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Abstract

We present an axiomatization of the Second-Order Expected Utility model in the

environment of Anscombe and Aumann (1963) where the domain of the preference re-

lation is the set of lotteries over all acts whose prize are lotteries. We replace the axiom

of reversal of order in compound lotteries (Assumption 1 in Anscombe and Aumann

(1963)) by an extension of monotonicity in the prizes (Assumption 2 in Anscombe

and Aumann (1963)) that is a strengthening of the Dominance axiom introduced by

Seo (2009). This extends the contributions of Grant et al. (2009) by allowing for a

general representation result without restricting the decision maker’s attitude towards

subjective uncertainty.

1 Introduction

In Anscombe and Aumann (1963), a decision maker ranks objective (or roulette) lotteries

p ∈ L(Z) with prizes in some set Z.1 His preference ordering �ca on L(Z) satisfies the

axioms of expected utility theory and can then be numerically represented by the functional

p 7−→ Ep(u) :=
∑
z∈Z

p(z)u(z)
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1Lotteries are assumed to be simple in the sense that their support is finite.
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for some utility function u : Z → R. In order to accommodate subjective uncertainty,

Anscombe and Aumann (1963) introduce a finite set S of states of nature. An act (or horse

lottery) is then defined as a function h : S → L(Z) from states of nature to objective lotteries

on prizes in Z. The set of acts is denoted by H. Anscombe and Aumann (1963) assumed

that the decision maker can not only rank objective lotteries (elements of L(Z)), but can

also rank lotteries on acts (elements of L(H)). His preference ordering � on L(H) is assumed

to extend the preference ordering �ca on L(Z) by identifying constant acts with objective

lotteries. The preference � is also assumed to satisfy the axioms of expected utility theory

and can then be numerically represented by a functional

P 7−→
∑
f∈H

P (f)U(f)

for some utility function U : H → R. In additional to the assumptions of expected utility

theory, the two preference orderings �ca and � are connected by two additional axioms:

the monotonicity in the prizes and the reversal of order in compound lotteries. The first

axiom requires that if two acts f and g are identical except for the lotteries f(s) and g(s)

associated with one state s, then the ranking (according to �) between f and g is governed

by the ranking (according to �ca) between the lotteries f(s) and g(s). The second axiom

says that spinning a roulette wheel P ∈ L(H) on acts before the realization of the state

of nature is equivalent to spinning the same roulette wheel after subjective uncertainty is

resolved. Formally, the lottery P ∈ L(H) on acts is equivalent to the degenerate lottery on

the act g with the prize g(s) defined as the compound lottery of P and f(s):

g(s) :=
∑
f∈H

P (f)f(s).

Under monotonicity and the reversal of order in compound lotteries, Anscombe and Aumann

(1963) proved that there exists a unique probability measure µ over the set S of states of

nature such that

U(f) =
∑
s∈S

µ(s)Ef(s)(u).

This the so-called standard subjective expected utility model of Anscombe and Aumann

(1963) that has been challenged by the famous Ellsberg (1961) Paradox. To accommo-

date uncertainty aversion, numerous extensions of subjective expected utility have been
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proposed, including Schmeidler (1989)’s Choquet expected utility, Gilboa and Schmeidler

(1989)’s maxmin expected utility, Segal (1987)’s application of anticipated utility, Tversky

and Kahneman (1992)’s cumulative prospect theory (see also Wakker and Tversky (1993)

for an axiomatization) and a number of more recent models like Klibanoff et al. (2005), Seo

(2009) and Nascimento and Riella (2013).

We follow this literature and propose a new axiomatization of the Second-Order Expected

Utility (SOEU) preferences that were first axiomatized by Neilson (1993, 2010). Imposing

the Savage axioms to the horse lotteries and the von Neumann–Morgenstern axioms to the

roulette lotteries, Neilson (2010) obtained the following SOEU representation

U(f) =
∑
s∈S

µ(s)v
(
Ef(s)(u)

)
yielding a subjective probability measure over states and two utility functions, the function u

governing risk attitudes and the function v governing ambiguity attitudes. The SOEU model

is able to accommodate the Ellsberg paradox and preferences for reductions in ambiguity.

It has been used by Nau (2006), Ergin and Gul (2009), Chew and Sagi (2008), Grant et al.

(2009), Strzalecki (2011) and Al-Najjar and Castro (2014). It is also very popular in applied

work: see for instance Snow (2010, 2011), Gollier (2011), Alary et al. (2013), Hoy et al.

(2014), Huang and Tzeng (2018).

To get an axiomatization of the SOEU model based on the axioms of Anscombe and

Aumann (1963), we drop reversal of order in compound lotteries and propose a natural ex-

tension of monotonicity to lotteries over acts. In our representation result, the probability

µ is unique and the functions u and v ◦ Eu are cardinally unique.2 We then show that the

function v is concave if, and only if, we add the standard Uncertainty Aversion axiom of

Schmeidler (1989). This complements the analysis in Seo (2009) who obtains an axiomatiza-

tion of Second-Order Subjective Expected Utility (SOSEU) by considering a weaker axiom

than our extended monotonicity.3 It also extends the contributions of Grant et al. (2009) by

allowing for a general representation result without restricting the decision maker’s attitude

towards subjective uncertainty.

2Eu is mapping p 7→ Ep(u) from L(Z) to R.
3Our representation result cannot be directly obtained from the representation result in Seo (2009). This

is because Seo (2009) does not provide any information about the support of the second order belief.
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2 The Setup

2.1 Notations

Fix a non-empty space X. By a lottery (or a simple probability distribution) on X, we mean

a map p ∈ RX
+ such that its support {x ∈ X : p(x) > 0} is finite and

∑
x∈X p(x) = 1. For

any A ⊆ X, we slightly abuse notation and write p(A) :=
∑

a∈A p(a) that can be interpreted

as the probability of getting an element of A. The set of all lotteries on X is denoted by

L(X). For any x ∈ X, we let δx ∈ L(X) be the point mass at x, defined by δx(y) = 0 if

y 6= x and δx(x) = 1. Lotteries of the form δx are called degenerate lotteries. Observe that

every lottery p ∈ L(X) can be written as a convex combination of degenerate lotteries

p =
∑
x∈X

p(x)δx

where the above sum is finite since the support of p is finite. For any lottery p ∈ L(X) and

any real map u ∈ RX , the expected value of u with respect to p is defined as the real number

Ep(u) :=
∑
x∈X

p(x)u(x).

If u is interpreted as a utility function on X, then Ep(u) corresponds to the expected utility

of the lottery p.

2.2 Anscombe–Aumann Setting

Let S be a finite set of states of nature to represent situations involving subjective uncer-

tainty. Let Z denote a set of outcomes or prizes. A purely subjective act is a function f ∈ ZS.

In order to provide a representation result of preferences on purely subjective acts, we follow

Anscombe and Aumann (1963) by considering an enrichment of items to which preference

must apply. We denote by H the set of functions from S into L(Z) that are called acts (or

horse race lotteries).4 The decision maker is assumed to be able to rank lotteries on acts.

Therefore, the decision maker’s preference � is a binary relation on L(H). Identifying an

act f ∈ H with the degenerate lottery δf ∈ L(H), we can view H as a subset of L(H). The

4By identifying a prize z with the corresponding degenerate lottery δz, the set ZS of purely subjective
acts can be embedded in H.
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ranking induced by � on degenerate lotteries δf for any f ∈ H is denoted by �a.5 Simi-

larly, identifying the lottery p ∈ L(Z) with the degenerate lottery δp1S
on the constant act

p1S : s 7→ p, we can view L(Z) as a subset of L(H) and denote by �ca the induced ranking.6

We should be careful when considering compound lotteries in L(L(Z)). In this paper, a

lottery P ∈ L(H) such that the support of P only contains constant acts is called a compound

lottery and is identified as an element of L(L(Z)). Using the terminology of Anscombe and

Aumann (1963), the compound lottery P corresponds to a first spin of a roulette wheel before

the horse race. The prizes of this first roulette are constant acts f : s 7→ pf with known

chance P (f). Then, after the horse race, independently of the realized state s, a second

roulette wheel is spun which prizes are elements of Z and chances are given by pf ∈ L(Z).

Typical elements of L(H) are denoted by P , Q, and R. We use f , g, and h for elements

in H. Typical elements of L(L(Z)) are denoted by P̄ , Q̄, and R̄. Finally, p, q, and r are

typical elements of L(Z). Using this notation, an element P ∈ L(H) can be written

P =
∑
f∈H

P (f)δf

where each f : S 7→ L(Z) can be decomposed as follows

∀s ∈ S, f(s) =
∑
z∈Z

f(s)(z)δz.

A typical lottery on acts P ∈ L(H) is depicted in Figure 1.

5The upper-script “a” stands for act.
6The upper-script “ca” stands for constant act.
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objective prob. subjective prob. objective prob.

P

α

1− α

f

g

s1

x
a

y1− a

s2
z

1

s1

x
b

y1− b

s2

x
b

y1− b

act f ∈ H

one stage lottery

Figure 1: P ∈ L(H) is a lottery on acts. The first and the last nodes are governed by the
objectives probabilities (α, 1−α), (a, 1− a) and (b, 1− b). The act g is constant and can be
viewed as a one-stage lottery in L(Z).

We refer to an element in L(Z) as a one-stage lottery and refer to an element in L(L(Z))

as a two-stage (or compound) lottery. A constant act (taking the same value for every s ∈ S)

is viewed as a one-stage lottery. If f, g ∈ H and E ⊂ S with E 6∈ {∅, S}, then fEg denotes

the act with fEg(s) = f(s) if s ∈ E and fEg(s) = g(s) if s 6∈ E. When E = {s} is a

singleton, we use the simpler notation fsg instead of f{s}g.

The spaces L(Z), H and L(H) are convex subsets of linear subspaces and are therefore

endowed with their natural mixture. Formally, if p and q are one-stage lotteries in L(Z), then

αp+ (1− α)q is also a one-stage lottery defined by [αp+ (1− α)q](z) = αp(z) + (1− α)q(z)
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for each prize z ∈ Z. Similarly, if f and g are two acts in H and α ∈ [0, 1], then αf+(1−α)g

is also an act defined by the componentwise mixture

[αf + (1− α)g](s) := αf(s) + (1− α)g(s), for all s ∈ S

where αf(s)+(1−α)g(s) is the mixture of the two one-stage lotteries f(s) and g(s). Finally,

if P and Q in L(H) are two lotteries on acts, then αP + (1 − α)Q is also a lottery on acts

defined by

αP + (1− α)Q :=
∑
f∈H

[αP (f) + (1− α)Q(f)]δf .

If p and q are one-stage lotteries, then αp+(1−α)q is also a one-stage lottery.7 It should not

be confused with the two stage lottery αδp1S
+ (1−α)δq1S (also denoted by αδp + (1−α)δq)

that is a compound lottery where the first lottery occurs before the outcome of the subjective

uncertainty and the second occurs after. See Figure 2 for an illustration.

2.3 Basic Axioms

The two following axioms are standard.

Order. The preference � is complete and transitive.

Mixture Continuity. If P,Q,R ∈ L(H), then the sets {α ∈ [0, 1] : αP + (1− α)Q � R}
and {α ∈ [0, 1] : R � αP + (1− α)Q} are closed.

For any one-stage lottery p ∈ L(Z), we can consider the degenerate lottery δp1S
∈ L(H)

which assigns with probability one the constant act p1S : s 7→ p. Denote by �ca the induced

preference on constant acts in L(Z) defined by

p �ca q ⇐⇒ δp1S
� δq1S

.

Since one-stage lotteries involve objective probabilities in the sense that everyone agrees on

the likelihood of getting each alternative in Z, we impose the standard independence axiom.

Second-Stage Independence. For any α ∈ (0, 1] and one-stage lotteries p, q, r ∈ L(Z),

αp+ (1− α)r �ca αq + (1− α)r ⇐⇒ p �ca q.
7We can interpret αp + (1 − α)q as the successive spin of two different roulette wheels, but both spins

occurring after the realization of the subjective uncertainty.
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3
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p1S
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s1
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1/3
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(d) Two-stage lottery

Figure 2: αp + (1− α)q is a mixture of one-stage lotteries but αδp + (1− α)δq is a mixture
of two-stage lotteries.
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The interpretation of this assumption becomes transparent when the mixture one-stage

lottery αp+ (1−α)r is viewed as a compound lottery compounded from two roulette wheels

which spins occur after the realization of the subjective uncertainty (represented by the

states in S). In a Lottery A, the first spin determines whether, with probability α, you get

the lottery p, or, with probability 1 − α, you get r. Then, conditional on the result of the

first spin, there is a second spin which chances to get a prize in Z are defined by p or r. In

a Lottery B, the first spin determines whether, with probability α, you get the lottery q, or,

with probability 1 − α, you get r. Then, conditional on the result of the first spin, there is

a second spin which chances to get a prize in Z are defined by q or r. The Second-Stage

Independence axiom requires that the decision maker’s prefers Lottery A to Lottery B if,

and only if, he prefers p to q. This axiom is related to dynamic consistency as explained in

Gilboa (2008).

In a second-stage lottery p ∈ L(Z), the chances (p(z))z∈Z are objectively defined. Sim-

ilarly, the chances (P (f))f∈H involved in a lottery on acts P ∈ L(H) are also objective.

Therefore, replacing the set Z by H in the Second-Stage Independence axiom, we get the

following natural axiom.

First-Stage Independence. For any α ∈ (0, 1] and lotteries P,Q,R ∈ L(H),

αP + (1− α)R � αQ+ (1− α)R⇐⇒ P � Q.

As before, the interpretation of the First-Stage Independence axiom becomes transparent

when the mixture lottery αP + (1−α)Q is viewed as a compound lottery compounded from

two roulette wheels which spins occur before the realization of the subjective uncertainty

(represented by the states in S). The prizes associated to the first spin are lotteries over

acts, while the prize associated to the second spin are acts.

Remark 2.1. It is important to observe that first-stage independence is not related to the

following property (Independence axiom on acts): for any α ∈ (0, 1] and acts f, g, h ∈ H,

αf + (1− α)h � αg + (1− α)h⇐⇒ f � g.

This is because the mixture of lotteries αδf +(1−α)δg is different than the degenerate lottery

δαf+(1−α)g on the mixture act αf + (1− α)g.
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3 Extended Monotonicity and SOEU

For any act f ∈ H, we can consider the degenerate lottery δf ∈ L(H) which assigns with

probability one the act f . We can define �a the induced preference on H as follows

f �a g ⇐⇒ δf � δg.

We start by recalling the standard Monotonicity axiom applied to acts.

Monotonicity. For any acts f, g ∈ H,

[f(s) �ca g(s), ∀s ∈ S] =⇒ f �a g.

Observe that the Monotonicity axiom deals only with acts in H. In order to extend it to

lotteries over acts, we introduce the following notation.

Fix an act f ∈ H and a state s ∈ S. Recall that the property f(s) �ca g(s) in the

statement of the Monotonicity axiom is equivalent to f(s)1S �a g(s)1S. We then consider

the following notation: Ψ(f, s) := f(s)1S is the constant act s′ 7→ f(s) taking the value f(s)

for every s′ ∈ S. Observe that monotonicity can be stated as follows: for any acts f, g ∈ H,

[Ψ(f, s) �a Ψ(g, s), ∀s ∈ S] =⇒ δf � δg,

or, equivalently, [
δΨ(f,s) � δΨ(g,s), ∀s ∈ S

]
=⇒ δf � δg. (3.1)

Recall that a lottery P ∈ L(H) on acts can be canonically decomposed as

P =
∑
f∈H

P (f)δf . (3.2)

We then let Ψ(P, s) ∈ L(H) be the lottery on (constant) acts defined by

Ψ(P, s) :=
∑
f∈H

P (f)δΨ(f,s)

where each act f : s′ 7→ f(s′) in the canonical decomposition (3.2) is replaced by the constant

act Ψ(f, s) : s′ 7→ f(s). See Figure 3 for an illustration.
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f(s1)s1
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g(s1)s1

g(s2)

s2

(a) P ∈ L(H) is an objective lottery on acts

Ψ(P, s)
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P (g)

Ψ(f, s)
f(s)s1

f(s)

s2

Ψ(g, s)
g(s)s1

g(s)
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(b) Ψ(P, s) is an objective lottery on constant acts

Figure 3: If the decision maker believes that s occurs with probability one, then P and
Ψ(P, s) are equivalent.
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Replacing the LHS of the Monotoncity axiom (3.1) by∑
f∈H

P (f)δΨ(f,s) �
∑
g∈H

Q(g)δΨ(g,s), ∀s ∈ S

we get the following extension of the Monotonicity axiom to lotteries on acts.

Extended Monotonicity. For any P,Q ∈ L(H),

[Ψ(P, s) � Ψ(Q, s), ∀s ∈ S] =⇒ P � Q.

To interpret extended monotonicity, consider an agent who is not certain of the true

state. If he believes that the state is s, then the two-stage lottery induced by P is Ψ(P, s).

Extended dominance means that if the decision maker prefers the two-stage lottery induced

by P to the one induced by Q independently of the true state s, then he must prefer P to Q.

Choosing degenerate lotteries P = δf and Q = δg on single acts f, g ∈ H, we easily prove that

extended monotonicity is stronger than monotonicity. It will follow from our characterization

result that extended monotonicity is a much stronger axiom than monotonicity. Seo (2009)

used the terminology “extended AA dominance” for our axiom of extended monotonicity.

Remark 3.1. As pointed out by Seo (2009), extended monotonicity implies Krep’s reversal-

of-order-style axiom (see (Kreps 1988, p. 107)). It states that if two lotteries P and Q over

“purely subjective” (or Savage) acts map naturally to the same lottery over outcomes for

each state s, then they must be indifferent.

We now state the formal definition of the Second Order Expected Utility (SOEU) repre-

sentation.

Definition 3.1. A SOEU representation of the preference � is a probability measure µ ∈
L(S), a function u : Z → R, and a strictly increasing function v : co(u(Z)) → R such that

I represents � on L(H), where

I(P ) =
∑
f∈H

P (f)
∑
s∈S

µ(s)v(Ef(s)(u)). (3.3)

The main contribution of this paper is the following new representation result that obtains

an axiomatization of SOEU without any restriction on the decision maker’s attitude towards
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subjective uncertainty.8

Theorem 3.1. Preference � on L(H) satisfies order, mixture continuity, first-stage inde-

pendence, second-stage independence, and extended monotonicity if, and only if, it has an

SOEU representation (µ, u, v).

Proof. We start by proving necessity of the axioms. Assume that � is represented by the

function I in (3.3). The proof that order, mixture continuity and first-stage independence

are necessary is a straightforward exercise and is omitted. Observe that the preference

�ca on constant acts is represented by the function p 7→ Ep(u) and therefore second-stage

independence is satisfied. To prove extended monotonicity, fix P ∈ L(H) and recall that

Ψ(P, s) is the following lottery on constant acts

Ψ(P, s) :=
∑
f∈H

P (f)1f(s)1S
.

This implies that

I(Ψ(P, s)) =
∑
f∈H

P (f)v(Ef(s)(u))

and we get that

I(f) =
∑
s∈S

µ(s)I(Ψ(P, s)).

Extended monotonicity then follows immediately.

We now provide the proof of sufficiency. When P ∼ Q for all P,Q ∈ L(H), then the

representation is trivial. It is sufficient to choose any arbitrary constant function u.9 Thus,

assume that � satisfies non-degeneracy, i.e., P � Q for some P,Q ∈ L(H). Since the

preference � satisfies order, mixture continuity and first-stage independence, we can apply

Theorem 5.15 in Kreps (1988) to deduce that there exists a function U : H → R such that

� is represented by the function I : L(H)→ R defined by

I(P ) =
∑
f∈H

P (f)U(f).

Moreover, the function U is unique up to a positive affine transformation. That is, if I ′(P ) =∑
f∈H P (f)U ′(f) also represents � for some function U ′ : H → R, then there exist two real

8This corresponds to one of the open problems suggested by Grant et al. (2009).
9Observe that in this case, the probability µ is indeterminate.
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numbers a > 0 and b ∈ R such that U ′ = aU + b. We normalize U such that∑
f∈H

U(f)R0(f) = 0

for some lottery R0 on constant acts. Recall that is R0 can be identified with a compound

lottery in L(L(Z)).

Let U ca be the restriction of U to constant acts inH. Since constant acts can be identified

with lotteries on Z, we can assume that U ca is a function defined on L(Z). The function

U ca is a representation of the preference �ca on constant acts in L(Z) that satisfies order,

mixture continuity and second-stage independence. Applying again Theorem 5.15 in Kreps

(1988), we deduce the existence of a function u : Z → R such that �ca is represented by the

function Ica : L(Z)→ R defined by

Ica(p) =
∑
z∈Z

p(z)u(z).

Moreover, the function u is unique up to a positive affine transformation. The functions U ca

and Ica represent the same preference �ca. Observe moreover that Ica(L(X)) = co(u(X)) is

an interval of the real line.

Lemma 3.1. There exists a strictly increasing function v : co(u(X)) → R such that U ca =

v ◦ Ica.

Proof. We follow almost verbatim the arguments of Lemma B.9 in Seo (2009). Fix an

arbitrary t ∈ co(u(X)). There exists a lottery p ∈ L(X) such that t = Ica(p). Observe

that for any other lottery q ∈ L(X) satisfying t = Ica(q), we have q ∼ca p. We then have

U ca(p) = U ca(q) and we can define v(t) := U ca(p). To prove that v is strictly increasing,

let t, t′ ∈ co(u(X)) such that t′ > t. There exist p, p′ ∈ L(X) such that t = Ica(p) and

t′ = Ica(p′). In particular, we have p′ �ca p. This implies that U ca(p′) > U ca(p) and we get

that v(t′) > v(t).

We propose to show that extended monotonicity translates into the following no-arbitrage-

type property. Identify any act f ∈ H as an asset with state-dependent payoff given by the

random variable

(U ca(Ψ(f, s)))s∈S.
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A portfolio is a simple function θ : H → R with finite support, that is the set {f ∈ H : θ(f) 6=
0} is finite. We let Θ be the linear space of portfolios. The payoff of portfolio θ in state s is

then

Π(θ, s) :=
∑
f∈H

θ(f)U ca(Ψ(f, s)).

The price of each asset f is U(f) and the cost of portfolio θ is then

c(θ) :=
∑
f∈H

θ(f)U(f).

Extended monotonicity implies the following (weak) no-arbitrage property.

Lemma 3.2. Any portfolio with non-negative payoffs cannot have a negative price. Formally,

for every portfolio θ ∈ Θ

[Π(θ, s) ≥ 0, ∀s ∈ S] =⇒ c(θ) ≥ 0.

Proof of Lemma 3.2. We can adapt the arguments in Seo (2009). We provide the details for

the sake of completeness. Fix an arbitrary portfolio θ ∈ Θ such that

Π(θ, s) ≥ 0, ∀s ∈ S. (3.4)

We can always write θ = αP − βQ where P,Q ∈ L(H) and α, β ≥ 0. We provide the details

of the proof when α ≥ β. The other case can be treated similarly. If α = 0 then β = 0 and

θ = 0. The desired result is then obvious. Therefore, assume that α > 0. Note that (3.4)

implies ∑
f∈H

P (f)U ca(Ψ(f, s)) ≥ β

α

∑
f∈H

Q(f)U ca(Ψ(f, s)). (3.5)

Given our normalization of U , we have for any state s

0 =
∑
f∈H

R0(f)U(f) =
∑
f∈H

R0(f)U ca(Ψ(f, s))
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since the support of the lottery R0 only contains constant acts. Letting γ := β/α, we have∑
f∈H

P (f)U ca(Ψ(f, s)) ≥ γ
∑
f∈H

Q(f)U ca(Ψ(f, s)) + (1− γ)
∑
f∈H

R0(f)U ca(Ψ(f, s))

≥
∑
f∈H

[
γQ(f) + (1− γ)R0(f)

]
U ca(Ψ(f, s)).

We have thus proved that I(Ψ(P, s)) ≥ I(Ψ(γQ+ (1− γ)R0, s)), for each s ∈ S, or, equiva-

lently,

Ψ(P, s) � Ψ(γQ+ (1− γ)R0, s), ∀s ∈ S.

Extended monotonicity then implies that

P � γQ+ (1− γ)R0.

Using the representation function I, we deduce that

I(P ) ≥ I(γQ+ (1− γ)R0) = γI(Q) + (1− γ)I(R0) = γI(Q)

since I(R0) = 0 by the normalization choice of U . We then deduce that

c(θ) = αc(P )− βc(Q) = αI(P )− βI(Q) ≥ 0

which is the desired result.

We can now apply a standard convex separation theorem to prove the following weak

version of the Fundamental Theorem of Finance.

Lemma 3.3. There exists a probability measure µ ∈ L(S) such that

c(θ) =
∑
s∈S

µ(s)Π(θ, s), ∀θ ∈ Θ.

Proof of Lemma 3.3. Assume, without any loss of generality, that 0 6∈ S and pose Σ :=

{0} ∪ S. Let A ⊆ RΣ be the set of financial transfers τ = (τ(σ))σ∈Σ ∈ RΣ that can be

implemented by a portfolio, i.e., there exists θ ∈ Θ such that τ(0) = −c(θ) and τ(s) = Π(θ, s)
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for each s ∈ S. Since c is a weak no-arbitrage price (see Lemma 3.2), we have

A ∩ (0,∞)× RS
+︸ ︷︷ ︸

=: B

= ∅.

A is a linear subspace (and therefore convex) and B is convex. However, applying directly

the standard Convex Separation Theorem does not allow to get the desired result. We follow

an approximation argument. Fix ε ∈ (0, 1) and let Cε be the set of all vectors c = (c(σ))σ∈Σ

such that

c ∈ [ε,∞)× RS
+ and

∑
σ∈Σ

c(σ) = 1.

The set Cε is compact and convex. The set A is closed convex. Since A ∩ Cε = ∅, we can

apply the Strict Convex Separation Theorem, to deduce the existence of two real numbers

α, β ∈ R and some non-zero vector ξε = (ξε(σ))σ∈Σ ∈ RΣ such that

∀a ∈ A, ξε · a ≤ α < β ≤ ξε · c, ∀c ∈ Cε.

Since 0 ∈ A, we deduce that

ξε(0) > 0 and ξε(s) > −
ε

1− ε
ξε(0).

Since A is a linear space, the inequality ξε · a ≤ α for each a ∈ A implies that ξε · a = 0 for

each a ∈ A. We then deduce that

c(θ) =
∑
s∈S

µε(s)Π(θ, s), ∀θ ∈ Θ (3.6)

where µε(s) := ξε(s)/ξε(0). Observe that µε(s) ≥ −ε/(1 − ε) for each s ∈ S. Fix now the

portfolio θ? that is the degenerate lottery 1p1S
on the constant act s 7→ p for some lottery

p ∈ L(Z). Observe that

Π(θ?, s) = U ca(p) = U(p1S) = c(θ?).

We then deduce from (3.6) that ∑
s∈S

µε(s) = 1.
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Passing to a subnet if necessary, we can assume that we can pass to the limit in (3.6) and

get the existence of some probability measure µ ∈ L(S) such that

c(θ) =
∑
s∈S

µ(s)Π(θ, s), ∀θ ∈ Θ

Fix an arbitrary act f ∈ H. Choosing θ := δf to be the degenerate lottery on f , we get

that

U(f) =
∑
s∈S

µ(s)U ca(Ψ(f, s)).

Applying Lemma 3.1, we have

U(f) =
∑
s∈S

µ(s)U ca(Ψ(f, s))

=
∑
s∈S

µ(s)v ◦ Ica(Ψ(f, s))

=
∑
s∈S

µ(s)v(Ef(s)(u))

and we get the desired result.

Extended monotonicity plays a crucial role in the representation result of Theorem 3.1.

It cannot be replaced by the weaker axiom of monotonicity. Indeed, for a given function

u ∈ RZ , consider an arbitrary function

Θ : W → R where W := [co(u(X))]S

that is increasing on W and strictly increasing on the certainty line {t1S : t ∈ co(u(X))}.
If we pose

J(P ) :=
∑
f∈H

P (f)Θ((Ef(s)(u))s∈S),

then the function J : L(H) → R defines a preference � that satisfies order, mixture conti-

nuity, first-stage independence, second-stage independence, and monotonicity. However, we

do not necessarily get a SOEU representation. Indeed, a possible choice for the function Θ
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is

Θgs(w) := min{w(s) : s ∈ S}

where the subscript GS obviously stands for Gilboa and Schmeidler (1989).

4 Uniqueness

To analyze uniqueness of the representation in Theorem 3.1, we consider the following stan-

dard axiom.

Non-degeneracy. There exist P,Q ∈ L(H) such that P � Q.

Before presenting the uniqueness properties, we introduce the following notation. Given

a function u : Z → R, we can define the expected utility function Eu from lotteries in L(Z)

to R defined by

Eu(p) := Ep(u) =
∑
z∈Z

p(z)u(z).

The function Eu : L(Z) → R is affine. Moreover, any affine function from L(Z) to R is of

the form Eu for some utility function u ∈ RZ .

Proposition 4.1. Consider a preference � that admits an SOEU representation (µ, u, v).

If � also satisfies non-degeneracy, then

(i) the probability measure µ is unique;

(ii) the function u is unique up to a positive affine transformation,10

(iii) the function v ◦ Eu is unique up to a positive affine transformation.

Proof. Let I : L(H)→ R be the representation of � associated to (µ, u, v), i.e.,

I(P ) =
∑
f∈H

P (f)U(f) where U(f) :=
∑
s∈S

µ(s)v(Ef(s)(u)).

The function U : H → R is the restriction of I to degenerate lotteries. Denote by I ′ :

L(H)→ R be the representation of � associated to (µ′, u′, v′), i.e.,

I ′(P ) =
∑
f∈H

P (f)U ′(f) where U ′(f) :=
∑
s∈S

µ′(s)v′(Ef(s)(u
′)).

10Equivalently, the function Eu is unique up to a positive affine transformation.
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Since � satisfies order, mixture continuity and first-stage independence, it follows from

Theorem 5.15 in Kreps (1988) that there exists a > 0 and b ∈ R such that U ′ = aU + b.

That is, for every act f ∈ H,∑
s∈S

µ′(s)v′(Eu′(f(s))) = b+ a
∑
s∈S

µ(s)v(Eu(f(s))). (4.1)

Fix an arbitrary lottery p ∈ L(Z). Letting f be the constant act p1S, we deduce that

v′(Eu′(p)) = av(Eu(p)) + b. (4.2)

We have thus proved that v′ ◦ Eu′ = a (v ◦ Eu) + b.

The preference �ca is represented by the functions p 7→ Ep(u) and p 7→ Ep(u′). Since

�ca satisfies order, mixture continuity and second-stage independence, it follows from The-

orem 5.15 in Kreps (1988) that there exists α > 0 and β ∈ R such that u′ = αu+ β.

Combining (4.1) and (4.2), we deduce that for every act f ∈ H,∑
s∈S

µ′(s)v′(Eu′(f(s))) =
∑
s∈S

µ(s) [av(Eu(f(s))) + b]

=
∑
s∈S

µ(s)v′(Eu′(f(s))).

Letting U′ := co(u′(Z)), we have that∑
s∈S

µ′(s)v′(w(s)) =
∑
s∈S

µ(s)v′(w(s))

for any (w(s))s∈S ∈ [U′]S. Since � satisfies non-degeneracy, the interval U′ cannot be reduced

to a singleton. Since v′ is strictly increasing, we deduce that the set

{(v′(w(s)))s∈S : (w(s))s∈S ∈ [U′]S}

admits a non-empty interior in RS. Since µ − µ′ is orthogonal to the above set, we deduce

that µ = µ′.

To characterize the support of the probability in the SOEU representation, we recall the

standard definition of a null set.
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Definition 4.1. A set s ∈ S is null when for all acts f, g ∈ H and all lotteries p, q ∈ L(Z),

f � g ⇐⇒ psf � qsg.

In other words, the state s is null when it does not matter for the ranking of acts.

In a SOEU representation (µ, u, v) of a preference �, the support of the probability µ

corresponds to non-null states.

Proposition 4.2. Consider a preference � that admits an SOEU representation (µ, u, v).

If � also satisfies non-degeneracy, then µ(s) = 0 if, and only if, s is null.

Proof. The “only if” part is obvious. To prove the “if” part, we assume that s is null. Fix

an act f ∈ H and two lotteries p, q ∈ L(Z). Since s is null, we have psf � qsf if, and only

if, psf � qsf . Using the SOEU representation (µ, u, v), we deduce that

µ(s)v(Ep(u)) ≥ µ(s)v(Eq(u))⇐⇒ µ(s)v(Eq(u)) ≥ µ(s)v(Ep(u)).

Since � satisfies non-degeneracy, there exists p, q ∈ L(Z) such that p �ca q, or, equivalently,

Ep(u) > Eq(u). We then deduce that µ(s) = 0.

5 Continuity

In order to obtain continuity properties of the utility function, we consider a topology on Z.

In this section, we assume that Z is a separable metric space. We endow the space L(Z)

with the weak topology defined as the coarsest topology such that every linear mapping

p 7→ Ep(u) is continuous for every bounded and continuous function u. This implies that a

sequence (pn) of lotteries in L(Z) weakly converges to another lottery p ∈ L(Z) when

lim
n→∞

∑
z∈Z

pn(z)u(z) =
∑
z∈Z

p(z)u(z)

for every bounded and continuous function u : Z → R. The weak topology on L(Z) is

metrizable and separable. The space H of acts is identified with the product space L(Z)S

and is therefore endowed with the product of weak topologies. This topology on H is also

metrizable and separable. We then endow the choice space L(H) with the weak topology
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defined as the coarsest topology such that every linear mapping P 7→
∑

f∈H P (f)U(f) is

continuous for every bounded and continuous function U : H → R.

We introduce the following strengthening of the mixture continuity axiom.

Continuity. The preference � is continuous with respect to the weak topology.11

We can now characterize the continuity of the functions u and v in a SOEU representation.

Theorem 5.1. Preference � on L(H) satisfies order, continuity, first-stage independence,

second-stage independence, and extended monotonicity if, and only if, it has an SOEU rep-

resentation (µ, u, v) where u is continuous and bounded and v is continuous.

Proof. We start by proving the “if” part. We shall prove that the function f 7→ U(f) defined

on H by

U(f) =
∑
s∈S

µ(s)v(Ef(s)(u)) =
∑
s∈S

µ(s)(v ◦ Eu)(f(s))

is bounded and continuous. Since u is bounded and continuous, the linear functional Eu :

L(Z) → R is weakly continuous. Since v is continuous, the mapping v ◦ Eu is weakly

continuous and we get that U is continuous with respect to the product topology on H.

Boundedness of U follows from boundedness of u and continuity of v.

The “only if” part corresponds to the proof of Theorem 3.1 replacing the use Theo-

rem 5.15 in Kreps (1988) by Theorem 5.21 in Kreps (1988). We then get that U : H → R is

bounded and continuous with respect to the weak topology. Moreover, the weak topology on

L(Z) coincides with the relative topology on L(Z) induced by L(H). This implies that the

preference �ca on constant acts is continuous with respect to the weak topology. We then

get that u is bounded and continuous. Finally, to prove that v is continuous, recall that v is

defined on the set co(u(X)) as follows

v(t) = U ca(p) for any p ∈ L(Z) such that t = Ep(u),

where U ca(p) := U(p1S). Since L(Z) is connected and U ca is continuous, the set v(co(u(X))) =

U ca(L(Z)) is also connected. Since v is strictly increasing, we necessarily have that v is con-

tinuous.

11That is, for every P ∈ L(H), the set {Q ∈ L(H) : Q � P} and {Q ∈ L(H) : P � Q} are closed for the
weak topology.
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6 Uncertainty Aversion

Our general representation results (Theorem 3.1 and Theorem 5.1) do not require any specific

assumption regarding the decision maker’s attitude towards subjective uncertainty. We

consider the following standard axiom introduced by Schmeidler (1989) to represent the

decision maker’s aversion towards subjective uncertainty.

Uncertainty Aversion. Let f, g ∈ H and α ∈ (0, 1).

f ∼a g =⇒ αf + (1− α)g �a f.

This axiom captures the plausible assumption that “smooting out” acts should provide

a hedge against subjective uncertainty and consequently should be desirable. That is, we

assume that a decision maker who finds two acts equally attractive, will be embarrassed to

state that their mixture is worse than both.

Under the basic axioms and extended monotonicity, the axiom of uncertainty aversion

translates into the concavity of the function v.

Theorem 6.1. Preference � on L(H) satisfies order, continuity, first-stage independence,

second-stage independence, extended monotonicity and uncertainty aversion if, and only if,

it has an SOEU representation (µ, u, v) where u is bounded continuous and v is concave

continuous.

Proof. We omit the straightforward arguments of the “if” part and focus on the proof of

the “only if” part. Let � be a preference on L(H) satisfying order, continuity, first-stage

independence, second-stage independence, extended monotonicity and uncertainty aversion.

It follows from Theorem 5.1 that � has an SOEU representation (µ, u, v) where u is bounded

continuous and v is continuous. We only have to prove that v is also concave. If u is constant,

then the domain of v is a singleton and v is obviously concave. We now assume that u is not

constant. This implies that co(u(Z)) is an interval of R with a non-empty interior denoted

by int(co(u(X))).

Let W := [co(u(Z))]S and define Ψ : W → R defined as follows: for every w =

(w(s))s∈S ∈ W ,

Ψ(w) :=
∑
s∈S

µ(s)v(w(s)).
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Replacing S by the support of µ is necessary, we can assume without any loss of generality

that µ(s) > 0 for each s ∈ S.

Lemma 6.1. The function Ψ is quasi-concave.

Proof of Lemma 6.1. Fix w, w̃ ∈ W and assume, without any loss of generality, that Ψ(w) ≤
Ψ(w̃). We analyze two cases.

If w(s) = inf co(u(Z)) for each s, then Ψ(w) = inf Ψ(W ), and for any α ∈ [0, 1], we have

Ψ(αw + (1− α)w̃) ≥ Ψ(w).

Assume now that there exists u ∈ co(u(Z)) such that w := u1S < w.12 Replacing

u by min{min{u, ŵ(s)} : s ∈ S} if necessary, we can assume that w ≤ w̃. Since v is

strictly increasing, we deduce that Ψ(w) < Ψ(w). Since Ψ is continuous, we can apply the

Intermediate Value Theorem to get the existence of some γ ∈ [0, 1] close enough to 1 such

that

Ψ(ŵ) = Ψ(w) where ŵ := γw + (1− γ)w̃.

Since w(s) ∈ co(u(Z)), there exists f(s) ∈ L(Z) such that w(s) = Ef(s)(u). Similarly, there

exists an act g ∈ H such that ŵ(s) = Eg(s)(u). Observe that f ∼a g. Uncertainty aversion

implies that αf + (1− α)g �a f . In particular, we get that

Ψ(αw + (1− α)ŵ) ≥ Ψ(w).

Since w ≤ w̃, we deduce that αw + (1− α)ŵ ≤ αw + (1− α)w̃. Monotonicity of Ψ implies

the desired result: Ψ(αw + (1− α)w̃) ≥ Ψ(w).

The restriction of the function Ψ to the open set [int(co(u(X)))]S satisfies the assumptions

of Theorem 2 in Debreu and Koopmans (1982) and deduce that with at most one exception,

every function µ(s)v is concave on int(co(u(X))). This implies that v is concave on the

interior of the interval co(u(X)). Since we already proved that v is concave on the whole

interval co(u(X)), we can follow a standard limiting argument to deduce that v is concave

on the whole interval co(u(X)).

Grant et al. (2009) also provide an axiomatization of SOEU preferences with a concave

function v. In Theorem 6.1, we obtain concavity of v under the mere assumption of uncer-

tainty aversion, while Grant et al. (2009) impose an additional axiom, called weak translation

12That is, u ≤ w(s) for each s with a strict inequality for at least one s.
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invariance at certainty, which requires that the supporting hyperplanes are equal along the

certainty line whenever they are unique.
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