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Abstract. During training, the weights of a Deep Neural Network (DNN)
are optimized from a random initialization towards a nearly optimum
value minimizing a loss function. Only this final state of the weights is
typically kept for testing, while the wealth of information on the geometry
of the weight space, accumulated over the descent towards the minimum
is discarded. In this work we propose to make use of this knowledge and
leverage it for computing the distributions of the weights of the DNN.
This can be further used for estimating the epistemic uncertainty of the
DNN by aggregating predictions from an ensemble of networks sampled
from these distributions. To this end we introduce a method for tracking
the trajectory of the weights during optimization, that does neither
require any change in the architecture, nor in the training procedure. We
evaluate our method, TRADI, on standard classification and regression
benchmarks, and on out-of-distribution detection for classification and
semantic segmentation. We achieve competitive results, while preserving
computational efficiency in comparison to ensemble approaches.

Keywords: Deep neural networks, weight distribution, uncertainty, en-
sembles, out-of-distribution detection

1 Introduction

In recent years, Deep Neural Networks (DNNs) have gained prominence in var-
ious computer vision tasks and practical applications. This progress has been
in part accelerated by multiple innovations in key parts of DNN pipelines, e.g.,
architecture design [18, 30, 47, 49], optimization [27], initialization [12, 17], regu-
larization [22, 48], etc., along with a pool of effective heuristics identified by prac-
titioners. Modern DNNs achieve now strong accuracy across tasks and domains,
leading to their potential utilization as key blocks in real-world applications.

? This work was supported by ANR Project MOHICANS (ANR-15-CE39-0005). We
would like to thank Saclay-IA cluster and CNRS Jean-Zay supercomputer.
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Fig. 1: Our algorithm uses Kalman filtering for tracking the distribution W of all
DNN weights across training steps from a generic prior W(0) to the final estimate
W(t∗). We also estimate the covariance matrix of all the trainable network parameters.
Popular alternative approaches rely typically either on ensembles of models trained
independently [31] with a significant computational cost, approximate ensembles [10] or
on averaging weights collected from different local minima [23].

However, DNNs have also been shown to be making mostly over-confident
predictions [15], a side-effect of the heuristics used in modern DNNs. This means
that for ambiguous instances bordering two classes (e.g., human wearing a cat
costume), or on unrelated instances (e.g., plastic bag not “seen” during training
and classified with high probability as rock), DNNs are likely to fail silently,
which is a critical drawback for decision making systems. This has motivated
several works to address the predictive uncertainty of DNNs [6, 10, 31], usually
taking inspiration from Bayesian approaches. Knowledge about the distribution
of the network weights during training opens the way for studying the evolution
of the underlying covariance matrix, and the uncertainty of the model parameters,
referred to as the epistemic uncertainty [26]. In this work we propose a method
for estimating the distribution of the weights by tracking their trajectory during
training. This enables us to sample an ensemble of networks and estimate more
reliably the epistemic uncertainty and detect out-of-distribution samples.

The common practice in training DNNs is to first initialize its weights using
an appropriate random initialization strategy and then slowly adjust the weights
through optimization according to the correctness of the network predictions on
many mini-batches of training data. Once the stopping criterion is met, the final
state of the weights is kept for evaluation. We argue that the trajectory of weights
towards the (local) optimum reveals abundant information about the structure
of the weight space that we could exploit, instead of discarding it and looking
only at the final point values of the weights. Popular DNN weight initialization
techniques [12, 17] consist of an effective layer-wise scaling of random weight
values sampled from a Normal distribution. Assuming that weights follow a
Gaussian distribution at time t = 0, owing to the central limit theorem weights
will also converge towards a Gaussian distribution. The final state is reached
here through a noisy process, where the stochasticity is induced by the weight
initialization, the order and configuration of the mini-batches, etc. We find it thus
reasonable to see optimization as a random walk leading to a (local) minimum, in
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which case “tracking” the distribution makes sense (Fig. 1). To this end, Kalman
filtering (KF) [14] is an appropriate strategy for tractability reasons, as well as
for the guaranteed optimality as long as the underlying assumptions are valid
(linear dynamic system with Gaussian assumption in the predict and update
steps).6 To the best of our knowledge, our work is the first attempt to use such a
technique to track the DNN weight distributions, and subsequently to estimate
its epistemic uncertainty.
Contributions. The keypoints of our contribution are: (a) this is the first work
which filters in a tractable manner the trajectory of the entire set of trainable
parameters of a DNN during the training process; (b) we propose a tractable
approximation for estimating the covariance matrix of the network parameters;
(c) we achieve competitive or state of the art results on most regression datasets,
and on out-of-distribution experiments our method is better calibrated on three
segmentation datasets (CamVid [7] , StreetHazards [20], and BDD Anomaly
[20]); (d) our approach strikes an appealing trade-off in terms of performance
and computational time (training + prediction).

2 TRAcking of the weight DIstribution (TRADI)

In this section, we detail our approach to first estimate the distribution of the
weights of a DNN at each training step, and then generate an ensemble of
networks by sampling from the computed distributions at training conclusion.

2.1 Notations and hypotheses

– X and Y are two random variables, with X ∼ PX and Y ∼ PY . Without
loss of generality we consider the observed samples {xi}ni=1 as vectors and
the corresponding labels {yi}ni=1 as scalars (class index for classification, real
value for regression). From this set of observations, we derive a training set
of nl elements and a testing set of nτ elements: n = nl + nτ .

– Training/Testing sets are denoted respectively by Dl = (xi, yi)
nl
i=1, Dτ =

(xi, yi)
nτ
i=1. Data in Dl and Dτ are assumed to be i.i.d. distributed according

to their respective unknown joint distribution Pl and Pτ .
– The DNN is defined by a vector containing the K trainable weights ω =
{ωk}Kk=1. During training, ω is iteratively updated for each mini-batch and
we denote by ω(t) the state of the DNN at iteration t of the optimization
algorithm, realization of the random variable W (t). Let g denote the archi-
tecture of the DNN associated with these weights and gω(t)(xi) its output at
t. The initial set of weights ω(0) = {ωk(0)}Kk=1 follows N (0, σ2

k), where the
values σ2

k are fixed as in [17].
– L(ω(t), yi) is the loss function used to measure the dissimilarity between

the output gω(t)(xi) of the DNN and the expected output yi. Different loss
functions can be considered depending on the type of task.

6 Recent theoretical works [40] show connections between optimization and KF, en-
forcing the validity of our approach.
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– Weights on different layers are assumed to be independent of each another
at all times. This assumption is not necessary from a theoretical point of
view, yet we need it to limit the complexity of the computation. Many works
in the related literature rely on such assumptions [13], and some take the
assumptions even further, e.g. [5], one of the most popular modern BNNs,
supposes that all weights are independent (even from the same layer). Each
weight ωk(t), k = 1, . . . ,K, follows a non-stationary Normal distribution (i.e.
Wk(t) ∼ N (µk(t), σ2

k(t))) whose two parameters are tracked.

2.2 TRAcking of the DIstribution (TRADI) of weights of a DNN

Tracking the mean and variance of the weights DNN optimization typi-
cally starts from a set of randomly initialized weights ω(0). Then, at each training
step t, several SGD updates are performed from randomly chosen mini-batches
towards minimizing the loss. This makes the trajectory of the weights vary or
oscillate, but not necessarily in the good direction each time [33]. Since gradients
are averaged over mini-batches, we can consider that weight trajectories are
averaged over each mini-batch. After a certain number of epochs, the DNN
converges, i.e. it reaches a local optimum with a specific configuration of weights
that will then be used for testing. However, this general approach for training
does not consider the evolution of the distribution of the weights, which may
be estimated from the training trajectory and from the dynamics of the weights
over time. In our work, we argue that the history of the weight evolution up to
their final state is an effective tool for estimating the epistemic uncertainty.

More specifically, our goal is to estimate, for all weights ωk(t) of the DNN
and at each training step t, µk(t) and σ2

k(t), the parameters of their normal
distribution. Furthermore, for small networks we can also estimate the covariance
cov(Wk(t),Wk′(t)) for any pair of weights (ωk(t), ω′k(t)) at t in the DNN (see
supplementary material for details). To this end, we leverage mini-batch SGD in
order to optimize the loss between two weight realizations. The loss derivative
with respect to a given weight ωk(t) over a mini-batch B(t) is given by:

∇Lωk(t) =
1

|B(t)|
∑

(xi,yi)∈B(t)

∂L(ω(t− 1), yi)

∂ωk(t− 1)
(1)

Weights ωk(t) are then updated as follows:

ωk(t) = ωk(t− 1)− η∇Lωk(t) (2)

with η the learning rate.
The weights of DNNs are randomly initialized at t = 0 by sampling Wk(0) ∼

N (µk(0), σ2
k(0)), where the parameters of the distribution are set empirically on

a per-layer basis [17]. By computing the expectation of ωk(t) in Eq. (2), and
using its linearity property, we get:

µk(t) = µk(t− 1)− E
[
η∇Lωk(t)

]
(3)
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We can see that µk(t) depends on µk(t − 1) and on another function at time
(t− 1): this shows that the means of the weights follow a Markov process.

As in [2, 53] we assume that during back-propagation and forward pass weights
to be independent. We then get:

σ2
k(t) = σ2

k(t− 1) + η2E
[
(∇Lωk(t))

2
]
− η2E2

[
∇Lωk(t)

]
(4)

This leads to the following state and measurement equations for µk(t):{
µk(t) = µk(t− 1)− η∇Lωk(t) + εµ
ωk(t) = µk(t) + ε̃µ

(5)

with εµ being the state noise, and ε̃µ being the observation noise, as realizations
of N (0, σ2

µ) and N (0, σ̃2
µ) respectively. The state and measurement equations for

the variance σk are given by:σ2
k(t) = σ2

k(t− 1) +
(
η∇Lωk(t)

)2
+ εσ

zk(t) = σ2
k(t)− µk(t)2 + ε̃σ

with zk(t) = ωk(t)2
(6)

with εσ being the state noise, and ε̃σ being the observation noise, as realizations
of N (0, σ2

σ) and N (0, σ̃2
σ), respectively. We ignore the square empirical mean of

the gradient on the equation as in practice its value is below the state noise.

Approximating the covariance Using the measurement and state transition in
Eq. (5-6), we can apply a Kalman filter to track the state of each trainable parame-
ter. As the computational cost for tracking the covariance matrix is significant, we
propose to track instead only the variance of the distribution. For that, we approx-
imate the covariance by employing a model inspired from Gaussian Processes [52].
We consider the Gaussian model due to its simplicity and good results. Let Σ(t)
denote the covariance of W (t), and let v(t) =

(
σ0(t), σ1(t), σ2(t), . . . , σK(t)

)
be

a vector of size K composed of the standard deviations of all weights at time t.
The covariance matrix is approximated by Σ̂(t) = (v(t)v(t)T )�K(t), where �
is the Hadamard product, and K(t) is the kernel corresponding to the K ×K
Gram matrix of the weights of the DNN, with the coefficient (k, k′) given by

K(ωk(t), ωk′(t)) = exp
(
−‖ωk(t)−ωk′ (t)‖

2

2σ2
rbf

)
. The computational cost for storing

and processing the kernel K(t) is however prohibitive in practice as its complexity
is quadratic in terms of the number of weights (e.g., K ≈ 109 in recent DNNs).

Rahimi and Recht [45] alleviate this problem by approximating non-linear
kernels, e.g. Gaussian RBF, in an unbiased way using random feature repre-
sentations. Then, for any translation-invariant positive definite kernel K(t), for
all (ωk(t), ωk′(t)), K(ωk(t), ωk′(t)) depends only on ωk(t)− ωk′(t). We can then
approximate the matrix by:

K(ωk(t), ωk′(t))≡E [cos(Θωk(t) + Φ) cos(Θωk′(t) + Φ)]
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where Θ ∼ N (0, σ2
rbf) (this distribution is the Fourier transform of the kernel

distribution) and Φ ∼ U[0,2π]. In detail, we approximate the high-dimensional
feature space by projecting over the following N -dimensional feature vector:

z(ωk(t))≡
√

2

N

[
cos(θ1ωk(t) + φ1), . . . , cos(θNωk(t) + φN ))

]>
(7)

where the θ1, . . . , θN are i.i.d. from N (0, σ2
rbf) and φ1, . . . , φN are i.i.d. from U[0,2π].

In this new feature space we can approximate kernel K(t) by K̂(t) defined by:

K̂(ωk(t), ωk′(t)) = z(ωk(t))>z(ωk′(t)) (8)

Furthermore, it was proved in [45] that the probability of having an error
of approximation greater than ε ∈ R+ depends on exp(−Nε2)/ε2. To avoid
the Hadamard product of matrices of size K × K, we evaluate r(ωk(t)) =
σk(t)z(ωk(t)), and the value at index (k, k′) of the approximate covariance

matrix Σ̂(t) is given by:

Σ̂(t)(k, k′) = r(ωk(t))>r(ωk(t)). (9)

2.3 Training the DNNs

In our approach, for classification we use the cross-entropy loss to get the
log-likelihood similarly to [31]. For regression tasks, we train over two losses se-
quentially and modify gω(t)(xi) to have two output heads: the classical regression
output µpred(xi) and the predicted variance of the output σ2

pred. This modification
is inspired by [31]. The first loss is the MSE L1(ω(t),yi) = ‖gω(t)(xi) − yi‖22
as used in the traditional regression tasks. The second loss is the negative
log-likelihood (NLL) [31] which reads:

L2(ω(t), yi) =
1

2σpred(xi)2
‖µpred(xi)− yi‖2 +

1

2
log σpred(xi)

2 (10)

We first train with loss L1(ω(t), yi) until reaching a satisfying ω(t). In the
second stage we add the variance prediction head and start fine-tuning from
ω(t) with loss L2(ω(t), yi). In our experiments we observed that this sequential
training is more stable as it allows the network to first learn features for the
target task and then to predict its own variance, rather than doing both in the
same time (which is particularly unstable in the first steps).

2.4 TRADI training algorithm overview

We detail the TRADI steps during training in Appendix, Section 1.3. For tracking
purposes we must store µk(t) and σk(t) for all the weights of the network. Hence,
the method computationally lighter than Deep Ensembles, which has a training
complexity scaling with the number of networks composing the ensemble. In addi-
tion, TRADI can be applied to any DNN without any modification of the architec-
ture, in contrast to MC Dropout that requires adding dropout layers to the under-
lying DNN. For clarity we define L(ω(t), B(t)) = 1

|B(t)|
∑

(xi,yi)∈B(t) L(ω(t), yi).
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Here Pµ, Pσ are the noise covariance matrices of the mean and variance re-
spectively and Qµ, Qσ are the optimal gain matrices of the mean and variance
respectively. These matrices are used during Kalman filtering [24].

2.5 TRADI uncertainty during testing

After having trained a DNN, we can evaluate its uncertainty by sampling new
realizations of the weights from to the tracked distribution. We call ω̃(t) =
{ω̃k(t)}Kk=1 the vector of size K containing these realizations. Note that this
vector is different from ω(t) since it is sampled from the distribution computed
with TRADI, that does not correspond exactly to the DNN weight distribution.
In addition, we note µ(t) the vector of size K containing the mean of all weights
at time t.

Then, two cases can occur. In the first case, we have access to the covariance
matrix of the weights (by tracking or by an alternative approach) that we denote
Σ(t), and we simply sample new realizations of W (t) using the following formula:

ω̃(t) = µ(t) + Σ1/2(t)×m1 (11)

in which m1 is drawn from the multivariate Gaussian N (0K , IK), where 0K , IK
are respectively the K-size zero vector and the K ×K size identity matrix.

When we deal with a DNN (the considered case in this paper), we are
constrained for tractability reasons to approximate the covariance matrix following
the random projection trick proposed in the previous section, and we generate
new realizations of W (t) as follows:

ω̃(t) = µ(t) +R(ω(t))×m2 (12)

where R(ω(t)) is a matrix of size K × N whose rows k ∈ [1,K] contain
the r(ωk(t))> defined in Section 2.2. R(ω(t)) depends on (θ1, . . . , θN ) and on
(φ1, . . . , φN ) defined in Eq.(7). m2 is drawn from the multivariate Gaussian
N (0N , IN ), where 0N , IN are respectively the zero vector of size N and the iden-
tity matrix of size N ×N . Note that since N � K, computations are significantly
accelerated.

Then similarly to works in [26, 37], given input data (x∗, y∗) ∈ Dτ from
the testing set, we estimate the marginal likelihood as Monte Carlo integration.
First, a sequence {ω̃j(t)}Nmodel

j=1 of Nmodel realizations of W (t) is drawn (typically,
Nmodel = 20). Then, the marginal likelihood of y∗ over W (t) is approximated by:

P(y∗|x∗) =
1

Nmodel

Nmodel∑
j=1

P(y∗|ω̃j(t),x∗) (13)

For regression, we use the strategy from [31] to compute the log-likelihood
of the regression and consider that the outputs of the DNN applied on x∗

are the parameters {µjpred(x∗), (σjpred(x∗))2}Nmodel
j=1 of a Gaussian distribution
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(see Section 2.3). Hence, the final output is the result of a mixture of Nmodel

Gaussian distributions N (µjpred(x∗), (σjpred(x∗))2). During testing, if the DNN has
BatchNorm layers, we first update BatchNorm statistics of each of the sampled
ω̃j(t) models, where j ∈ [1, Nmodel] [23].

3 Related work

Uncertainty estimation is an important aspect for any machine learning model
and it has been thoroughly studied across years in statistical learning areas. In
the context of DNNs a renewed interest has surged in dealing with uncertainty,
In the following we briefly review methods related to our approach.
Bayesian methods. Bayesian approaches deal with uncertainty by identifying
a distribution of the parameters of the model. The posterior distribution is com-
puted from a prior distribution assumed over the parameters and the likelihood of
the model for the current data. The posterior distribution is iteratively updated
across training samples. The predictive distribution is then computed through
Bayesian model averaging by sampling models from the posterior distribution.
This simple formalism is at the core of many machine learning models, including
neural networks. Early approaches from Neal [39] leveraged Markov chain Monte
Carlo variants for inference on Bayesian Neural Networks. However for modern
DNNs with millions of parameters, such methods are intractable for computing
the posterior distribution, leaving the lead to gradient based methods.
Modern Bayesian Neural Networks (BNNs). Progress in variational in-
ference [28] has enabled a recent revival of BNNs. Blundell et al. [6] learn
distributions over neurons via a Gaussian mixture prior. While such models are
easy to reason along, they are limited to rather medium-sized networks. Gal and
Ghahramani [10] suggest that Dropout [48] can be used to mimic a BNN by
sampling different subsets of neurons at each forward pass during test time and
use them as ensembles. MC Dropout is currently the most popular instance of
BNNs due to its speed and simplicity, with multiple recent extensions [11, 32, 50].
However, the benefits of Dropout are more limited for convolutional layers, where
specific architectural design choices must be made [25, 38]. A potential drawback
of MC Dropout concerns the fact that its uncertainty is not reducing with more
training steps [41, 42]. TRADI is compatible with both fully-connected and
convolutional layers, while uncertainty estimates are expected to improve with
training as it relies on the Kalman filter formalism.
Ensemble Methods. Ensemble methods are arguably the top performers for
measuring epistemic uncertainty, and are largely applied to various areas, e.g. ac-
tive learning [3]. Lakshminarayan et al. [31] propose training an ensemble of
DNNs with different initialization seeds. The major drawback of this method
is its computational cost since one has to train multiple DNNs, a cost which
is particularly high for computer vision architectures, e.g., semantic segmenta-
tion, object detection. Alternatives to ensembles use a network with multiple
prediction heads [35], collect weight checkpoints from local minima and average
them [23] or fit a distribution over them and sample networks [37]. Although
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the latter approaches are faster to train than ensembles, their limitation is that
the observations from these local minima are relatively sparse for such a high
dimensional space and are less likely to capture the true distributions of the
space around these weights. With TRADI we are mitigating these points as we
collect weight statistics at each step of the SGD optimization. Furthermore, our
algorithm has a lighter computational cost than [31] during training.
Kalman filtering (KF). The KF [24] is a recursive estimator that constructs
an inference of unknown variables given measurements over time. With the advent
of DNNs, researchers have tried integrating ideas from KF in DNN training: for
SLAM using RNNs [8, 16], optimization [51], DNN fusion [36]. In our approach,
we employ KF for keeping track of the statistics of the network during training
such that at “convergence” we have a better coverage of the distribution around
each parameter of a multi-million parameter DNN. The KF provides a clean and
relatively easy to deploy formalism to this effect.
Weight initialization and optimization. Most DNN initialization techniques
[12, 17] start from weights sampled from a Normal distribution, and further
scale them according to the number of units and the activation function. Batch-
Norm [22] stabilizes training by enforcing a Normal distribution of intermediate
activations at each layer. WeightNorm [46] has a similar effect over the weights,
making sure they are sticking to the initial distributions. From a Bayesian per-
spective the L2 regularization, known as weight decay, is equivalent to putting a
Gaussian prior over the weights [4]. We also consider a Gaussian prior over the
weights, similar to previous works [6, 23] for its numerous properties, ease of use
and natural compatibility with KF. Note that we use it only in the filtering in
order to reduce any major drift in the estimation of distributions of the weights
across training, while mitigating potential instabilities in SGD steps.

4 Experiments

We evaluate TRADI on a range of tasks and datasets. For regression , in line with
prior works [10, 31], we consider a toy dataset and the regression benchmark [21].
For classification we evaluate on MNIST [34] and CIFAR-10 [29]. Finally, we
address the Out-of-Distribution task for classification, on MNIST/notMNIST [31],
and for semantic segmentation, on CamVid-OOD, StreetHazards [19], and BDD-
Anomaly [19]. Unless otherwise specified, we use mini-batches of size 128 and
Adam optimizer with fixed learning rate of 0.1 in all our experiments.

4.1 Toy experiments

Experimental setup. As evaluation metric we use mainly the NLL uncertainty.
In addition for classification we consider the accuracy, while for regression we use
the root mean squared error (RMSE). For the out- of-distribution experiments
we use the AUC, AUPR, FPR-95%-TPR as in [20], and the Expected Calibration
Error (ECE) as in [15]. For our implementations we use PyTorch [44]. Unless
otherwise specified, we use mini-batches of size 128 and Adam optimizer with
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Fig. 2: Results on a synthetic regression task comparing MC dropout, Deep Ensembles,
and TRADI. x-axis: spatial coordinate of the Gaussian process. Black lines: ground
truth curve. Blue points: training points. Orange areas: estimated variance.

fixed learning rate of 0.1 in all our experiments. We provide other implementation
details on per-experiment basis.

First we perform a qualitative evaluation on a one-dimensional synthetic
dataset generated with a Gaussian Process of zero mean vector and as covariance
function an RBF kernel K with σ2 = 1, denoted GP (0,K). We add to this process
a zero mean Gaussian noise of variance 0.3. We train a neural network composed
of one hidden layer and 200 neurons. In Fig. 2 we plot the regression estimation
provided by TRADI, MC Dropout [10] and Deep Ensembles [31]. Although
GP (0,K) is one of the simplest stochastic processes, results show clearly that
the compared approaches do not handle robustly the variance estimation, while
TRADI neither overestimates nor underestimates the uncertainty.

4.2 Regression experiments

For the regression task, we consider the experimental protocol and the data sets
from [21], and also used in related works [10, 31]. Here, we consider a neural
network with one hidden layer, composed of 50 hidden units trained for 40 epochs.
For each dataset, we do 20-fold cross-validation. For all datasets, we set the
dropout rate to 0.1 except for Yacht Hydrodynamics and Boston Housing for which
it is set to 0.001 and 0.005, respectively. We compare against MC Dropout [10]
and Deep Ensembles [31] and report results in Table 1. TRADI outperforms both
methods, in terms of both RMSE and NLL. Aside from the proposed approach
to tracking the weight distribution, we assume that an additional reason for
which our technique outperforms the alternative methods resides in the sequential
training (MSE and NLL) proposed in Section 2.3.

4.3 Classification experiments

For the classification task, we conduct experiments on two datasets. The first
one is the MNIST dataset [34], which is composed of a training set containing
60k images and a testing set of 10k images, all of size 28× 28. Here, we use a
neural network with 3 hidden layers, each one containing 200 neurons, followed
by ReLU non-linearities and BatchNorm, and fixed the learning rate η = 10−2.
We share our results in Table 2. For the MNIST dataset, we generate Nmodel = 20
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Table 1: Comparative results on regression benchmarks

Datasets
RMSE NLL

MC Dropout Deep Ensembles TRADI MC Dropout Deep Ensembles TRADI

Boston Housing 2.97± 0.85 3.28± 1.00 2.84± 0.77 2.46± 0.25 2.41± 0.25 2.36± 0.17

Concrete Strength 5.23± 0.53 6.03± 0.58 5.20± 0.45 3.04± 0.09 3.06± 0.18 3.03± 0.08

Energy Efficiency 1.66± 0.16 2.09± 0.29 1.20± 0.27 1.99± 0.09 1.38± 0.22 1.40± 0.16

Kin8nm 0.10± 0.00 0.09± 0.00 0.09± 0.00 −0.95± 0.03 −1.2± 0.02 −0.98± 0.06

Naval Propulsion 0.01± 0.00 0.00± 0.00 0.00± 0.00 −3.80± 0.05 −5.63± 0.05 −2.83± 0.24

Power Plant 4.02± 0.18 4.11± 0.17 4.02± 0.14 2.80± 0.05 2.79± 0.04 2.82± 0.04

Protein Structure 4.36± 0.04 4.71± 0.06 4.35± 0.03 2.89± 0.01 2.83± 0.02 2.80± 0.02

Wine Quality Red 0.62± 0.04 0.64± 0.04 0.62± 0.03 0.93± 0.06 0.94± 0.12 0.93± 0.05

Yacht Hydrodynamics 1.11± 0.38 1.58± 0.48 1.05± 0.25 1.55± 0.12 1.18± 0.21 1.18± 0.39

models, in order to ensure a fair comparison with Deep Ensembles. The evaluation
underlines that in terms of performance TRADI is positioned between Deep
Ensembles and MC Dropout. However, in contrast to Deep Ensembles our
algorithm is significantly lighter because only a single model needs to be trained,
while Deep Ensembles approximates the weight distribution by a very costly step
of independent training procedures (in this case 20).

Table 2: Comparative results on image classifica-
tion

Method
MNIST CIFAR-10

NLL ACCU NLL ACCU

Deep Ensembles 0.035 98.88 0.173 95.67

MC Dropout 0.065 98.19 0.205 95.27

SWAG 0.041 98.78 0.110 96.41

TRADI (ours) 0.044 98.63 0.205 95.29

We conduct the second ex-
periment on CIFAR-10 [29],
with WideResnet 28×10 [55] as
DNN. The chosen optimization
algorithm is SGD, η = 0.1 and
the dropout rate was fixed to 0.3.
Due to the long time necessary
for Deep Ensembles to train the
DNNs we set Nmodel = 15. Com-
parative results on this dataset,
presented in Table 2, allow us to
make similar conclusions with experiments on the MNIST dataset.

4.4 Uncertainty evaluation for out-of-distribution (OOD) test
samples.

In these experiments, we evaluate uncertainty on OOD classes. We consider four
datasets, and the objective of these experiments is to evaluate to what extent
the trained DNNs are overconfident on instances belonging to classes which are
not present in the training set. We report results in Table 3.

Baselines. We compare against Deep Ensembles and MC Dropout, and
propose two additional baselines. The first is the Maximum Classifier Prediction
(MCP) which uses the maximum softmax value as prediction confidence and
has shown competitive performance [19, 20]. Second, we propose a baseline to
emphasize the ability of TRADI to capture the distribution of the weights. We
take a trained network and randomly perturb its weights with noise sampled
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Table 3: Distinguishing in- and out-of-distribution data for semantic segmentation
(CamVid, StreetHazards, BDD Anomaly) and image classification (MNIST/notMNIST)

Dataset OOD technique AUC AUPR FPR-95%-TPR ECE Train time

MNIST/notMNIST

3 hidden layers

Baseline (MCP) 94.0 96.0 24.6 0.305 2m
Gauss. perturbation ensemble 94.8 96.4 19.2 0.500 2m
MC Dropout 91.8 94.9 35.6 0.494 2m
Deep Ensemble 97.2 98.0 9.2 0.462 31m
SWAG 90.9 94.4 31.9 0.529
TRADI (ours) 96.7 97.6 11.0 0.407 2m

CamVid-OOD
ENET

Baseline (MCP) 75.4 10.0 65.1 0.146 30m
Gauss. perturbation ensemble 76.2 10.9 62.6 0.133 30m
MC Dropout 75.4 10.7 63.2 0.168 30m
Deep Ensemble 79.7 13.0 55.3 0.112 5h
SWAG 75.6 12.1 65.8 0.133
TRADI (ours) 79.3 12.8 57.7 0.110 41m

StreetHazards
PSPNet

Baseline (MCP) 88.7 6.9 26.9 0.055 13h14m
Gauss. perturbation ensemble 57.08 2.4 71.0 0.185 13h14m
MC Dropout 69.9 6.0 32.0 0.092 13h14m
Deep Ensemble 90.0 7.2 25.4 0.051 132h19m
TRADI (ours) 89.2 7.2 25.3 0.049 15h36m

BDD Anomaly
PSPNet

Baseline (MCP) 86.0 5.4 27.7 0.159 18h08
Gauss. perturbation ensemble 86.0 4.8 27.7 0.158 18h08m
MC Dropout 85.2 5.0 29.3 0.181 18h08m
Deep Ensemble 87.0 6.0 25.0 0.170 189h40m
TRADI (ours) 86.1 5.6 26.9 0.157 21h48m

from a Normal distribution. In this way we generate an ensemble of networks,
each with different noise perturbations – we practically sample networks from the
vicinity of the local minimum. We refer to it as Gaussian perturbation ensemble.

First we consider MNIST trained DNNs and use them on a test set composed
of 10k MNIST images and 19k images from NotMNIST [1], a dataset of instances
of ten classes of letters. Standard DNNs will assign letter instances of NotMNIST
to a class number with high confidence as shown in [1]. For these OOD instances,
our approach is able to decrease the confidence as illustrated in Fig. 3a, in which
we represent the accuracy vs confidence curves as in [31].

The accuracy vs confidence curve is constructed by considering, for different
confidence thresholds, all the test data for which the classifier reports a confidence
above the threshold, and then by evaluating the accuracy on this data. The
confidence of a DNN is defined as the maximum prediction score. We also evaluate
the OOD uncertainty using AUC, AUPR and FPR-95%-TPR metrics, introduced
in [20] and the ECE metrics7 introduced in [15]. These criteria characterize the
quality of the prediction that a testing sample is OOD with respect to the training
dataset. We also measured the computational training times of all algorithms
implemented in PyTorch on a PC equipped with Intel Core i9-9820X and one
GeForce RTX 2080 Ti and report them in Table 3. We note that TRADI DNN

7 Please note that the ECE is calculated over the joint dataset composed of the In
distribution and the Out of distribution test data.
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Fig. 3: (a) and (b) Accuracy vs confidence plot on the MNIST \notMNIST and CamVid
experiments, respectively. (c) Calibration plot for the CamVid experiment.

with 20 models provides incorrect predictions on such OOD samples with lower
confidence than Deep Ensembles and MC Dropout.

In the second experiment, we train a Enet DNN [43] for semantic segmentation
on CamVid dataset [7]. During training, we delete three classes (pedestrian,
bicycle, and car), by marking the corresponding pixels as unlabeled. Subsequently,
we test with data containing the classes represented during training, as well as
the deleted ones. The goal of this experiment is to evaluate the DNN behavior
on the deleted classes which represent thus OOD classes. We refer to this setup
as CamVid-OOD. In this experiment we use Nmodel = 10 models trained for 90
epochs with SGD and using a learning rate η = 5× 10−4. In Fig. 3b and 3c we
illustrate the accuracy vs confidence curves and the calibration curves [15] for
the CamVid experiment. The calibration curve as explained in [15] consists in
dividing the test set into bins of equal size according to the confidence, and in
computing the accuracy over each bin. Both the calibration and the accuracy vs
confidence curves highlight whether the DNN predictions are good for different
levels of confidence. However, the calibration provides a better understanding of
what happens for different scores.

Finally, we conducted experiments on the recent OOD benchmarks for seman-
tic segmentation StreetHazards [19] and BDD Anomaly [19]. The former consists
of 5,125/1,031/1,500 (train/test-in-distribution/test-OOD) synthetic images [9]
with annotations for 12 classes for training and a 13th OOD class found only
in the test-OOD set. The latter is a subset of BDD [54] and is composed of
6,688/951/361 images, with the classes motorcycle and train as anomalous objects.
We follow the experimental setup from [19], i.e., PSPNet [56] with ResNet50 [18]
backbone. On StreetHazards, TRADI outperforms Deep Ensembles and on BDD
Anomaly Deep Ensembles has best results close to the one of TRADI.

Results show that TRADI outperforms the alternative methods in terms of
calibration, and that it may provide more reliable confidence scores. Regarding
accuracy vs confidence, the most significant results for a high level of confidence,
typically above 0.7, show how overconfident the network tends to behave; in
this range, our results are similar to those of Deep Ensembles. Lastly, in all
experiments TRADI obtains performances close to the best AUPR and AUC,
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(a) Input + GT (b) MC Dropout (c) Deep Ensembles (d) TRADI

Fig. 4: Qualitative results on CamVid-OOD. Columns: (a) input image and ground
truth; (b)-(d) predictions and confidence scores by MC Dropout, Deep Ensembles, and
TRADI. Rows: (1) input and confidence maps; (2) class predictions; (3) zoomed-in area
on input and confidence maps

while having a computational time /training time significantly smaller than Deep
Ensembles.
Qualitative discussion. In Fig. 4 we give as example a scene featuring the three
OOD instances of interest (bike, car, pedestrian). Overall, MC Dropout outputs
a noisy uncertainty map, but fails to highlight the OOD samples. By contrast,
Deep Ensembles is overconfident, with higher uncertainty values mostly around
the borders of the objects. TRADI uncertainty is higher on borders and also on
pixels belonging to the actual OOD instances, as shown in the zoomed-in crop of
the pedestrian in Fig. 4 (row 3).

5 Conclusion

In this work we propose a novel technique for computing the epistemic uncertainty
of a DNN. TRADI is conceptually simple and easy to plug to the optimization
of any DNN architecture. We show the effectiveness of TRADI over extensive
studies and compare against the popular MC Dropout and the state of the art
Deep Ensembles. Our method exhibits an excellent performance on evaluation
metrics for uncertainty quantification, and in contrast to Deep Ensembles, for
which the training time depends on the number of models, our algorithm does
not add any significant cost over conventional training times.

Future works involve extending this strategy to new tasks, e.g., object detec-
tion, or new settings, e.g., active learning. Another line of future research concerns
transfer learning. So far TRADI is starting from randomly initialized weights
sampled from a given Normal distribution. In transfer learning, we start from a
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pre-trained network where weights are expected to follow a different distribution.
If we have access to the distribution of the DNN weights we can improve the
effectiveness of transfer learning with TRADI.
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