z)dt

shows that

E�(z) = bE�(jzj) := Z +1

0
e��tbkt(jzj)dt

is nonincreasing in jzj : If follows that if bE�(jzj) = +1 for some jzj = � > 0
then E�(z) = +1 for all jzj � � which is not possible since E� 2 L1(Rd):
Hence E�(z) < +1 for all z 6= 0: Moreover

E�(z) �
Z +1

0
e��tbkt(")dt (jzj � ")

and the dominated convergence shows
R +1
0 e��tbkt(")dt! 0 (�! +1):

5.2 Kato class vs weak compactness

We call (25) the Kato property and de�ne the local Kato property by

lim
"!0

sup
jyj�C

Z
fjzj�"g

V (y + x)E�(x)dx = 0 (C > 0): (27)

In this subsection, we show that the (local) Kato property can be formulated
in terms of (local) weak compactness properties.
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5.2.1 Weak compactness vs compactness

We introduce the local weak compactness property

lim
j
j!0


�B(0;R)

sup
jyj�C

�Z


V (x)E�(x� y)dx

�
= 0 (C > 0) (28)

where j
j denotes the Lebesgue measure of 
:

Theorem 10 Let E�(:) be bounded outside any neighborhood of the origin
and tends to zero at in�nity. Then the following assertions are equivalent.

(i) V is a local Kato potential.
(ii) (28) is satis�ed.
(iii) V E� : L1(Rd)! L1loc(R

d) is weakly compact.
(iv) V E� : L1(Rd)! L1loc(R

d) is compact.

Proof. Note that (iii) (resp. (iv)) means that

bV E� : L1(Rd)! L1(Rd)

is weakly compact (resp. compact) where bV is the truncation de V (by zero)
outside any ball B(0; R) � Rd:

We observe that the weak compactness of bV E� amounts to
lim
j
j!0


�B(0;R)

sup
k'k�1

Z


dxV (x)

����Z
Rd
E�(x� y)'(y)dy

���� = 0:
Without loss of generality, we can assume that ' � 0: SinceZ



dxV (x)

Z
Rd
E�(x� y)'(y)dy =

Z
Rd

�Z


V (x)E�(x� y)dx

�
'(y)dy

then

sup
k'k�1

Z


dxV (x)

Z
Rd
E�(x� y)'(y)dy = sup

y2Rd

�Z


V (x)E�(x� y)dx

�
:

Hence (iii) amounts to

lim
j
j!0


�B(0;R)

sup
y2Rd

�Z


V (x)E�(x� y)dx

�
= 0
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for any ball B(0; R) � Rd: Thus (iii) implies (ii). Let us show that (ii)
implies (iii).

We note for x 2 B(0; R) and jyj > R we have jx� yj � jyj �R and then

sup
x2


E�(x� y)! 0 (jyj ! 1):

Thus, so for jyj > RZ


jV (x)jE�(x� y)dx � sup

x2

E�(x� y)

Z


jV (x)j dx

� sup
x2


E�(x� y)
Z
B(0;R)

jV (x)j dx! 0 (jyj ! 1):

This shows that it su¢ ces to take C large enough and to use (ii).
Let us show that (iii) implies (iv). We observe that since E�(:) 2 L1(Rd)

then
E� : L

1(Rd)! L1loc(R
d)

is compact by Kolmogorov�s criterion (see e.g. [3] Corollary 4.28, p. 114).
Let bVn := bV ^ n:
Then bVnE� : L1(Rd)! L1(B(0; R)) is compact

as a composition of a compact operator and a bounded one. It su¢ ces to
show that bVnE� ! bV E� in operator norm (n!1):

It is easy to see thatbV E� ! bVnE� =
�bV � bVn�E�

= sup
y2Rd

Z
B(0;R)

�bV (x)� bVn(x)�E�(x� y)dx
= sup

y2Rd

Z
B(0;R)\fjV (x)�njg

V (x)E�(x� y)dx:

Note that V (x) < +1 a.e. so

jB(0; R) \ fV (x) � ngj ! 0 (n!1):
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Since V E� : L1(Rd)! L1(B(0; R)) is weaky compact then

lim
j
j!0


�B(0;R)

sup
y2Rd

�Z


V (x)E�(x� y)dx

�
= 0

in particular

sup
y2Rd

Z
B(0;R)\fjV (x)�njg

V (x)E�(x� y)dx! 0 (n!1)

so
bV E� ! bVnE�! 0 (n!1): It remains to show the equivalence of (i)

and (ii). Assume (i). We have to show (ii), i.e.

lim
j
j!0


�B(0;R)

sup
jyj�C

�Z


V (x)E�(x� y)dx

�
= 0

for any C > R: On the other hand,Z


V (x)E�(x� y)dx =

Z

\fjx�yj�"g

V (x)E�(x� y)dx

+

Z

\fjx�yj>"g

V (x)E�(x� y)dx

=

Z
f
�yg\fjzj�"g

V (y + z)E�(z)dz

+

Z

\fjx�yj>"g

V (x)E�(x� y)dx

�
Z
fjzj�"g

jV (y + z)jE�(z)dz + sup
jzj>"

E�(z)

Z


jV (x)j dx:

Since jyj � C then, by (i)

sup
jyj�C

Z
fjzj�"g

jV (y + z)jE�(z)dz ! 0 ("! 0)

and for a �xed " small enough

sup
jzj>"

E�(z)

Z


jV (x)j dx! 0 (j
j ! 0):
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Thus (i) implies (ii). Conversely,Z
jzj��

jV j (y + z)E�(z)dz =

Z
jx�yj��

jV j (x)E�(x� y)dx

=

Z
B(y;�)

jV j (x)E�(x� y)dx

=

Z

y

jV j (x)E�(x� y)dx

where 
y := B(y; �) is such that


y � B(0; C + 1) if � < 1:

Since (ii) gives

lim
j
j!0


�B(0;C+1)

sup
y2Rd

Z


jV j (x)E�(x� y)dx = 0

then

sup
jyj�C

Z

y

jV j (x)E�(x� y)dx! 0 (� ! 0)

so (ii) implies (i).

Remark 11 The characterization of the local Kato class in terms of a weak
compactness property is new even for the Laplacian.

Remark 12 The equivalence (i),(iv) is known for the Laplacian; ([1] The-
orem 4.18).

Remark 13 In the preprint [22], the author has introduced a class of po-
tentials (a priori larger than the Kato class) which satisfy the local weak
compactness property (28) and which are "Kato at in�nity" in the sense

lim
"!0

lim sup
jyj!1

Z
fjzj�"g

V (y + x)E�(x)dx = 0:

Actually, because of the equivalence (iii),(iv) in Theorem 10 above, one can
check that the two classes coincide ! Thus the present paper replaces [22].
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5.2.2 Weak compactness continued

We give now di¤erent (su¢ cient) weak compactness criteria. We note that
the T 1-boundedness of V , i.e. (19), can be formulated as

sup
y2Rd

Z
Rd
Vy(z)E�(z)dz < +1

where
Vy : z 2 Rd ! V (y + z):

In particular

sup
y2Rd

Z
jzj�1

Vy(z)E�(z)dz < +1

i.e.
�
Vy; y 2 Rd

	
is a bounded subset of

L1 (B(0; 1); �(dz))

where �(dz) = E�(z)dz:
We start with a particular case:

Theorem 14 If

Rd 3 y ! Vy 2 L1 (B(0; 1); �(dz)) is continuous

then V is a local Kato potential.

Proof. By assumption fVy; jyj � Cg is a compact subset of L1 (B(0; 1); �(dz)) : It
follows that this set is equi-integrable, in particular

lim
"!0

sup
jyj�C

Z
jzj�"

Vy(z) �(dz) = 0

since
R
jzj�" �(dz)! 0 ("! 0):

Remark 15 This result extends to more general operators a result in the
same spirit for the Laplacian (see [1] Theorem 4.15).

Actually, more generally, both local and global Kato property can be
formulated in terms equi-integrability with respect to �(dz):

Theorem 16 A potential V is Kato (resp. local Kato) potential ifn
Vy; y 2 Rd

o
; (resp. fVy; jyj � Cg (C > 0)

is equi-integrable subset of L1 (B(0; 1); �(dz)) :
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Proof. We haveZ
fjzj�"g

V (y + z)E�(z)dz =

Z
fjzj�"g

Vy(z)E�(z)dz

=

Z
fjzj�"g\fVy(z)�jg

Vy(z)E�(z)dz

+

Z
fjzj�"g\fVy(z)<jg

Vy(z)E�(z)dz

�
Z
fjzj�1g\fVy(z)�jg

Vy(z)E�(z)dz

+j

Z
fjzj�"g

E�(z)dz:

Let
�
Vy; y 2 Rd

	
be an equi-integrable subset of L1 (B(0; 1); �(dz)) : From

sup
y2Rd

Z
fjzj�"g

V (y + z)E�(z)dz

� sup
y2Rd

Z
fjzj�1g\fVy(z)�jg

Vy(z)E�(z)dz + j

Z
fjzj�"g

E�(z)dz

and the criterion of equi-integrability (see e.g. [2] Theorem 4.7.20, p. 287),
we �x j large enough so that supy2Rd

R
fjzj�1g\fVy(z)�jg Vy(z)E�(z)dz is as

small as we want and then let "! 0: to show that V is Kato potential. We
argue similarly to show that V is local Kato potential.

We can derive easily a practical criterion relying on the equi-integrability
criterion given by Theorem 16.

Corollary 17 A potential V is Kato (resp. local Kato) potential if there
exists p > 1 such that

sup
y2Rd

Z
jzj�1

Vy(z)
pE�(z)dz < +1 (resp. sup

j yj�C

Z
jzj�1

Vy(z)
pE�(z)dz < +1; C > 0):

Proof. Let the �(dz)-measure of 
 � B(0; 1) tends to zero, i.e.Z
fjxj�1g\


E�(x)dx! 0:

Then the estimateZ
fjxj�1g\


Vy(x)�(dx) =

Z
fjxj�1g\


Vy(x)E�(x)dx

�
 Z

fjxj�1g
Vy(x)

pE�(x)dx

! 1
p
 Z

fjxj�1g\

E�(x)dx

! 1
p�

! 0
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(p� is the conjugate exponent of p) ends the proof.

Remark 18 See Remark 26 below for a concrete application of Corollary
17.

5.3 Kato classes vs averages over spherical shells

For the Laplacian, it is known that V is a Kato potential provided that
V 2 Lploc;unif , i.e.

sup
y2Rd

Z
fjxj�1g

(V (y + x))p dx < +1;

for some p > d
2 (see [1] Theorem 1.4 (iii)): By averaging in angles, it is

easy to improve slightly this result (i.e. we gain something in "angles").
Actually, we state this for general rotationally invariant �-potential kernels.

Theorem 19 Let E�(:) be rotationally invariant, i.e. E�(x) = bE�(jxj) and
let

h(y; �) :=

Z
Sd�1

V (y + �!)dS(!):

Let

s1 := sup

(
s > 1;

Z
fjxj�1g

(E�(x))
s dx < +1

)
If there exists s > s�1 (the conjugate exponent of s1) such that

Cs := sup
y2Rd

�Z 1

0
(h(y; �))s �d�1d�

�
< +1

then V is a Kato potential.

Proof. Note that V being T1-bounded in L1(Rd) we have at least

sup
y2Rd

Z 1

0
h(y; �)�d�1d� < +1:

Since Z
fjxj�"g

V (y + x)E�(x)dx =

Z "

0
h(y; �) bE�(�)�d�1d�
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then

sup
y2Rd

Z
fjxj�"g

V (y + x)E�(x)dx

�
"
sup
y2Rd

�Z 1

0
(h(y; �))s �d�1d�

� 1
s

#�Z "

0

� bE�(�)�s� �d�1d�� 1
s�

and we are done since
R "
0

� bE�(�)�s� �d�1d�! 0 ( "! 0):

We give now membership criteria to the Kato class in terms of asymp-
totics of the averages of Vy over spherical shells


j =
n
z 2 Rd; 2�(j+1) � jzj < 2�j

o
; (j 2 N):

Let

�j(y) :=

Z

j

Vy(z)dz and b�j := sup
y2Rd

�j(y):

Theorem 20 Let E�(:) be spherically symmetric and radially decreasing,
(i.e. E�(z) = bE�(jzj) and � ! bE�(�) nonincreasing) and let V be locally
integrable. Then

1X
j=0

� bE�(2�j)� �j(y) � Z
fjxj�1g

Vy(x)E�(x)dx �
1X
j=0

bE�(2�(j+1))�j(y):
Moreover, V is a Kato potential if and only if the series

1X
j=1

� bE�(2�j)� �j(y) converges uniformly in y 2 Rd: (29)

This occurs if

lim sup
j!1

�b�j� 1j <
 
lim sup

j!1

� bE�(2�j)� 1j
!�1

:

Proof. We know thatZ
fjxj�1g

Vy(x)E�(x)dx =

Z 1

0
h(y; �) bE�(�)�d�1d�

where

h(y; �) :=

Z
Sd�1

Vy(�!)dS(!):
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The fact thatZ 1

0
h(y; �) bE�(�)�d�1d� =

1X
j=0

Z 2�j

2�(j+1)
h(y; �) bE�(�)�d�1d�

�
1X
j=0

bE�(2�(j+1))Z 2�j

2�(j+1)
h(y; �)�d�1d�

=
1X
j=0

bE�(2�(j+1))�j(y)
and Z 1

0
h(y; �) bE�(�)�d�1d� =

1X
j=0

Z 2�j

2�(j+1)
h(y; �) bE�(�)�d�1d�

�
1X
j=0

bE�(2�j)Z 2�j

2�(j+1)
h(y; �)�d�1d�

=

1X
j=0

bE�(2�j)�j(y)
show the �rst claim.

We have alsoZ
fjxj�"g

Wy(x)E�(x)dx =

Z "

0
h(y; �) bE�(�)�d�1d�:

Since 2�(j+1) < " amounts to ln "�1

ln 2 � 1 � j thenZ "

0
h(y; �) bE�(�)�d�1d� �

X
n
j; j� ln "�1

ln 2
�1
o
Z 2�j

2�(j+1)
h(y; �) bE�(�)�d�1d�

�
X

n
j; j� ln "�1

ln 2
�1
o bE�(2�(j+1))

Z 2�j

2�(j+1)
h(y; �)�d�1d�

=
X

n
j; j� ln "�1

ln 2
�1
o bE�(2�(j+1))�j(y):

Note that "! 0 implies that ln "
�1

ln 2 � 1! +1 so that

sup
y2Rd

Z "

0
h(y; �) bE�(�)�d�1d�! 0 ("! 0) (30)
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if the series
P
j�0

bE�(2�(j+1))�j(y) converges uniformly in y 2 Rd:
Conversely, 2�j < " amounts to ln "�1

ln 2 � j soZ "

0
h(y; �) bE�(�)�d�1d� �

X
n
j; j� ln "�1

ln 2

o
Z 2�j

2�(j+1)
h(y; �) bE�(�)�d�1d�

�
X

n
j; j� ln "�1

ln 2

o bE�(2�j)
Z 2�j

2�(j+1)
h(y; �)�d�1d�

=
X

n
j; j� ln "�1

ln 2

o bE�(2�j)�j(y)
shows that

P
j�0

bE�(2�j)�j(y) converges uniformly in y 2 Rd if (30) holds.
Thus the second claim follows from the fact that bE�(2�j) � bE�(2�(j+1)): A
su¢ cient condition for uniform convergence is

lim sup
j!+1

� bE�(2�j)b�j� 1j < 1
and this ends the proof since

lim sup
j!+1

� bE�(2�j)b�j� 1j � lim sup
j!+1

�b�j� 1j lim sup
j!+1

� bE�(2�j)� 1j :
We complement Theorem 20 by:

Lemma 21 Let

s := sup

(
p � 1;

Z
fjxj�1g

(E�(x))
p dx < +1

)
: (31)

Then

lim sup
j!+1

� bE�(2�j)� 1j � 2 ds :
Proof. We already know that

R
fjxj�1gE�(x)dx < +1: Let s > 1 and let

1 < p < s: We haveZ
fjxj�1g

(E�(x))
p dx =

���Sd�1��� Z 1

0

� bE�(�)�p �d�1d�
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and Z 1

0

� bE�(�)�p �d�1d� =
1X
j=0

Z 2�j

2�(j+1)

� bE�(�)�p �d�1d�
�

1X
j=0

� bE�(2�j)�p Z 2�j

2�(j+1)
�d�1d�:

Since
R 2�j
2�(j+1) �

d�1d� = cd2
�(j+1)d with cd = d�1

�
2d � 1

�
(see the proof of

theorem 25) then
1X
j=0

2�(j+1)d
� bE�(2�j)�p < +1

which implies

lim sup
j!+1

�
2�(j+1)d

� bE�(2�j)�p� 1j � 1
i.e.

lim sup
j!+1

�� bE�(2�j)�p� 1j � 2d:
Since lim supj!+1

�� bE�(2�j)�p� 1j = �lim supj!+1 � bE�(2�j)� 1j�p then
lim sup

j!+1

� bE�(2�j)� 1j � 2 dp (p < s):
Finally, letting p ! s ends the proof when s > 1: If s = 1, the above
calculations with p = 1 end the proof.

Remark 22 If we consider the class of convolution semigroups considered
in [4], we have bE�(�) s bE�(�) (� ! 0) (�; � > 0) (see [4] Lemma III. 3)
so that the parameter (31) is �-independent.

By combining Theorem 20 and Lemma 21 we get:

Corollary 23 Let E�(:) be spherically symmetric and radially decreasing,
(i.e. E�(z) = bE�(jzj) and � ! bE�(�) nonincreasing). Let V be locally
integrable and let s be given by (31). Then V is a Kato potential provided
that

lim sup
j!1

�b�j� 1j < 2� d
s :
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Remark 24 Note that for d � 3

bE0(�) s 1

�d��
(�! 0) (0 < � � 2) (32)

for the usual examples (� = 2 for the heat semigroup, 0 < � < 2 for the
�-stable semigroup and � = 1 for the relativistic semigroup; see [4])). ThusbE0(2�(j+1)) s 2(j+1)(d��) and

lim sup
j!+1

� bE0(2�j)� 1j = 2(d��)
shows that Lemma 21 is optimal. In these cases, V is Kato potential provided
that

lim sup
j!1

�b�j� 1j < 2�(d��).
Actually, for subordinate Brownian semigroups (relative to a Bernstein func-
tion f), the behaviour of bEf0 (�) (� ! 0) is determined by the asymptotics
of f(�) at in�nity. In particular, bEf0 (�) s 1

�d��
(� ! 0) (0 < � � 2)

if f(�) s �
�
2 (� ! +1); (see [24] Theorem 3.1). This is the case of the

Bernstein function f(�) =
�
�+m

2
�

�
)
�
2 �m (0 < � < 2) which de�nes

the relativistic �-stable semigroup with generator

T = �
�
�4+m

2
�

��
2
+m

and characteristic exponent F (�) =
�
j�j2 +m 2

�

��
2 �m:

We are going to derive Theorem 19 from Theorem 20.

Theorem 25 Let E�(x) be rotationally invariant, i.e. E�(x) = bE�(jxj);
and let (32) be satis�ed. If V 2 Lsloc;unif , i.e.

sup
y2Rd

Z
fjxj�1g

(V (y + x))s dx < +1;

with s > d
� then V is Kato potential.
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Proof. We haveZ
2�j�jzj�2�(j�1)

Vy(z)dz

�
 Z

2�j�jzj�2�(j�1)
Vy(z)

sdz

! 1
s
 Z

2�j�jzj�2�(j�1)
dz

! 1
s�

� Cj(s)

 Z
2�j�jzj�2�(j�1)

dz

! 1
s�

= Cj(s)

 ���Sd�1��� Z 2�(j�1)

2�j
�d�1d�

! 1
s�

Since Z 2�(j�1)

2�j
�d�1d� = cd2

�jd

(where cd = d�1
�
2d � 1

�
) then

b�j := sup
y2Rd

Z
2�j�jzj�2�(j�1)

Vy(z)dz � Cj(s)
����Sd�1��� cd2�jd� 1

s�
:

Since bE�(2�(j+1)) s 2(j+1)(d��) then
lim sup

j!1

� b�j bE�(2�j)� 1j � lim sup
j!1

� b�j� 1j lim sup
j!1

� bE�(2�j)� 1j
�

 
lim sup

j!1
(Cj(s))

1
j

!
2�

d
s� 2(d��)

=

 
lim sup

j!1
(Cj(s))

1
j

!
2
d
s
��:

Note that lim supj!1 (Cj(s))
1
j � 1 since V 2 Lsloc;unif : Finally, Theorem 20

ends the proof.

Remark 26 One can also derive Theorem 19 (or Theorem 25) from the
equi-integrability criterion given in Theorem 16. Indeed, let s > d

� . We
know that E�(:) 2 Lploc for all 1 � p < d

d�� and p
� 2

�
d
� ; +1

�
: Then for
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any 1 < r < s and p� such that rp� < s

Z
fjxj�1g

Vy(x)
rE�(x)dx �

 Z
fjxj�1g

Vy(x)
rp�dx

! 1
p�
 Z

fjxj�1g
E�(x)

pdx

! 1
tp

�
 Z

fjxj�1g
Vy(x)

sdx

! 1
p��

jB(0; 1)j
1
��

 Z
fjxj�1g

E�(x)
pdx

! 1
tp

�

0@sup
y

 Z
fjxj�1g

Vy(x)
sdx

! 1
p��
1A jB(0; 1)j 1��  Z

fjxj�1g
E�(x)

pdx

! 1
tp

where rp�� = s (i.e. � = s
rp� > 1): By choosing p

� close to d
� and r close to

1, we have indeed rp� < s since s > d
� : Hence Corollary 17 ends the proof.
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