Gianni Franchi
email: gianni.franchi@u-psud.fr

Amin Fehri
email: bamin.fehri@gmail.com

Angela Yao

Deep morphological networks

Keywords: Mathematical Morphology, deep learning, edges detection, denoising

HAL is

Introduction

Modern deep learning approaches learn parameters of a series of linear and non-linear operators for a given task. The concatenation of these operators over multiple layers increases the depth thereby generalization power of neural networks. Similar to previous works [START_REF] Ouyang | Deepid-net: Deformable deep convolutional neural networks for object detection[END_REF][START_REF] Duan | Learning deep binary descriptor with multi-quantization[END_REF], our paper tries to incorporate new types of layers for deep learning: in our case, these layers are based on Mathematical Morphology.

Mathematical Morphology (MM) [START_REF] Serra | Image analysis and mathematical morphology[END_REF][START_REF] Soille | Morphological image analysis: principles and applications[END_REF] applies topological operators to images to recover or filter out specific structures. It has led to important successes in many computer vision tasks, such as filtering [START_REF] Velasco-Forero | Conditional toggle mappings: principles and applications[END_REF][START_REF] Yu-Qian | Medical images edge detection based on mathematical morphology[END_REF][START_REF] Decenciere | Restauration automatique de films anciens[END_REF][8], segmentation [START_REF] Meyer | Morphological segmentation[END_REF][START_REF] Salembier | Segmentation-based video coding system allowing the manipulation of objects[END_REF][START_REF] Dufour | Morphology-based cerebrovascular atlas[END_REF][START_REF] Zhang | Spatial normalization of eye fundus images[END_REF] [START_REF] Dokládal | Topologically controlled segmentation of 3d magnetic resonance images of the head by using morphological operators[END_REF][START_REF] Baccar | Segmentation of range images via data fusion and morphological watersheds[END_REF], semantic segmentation [START_REF] Franchi | Comparative study on morphological principal component analysis of hyperspectral images[END_REF][START_REF] Cavallaro | Spectral-spatial classification of remote sensing optical data with morphological attribute profiles using parallel and scalable methods[END_REF][START_REF] Cavallaro | Automatic attribute profiles[END_REF][START_REF] Fauvel | Spectral and spatial classification of hyperspectral data using svms and morphological profiles[END_REF][START_REF] Benediktsson | Classification and feature extraction for remote sensing images from urban areas based on morphological transformations[END_REF][START_REF] Velasco-Forero | Classification of hyperspectral images by tensor modeling and additive morphological decomposition[END_REF] [START_REF] Tarabalka | Segmentation and classification of hyperspectral images using watershed transformation[END_REF][START_REF] Plaza | A new approach to mixed pixel classification of hyperspectral imagery based on extended morphological profiles[END_REF], image fusion [START_REF] Drouyer | Sparse stereo disparity map densification using hierarchical image segmentation[END_REF][START_REF] Franchi | Enhanced edx images by fusion of multimodal sem images using pansharpening techniques[END_REF] [START_REF] Bloch | Fuzzy mathematical morphologies: a comparative study[END_REF], feature extraction [START_REF] Franchi | Morphological principal component analysis for hyperspectral image analysis[END_REF][START_REF] Franchi | Comparative study on morphological principal component analysis of hyperspectral images[END_REF][START_REF] Cavallaro | Spectral-spatial classification of remote sensing optical data with morphological attribute profiles using parallel and scalable methods[END_REF][START_REF] Cavallaro | Automatic attribute profiles[END_REF][START_REF] Fehri | Characterizing images by the gromov-hausdorff distances between derived hierarchies[END_REF] and edge detection [START_REF] Meyer | Morphological segmentation[END_REF] . With this paper, we are the first, to the best of our knowledge, to integrate exact morphological operators within a deep learning end-to-end framework.

Commonly known MM operators have flat structuring elements [START_REF] Serra | Image analysis and mathematical morphology[END_REF][START_REF] Soille | Morphological image analysis: principles and applications[END_REF] and share the same weights: their effect then depends only on the shape of the structuring elements. To go further, one can use nonflat structuring elements, which has led to performance enhancement [START_REF] Wirth | Contrast enhancement of microcalcifications in mammograms using morphological enhancement and nonflat structuring elements[END_REF]. In all cases, selecting the structuring elements' shapes and weights often involve tedious trial-and-error, particularly for non-experts.

Given the similarities between morphological and convolutional operators, the idea of directly learning these shapes and weights within a neural network naturally arises. However, directly extending such operators into neural networks is non-trivial, since the max and min operations are non-differentiable.

One possibility is to replace them with differentiable approximations, such as the counter-harmonic mean [START_REF] Masci | A learning framework for morphological operators using counter-harmonic mean[END_REF][START_REF] Saeedan | Detail-preserving pooling in deep networks[END_REF] so that they can be easily integrated into a neural networks such as Deep Conovlutional Neural Networks (DCNN). Note that one of the major drawbacks of counter-harmonic mean operators is their exploding gradients, due to the power function on which they are based. This problem is not encountered when directly using max or min operators, as we propose in this paper.

In this work, we propose a way to integrate the original morphological operators such as erosion and dilation within a deep learning framework. To motivate the appeal of such operators, one may note that the max pooling is simply a morphological dilation with a square structuring element followed by a pooling.

Although pooling is essential to build spatial invariance in a DCNN, it may lead to an important loss of information, as illustrated on Figure 1. On the first row of this figure, one can see a time signal, and on the second row its Fourier transform. As one can see, the max pooling loses too much information, hence the interest of learning the pooling instead, which can be done using our proposal.

On the contrary to [START_REF] Masci | A learning framework for morphological operators using counter-harmonic mean[END_REF][START_REF] Mellouli | Morph-cnn: A morphological convolutional neural network for image classification[END_REF][START_REF] Saeedan | Detail-preserving pooling in deep networks[END_REF] our work does not just approximate the max pooling. Moreover, we propose a new layer that can be used as a pooling layer as well as to replace the convolutional layer (as proven in section 1).

More broadly, inspired by recent works where the authors try to train approximations of MM operators in a deep learning framework [START_REF] Wolf | Learned watershed: End-toend learning of seeded segmentation[END_REF][START_REF] Wolf | The mutex watershed: Efficient, parameter-free image partitioning[END_REF][START_REF] Saeedan | Detail-preserving pooling in deep networks[END_REF][START_REF] Mondal | Dense morphological network: An universal function approximator[END_REF], we propose and study several pipelines incorporating exact MM operators in such a framework. Our main contributions are:

• A novel morphological deep learning framework with learned MM operators: to the best of our knowledge, we are the first to attempt to learn the weights of exact MM operators end-to-end in a deep learning framework;

• a replacement of the standard max pooling in convolutional neural networks with a learned morphological pooling that proves to be experimentally beneficial;

• a mixed morphological and convolutional neural network that performs edge detection with state-of-the-art results. In addition, this network is trained from scratch, on the contrary to state-of-the-art methods that make use of pretrained weights;

• a fully morphological neural network for image denoising that presents better performance than similar fully convolutional neural network for this task.

Morphological operators that are key ingredients of image analysis can now be used as components of deep learning frameworks. Notably, we can use them on the tasks where they proved to be efficient, but this time learn their optimal parameters for given types of images and problems. The second row contains the Fourier signal link to the first row. We can see that putting non uniform weight allow one to don't loose to much frequency while contracting the signal.

Related work

The use of morphological operators in neural networks is not common but has been explored both in the context of single unit perceptrons as well as multi-unit deep networks.

Morphological Operators in Perceptrons

Works [START_REF] Saeedan | Detail-preserving pooling in deep networks[END_REF][START_REF] Zhang | Max-plus operators applied to filter selection and model pruning in neural networks[END_REF][START_REF] Mondal | Dense morphological network: An universal function approximator[END_REF] on the first category investigates the use of the perceptron in the (max, +) and (min,+) algebra. The morphological perceptron layer proposed in [START_REF] Zhang | Max-plus operators applied to filter selection and model pruning in neural networks[END_REF] is a fully connected layer, followed by a max-plus layer [START_REF] Charisopoulos | Morphological perceptrons: geometry and training algorithms[END_REF]:

the max-plus blocks proposed in this work consists in adding to the output of a fully connected layer several bias vectors, and then taking the maximum of these vectors to provide new neurons, and so on.

Contrary to this morphological perceptron, which layers are fully connected and thus capture global information (since all neurons are connected), our proposal allows to extract local information using exact morphological features.

Being local allows our layers to be lighter than morphological perceptron. This is why it can be used for a variety of tasks and not only classification, as we shall see further in the paper.

Morphological Operators in Deep Networks

Recently, morphological operations have been explored in the context of deep learning frameworks for image denoising and classification [START_REF] Masci | A learning framework for morphological operators using counter-harmonic mean[END_REF][START_REF] Mellouli | Morph-cnn: A morphological convolutional neural network for image classification[END_REF][START_REF] Saeedan | Detail-preserving pooling in deep networks[END_REF]. All three works are based on the approximation of morphological operations, since the minimum and maximum were approximated with the counter-harmonic mean (CHM) [START_REF] Van | Robust local max-min filters by normalized power-weighted filtering[END_REF][START_REF] Angulo | Pseudo-morphological image diffusion using the counterharmonic paradigm[END_REF][START_REF] Angulo | Morphological bilateral filtering and spatially-variant adaptive structuring functions[END_REF]. The CHM is a power mean studied in [START_REF] Bullen | Handbook of means and their inequalities[END_REF][START_REF] Angulo | Morphological bilateral filtering and spatially-variant adaptive structuring functions[END_REF], where the signal is approximated as a weighted sum of the signal raised to the power p, with p a fixed integer. Then this sum is normalized by the weighted sum of the signal raised to the power p -1. Masci et al. [START_REF] Masci | A learning framework for morphological operators using counter-harmonic mean[END_REF] were the first to propose integrating CHM filters directly into CNNs and showed that the parameters of the CHM filter could be learned via standard back-propagation. We note also [START_REF] Mellouli | Morph-cnn: A morphological convolutional neural network for image classification[END_REF], which uses these CHM operators to classify digits.Finally, [START_REF] Saeedan | Detail-preserving pooling in deep networks[END_REF] proposes the CHM as an alternative to the standard max-pooling and places it into a CNN. In using a CHM filter, the authors claim that image details are better preserved across pooling operations, and as such, retain more relevant information for classifying images. They achieve state-of-the-art results for image classification on ImageNet [START_REF] Deng | Imagenet: A largescale hierarchical image database[END_REF] with a Resnet101 [START_REF] He | Deep residual learning for image recognition[END_REF] architecture.

While the CHM faithfully approximates the min and max operation, it does not fully encapsulate MM operations. As such, the approach of [START_REF] Saeedan | Detail-preserving pooling in deep networks[END_REF] applies only as a replacement for the pooling layer. Our approach differs in that we do not need to approximate the min or max operation: we directly integrate the entire MM operation directly into the neural network, encapsulating both the standard convolution and max pooling into a single morphological operation. Our work is thus more general in this respect. Furthermore, our proposal does not suffer from exploding gradients that can stem out the use of a power function as they propose. The training step in our proposal is thus made simpler.

Morphological features

Notation

We begin by introducing the notation used in this paper. Let E be a subset of the discrete space Z 2 , which represents the support space of a 2D image, and F ⊆ R d be a set of pixels values in dimension d. Higher order tensors are denoted as (I, S, . . .), with the order of tensor I ∈ R n1×n2×...×n J being J.

Moreover, if I ∈ R n1×n2×n3 , for i ∈ [1, n 3], I :,:,i represents a matrix of size

n 1 × n 2
where the third component is equal to i.

Operator Definitions

Mathematical morphology operators are non-linear image operators based on the spatial structure of the image. Let f be a grey scale image which can be represented as a function, with the intensity at position x be denoted as f (x).

The two basic operations in morphology are the grey-level erosion and dilation [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF][START_REF] Soille | Morphological image analysis: principles and applications[END_REF], defined on their discreet version respectively as :

ε b (f)(x) = min i∈[-n,n] (f (x + i) -b i), (1)
δ b (f)(x) = max i∈[-n,n] (f (x -i) + b i), (2)
where b = [b -n, . . . , b n] is a structuring element. The structuring element impacts a morphological operation by both the geometry of its support and its weights. In its simplest form, these weights have the same value over the support shape and are equal to zero elsewhere: this corresponds to the commonly known flat structuring elements [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF].

By concatenating these two basic morphological operators, it is possible to obtain more evolved operators such as opening and closing [START_REF] Serra | Image Analysis and Mathematical Morphology[END_REF], defined respectively as:

γ b (f) = δ b (ε b (f)) , (3)
ϕ b (f) = ε b (δ b (f)) . (4)
The opening (resp. closing) γ of an image f by a structuring element b is a filter which removes the bright (resp. dark) structures of the images which do not fit the support shape of the structuring element b. As such, all features smaller than this support shape are removed.

One can use as algebraic opening (resp. closing) any operator that verifies the following properties:

• Openings are anti-extensive:

γ b (f) ≤ f • Openings are idempotent: γ b (γ b (f)) = γ b (f) • Openings are increasing operators: if f ≤ g then γ b (f) ≤ γ b (g)
Since closing operators are the dual of openings, it directly follows that the only property differing between the two is the first, i.e.while openings are antiextensive, closings are extensive, such that ϕ b (f) ≥ f .

Alternate Sequential Filters (ASF)

Image filters can in turn be created from opening and closing operations.

Notably, morphological Alternate Sequential Filters (ASF), composed from a series of increasing (resp. decreasing, cf. above for definition of an increasing operator) filtering operators such as dilations (resp. erosions) with structuring functions having a larger and larger support shape [START_REF] Sternberg | Grayscale morphology[END_REF], have proven to be useful for multiscale analysis and filtering of images [3, chapter 10]. They progressively simplify images, removing noise and small details and textures, while preserving textures. As such, the ASF are useful for denoising and can also be seen as multi-scale representations of images.

More formally, an ASF is obtained from two families of operators: one family The ASF can be defined as:

of openings {γ b l } 1 ≤ l ≤ n 1 ,
ASF λ = γ b λ ϕ b λ . . . γ b1 ϕ b1 , (5)
when starting with a closing, and:

ASF λ = ϕ b λ γ b λ . . . ϕ b1 γ b1 , (6)
when starting with an opening, with λ corresponding to the number of opening and closing.

Morphological neural network

Morphological back-propagation

Let us consider the following objective function for an image f which has undergone erosion:

L(b) = x∈E ε b (f)(x) -g , (7)
with g a signal we want to reach, that can be an image. However, the min operator is not directly differentiable. We tackle this problem in the same way that max pooling is handled in standard convolutional neural networks. Consider the case for erosion. One notes that for each position

x in the image, we can find an index i x * belonging to {-n, -n + 1, . . . , n -1, n} with a minimum value, such that this index is the best one for the minimization problem at hand. This results in:

εb (f)(x) = f (x + i x *) -b i x * . (8)
In other words, the resulting eroded version of the image or feature map is the value at a position x + i x * minus the structuring function at position i x * .For any position x there exists a i x * verifying this property.

Thus, based on this, we can derive the loss function according to b i x * :

∂ εb (f)(x) ∂b i x * = -n i x * (9)
with n i x * equal one or zeros, it is equal to one if b i x * is the best index for the erosion task at position x To be clearer let us consider as an example a 1D signal f composed of 10 values {f (x i)} 9 i=0 . Let us write h the results of the erosion with the following structuring element b = (b -1 , b 0 , b 1). This structuring element is a simple line of size

Let us consider that the erosion is equal to

h = (f (x 0) -b 0 , f (x 0) -b -1 , f (x 3) -b 1 , f (x 3) -b 0 , f (x 4) -b 0 , f (x 4) -b -1 , f (x 5) -b -1 , f (x 6) -b -1 , f (x 9) -b 1 , f (x 9) -b 0). Based on this formulation of h we have that ∂h ∂b -1 = (0, -1, 0, 0, 0, -1, -1, -1, 0, 0) (10
)
∂h ∂b 0 = (-1, 0, 0, -1, -1, 0, 0, 0, 0, -1) (11)
∂h ∂b 1 = (0, 0, -1, 0, 0, 0, 0, 0, -1, 0) (12)
Let us consider that the loss we want to optimize is equal to

L = h -g = 9 i=0 (h(x i) -g(x i)) 2 .
Then the derivative of the loss according to the different elements of the structuring elements is equal to :

∂L ∂b j = 9 i=0 (h(x i) -g(x i)) × ∂h ∂b j (x i) (13)
with j ∈ {-1, 0, 1}. In the case of the erosion the ∂h ∂bj (x i) is equal to 0 or -1, in the case we deal with the dilation it is equal to 0 or 1, finally in the case of the convolution it is equal to f (x i -j). From this equation we can see that the erosion and dilation does not bring instability since their gradient are bounded, contrary to the one of the convolution. Hence these morphological layers are not hard to train.

One can see that the derivative of the eroded image according to a structuring element has a tendency to be equal to 0 or -1, and for a dilation to 0 or 1. We can see the dual effect of the dilation and erosion also on the derivative. Hence it might be interesting to combine them on a neural network to take advantage of this dual effect. Based on the demonstration above, we are thus provided with a way to differentiate the morphological operators during the backward pass of a deep learning framework. This allows for an end-to-end learning of these operators, which can be useful for various stages of a neural network, as we shall see in the next sections.

Morphological layers

In this section, we present the different types of morphological layers illustrated in this paper. Morphological layers used in a Deep learning framework are composed of at least one morphological operator. We start by explaining how to initialize and train such layers, and then describe the ones we experiment with in detail.

Initialization

Out of simplicity and because in most works, flat structuring elements are used, we also initialize our morphological layers with flat structures. Figure 2 shows the different initialization we chose, with values of either 0s or 1 m , where m is the number of non-zero elements in the structuring element. This provides a compromise between traditional MM and deep learning, since the network starts with a standard shape that is then adjusted during the optimization process.

The structuring element weights of the morphological layers can also be randomly initiated. Experimentally, we observe that using a uniform distribution provide better results than using a normal distribution.

These two types of structuring element initialization are useful in different setups. Two main scenarios emerge in our experiments: (i) in the first one we have images as inputs and outputs of the network, for example in denoising or boundary detection; (ii) in the second one the network takes images as inputs and outputs vectors, as in classification problems. In the first case, constraining the structuring elements to have values initialized following a shape leads to better refined output images. In the second case, since the goal is not to be visually meaningful but to extract descriptors as discriminative as possible for further use, the structuring element can be initialized randomly instead.

Training

Morphological networks have more extreme behaviors than the convolutional ones. Hence we propose to clip the gradient of the morphological layers to smooth the update of the structuring element. This technique leads to important result improvements. Note however that gradient clipping is not needed for the denoising task, and is only used for the CIFAR classification and the boundary detection ones. To train the morphological layers, we incorporate the morphological operators provided in Tensorflow in our networks, and then we treat them just like regular layers.

Morphological Pooling layers

In some sense, one can say that DCNNs already use morphological operators, since a max-pooling is nothing but a dilation with a flat square structuring element followed by a pooling. One of the first experiments that come to mind is thus to replace the flat dilation with a learned morphological operator. The motivation behind this idea is that while pooling is a sub-sampling procedure that usually aggregates the most important information, it might sometimes lead to a loss of useful information. This is why we propose to learn the dilation and erosion used in the pooling, to optimize its effect in the network. As illustrated in Figure 3, we thus apply in parallel both the erosion and dilation to the signal before pooling. These results are then concatenated and projected back to the original size using a 1 × 1 convolution. Both the structuring element weights as well as the projection weights are learned. To improve the results, we add a batch normalization layer in the morphological pooling: it is applied after the erosion and the dilation and before their concatenation.

To sum up, morphological pooling layers are used in the DCNN, with the underlying idea that they might increase the generalization power of the DCNN and thus increase its performance. So the neural networks in this subsection can be seen as a mix of DMNN and DCNN. This is why we refer to them as Deep Morphological and Convolutional Neural Network (DMCNN).

Morphological learned descriptor layer

In this subsection, we deal with a more complex idea, that consists in training a DCNN where all the spatial term comes from MM operators. Simply stated, we can replace the convolutions from a CNN with morphological operators, which parameters are then fine-tuned for the task at hand. In this case, there might be 1 × 1 convolutions to increase the number of neurons. We refer to the resulting network as to a Deep Morphological Neural Network (DMNN).

A Deep Morphological Neural Network is simply composed of projection layers and morphological layers that were traditionally used only to perform the pooling. Hence there is no spatial information extracted through convolutional layers. In this paper, we prove that morphological layers are useful not only to perform pooling but also to extract information similarly to convolutional ones.

Experiments

Image classification with morphological pooling

In image classification, the goal is to learn a mapping from images to class labels. It is a task where we have at least two sets: the training set {(f i , y i)} n1 i=1 and the testing set {(f i , y i))} n2 i=1 , where f i are images and y i is a one-hot vector encoding of the class label of f i . State-of-the-art methods for image classification use DCNN [START_REF] Sermanet | Traffic sign recognition with multi-scale convolutional networks[END_REF][START_REF] Mcdonnell | Enhanced image classification with a fastlearning shallow convolutional neural network[END_REF][START_REF] Graham | Fractional max-pooling[END_REF]. In this section, we show how a conventional DCNN can be adapted to incorporate morphological operators.

We demonstrate the interest of DMCNN (a DCNN where we replace the max pooling with a morphological pooling) on two standard classification benchmarks: MNIST [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] and CIFAR10 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF]. MNIST is a large dataset of handwritten digits that is commonly used for training and testing in the machine learning field. It is composed of 60,000 images for the training set and 10,000 images for the testing set. Each image of MNIST is a grey scale image of size 28 × 28.

The number of class of MNIST data is equal to 10. CIFAR10 is another image dataset commonly used in machine learning research to evaluate algorithms. It is composed of 50,000 training RGB images and 10,000 RGB test images. The images are of size 32 × 32. The dataset has 10 classes (e.g. airplane or bird).

As an evaluation criterion, we use the accuracy, that measures the proportion of correct predictions. It is equal to the number of test images which classes have been correctly predicted divided by the total number of test images.

We compare the DCNN and DMCNN on the classification task for similar architectures, i.e. with the same number of layers and the same depth. For the MNIST classification task, the two compared networks are represented in Figure 4. These networks both have three convolutional layers, followed by a ReLU activation function. For the DCNN, the first two convolution layers are followed by a max pooling, while on the DMCNN they are followed by morphological pooling without batch normalization. Hence, these two networks are comparable.

For CIFAR10, we use the Resnet32 [START_REF] He | Deep residual learning for image recognition[END_REF] as the DCNN. We transform it into a DMCNN by reducing the convolutions with stride 2 to stride 1 and adding a morphological pooling with batch normalization. The results obtained for these two classification tasks with both a DCNN and a DCMNN are presented in Table 1. The results are slightly improved by using a morphological pooling, which proves that learning the pooling using our proposal can be interesting for classification tasks.

To better understand the effect of this morphological pooling layer, we visualize in Figure 5 the structuring function learned during the MNIST classification. We can note that the learnt structuring element weights are quite different from classical DCNN weights. In fact, the weights of convolutional layers are typically similar to SIFT or gradients [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], while these morphological weights seem to learn shape information. This shows that the morphological layer tries to learn a representation that is a bit flat.

In the next section, we will show how replacing the convolutional layers with morphological layers can lead to improving results for certain types of

Image Denoising

Morphological operators have been proven in the past to be useful for denoising images [START_REF] Yu-Qian | Medical images edge detection based on mathematical morphology[END_REF][START_REF] Decenciere | Restauration automatique de films anciens[END_REF]. Noise present in an image may differ depending on its generating source or transmission channel. Noise that alter images can be divided in three main categories: additive (e.g. Gaussian noise), multiplicative (e.g. speckle noise) and impulse (e.g. salt-and-pepper noise). Morphological operators are especially efficient when it comes to impulse noise such as salt-and-pepper noise.

Several state-of-the-art methods for salt-and-pepper denoising [START_REF] Wang | An efficient adaptive fuzzy switching weighted mean filter for salt-and-pepper noise removal[END_REF][START_REF] González-Hidalgo | Improving salt and pepper noise removal using a fuzzy mathematical morphologybased filter[END_REF] consist of first detecting the noisy pixels in the image, and then applying a denoising filter at the noise locations. In the filtering stage, fuzzy morphological operators such as alternate sequential filters have proven to be very effective [START_REF] González-Hidalgo | Improving salt and pepper noise removal using a fuzzy mathematical morphologybased filter[END_REF]. In this regard, the ability to learn from data the parameters of these filters leading to the best denoising would be very useful.

In this section, we compare the standard DCNN with a DMNN with a similar number of parameters and show the efficacy of the end-to-end morphological filter learning for denoising.

In the context of image denoising, let us consider two images of the same dimension M × N : f the original noise-free image, and g the restored image for which some filter has been applied. Three commonly-used quantitative evaluation measures for denoising are the mean squared error (MSE), peak signal-tonoise ratio (PSNR) and the Structural SIMiliarity (SSIM) index.

MSE is computed using the following expression:

M SE = m,n (f (m, n) -g(m, n)) 2 M × N (14)
PSNR is defined as:

P SN R = 10 log 10 R 2 M SE , (15
)
where R is the maximum fluctuation in the input image.

Finally, the SSIM [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF] index was introduced to evaluate the structural similarity between two images, with the motivation that structural changes are what most affects human visual perception. SSIM compares the original and the distorted image considering three main features: luminance, contrast and the structural comparison and is defined as:

SSIM (f, g) = (2µ f µ g + C f) (µ 2 f + µ 2 g + C f) • (2σ f g + C g) (σ 2 f + σ 2 g + C g) , (16
)
where µ f and σ f (resp. µ g and σ g) are the mean and variance of the greyscale values of the image f (resp. g), σ f g is the covariance of f and g, and We first implement an experiment upon the MNIST dataset [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]. We compare the denoising efficiency of two similar DCNN and DMNN, with voluntarily simple architectures with few parameters, presented in Figure 6, and which have similar number of parameters for a fair comparison. Note that the goal of this comparison is to provide a proof-of-concept of the denoising capability of morphological layers. Further work might include such layers in more complex architectures to aim for state-of-the-art results by replacing or being combined with convolutional ones [START_REF] Fu | A convolutional neural networks denoising approach for salt and pepper noise[END_REF]. For these different networks, we thus compare the quality of the denoising obtained when training them for different levels of salt-and-pepper noise and MSE as a loss. Since we provided a way to actualize weights of morphological operators within a gradient-based optimization technique, we can indeed train these two networks on the same task and compare the results. The training is made using Adam, a batch size of 100 and a learning rate of 0.02.

C f = (k 1 • L) 2 and C g = (k 2 • L) 2 two
Results are presented in Table 2 for the two networks, different denoising metrics and different levels of added salt-and-pepper noise. One can note that results obtained by the DMNN are better than those obtained by the DCNN.

This confirms the potential of such operators for filtering problems, and the interest of being able to train them end-to-end for a given filtering task. To confirm the interest of DMNN for denoising, we conduct the same denoising experiment on natural images from the Berkeley Segmentation Dataset BSDS500 [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF], for an experiment similar to the one conducted in [START_REF] Fu | A convolutional neural networks denoising approach for salt and pepper noise[END_REF]. The noise is applied randomly on each channel of the considered RGB images. We keep the same architecture for both the DCNN and the DMNN. Results are presented We can see the DCNN learn shapes, that have some symmetry. These shapes are based on the structuring elements.

MSE () PSNR () SSIM ()

Noise
in Table 3, and show again slightly better results with the morphological approach, thus confirming the interest of our approach. Visual results for a high level of noise are also provided in Figure 8.

Edge detection

Both the classification and denoising tasks established the interest of using morphological layers in deep learning architectures. To further demonstrate the strength of morphological operators in such networks, we propose a morphological encoder-decoder framework to extract image edges that takes advantage of the DMCNN architecture previously described.

Traditional algorithms [START_REF] Felzenszwalb | Efficient graph-based image segmentation[END_REF][START_REF] Shen | Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection[END_REF][START_REF] Xiaofeng | Discriminatively trained sparse code gradients for contour detection[END_REF][START_REF] Kivinen | Visual boundary prediction: A deep neural prediction network and quality dissection[END_REF][START_REF] Bertasius | Deepedge: A multi-scale bifurcated deep network for top-down contour detection[END_REF][START_REF] Xie | Holistically-nested edge detection[END_REF] that perform well on this task are obtained by fine-tuning deep neural networks previously trained on Imagenet [START_REF] Deng | Imagenet: A largescale hierarchical image database[END_REF].

Interestingly, our DMCNN model is trained from scratch, and yet achieves results competitive with the state-of-the-art. We train and evaluate our method on the BSDS500 dataset [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF], using the provided training set, test set and their evaluation metrics. for both the DCNN and DMNN architectures, for the MSE, PSNR and SSIM metrics, and different levels of salt-and-pepper noise. We hereby provide some details on the network architecture that is used, which is illustrated in Figure 9. First, we project the image from the RGB to the Lab colour space. We then generate a mosaic image: first by using the watershed transform [START_REF] Beucher | The morphological approach to segmentation: the watershed transformation[END_REF] resulting in a simplified version of the image with clustered pixels, then by retaining as unique value on each cluster the average pixel value on this cluster. To segment the image and obtain clusters, we need a gradient for the watershed transform. It is normally impossible to compute a gradient for a color image, so we convert the image into the LAB color space.

elements at different scales and orientations. More precisely, we use a structuring element line of size 3, 7, 9, 11, 13. On each of these lines we apply one of the following rotation : O • , 22.5 In order to produce a gradient by scale, we take for each pixel the maximum value of the orientations gradient. Hence we have 5 gradients (one for each scale) that we average to obtain the final gradient. This multi-scale morphological segmentation is quite common and used in various publications [START_REF] Mukhopadhyay | Multiscale morphological segmentation of gray-scale images[END_REF][START_REF] Franchi | Bagging stochastic watershed on natural color image segmentation[END_REF],

the major difference comes in the way to merge the scales. We conclude this preprocessing by normalizing the values between 0 and 1.

After the preprocessing of the image, we apply mainly three kinds of layers. The first ones are the spatial layers, which are composed of morphological layers and one convolution layer. We apply a 5 morphological pooling where the weights are fixed to +1 for the dilation and -1 for the erosion. It means that we calculate 5 morphological gradients dilation -erosion. The structuring elements used for these 5 morphological operators are drawn in Figure 2(a), 2(b),2(c),2(e), and 2(f). This morphological pooling extract most of the spatial detail information. In addition, the stride of this morphological pooling is equal to 2. We realize that increasing the stride to 4 enhances the results. Then, similarly to semantic segmentation algorithms, we used atroue dilation and erosion.

Atroue layers allow the network to increase the receptive field without adding pooling. Hence morphological pooling layers have a pooling stride equal to 2 and an atroue dilation rate (or stride) equal to 2 and are equivalent to a pooling stride equal to 4. After this morphological layer, we apply a convolution layer with a weight of size 3 × 3. This last layer allows us to be sure to bring out most of the spatial information.

After having learned spatial descriptors, we apply two projection convolutional layers that do not bring spatial information. These layers increase the depth of the spatial descriptors from 32 to 64. However, the spatial descriptor has still a size 4 times smaller than the original one. Hence, we need to perform a deconvolution and a projection. As a deconvolution layer, we apply a bilinear interpolation to return a feature space at the original size. Finally, we apply the last convolution layer with a weight of size 3 × 3. This last convolutional layer is not followed by any Relu activation function, contrary to the other convolutional layers. It brings spatial information to correct the interpolation and perform the deconvolution.

We evaluate the edge detection with the F1-score. The F1-score is the harmonic average of the precision and recall and ranges between 0 and 1, with higher values being better. We evaluate the F1 score for each image of the test set of BSDS500 [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] at different thresholds for the edge prediction. We apply different thresholds since our results are edge probabilities with values between zero and one, as one can see in Figure 10. The closest to 1 the edge value is, the more probable this edge is correct. Edge detection accuracy is evaluated using the Optimal Dataset Scale (ODS), where one chooses the optimal threshold for the entire dataset, the Optimal Image Scale (OIS) being the case where one chooses the optimal threshold per-image. The OIS is always a bit better than the ODS, since it considers the best scale for each image. The OIS and ODS would be equal in the optimistic situation where the optimal threshold would be the same for the whole dataset. For more information about these classical measures for edge detection we refer to [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF].

On Table 4 we compare our results for edge detection compared to other algorithms [START_REF] Felzenszwalb | Efficient graph-based image segmentation[END_REF][START_REF] Shen | Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection[END_REF][START_REF] Xiaofeng | Discriminatively trained sparse code gradients for contour detection[END_REF][START_REF] Kivinen | Visual boundary prediction: A deep neural prediction network and quality dissection[END_REF][START_REF] Bertasius | Deepedge: A multi-scale bifurcated deep network for top-down contour detection[END_REF][START_REF] Xie | Holistically-nested edge detection[END_REF]. We can see that thanks to our network we reach human performances on OIS. Regarding the second best network HED [START_REF] Xie | Holistically-nested edge detection[END_REF], they use multiple scales from a VGG network [START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF], hence using up to 138 millions weights, while we have just learned 11175 weights. So, the most interesting aspect is to note the extreme simplicity of our network in comparison to most state-of-the-art networks. In addition, the VGG network that they used is potentially difficult to train, so they choose to finetune it from weights already trained to classify images on ImageNet [START_REF] Deng | Imagenet: A largescale hierarchical image database[END_REF]. Their procedure of training is thus longer than ours since, and involve external data. In addition, our training procedure is much simpler since it does not require any pre-trained network. Our network relies mostly on the morphological operators, that learn the perfect gradient, then based on this low resolution gradient we correct it with convolution 1,2,3 and 4.

image GT output We can see that morphological layers seem to be perfectly adapted to learn edges from images. Not only they allow us to reduce the number of weights, and so make us save time, but they also allow us to have really good results.

We show such results on natural images, it could be interesting to try it on microscopic images where the data have a Poisson noise. The morphological network that we propose did not have better results than GAN network [START_REF] Yang | Contourgan: Image contour detection with generative adversarial network[END_REF].

But one can see the discriminative part of the GAN as a perceptual loss trying to make that the output of the generator looks like gradient images. We did not try GAN since they need more images to train, secondly the GAN is based on a generator and a discriminator network. We compare just the generator networks and considered that if wanted one could add to our generator a discriminator.

Conclusion

In this work, we have introduced new innovative layers based on mathematical morphology that can be used within a deep neural network. Based on these layers, we proposed first to learn the pooling on DCNN for image classification.

Then we saw how such layers might be used to denoise images on a DCNN containing only morphological operators. Finally, we exposed their usefulness to learn object boundaries. The first experience teaches us that we can use this layer to replace a pooling layer. The second experiment shows us two major points: first that these morphological layers extract information and that they can thus replace in some cases convolutional layers, secondly that these layers might be more suitable for salt-and-pepper denoising than the convolutional layers. Finally, the last experiment proves on the edge detection task that combining these morphological layers with convolutional ones can be the key to future research to have lighter and better networks. Hence, each of these three experiments presented good results that proved the interest of these new layers.

Based on these good results, we are going to investigate in future works how to use such layers within a generative adversarial network. They might indeed bring out interesting information to generate new images. We could also use the boundary detection morphological network to calculate superpixels and compare them with the state of the art. We can also try to see if this network can be used to enhance results in image processing tasks already well performed by not learned MM operators.

Figure 1 :

 1 Figure 1: We have illustrated on the first row one signal and its result with the flat max pooling layer of size 3 × 1, which is the classical max pool, and with the non flat max pooling layer of size 3 × 1, where the weights have been changed so that we find the original signal.

 and one family of closings {ϕ b l }, 1 ≤ l ≤ n 2 . The index l is associated with the scale of the structuring function, i.e.b l ⊂ b l+1 .

 There are different techniques to find the optimal structuring function b = {b -n , b 0 , . . . , b n } to minimize this objective function. Here we focus on gradient-based optimization techniques such as stochastic gradient descent and its variants. Hence we need to differentiate L(b) with respect to b.

Figure 2 :

 2 Figure 2: Different structuring elements of size 3 used for initialization of morphological layers in this work. For the boundary detection application we initiate the structuring element with the ones represented in (a),(b),(c),(e), and (f). For denoising, we use the structuring elements (e) and (f), except that for the structuring element (f) we increase it size to 5×5 instead of 3×3.

Figure 3 :

 3 Figure 3: The morphological pooling operator. The erosion and dilation share the same structuring element and are applied in parallel to the input data. The results of these morphological operators are concatenated and projected back to the original size with a 1 × 1 convolution.

Figure 4 :

 4 Figure 4: (A) A representation of the Morphological DCNN used to classify ,(B) A representation of the reference CNN used to classify MNIST.

Figure 5 :

 5 Figure 5: Visualizations of (A) 25 of the 32 structuring functions learned on the first layer and (B) 50 of the 64 structuring functions learned on the second layer of the DMCNN used to classify MNIST.

 variables to stabilize the division by a weak denominator, with L the dynamic range of the pixel-values taken by f and g.By default we have k 1 = 0.01, k 2 = 0.03, and in our case L = 255.

Figure 6 :

 6 Figure 6: Architectures considered for the denoising experiment. (a) DCNN: 4 3 × 3 convolutions -77 parameters (b) DMNN -alternate sequential filter structure with 3 × 3 structuring functions -82 parameters.

Figure 7 :

 7 Figure 7: We have represented in (A) the four structuring functions learned on the first layer and on (B) the four structuring functions learned on the second layer used to denoise MNIST.

 image image with added salt-and-pepper noise (50%) denoised image

Figure 8 :

 8 Figure 8: Illustration of the denoising performed by the DMNN for several images of the BSDS500 dataset, for an added salt-and-pepper noise of 50%.

Figure 9 :

 9 Figure 9: DMCNN used for the edge detection experiment. The blue box represents the fixes (i.e. not learned) operators.

Figure 10 :

 10 Figure 10: We have illustrated the results of our edge detection on two images. Our results is a grey scale value between 0 and 1. We threshold at different value to get the F measure.

Figure 11 :

 11 Figure 11: We have represented in (A) the four structuring functions learned on the first layer and on (B) the four structuring functions learned on the second layer used to denoise MNIST.We can see the DCNN learn shapes, that have some symmetry. These shapes are the basis of the structuring elements.

Table 1 :

 1 Table compiling the results of the classification task on the dataset MNIST and CIFAR10.

Table 2 :

 2 Table compiling salt-and-pepper denoising results on MNIST dataset [48] for both the DCNN and DMNN architectures, for the MSE, PSNR and SSIM metrics, and different levels of salt-and-pepper noise.

		level DCNN DMNN DCNN DMNN DCNN DMNN
	10%	0.015	0.009	18.71	20.89	0.9994 0.9995
	20%	0.022	0.016	16.64	18.34	0.9988 0.9990
	30%	0.030	0.022	15.38	16.89	0.9980 0.9985
	40%	0.038	0.029	14.35	15.66	0.9972 0.9978
	50%	0.047	0.040	13.44	14.26	0.9961 0.9966
	60%	0.058	0.051	12.59	13.19	0.9945 0.9953
	70%	0.069	0.063	11.86	12.29	0.9930 0.9934
	80%	0.080	0.079	11.25	11.36	0.9907 0.9908
	90%	0.089	0.088	10.83	10.85	0.9888 0.9894

Table 3 :

 3 Table compiling salt-and-pepper denoising results on the BSDS500 dataset[START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF]

 • , 45 • , 67.5 • , 90 • , 112.5 • , 135 • , 157.5 • . Hence we have 45 structuring elements. After that, we calculate all the gradients with all the structuring elements, and for a given scale we have 8 orientation gradients.

Table 4 :

 4 Table compiling on the results on the test set of BSDS500 [55].

		ODS OIS
	Human	0.80	0.80
	Canny	0.60	0.64
	Felz-Hutt[56]	0.61	0.64
	gPb-owt-ucm[55] 0.73	0.76
	SCG[58]	0.74	0.76
	DeepNets[59]	0.74	0.76
	DeepEdge[60]	0.75	0.77
	DeepContour[57] 0.76	0.77
	HED[61]	0.78	0.80
	DMCNN (ours)	0.79	0.80

Then on each channel we apply 45 erosions and dilations, which have structuring