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ABSTRACT
Future galaxy surveys will provide accurate measurements of the matter power spectrum across an unprecedented range of
scales and redshifts. The analysis of these data will require one to accurately model the imprint of non-linearities of the matter
density field. In particular, these induce a non-Gaussian contribution to the data covariance that needs to be properly taken into
account to realize unbiased cosmological parameter inference analyses. Here, we study the cosmological dependence of the
matter power spectrum covariance using a dedicated suite of N-body simulations, the Dark Energy Universe Simulation–Parallel
Universe Runs (DEUS-PUR) Cosmo. These consist of 512 realizations for 10 different cosmologies where we vary the matter
density �m, the amplitude of density fluctuations σ 8, the reduced Hubble parameter h, and a constant dark energy equation
of state w by approximately 10 per cent. We use these data to evaluate the first and second derivatives of the power spectrum
covariance with respect to a fiducial �-cold dark matter cosmology. We find that the variations can be as large as 150 per cent
depending on the scale, redshift, and model parameter considered. By performing a Fisher matrix analysis we explore the impact
of different choices in modelling the cosmological dependence of the covariance. Our results suggest that fixing the covariance
to a fiducial cosmology can significantly affect the recovered parameter errors and that modelling the cosmological dependence
of the variance while keeping the correlation coefficient fixed can alleviate the impact of this effect.

Key words: gravitational lensing: weak – methods: numerical – galaxies: distances and redshifts – large-scale structure of
Universe – cosmology: theory.

1 IN T RO D U C T I O N

The upcoming generation of galaxy surveys will provide accurate
measurements of the clustering of matter across an unprecedented
range of scales and redshifts (e.g. LSST Science Collaboration et al.
2009; Laureijs et al. 2011; DESI Collaboration et al. 2016; Akeson
et al. 2019). Precise estimates of the matter power spectrum from
measurements of the spatial distribution of galaxies and the weak
gravitational lensing shear will enable one to test models beyond
the standard �-cold dark matter (�CDM) scenario and investigate
the nature of dark energy. These data sets will be sensitive to
the imprints of the non-linear regime of gravitational collapse of
matter; as such they need to be accurately modelled if one aims
to infer unbiased cosmological parameter constraints. In the past
years, this has sparked a major theoretical and numerical effort to
provide accurate predictions of galaxy clustering observables and
the associated data covariances on quasi-linear and non-linear scales.
On large scales, the matter density field is Gaussian. Consequently,
the matter power spectrum covariance has a diagonal structure and
is simply proportional to the square of the power spectrum itself.

� E-mail: lblot@mpa-garching.mpg.de

Finite-survey volume effects induce a non-Gaussian contribution
also known as supersample covariance (see e.g. Hamilton, Rimes &
Scoccimarro 2006; Takada & Hu 2013), while the non-linearities of
the matter density field that develop at small scales induce mode cor-
relations that further contribute to the non-Gaussian structure of the
covariance, making the matrix non-diagonal (Meiksin & White 1999;
Scoccimarro, Zaldarriaga & Hui 1999). Analytical approaches to
estimate these effects have been developed in a vast literature (see e.g.
Mohammed & Seljak 2014; Bertolini et al. 2016; Barreira & Schmidt
2017; Taruya, Nishimichi & Jeong 2020). Approximate numerical
methods to simplify the evaluation of the covariance have also been
introduced in several studies (Paz & Sánchez 2015; Friedrich et al.
2016; Padmanabhan et al. 2016; Joachimi 2017). Nevertheless, N-
body simulations remain the primary tool to investigate the imprint
of non-linearities, whilst providing the necessary benchmark to test
the validity of analytical model predictions (see e.g. Takahashi et al.
2009; Kiessling et al. 2011; Blot et al. 2015; Klypin & Prada 2018;
Villaescusa-Navarro et al. 2019).

Estimating the covariance with the level of accuracy that is
required to correctly analyse future galaxy survey data demands
sampling the matter power spectrum from a very large suite of N-body
simulations. As an example, in Blot et al. (2015) we have estimated
the covariance using ∼104 independent N-body simulations and
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Covariance cosmological parameter dependence 2533

shown that non-linearities induce significant deviations from the
Gaussian prediction on modes k � 0.25 h Mpc−1 and at redshift z <

0.5. Furthermore, by taking advantage of the large simulation suite,
Blot et al. (2016) have shown that more than >5000 realizations are
necessary to reduce the impact of sample covariance errors on the
estimated cosmological parameter uncertainties to subpercent level.

In these studies, the power spectrum covariance has been evaluated
for a fixed fiducial cosmological model. However, the imprint of non-
linearities on the matter power spectrum is cosmology dependent
(see e.g. Ma et al. 1999; Casarini, Macciò & Bonometto 2009; Alimi
et al. 2010). Hence, it is natural to expect that such dependence
extends to the non-Gaussian part of the matter power spectrum
covariance. Neglecting the variation of the covariance with the
cosmological model parameters can introduce spurious systematic
errors in the parameter inference analysis. This has been investigated
in the past in the context of weak lensing shear power spectrum
measurements especially in relation to the supersample covariance
(Eifler, Schneider & Hartlap 2009; Labatie, Starck & Lachièze-Rey
2012; Carron 2013; Kodwani, Alonso & Ferreira 2019; Harnois-
Déraps, Giblin & Joachimi 2019) and several methodologies have
been developed to extrapolate the cosmological dependence from a
finite set of simulations (see e.g. Morrison & Schneider 2013; White
& Padmanabhan 2015; Reischke, Kiessling & Schäfer 2017).

Here, we aim to specifically investigate the cosmological de-
pendence of the matter power spectrum covariance due to small
scale non-linearities. We will make use of a large ensemble of N-
body simulations for several cosmological parameter configurations
to compute the first- and second-order derivatives of the power
spectrum covariance. Our intent is to determine the amplitude of
such derivatives and perform a preliminary evaluation of their impact
on cosmological parameter inference through a forecast analysis.
Moreover, to facilitate further progress in the analytical modelling
of the cosmological dependence of the power spectrum covariance,
we have made publicly available the numerical simulation data used
in the study presented here.

The paper is organized as follows. In Section 2, we describe the
simulations set and the covariance estimator. In Section 3, we present
our results on the cosmological dependence of the covariance and its
impact on cosmological parameter inference analyses. In Section 4,
we present our conclusions.

2 ME T H O D O L O G Y

2.1 N-body simulation suite

2.1.1 Numerical codes and simulation pipeline

Building upon the automated pipeline developed for the Dark Energy
Universe Simulations–Parallel Universe Runs (DEUS-PUR) project
(Blot et al. 2015), we have realized a large suite of N-body simulations
for different sets of cosmological parameters. We refer to this
simulation suite as DEUS-PUR Cosmo.

In the following, we will briefly describe the simulation pipeline
and we refer the interested readers to Blot et al. (2015) for a more
detailed description. The cosmological parameters for the different
runs are provided by the user through name list files, while the
sequential call to the various codes, from the computation of the input
tables containing the cosmological functions to the postprocessing
of the simulations, is entirely automatized. For a given cosmological
model, the first step consists in computing the linear matter power
spectrum using the code CAMB (Lewis, Challinor & Lasenby 2000)
and solving the Friedmann equations using a dedicated code called

Table 1. Cosmological parameter values of the DEUS-PUR Cosmo sim-
ulated models with flat geometry. Model 1 is an EdS model, model 2 is
our fiducial �CDM model (in italic) with parameters set consistently to
the WMAP-7 yr data, while all other models differ for a variation of one
of the parameter values (in bold). Models 5 and 6 are characterized by a
±13 per cent variation of σ 8 with respect to the fiducial value, models 7 and
8 by a ±20 per cent variation of �m, and models 9 and 10 by a ±7 per cent
variation of h. Models 3 and 4 are flat wCDM models with a ±20 percent
variation of the equation of state parameter with respect to the cosmological
constant case (w = −1).

Model �m σ 8 h w

1 1.0000 0.801 0.72 −1.0
2 0.2573 0.801 0.72 −1.0
3 0.2573 0.801 0.72 −1.2
4 0.2573 0.801 0.72 −0.8
5 0.2573 0.700 0.72 −1.0
6 0.2573 0.900 0.72 −1.0
7 0.3100 0.801 0.72 −1.0
8 0.2046 0.801 0.72 −1.0
9 0.2573 0.801 0.67 −1.0
10 0.2573 0.801 0.77 −1.0

NEWDARKCOSMOS. The respective output tables are input to the
code generating the initial conditions in the former case and the N-
body solver in the latter case. Then Gaussian initial conditions are
generated with an optimized version of the code MPGRAFIC (Prunet
et al. 2008). The simulations are run using an improved version of
the adaptive mesh refinement (AMR) N-body code RAMSES (Teyssier
2002), which uses a multigrid Poisson solver (Guillet & Teyssier
2011). Finally, haloes are detected with the halo finder code PFOF

(Roy, Bouillot & Rasera 2014), which is based on the friends-
of-friends algorithm, while power spectra are computed using an
optimized version of the code POWERGRID (Prunet et al. 2008), which
uses a fast Fourier transform algorithm. The matter density field is
estimated on a Cartesian grid (twice thinner than the coarse AMR
grid) with a cloud-in-cell mass assignment scheme. To minimize the
effect of aliasing, we exclude all modes beyond half the Nyquist
frequency of the density grid.

2.1.2 Cosmological models and simulation characteristics

For each of the 10 cosmological models listed in Table 1, we have
run a set of 512 cosmological N-body simulations that share the
same initial phases across different cosmologies such as to reduce
the numerical noise in the computation of the derivatives of the
matter power spectrum and its covariance. Each simulation consists
of a cubic box of length size Lbox = 328.125 h−1 Mpc with 5123

particles (corresponding to a particle mass mp = 1.88 × 1010M� h−1

for the fiducial cosmology). We have opted for such configuration,
since it allows us to resolve with high accuracy the quasi-linear
and non-linear scales contributing to the non-Gaussian part of the
covariance, which is the object of our investigation.

The cosmological parameters have been chosen such that we vary
one parameter of interest at a time in a symmetric way with respect to
the fiducial value. This allows us to obtain a very accurate estimate of
the first and second derivatives of any quantity in the vicinity of the
reference cosmological model. Our fiducial cosmology corresponds
to model 2 in Table 1, which is a flat �CDM model calibrated on
WMAP-7 yr data (Komatsu et al. 2011). We have set the baryon
density �bh2 = 0.02258 and the scalar spectral index ns = 0.963
consistently with the values of the WMAP-7 cosmological analysis,
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2534 L. Blot et al.

while the amount of radiation and massless neutrinos is fixed to the
standard values set by default in the CAMB code. Models 3 and 4
correspond to flat wCDM models with variations of the dark energy
equation of state parameter w, model 5 and 6 correspond to variations
of the amplitude of the matter density fluctuations on the 8 h−1 Mpc
scale σ 8, models 7 and 8 to variations of the cosmic matter density
�m, while models 9 and 10 are associated with variations of the
reduced Hubble constant h. We have also run as test case a set of
simulations for model 1, which is an Einstein-de Sitter model (EdS)
without dark energy.

The cosmological parameter values listed in Table 1 cover a range
that is much larger than the 1σ limits inferred from the Planck
analysis of the cosmic microwave background (CMB) anisotropy
power spectra (Planck Collaboration et al. 2018) for the concordance
�CDM model. The reasons for such a choice are multiple. First
of all, the Planck constraints significantly relax in the case of the
wCDM model considered here such as to include within 1σ the
different combinations of parameter values of our simulated models.
Moreover, these are consistent with the bounds inferred from state-
of-the-art cosmological analyses of large-scale structure data (see e.g.
Abbott et al. 2018) for which the study presented here is particularly
relevant. Secondly, our choice also reflects the fact that a too small pa-
rameter interval would result in a noisy estimation of the covariance
derivatives. Finally, the parameter variations we have considered
span tensions on the values of H0 and the parameter combination
S8 = σ 8(�m/0.3)0.5 which have arisen from the analysis of different
cosmological probes. As an example, direct measurements of H0

have resulted in a 5σ discrepancy with the CMB inferred value from
the Planck analysis (Planck Collaboration et al. 2018). Similarly,
the value of S8 measured from weak lensing probes is consistently
lower than the value inferred from the Planck data (Hildebrandt et al.
2020; Abbott et al. 2018; Hikage et al. 2019). The origin of such
discrepancies has yet to be elucidated. Whether they are the result
of unaccounted systematics or a real effect, the parameter variations
considered here allow us to address their potential impact on power
spectrum analyses through the cosmological dependence of the non-
Gaussian covariance.

2.2 Covariance estimator and parameter derivatives

We compute the matter power spectrum P(k) of each realization in
band powers of size �k = 2π /Lbox in the range of modes kmin ≤ k ≤
kmax, where kmin = 2π /Lbox and kmax = kNy/2 = πN1/3

p /Lbox with
kNy being the Nyquist frequency of the density grid of the cloud-
in-cell algorithm that we use to estimate the spectra. The density
grid is twice thinner than the coarse AMR grid of the simulation.
In particular, we have kmin = �k ≈ 0.02 h Mpc−1 and kmax ≈ 4.90 h

Mpc−1.
We evaluate the covariance between two different modes using the

unbiased sample covariance estimator:

Ck1,k2 = 1

Ns − 1

Ns∑
i=1

[
Pi(k1) − P̄ (k1)

] [
Pi(k2) − P̄ (k2)

]
(1)

where Ns is the number of realizations, Pi(k) is the matter power
spectrum of the ith realization and P̄ (k) = ∑Ns

i=1 Pi(k)/Ns is the
sample mean.

We estimate the first and second derivatives of the power spectrum
covariance with respect to the cosmological parameters for each pair
of modes using the finite-difference approximation:

∂Ck1,k2

∂θ
≈ Ck1,k2 (θ̂ + �θ ) − Ck1,k2 (θ̂ − �θ )

2�θ
, (2)

∂2Ck1,k2

∂θ2
≈ Ck1,k2 (θ̂ − �θ ) − 2Ck1,k2 (θ̂ ) + Ck1,k2 (θ̂ + �θ )

�θ2
, (3)

where θ̂ is the fiducial cosmological parameter value and �θ the
finite variation of its value.

3 R ESULTS

3.1 Variance of the matter power spectrum

We evaluate the variance of the matter power spectrum (i.e. the
diagonal part of the covariance matrix). This is shown in Fig. 1 for
the different cosmological models (panel left to right) and redshifts
(lines from yellow to dark brown). The top panels show the variance
normalized to the linear prediction,

σ 2
lin(k) = 2 P 2

lin(k)

Nmodes
,

where Nmodes ≈ k2�kV/(2π2) is the number of modes in the bin of
width �k over the spatial volume V and Plin(k) is the linear matter
power spectrum; the lower panels show the variance normalized to
the Gaussian prediction

σ 2
gauss(k) = 2 P̄ 2(k)

Nmodes
,

where P̄ is the average non-linear matter power spectrum from the
512 independent N-body realizations.

We may notice that at small wavenumbers (k < 0.1 h Mpc−1), the
estimated variance is consistent with the linear Gaussian prediction,
which validates the results of our simulations in this regime. On the
other hand at larger wavenumbers, we observe a strong departure
that increases as function of the wavenumber and for decreasing
redshifts. The amplitude of this deviation reaches up to a factor of
104 greater than the linear prediction (top panels) at k ≈ 3 h Mpc−1

at z = 0, and a factor 25 with respect to the Gaussian case (bottom
panels). In the first case, this is partly due to the fact that the linear
power spectrum significantly underestimates P(k) at these scales and
redshifts, while in the latter case this is due to the well-known non-
Gaussian contribution from the non-linear regime of matter clustering
(see e.g. Blot et al. 2015, and references therein). In all cases, we can
see that the amplitude and slope of the departures from the linear and
Gaussian expectations depend on the cosmological parameters in a
non-trivial way. This motivates a detailed study of the cosmological
dependence of the covariance which we discuss next.

3.2 Matter power spectrum covariance derivatives

We evaluate the first and second derivatives of the power spectrum
covariance with respect to the cosmological parameters which we
plot in the top and bottom panels of Fig. 2, respectively. Panels from
left to right show the redshift evolution at z = 2, 1, 0.5, and 0.
The intensity mapping is set such that positive (negative) derivatives
are shown in red (blue), while vanishing matrix elements are shown
in white. Panels from top to bottom correspond to derivatives with
respect to �m, σ 8, h, and w, respectively.

First, we may notice that the sign of the derivatives follows
from that of the matter power spectrum. As an example, the first
derivative of the covariance with respect to �m is negative. This
is because at a fixed value of σ 8, a positive variation of �m

decreases the overall amplitude of the matter power spectrum. Hence,
the covariance decreases, which results in a negative derivative.
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Covariance cosmological parameter dependence 2535

Figure 1. Variance of the matter power spectrum as a function of wavenumber for different cosmologies normalized to the linear theory (top panels) and
the Gaussian expectation (bottom panels). The continuous line indicates the fiducial cosmology case while the shaded area represents the variation when the
parameter indicated in the title of each panel is varied. Colours from dark brown to yellow correspond to decreasing redshifts: z = 2, 1, 0.5, and 0. As we can
see, non-linearities play an important role for k > 0.1 − 0.2 h Mpc−1 and are cosmology-dependent.

Conversely, a positive variation of σ 8 at a fixed �m value increases
the overall amplitude of matter power spectrum, thus resulting in a
positive derivative. We can also see that the first-order derivative
of the covariance increases in absolute value from high to low
redshift. Moreover, at a given redshift, the largest elements are those
corresponding to pairs of modes consisting of a large mode coupled
to a small one, which is indicative of the onset of non-linearities that
grow at lower redshifts while propagating to larger scales. This leads
to a characteristic off-diagonal structure of the first-order derivative
of the covariance that similar to that of the covariance itself (see e.g.
fig. 3 in Blot et al. 2015). It is worth noticing that the first-order
derivative of the covariance is larger for �m and σ 8 and smallest for
w, which follows from the dependence of the matter power spectrum
on these parameters. We observe a similar trend in the case of the
second-order derivatives, shown in Fig. 2, which all have positive
values except for the case of h. Here, it is worth noticing that the
derivatives with respect to h have the smallest amplitude compared
to the other parameters. Because of this, they are more sensitive to
sample noise. This is particularly the case of the second derivative
as noticeable from the bottom panel of Fig. 2.

We can use these derivatives to infer an understanding of the
dependence of the matter power spectrum covariance on the cosmo-
logical parameters. In particular, we can consider a Taylor expansion
of the covariance up to second-order around the fiducial cosmology:

Ck1,k2 (θ ) ≈ Ck1,k2 (θ̂ ) + ∂Ck1,k2

∂θ

∣∣∣∣
θ̂

(θ − θ̂ ) + 1

2

∂2Ck1,k2

∂θ2

∣∣∣∣
θ̂

(θ − θ̂ )2,

(4)

the validity of this approximation depends on the expansion coeffi-
cients, that is, the covariance derivatives normalized to the fiducial

covariance, to be �O(1). We show these ratios in Fig. 3 for the first-
order (top panel) and second-order (bottom panel) terms respectively.
In the first-order case, we can see that the largest matrix elements are
less than unity for �m, h, and w, though still large enough to cause
a slow convergence of the Taylor expansion along these parameter
directions. Instead, in the case of σ 8 the largest matrix elements
exceed unity even on quasi-linear scales corresponding to modes
k � 1 h Mpc−1. This suggests that the dependence of the covariance
on σ 8 may be highly non-linear. Using the same colour coding, we
can see that the second-order terms are much smaller than the first-
order ones. Moreover, most of the second-order contributions are
smaller than unity, meaning that an important part of the information
about the cosmological dependence of the covariance is encoded in
the first two derivatives. In any case, it is striking that a variation of
order �10 per cent of the cosmological parameters induces a change
of the covariance matrices between 10 per cent and 150 per cent
depending on cosmology, redshift and scale.

In Fig. 4, we also plot the fractional variation of the covariance,
∂ log C/∂ log θ . This allows to estimate the expected variation of the
covariance when the parameters are varied by different amounts than
the ones used in this work.

3.3 Cosmological parameter inference forecast

In order to assess the impact of a cosmology-dependent covariance
on the cosmological parameter inference, we perform a simple Fisher
matrix analysis. To take into account the loss of information due to
estimating the covariance from a finite number of simulations we
employ equation (17) of Sellentin & Heavens (2017) and multiply

MNRAS 500, 2532–2542 (2021)
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2536 L. Blot et al.

Figure 2. First (top) and second (bottom) derivative of the covariance with respect to �m (first row), σ 8 (second row), h (third row), and w (fourth row). The
columns from left to right corresponds to redshift z = 2, 1, 0.5, and 0, respectively.

all Fisher matrices by the factor:

Ns(Ns − Nb)

(Ns − 1)(Ns + 2)
, (5)

where Nb is the number of bins in the data vector.
In principle, given the non-Gaussian structure induced by the

cosmological parameter dependence of the covariance, a more
rigorous approach would be to perform a Markov Chain Monte
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Covariance cosmological parameter dependence 2537

Figure 3. First-order (top) and second-order (bottom) term of the Taylor expansion of the covariance (equation 4) normalized to the fiducial model covariance
for the cosmological model parameters and redshifts as shown in Fig. 2. Here, we use the same colour coding for both panels to highlight the relative importance
of the expansion terms. Black pixels correspond to masked elements exceeding the boundary values due to sample variance noise. This shows the large variation
of the covariance induced by small variations of the parameters: �m(±20 per cent), σ8(±13 per cent), h(±7 per cent), w(±20 per cent).
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2538 L. Blot et al.

Figure 4. Fractional variation of the covariance with respect to �m (first row), σ 8 (second row), h (third row), and w (fourth row). The columns from left to
right corresponds to redshift z = 2, 1, 0.5, and 0 ,respectively.

Carlo analysis of a set of synthetic matter power spectrum data
for our fiducial cosmology and let the covariance vary along the
random sampling of the cosmological parameter space. However,
given the limited number of parameter configurations for which we
have evaluated the covariance and the potentially non-linear nature
of its parameter dependence, we are unable to perform such an
analysis.

In the following, we first perform a parameter error forecast
assuming the Fisher matrix defined as (Tegmark, Taylor & Heavens
1997):

FPD
αβ =

∑
l

⎡
⎣∑

ij

∂P (ki, zl)

∂θα

∣∣∣∣
θα=θ̂α

∂P (kj , zl)

∂θβ

∣∣∣∣
θβ=θ̂β

C−1
ki ,kj

(zl)

+ 1

2
tr

(
C−1(zl)

∂C(zl)

∂θα

C−1(zl)
∂C(zl)

∂θβ

)]
, (6)

where P(k, z) is the non-linear matter power spectrum estimated
from the N-body simulation of our fiducial cosmology. Notice that
the second term in the above equation accounts for the parameter
dependence of the covariance. We evaluate the expected parameter
errors as function of kmax. Then, we compare the results to the case
where the covariance is fixed to the fiducial cosmology resulting in
the Fisher matrix to be given by:

FPI
αβ =

∑
ij l

∂P (ki, zl)

∂θα

∣∣∣∣
θα=θ̂α

∂P (kj , zl)

∂θβ

∣∣∣∣
θβ=θ̂β

C−1
ki ,kj

(zl). (7)

Here, PD and PI stand for parameter dependent and parameter inde-
pendent covariance, respectively. We plot the ratio of the estimated
cosmological parameter errors obtained in the two cases in Fig. 5. We
can see that neglecting the parameter dependence of the covariance

Figure 5. Ratio of the parameter errors obtained with a parameter-
independent and a parameter-dependent covariance matrix using equations (7)
and (6), respectively.

can lead to overestimating the parameter errors by a factor of a few
for kmax < 1 and up to a factor of ∼10 at higher kmax.

It is worth noticing that even though varying the covariance during
the sampling would be the correct Bayesian way to infer model
parameter constraints from data sets with parameter-dependent
covariances (see e.g. Ma, Corasaniti & Bassett 2016), this is not how
current matter power spectrum analyses are performed, since the data
covariance is fixed at a fiducial cosmology. If the fiducial model is
far from the true cosmology, then the constraints can be biased and
the errors misestimated. Therefore, to evaluate the extent to which
this affects the cosmological parameter inference we compute the
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Covariance cosmological parameter dependence 2539

Figure 6. Examples of 1σ (dark blue) and 2σ (light blue) parameter contours computed from the Fisher matrix analysis assuming the covariance of the fiducial
cosmology (solid lines), and that associated to a model with a non-fiducial parameter value (dashed and dotted–dashed lines) of w (left-hand panel) and σ 8

(right-hand panel).

Fisher matrix:

Fαβ =
∑
ij l

∂P (ki, zl)

∂θα

∣∣∣∣
θα=θ̂α

∂P (kj , zl)

∂θβ

∣∣∣∣
θβ=θ̂β

C−1
ki ,kj

(zl)

∣∣∣∣
θ=θ∗

, (8)

where we have considered the parameter vector θ = {�m, σ8, w, h}.
We compute the derivative of the matter power spectrum for
the fiducial cosmology specified by the vector of values θ̂ =
{0.2573, 0.801, −1, 0.72} with the finite-difference approximation
using the spectra from the simulations, while we use the covariance
matrix of the simulated cosmologies specified by the vector of values
θ∗ from Table 1. We evaluate equation (8) assuming 15 uncorrelated
redshift bins in the range 0.15 < z < 1.75 corresponding to the
redshift of the snapshots of our simulation suite.

In Fig. 6, we show two examples of the 1σ and 2σ contours inferred
from the evaluation of the Fisher matrix assuming kmax = 1 h Mpc−1

and obtained using the covariance evaluated for different non-fiducial
values of σ 8 (left-hand panel) and w (right-hand panel). The contours
inferred with the covariance evaluated at the fiducial cosmology
are shown as solid line. We can see that with respect to this case,
setting the covariance to a different cosmological model leads to a
modification of the area within the confidence regions as well as the
angle of the degeneracies between different pairs of parameters.

In Fig. 7, we show the variation of the area (left-hand panel) and the
angle (right-hand panel) of the 1σ contours for different combination
of parameters as a function of kmax when using a covariance computed
for the non-fiducial cosmological models from Table 1 with different
values of �m (blue lines), h (orange lines), σ 8 (green lines), and
w (pink lines). We can see that the largest deviation of the contour
area occurs in the case of the covariance being computed for non-
fiducial values of σ 8 and �m, while differences are smaller for h
and w. Quite importantly, deviations are of the order of 50 per cent
on quasi-linear scales corresponding to kmax ∼ 0.1 − 0.2 h Mpc−1,
which are already probed by current galaxy surveys (see e.g. Beutler
et al. 2017). The effect on the angle of the parameter degeneracies is
smaller with maximal deviations not exceeding the 5 per cent level up
to kmax ∼ 2 h Mpc−1. For higher kmax the largest impact is associated
with σ 8, while the effect remains smaller for the other parameters.

Figure 7. Variation of the area (top panel) and angle (bottom panel) of the
1σ contours from the Fisher matrix analysis as a function of kmax when
using the covariance with one of the parameters (indicated in the legend of
the top panel) that is different from the fiducial one. The various line styles
corresponds to the parameter pairs indicated in the legend of the bottom panel.
For each pair, there are two lines, corresponding to the positive and negative
variation of the non-fiducial parameter.
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Figure 8. Variation of the 1σ error from the Fisher matrix analysis as a function of kmax when using the covariance with one of the parameters (indicated in the
title of each panel) that is different from the fiducial one.

In Fig. 8, we show the variation of the 1σ parameter errors as a
function of kmax when using a covariance in a cosmology with one
of the parameters set to a non-fiducial value (indicated in the title of
each panel). As already noted above, the most dramatic variations
occur for non-fiducial values of σ 8 and �m. Quite remarkably, all
the parameter errors considered here are already affected at low kmax

values.
In a more realistic data analysis setting, one would sample

the likelihood over a large number of points in the cosmological
parameter space, while re-computing the whole data covariance
at each evaluation. However, this may be unfeasible. To ease this
problem one possibility is to model the cosmological dependence
of the variance (i.e. the diagonal elements of the covariance) so
that it can be varied during the sampling, while keeping the off-
diagonal structure of the covariance fixed to a given cosmology. We
explore this idea by repeating the Fisher forecast with an approximate
covariance given by:

C̃k1,k2 (θ ) = rk1,k2

∣∣∣∣
θ=θ∗

√
Ck1,k1Ck2,k2

∣∣∣∣
θ=θ̂

, (9)

where r is the correlation coefficient:

rk1,k2 = Ck1,k2√
Ck1,k1Ck2,k2

.

In this case only the off-diagonal structure of C̃ is computed in a non-
fiducial cosmology θ∗, while the diagonal uses the correct parameter
values θ̂ . This mimics the scenario in which the variance is computed
at the cosmology of the sampling points while the correlation
coefficient is kept fixed at a given cosmology. The results are shown
in Figs 9 and 10, where we can see that the impact on cosmological
parameter errors is now significantly reduced, especially for low kmax

values.
In principle, estimating the variance of the matter power spectrum

is easier than computing the entire covariance structure, nevertheless
it may be still hard to capture all the relevant non-Gaussian contri-
butions to the variance. In such a case, one may think of simplifying
the problem by fixing the whole non-Gaussian part of the covariance
to a given cosmology and only vary the Gaussian part during the
sampling. In this case, the approximate covariance is given by:

C̃k1,k2 (θ ) = rk1,k2

∣∣∣∣
θ=θ∗

√
CG

k1,k1

∣∣∣∣
θ=θ̂

+ CnG
k1,k1

∣∣∣∣
θ=θ∗

×
√

CG
k2,k2

∣∣∣∣
θ=θ̂

+ CnG
k2,k2

∣∣∣∣
θ=θ∗

, (10)

Figure 9. Variation of the area (top panel) and angle (bottom panel) of the
1σ contours from the Fisher matrix analysis as a function of kmax assuming
that the diagonal part of the covariance is that of the fiducial cosmology, while
the off-diagonal elements are set to a cosmology with a non-fiducial value
for the cosmological parameter indicated in the legend of the top panel. The
various line styles corresponds to the parameter pairs indicated in the legend
of the bottom panel. For each pair, there are two lines, corresponding to the
positive and negative variation of the non-fiducial parameter.

where G and nG indicate the Gaussian and non-Gaussian parts,
respectively. We show the results of the corresponding Fisher analysis
in Fig. 11, where we can see that this strategy does not significantly
reduce the impact on the parameter errors.

We would like to stress that in a realistic galaxy clustering analysis,
the impact of the cosmological dependence of the covariance on
the cosmological parameter inference might have a smaller effect
than what we have found here. This is because such an analysis will
propagate uncertainties on the galaxy bias as well as the effect of shot
noise. Whether such nuisance parameters can reduce or absorb the
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Covariance cosmological parameter dependence 2541

Figure 10. Variation of the 1σ error from the Fisher matrix analysis as a function of kmax assuming the covariance as given by equation (9), with the diagonal
part set to the fiducial cosmology, while the off-diagonal elements are set to a cosmology with a non-fiducial value of the parameter specified in the title of each
panel.

Figure 11. Variation of the 1σ error from the Fisher matrix analysis as a function of kmax assuming the covariance as given by equation (10) with the Gaussian
part set to the fiducial cosmology, while the non-Gaussian part is set to a cosmology with a non-fiducial value of the parameter specified in the title of each
panel.

impact of the cosmological dependence of covariance goes beyond
the scope of this work and we leave to a future study.

4 C O N C L U S I O N

In this work, we have investigated the cosmological dependence of
the matter power spectrum covariance. To this purpose, we have used
the DEUS-PUR Cosmo set of simulations consisting of a large set of
independent N-body realizations for different cosmological models
characterized by different values of the cosmic matter density �m,
the amplitude of matter density fluctuations σ 8, the reduced Hubble
parameter h, and the dark energy equation of state w. This data
set has enabled us to estimate the covariance matrix for different
cosmological parameter values and evaluate its first and second
derivatives around a fiducial cosmological model. We found that the
non-Gaussian part of the covariance from the non-linear clustering
of matter exhibits a varying degree of dependence on the different
parameters at different redshifts. In particular, σ 8 and w have the
largest impact at high redshift, while �m and h at low redshift. The
analysis of the covariance derivatives indicates that the convergence
of a second-order Taylor expansion around the fiducial cosmology to
approximate the cosmological dependence of the covariance is rather
slow since the first-order coefficients of the expansion are of order of
unity. In the case of σ 8, the first-order coefficient is larger than unity
at high redshift, potentially indicating a non-linear dependence of
the covariance on this parameter. The different cosmological model

parameters considered here span ∼10 per cent variation around the
fiducial cosmology, and yet it can lead to important differences in the
power spectrum covariance at �100 per cent level on some scales
and redshifts. We have evaluated the impact of the cosmological
parameter dependence of the covariance on cosmological parameter
inference through a Fisher matrix approach. In particular, we have
estimated the parameter uncertainties assuming a non-fiducial model
covariance as function of the maximum mode kmax probed by a galaxy
survey. We found significant differences with respect to the case
with the covariance set to the fiducial cosmology. The largest effect
occurs for non-fiducial values of σ 8 and �m with deviations larger
than 50 per cent level already at modest kmax ∼ 0.1 − 0.2 h Mpc−1.
On the other hand, the impact on the degeneracy between pair of
parameters is less significant, exceeding the 10 per cent level only at
kmax > 1 h Mpc−1.

These results suggest that the cosmological parameter dependence
of the non-Gaussian part of the covariance may impact the cosmo-
logical analyses from future surveys of the large-scale structures.
It is worth emphasizing that the quasi-linear and non-linear scales
over which the power spectrum covariance exhibits such a large
dependence on the cosmological parameters are also probed by
cosmic shear measurements. Hence, it is reasonable to expect that
the effects we have found in our analysis may also impact the
parameter inference from weak lensing observations. It is important
to remind that in our analysis we have neglected the impact of
galaxy bias and shot noise. It is yet to be determined whether
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these nuisance parameters may reduce or enhance the impact of
the cosmological dependence of the covariance. However, these
depend on the characteristics of the galaxy survey considered, which
is beyond the scope of the work presented here.

The current approach of keeping the covariance fixed to the fiducial
cosmology when sampling the likelihood is likely to alter the shape
of the posterior and consequently introduce systematic uncertainties
on the cosmological parameter inference. Since it is not possible to
run thousands of simulations to evaluate the covariance for each
point in the parameter space that is explored by the likelihood
sampling, the cosmological dependence of the covariance need to
be modelled. Here, we have explored the possibility of modelling
such dependence by fixing the off-diagonal part of the covariance
matrix to the fiducial cosmology, while letting only the diagonal part
vary with cosmology. This significantly reduces the misestimation
of the parameter errors from the Fisher analysis, particularly at
scales probed by galaxy clustering measurements. The data set from
DEUS-PUR Cosmo simulations provides an ideal benchmark to test
models of the cosmological dependence of the covariance. To this
purpose we have made the power spectra used in this work publicly
available.

Further investigation is indeed necessary for a more robust
assessment of the potential bias induced on the parameter es-
timation beyond the Fisher matrix approach. Our evaluation of
the first- and second-order derivatives of the covariance can
provide the foundation for a study that accounts for the non-
Gaussian structure of the likelihood, for example using the so-
called Derivative Approximation for Likelihoods (Sellentin, Quartin
& Amendola 2014) method. We leave this investigation to a future
work.
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