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ABSTRACT
In this paper, we study the universality of the results of SQUEZE, a software package to classify quasar spectra and estimate their
redshifts. The code is presented in Pérez-Ràfols et al. (2019). We test the results against changes in signal to noise, spectral
resolution, wavelength coverage, and quasar brightness. We find that SQUEZE levels of performance (quantified with purity and
completeness) are stable to spectra that have a noise dispersion four times that of our standard test sample, Baryon Oscillation
Spectroscopic Survey (BOSS). We also find that the performance remains unchanged if pixels of width 25 Å are considered, and
decreases by ∼ 2 per cent for pixels of width 100 Å. We see no effect when analysing subsets of different quasar brightness, and
we establish that the blue part (up to 7000 Å) of the spectra is sufficient for the classification. Finally, we compare our suite of
tests with samples of spectra expected from WEAVE-QSO and DESI, and narrow-band imaging from J-PAS. We conclude that
SQUEZE will perform similarly when confronted with the demands of these future surveys as when applied to current BOSS data.

Key words: quasars: absorption lines – quasars: emission lines – cosmology: observations.

1 IN T RO D U C T I O N

Current spectroscopic surveys are generating hundreds of thousands
of spectra of objects targeted as quasars. These spectra need to
be inspected to determine whether the observed object is indeed
a quasar, and to estimate their redshift when that is the case. One of
such surveys is the Baryon Oscillation Spectroscopic Survey (BOSS;
Dawson et al. 2013, part of the Sloan Digital Sky Survey – III survey
Eisenstein et al. 2011), with 546 856 spectra targeted as quasars
that were visually inspected (Pâris et al. 2017). In light of next
generation of surveys such as WEAVE-QSO (Pieri et al. 2016; as
part of WEAVE, Dalton et al. 2016), DESI (DESI Collaboration
2016), Euclid (Laureijs et al. 2010), and J-PAS1 (Benitez et al.
2014), it has become clear that these surveys will provide potential
quasar (pseudo-)spectra in numbers too large for a survey-wide visual
inspection to be viable.

In Pérez-Ràfols et al. (2019), hereafter Paper I, we presented a
code, SQUEZE,2 to automatically inspect all these spectra. SQUEZE

works by measuring the presence and relative strength of potential
quasar emission lines in coarse bands of spectrum using a series of
metrics. The performance of the algorithm is tested using BOSS data
and yields a purity of 97.40 ± 0.47 per cent (99.59 ± 0.06 per cent
for quasars with z≥ 2.1) and a completeness of 97.46 ± 0.33 per cent
(98.81 ± 0.13 per cent for quasars with z ≥ 2.1) when a confidence
threshold of pmin = 0.32 is used. Here (and throughout this paper),

� E-mail: iperezra@lpnhe.in2p3.fr
1J-PAS is an imaging survey survey with 56 narrow-band filters as can be
treated as effectiveluy providing ‘pseudo-spectra’.
2Publicly available at https://github.com/iprafols/SQUEzE.

purity is defined as the number of quasars that are correctly clas-
sified divided by the total number of objects called quasars, and
completeness as the number of quasars correctly classified divided
by the total number of quasars that were fed to SQUEZE. Note that
for a quasar to be correctly classified we require its redshift to be
within 0.15 of the ‘true’ redshift (defined currently as that which
is given by visual inspection). Other codes, such as QUASARNET

(Busca & Balland 2018) or RedRock (an unpublished DESI code that
develops the methods used by the BOSS pipeline; see Bolton et al.
2012), appear to have roughly similar performance to SQUEZE (a
detailed comparison between the performance of SQUEZE and these
codes will be given in follow-up papers in the series), but access the
entire spectra. The critical decision-making algorithms of SQUEZE,
on the other hand, use only high-level metrics. The difference is
noteworthy because all current training and performance tests have
made based on BOSS data (the only large enough visually inspected
data set available), while these codes will be applied to other surveys
with different resolution, noise properties, and pipeline reduction
software. The minimal direct access of SQUEZE to the spectra makes
it more resistant to these potential peculiarities.

SQUEZE sets only minimal requirements on the data: a spectral
resolution sufficient to marginally resolve quasar emission lines
and a wavelength range wide enough to access a small number of
detectable emission lines simultaneously at the redshifts of interest.
This versatility is a key element of SQUEZE, as the main goal of
these classifiers is to operate on data from new surveys, rather than
from the already complete BOSS survey. We test the limits of this
versatility with low signal to noise (increasing the noise dispersion
by a factor of up to 4), low resolution (down to pixels of 100 Å; in
width), and changes in quasar properties with brightness.

C© 2020 The Author(s)
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Our tests are not arbitrarily chosen. They refer in broad terms to
the next-generation surveys stated above. All these quasar samples
are dominated by their faint limits and identification is limited by
the success at these faint limits. Both WEAVE-QSO and DESI will
acquire spectra of z > 2.1 quasars with signal to noise � 0.4 at
full depth, and this is the approximate minimum signal to noise
of BOSS quasar spectra. A further challenge is presented by DESI
since it must identify and perform a redshift estimate on essentially
all quasars targeted with an exposure time four times shorter, and
this corresponds to our four times noise test limit. Finally, J-
PAS will acquire narrow-band imaging data of quasars with filter
centres separated by 100 Å; broadly equivalent 100 Å; binning,
and will reach depth necessary to identify WEAVE-QSO targets
(r < 23.2), which corresponds to our four times noise test limit.
Finally, some target selection from J-PAS data will be acquired at
times by only partial wavelength coverage, addressed by our other
tests.

We therefore estimate the performance of the algorithm when
applied to data sets with different properties, and determine the
conditions where the trained algorithm is no longer applicable.
Using only high-level metrics, SQUEZE is resistant to the changes
mentioned above. The object of this paper is to quantify the extent
to which these changes affect the performance of SQUEZE. We will
first address how performance is affected by changes related to the
usage of different instrumentation: changes in the signal to noise,
changes in spectral binning (and effectively resolution), and changes
in wavelength coverage. We also explore the impact on performance
when studying samples of fainter quasars. Finally, we explore the
challenge of acquiring faint quasar samples from J-PAS data by
combining both increased noise and decreased resolution.

As in Paper I, in this paper we assume that the visual inspection
is always correct. Based on a preliminary visual re-inspection of a
subset of the apparent failures, we believe that the visual inspection
catalogue suffers from low levels (∼ 1 per cent) of impurity and
incompleteness. Therefore, a more detailed study of the validity of
this statement will be addressed in a follow-up paper on the series.
The data sets used here are the same used in Paper I and are described
in section 3 of Paper I, but we summarize its properties here. We use
eight independent pairs of training and validation samples. Each
of the samples consists of 64 plates of BOSS (∼6800 quasars and
∼11 520 contaminants), and all 16 samples are independent of each
other. The spectra in these samples are modified for the different tests
as explained in the corresponding sections.

This paper is organized as follows. We start by giving an overview
of SQUEZE in Section 2. Then, we move to testing changes in signal
to noise in Section 3, changes in spectral binning in Section 4 and
changes in wavelength coverage in Section 5. Tests on the effect in
changes on quasar properties are performed in Section 6. Finally, we
discuss the performance of SQUEZE on upcoming surveys in Section 7
and summarize our results in Section 8.

2 SQUEZE OV ERVIEW

In this section, we review the SQUEZE algorithm. The purpose of this
section is not to provide a detailed description of the code (which is
done in Paper I), but to summarize its main features, and introduce
the key concepts used throughout the paper.

To reproduce the essential elements of visual inspection, SQUEZE

follows a three-step procedure. In the first step, the peak finder locates
all significant peaks on a given spectrum. Each of these peaks is
assigned a trial emission line classification (see Table 1). Every trial
classification for every peak, implies a trial redshift, ztry, and an

Table 1. Line’s name and nominal wave-
length for the selected lines. All wavelengths
are given in Å; at the restframe.

Line Wavelength (Å)

Ly β 1033.03
Ly α 1215.67
Si IV 1396.76
C IV 1549.06
C III 1908.73
Ne IV 2423.83

accompanying set of high-level metrics are computed. We refer the
reader to Paper I for a detailed definition of these metrics. Note that
that spectra without any significant peaks are rejected at this stage
and never get processed by the random forest classifier.

After this first step, the list of trial redshifts and accompanying
metrics is fed into a random forest classifier that will determine
whether the trial quasar and redshift classification does indeed
correspond to a quasar at that redshift, and assigns a confidence
level for this classification. Note that Ly α forest quasar candidates
(i.e. those with ztry ≥ 2.1) are classified separately from lower redshift
candidates. We treat a classification as correct if the redshift is within
0.15 of the true redshift, ztrue (given by the visual inspection).

SQUEZE third and final step consists of choosing for each spectrum,
the preferred classification and constructing the final catalogue. To
construct the final catalogue, a confidence threshold, pmin, is set.
Objects with lower confidence values will not be included in the
catalogue. Naturally, purity and completeness are affected by the
choice of pmin. Higher values of pmin correspond to samples that are
purer and less complete. We follow the standard we set in Paper I and
focus on the case where the confidence value gives approximately
equal purity and completeness for the entire quasar sample (hence
the z > 2.1 subset is not deliberately balanced here). Other choices
are possible based on the needs of the user.

At this point, we want to introduce the concept of line confusion
(which will be relevant in Section 4). This phenomenon occurs when
the wrong emission line is assigned to a peak. In these cases, the trial
redshift error will be too large, and we expect it not to be classified as a
quasar. However, because the wavelength ratio of lines is sometimes
similar, some trial redshifts originating from assigning the wrong
emission line are still classified as quasars.

3 PE R F O R M A N C E V E R S U S S I G NA L TO N O I S E

As stated above, we want to estimate the performance of SQUEZE

when applied to data sets of different properties. The first property
we change is the signal to noise. We modify the signal to noise in
BOSS data by adding Gaussian noise to the spectra. The noise is
added at the pixel level as

f ′
i = fi + (Nnoise − 1) σiG(0, 1), (1)

σ ′
i = σi

√
Nnoise, (2)

where fi and σ i are the flux and the standard deviation, respectively,
in a given pixel, f ′

i and σ ′
i are the modified fluxes and the standard

deviations, respectively, and G(0, 1) is a random number drawn from
a Gaussian distribution with mean 0 and standard deviation 1.

The case Nnoise = 1 corresponds to the original data, and we explore
the cases Nnoise = 2, 3, 4, corresponding to having two, three, and
four times the original noise. We name these cases noise2, noise3,
and noise4. Fig. 1 illustrates the noise addition in a randomly selected
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SQUEZE – II. Universality of the results 4943

Figure 1. Example of the performance of the peak finder with spectra with
different signal to noise. The noise is added to the spectrum following the
prescription in equation (1). The cases noise2, noise3, and noise4 correspond
to increasing the noise by a factor of 2, 3, and 4 respectively. The dashed lines
show the emission lines in Table 1 redshifted to the observed wavelength
using the visual inspection reshift of the quasar. The gaps are present due to
missing or unreliable data (for example, due to sky lines).

spectrum and the behaviour of the peak finder in each of the cases.
We can see that in the original spectrum we successfully identify
several emission lines: Ly β, Ly α, Si IV, C IV, and C III (see the rest-
frame wavelength for these lines in Table 1. When we increase the
noise we maintain the detection of Ly α and C IV, whereas we lose
the weaker Ly β and Si IV lines. As noise increases, the peak finder
fails to detect the less prominent peaks and begins to select noise
spikes. However, since spectra are smoothed before the peak search
is performed, some real peaks are still found even as the noise is
increased.

We now explore the performance of SQUEZE on these noise-
augmented spectra. We ran SQUEZE twice, first retraining the models
on the modified data, and then using the models obtained in the
original training. Fig. 2 shows the results of this test taking values of
pmin such that purity is approximately equal to completeness for the
entire sample (also the standard choice in Paper I). In the top panel,
using the retrained models, we see that the performance decreases
by ∼ 1 per cent for case noise2, by ∼ 3 − 4 per cent for case noise3,
and by ∼ 7 per cent for case noise4. While the decrease is expected,
we note that SQUEZE is obtaining purity and completeness of around
91 per cent even when the noise dispersion is four times that of the
original sample. For Ly α quasars (with z ≥ 2.1) the results are even

more stable: purity decreases by only ∼ 1 per cent for case noise4,
while completeness decreases by ∼ 3 per cent. In the bottom panel,
we show the difference in performance when using the original or
the retrained models, where we see that there is essentially no need
to retrain if small changes on the noise levels are expected. If the
sample is significantly noisier, as is the case for case noise4, then
retraining the models minimizes losses.

The above assessment of additional noise refers only to the
choice of confidence threshold where the purity and completeness
are approximately equal. We may broaden the exploration to the
different choices of confidence threshold. Fig. 3 shows this focusing
on the difference between unmodified noise and our largest noise test,
noise4. Again we see that additional noise has a weak effect even
when we retain the training model generated from the unmodified
data, and that weak effect is made even smaller by retraining.

4 PE R F O R M A N C E V E R S U S
BI NNI NG/ RESOLUTI ON

Now that we have seen that SQUEZE is insensitive to changes in the
signal to noise, we shift our attention to changes in the resolution.
Now, we modify the original data by rebinning the data into wider
bins. The rebinned flux is computed by averaging fluxes into wider
bins, and the rebinned error estimates are computed by standard error
propagation. The new bins are created so that there is a bin centred
at 4000 Å and have widths 3.125, 6.25, 12.5, 25, 50, and 100 Å. We
name these cases rebin3.125, rebin6.25, rebin12.5, rebin25, rebin50,
and rebin100, respectively. For reference, the size of the original
pixels is ∼1 Å. Fig. 4 illustrates this rebinning and the behaviour of
the peak finder for the same example spectrum as used in Fig. 1.
Again, we can see that in the original spectrum five emission line
peaks are successfully identified. As the bins become broader, this
example shows that the peak finder no longer retains the Ly β line
in the rebin100 test as the peak height is diminished through the
dilution of local averaging. Also, we see that there is some instability
in the peak detection for peak 25, 50, and 100 Å for our example
spectrum, but the emission lines in question were not needed for
classification. Note that the scale of smoothing performed by the
peak finder before looking for peaks is decreased as the pixel size
increases (see Table 2).

Once we rebinned the spectra, we ran SQUEZE on them to assess
its performance. As before we ran SQUEZE twice, both retraining
the model on the modified data, and using the original training.
We show the results of this test in Fig. 5, where again we choose
values of pmin such that purity and completeness are similar. We see
that there is no change in the performance for bins of sizes up to
25 Å. Up to bins of this scale, retraining the model does not improve
the performance. The performance starts decreasing for bin size of
50 Å, but is only ∼ 2 per cent lower even for bin size of 100 Å.
Using the original training has no effect for the case rebin50 but
decreases the performance of SQUEZE by an extra ∼ 2 per cent for
the case rebin100. For Ly α quasars, the decrease in the performance
is less prominent: purity is not modified and completeness drops by
� 1.5 per cent. We conclude that SQUEZE is resistant to changes in
the resolution, provided that the pixel size is smaller than 25 Å. When
binning further to 100 Å, retraining based on equivalent data helps
alleviate the decrease in performance.

We now analyse in more detail the case rebin100. As already
seen in Fig. 5, the performance of SQUEZE is decreased in this
case study, and the decrease is significantly worse if the original
training is used when the confidence threshold is set such that purity
and completeness are similar. In Fig. 6, we explore whether this

MNRAS 496, 4941–4950 (2020)
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4944 I. Pérez-Ràfols and M. M. Pieri

Figure 2. Top panels: Purity and completeness as a function of the noise level (see equation 1). For each sample, a new model is retrained on the modified data,
and we select a pmin such that purity and completeness are similar for the entire sample and the right-hand panels show the performance for these samples. The
left-hand panels show the performance limiting ourselves to quasars with z ≥ 2.1. The points are horizontally shifted to avoid overlap. Bottom panels: difference
in the performance between using the original or the retrained models. Negative (positive) values indicate that the retrained (original) models are better. N = 1
correspond to the original data in Paper I.

Figure 3. The dependence of the noise4 results using the original or the retrained models for varying probability thresholds. The plot shows the purity (top
panels) and the completeness (bottom panels) measured on the test sample with the noise variance increased by a factor of 4. The red and blue lines show the
results when the classifier is trained with the original data and with the noise-augmented data, respectively. Left-hand panels show the results for ztry ≥ 2.1,
whilst right-hand panels show the results at all redshifts. The dashed vertical lines show the pmin used in Fig. 2.

statement holds for varying confidence threshold pmin. We see that
retraining improves the completeness for the all redshifts quasar
sample, particularly for high values of pmin. We note that purity
significantly increases when using the retrained model (with respect
to the purity obtained using the original model) for z ≥ 2.1 at low
values of pmin.

A possible (naive) explanation for the decrease in the performance
of SQUEZE in the case rebin100 would be that the rebinning is moving
the centre of the emission peaks, and therefore the estimated quasar
redshift. In this scenario, quasar redshift errors would be larger
than the tolerance redshift, �zr = 0.15, discarding some quasars
that are correctly identified. The validity of this scenario can be

MNRAS 496, 4941–4950 (2020)
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SQUEZE – II. Universality of the results 4945

Figure 4. Example of the performance of the peak finder with spectra with different resolution.

Table 2. Bin size and kernel of smoothing applied by the peak finder before
looking for peaks for the different case studies involving changes in resolution.
New bins are made so that there is a bin centred at 4000 Å.

Case study Pixel size (Å) Smoothing (num bins)

Original ∼1 70
rebin3.125 3.125 22
rebin6.25 6.25 11
rebin12.5 12.5 6
rebin25 25 3
rebin50 50 1
rebin100 100 0 (no smoothing)

easily seen in a so-called line confusion plot. A line confusion plot
shows ztry as a function of ztrue and highlights the presence of line
confusion, seen as straight lines trends in the failure cases far from
the ztry = ztrue line and with slope different from unity. If the naive
explanation were correct, we would see quasar contaminants (i.e.
actual quasars classified as quasars but not meeting our redshift
requirements) very close to the ztry = ztrue line in the line confusion
plot (see Fig. 7). Since we do not see such an effect, we can rule
this out. Thus, it appears that at this level of binning the calcula-
tion of the metrics themselves becomes somewhat compromised
since the bins widths approach the size of bands used in their
calculations.

5 PERFORMANCE WI TH LI MI TED
WAV E L E N G T H C OV E R AG E C OV E R AG E

We now evaluate the performance of SQUEZE as a function of
wavelength coverage. We explore this by returning to the original
data and removing 1/4 and 1/2 of the total coverage. We analyse five
cases: red1, red2, blue1, blue2, and mid. Their wavelength coverage
is specified in Table 3.

Fig. 8 summarizes the result of this exercise. SQUEZE performance
is strongly reduced for samples mid, red1, and particularly red2.
The samples blue1 and blue2, on the other hand, present a much
milder decrease in performance. This suggests that the blue end of
the spectra are driving the classification. To better understand this
behaviour, we analyse the line confusion plots for samples blue1
and red1 (Figs 9 and 10, respectively). Note that pmin is allowed to
vary between wavelength coverage case studies such that each one
balances purity and completeness for the sample of all quasars. We
see that the decrease on purity and completeness for sample red1
is mostly due to line confusion (note the multiple lines of quasar
contaminants with slope far from unity). Losing the blue part of the
spectrum results in SQUEZE misidentify quasar emission lines. This is
most likely due to the fact that the blue portion of a quasar spectrum
(above the Lyman limit in the quasar restframe) is more crowded
with major emission lines (see in fig. 1 of Pérez-Ràfols et al. 2019),
which typically fall in the blue portion of the observed wavelength
range in our sample. The strongest line is of course Ly α, which
motivates our treatment z > 2.1 quasar targets as a special case.

MNRAS 496, 4941–4950 (2020)
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4946 I. Pérez-Ràfols and M. M. Pieri

Figure 5. Similar to Fig. 2 but as a function of the resolution. Pixel size of 1 Å; correspond to the original data.

Figure 6. The dependence of the rebin100 results using the original or the retrained models for varying probability thresholds. The plot shows the purity (top
panels) and the completeness (bottom panels) measured on the test sample with pixels rebinned to 100 Å-wide pixels. The red and blue lines show the results
when the classifier is trained with the original data and with the rebinned data, respectively. Left-hand panels shows the results for ztry ≥ 2.1, whilst right-hand
panels show the results at all redshifts. The dashed vertical lines show the pmin used in Fig. 5.

The lower panels of Fig. 8 shows the performance decrease if the
original training from full wavelength is used instead of retraining on
the limited coverage. This shows that SQUEZE performs significantly
better upon retraining. This change is easily understood by the
behaviour of the code. When SQUEZE attempts to compute the metrics
of a line that is outside the covered range, then it assigns it a NaN
value. This means that the values of some metrics in the restricted
wavelength case will have a NaN value, whereas it will have a non-
NaN value in the original training data set (without the wavelength
coverage restriction). This substantial difference in the values of

metrics with and without retraining has a significant impact. Hence,
retraining to deal with markedly limited wavelength coverage is
recommended.

6 PE R F O R M A N C E V E R S U S QUA S A R
BRI GHTNESS

Thus far, we have presented the kind of sample differences that might
arise for a survey that observes the same quasar target sample as
BOSS but with different observatories, instrumentation, and set-ups.

MNRAS 496, 4941–4950 (2020)
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SQUEZE – II. Universality of the results 4947

Figure 7. Line confusion plot for the case study rebin100, where the model
has been retrained. For all the objects in the catalogue, ztry against ztrue. In this
plot, the green circles correspond to correct classifications, the yellow circles
to stellar contaminants, the red circles to galactic contaminants, and the blue
circles to quasar contaminants (i.e. actual quasars classified as quasars but not
meeting our redshift requirements). Note that this plot singles out the false
positives.

Table 3. Wavelength coverage of the original
data and the five case studies.

Sample Wavelength coverage (Å)

orig 3600–10 400
red1 5300–10 400
red2 7000–10 400
blue1 3600–8700
blue2 3600–7000
mid 5300–8700

Important performance modifications may also arise due to changes
in the quasar target sample. We explore this point here by testing the
impact of quasar brightness over the dynamic range provided by the
BOSS sample.

One of the major assumptions of SQUEZE is that quasars are self-
similar, but in reality this is just an approximation: we know that
there is a quasar-to-quasar variation. This variation arises from a
number of things: presence of broad absorption lines, damped Ly α

absorbers, difference in continuum slope(s) and differences emission
line strengths. All this variation exists in our test samples, but if the
survey on which SQUEZE is implemented differs significantly in its
realization of these various effects, SQUEZE may not perform as we
have described. It is clear that one way future surveys will differ from
BOSS is in their luminosity distributions, targeting to a fainter limit-
ing magnitude. Going to fainter magnitudes will most likely change
the distribution of quasar properties. An example of such a change
is the well-known Baldwin effect (Baldwin 1977), which states that
the relative strength of the emission lines depends on the luminosity.

While we cannot yet test SQUEZE on significant numbers of quasars
fainter than the BOSS limit (r � 22.2), we can test the sensitivity
to quasar faintness by taking brightness-dependent sample subsets.
To this end, we split the quasar target sample into two bright/faint
subsamples of roughly equivalent signal to noise by obtaining

approximately equal values for the ensemble quantity

∑(
ri

δri

)2

, (3)

where ri and δri are the r-band magnitude and its error3 for the ith
spectrum of that subsample.

The boundary that conserves r-band signal to noise between bright
and faint samples is r ∼ 16. We apply models trained using the bright
samples (bright models) to both the bright and the faint validation
samples. Similarly, we apply models trained using the faint samples
(faint models) to both bright and faint validation samples.

Results of this exercise are shown in Fig. 11. We observe that
SQUEZE performance on z > 2.1 quasars is not significantly affected
by these sample changes. It is particularly striking that SQUEZE

performs well on faint z > 2.1 quasars, including quasars as faint as
r ∼ 22, even when it is trained using quasars brighter than r ∼ 16.

This does not remain the case when all redshifts are included. It
would appear that the performance for faint quasars does indeed ben-
efit from retraining on similar quasars but only at the ∼ 2–3 per cent
level. It appears that this is driven by a dependence on the weaker
emission lines with wavelengths longwards of Ly α.

7 PE R F O R M A N C E O N U P C O M I N G S U RV E Y S

The tests we have presented in the previous sections are presented as
survey-neutral stress tests that explore how SQUEZE performs given a
variety of differences of observing conditions or quasar population.
However, they do have direct relevance for real-world expected use-
cases for up-coming surveys. In this section, we place those tests in
context of the upcoming surveys where SQUEZE will be used.

In the near future, the two most relevant surveys are WEAVE-QSO
and DESI. In both cases, the minimum signal to noise full depth for
quasars with z > 2.1 will be similar to that of BOSS and therefore
the results shown in Paper I are already a reasonable guide to quasar
catalogue making performance with regards to noise. However, the
quasar populations may themselves differ from that of BOSS since
these surveys reach a limiting magnitude �r ∼ 1 fainter than BOSS.
While we do not assess the performance for this fainter population,
we do test the importance of quasar brightness. We find that within
the BOSS magnitude distribution, SQUEZE performs satisfactorily
upon faint z ≥ 2.1 quasars even when training using bright z ≥ 2.1
quasars. When including z < 2.1 quasars retraining on quasars with
representative magnitudes improves performance by ∼ 2–3 per cent.
Both DESI and WEAVE-QSO provide higher spectral resolution than
BOSS but our binning tests show that a factor of ∼2 or ∼3 in the
resolution, respectively, will have no impact on SQUEZE performance.

For both DESI and WEAVE-QSO, significant challenges are faced
with regards to building the survey. In the case of DESI, only z >

2.1 quasars will be observed to full depth in four layers (or passes)
over the survey footprint. Quasars must be efficiently identified (and
assigned approximate redshifts) based on a single layer (or a quarter
of the exposure time) to either determine whether to continue in
subsequent observing layers or to refine the redshift with the data
as-is. Single layer data is equivalent to our noise4 case (see tests
in Section 3). We find that SQUEZE will be able to identify z ≥
2.1 quasars on the first pass to high purity but that completeness
may be reduced by a few percent (depending on the choice of
probability threshold). Including quasars with z < 2.1 presents more

3As reported in the superset catalogue file, available at https://data.sdss.org/
sas/dr12/boss/qso/DR12Q/Superset DR12Q.fits.
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Figure 8. Similar to Fig. 2 but for the case studies with different wavelength coverage (see Table 3 for details).

Figure 9. Similar to Fig. 7 but for the case study blue1, where the model has
been retrained.

of a challenge with a larger impact on both purity and completeness
(of approximately 7 per cent) that cannot be recovered trivially by
tuning the probability threshold.

In the case of WEAVE-QSO, SQUEZE is also expected to perform
well for catalogue production and as a redshift prior for additional
redshift refinement step. Applying SQUEZE to the unmodified BOSS
sample for z > 2.1 we see that, assuming there are no dramatic
changes to the quasar or contaminant population, we expect almost
no losses or impurities for this task. The main challenge for
WEAVE-QSO is at the target selection stage, since gtr 90 per cent
completeness and purity of z > 2.1 quasars is needed from the quasar
targets. The WEAVE-QSO plan is to achieve this goal using data
from the survey J-PAS. J-PAS is a narrow-band photometric survey
with 56 narrow-band filters effectively providing spectra of very

Figure 10. Similar to Fig. 7 but for the case study red1, where the model has
been retrained.

low resolution. These pseudo-spectra have an effective bin width of
∼100 Å. Our results of the impact of binning show SQUEZE performs
well even at the level of 100 Å; bins (case rebin100). The purity of z >

2.1 sample seems to be unaffected and the completeness shows only
an additional 1 per cent loss compared to the unmodified sample. The
WEAVE-QSO survey is entirely focused on Lyman α forest quasars,
but it is noteworthy that the performance of SQUEZE on J-PAS data
at all redshifts remains strong.

An additional challenge for WEAVE-QSO is reflected in the tight
schedule of J-PAS targeting and WEAVE observing. As a result it is
likely that in some instances only some of the filters will be observed
in time for propagation to WEAVE-QSO fiber assignment. In this
regard, SQUEZE performance tests with limited wavelength coverage
could be critical. The success of the blue2 test (using only the blue

MNRAS 496, 4941–4950 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/496/4/4941/5861946 by guest on 23 M
ay 2024



SQUEZE – II. Universality of the results 4949

Figure 11. Performance of SQUEZE when applied to samples of different brightness. Left-hand (right-hand) panel shows the result applying the bright (faint)
models. See text for details.

Figure 12. The dependence of the rebin100+noise4+blue2 results using the original or the retrained models for varying probability thresholds. The plot shows
the purity (top panels) and the completeness (bottom panels) measured on the test sample with the noise variance increased by a factor of 4, with the pixels
rebinned to 100 Å-wide pixels, and the wavelength range limited to only the blue half of the spectra (see Table 3). The red and blue lines show the results when
the classifier is trained with the original data and with the rebinned data, respectively. Left-hand panels shows the results for ztry ≥ 2.1, whilst right-hand panels
show the results at all redshifts. The dashed vertical lines show the value of pmin for which purity and completeness are equal for the retrained model and at all
redshifts.

half of the optical range) indicates a potential way forward for the
planning for J-PAS and WEAVE-QSO scheduling using SQUEZE.

This is a simplification, however, since these are isolated tests.
True quasar identification in J-PAS will involve a combination of
increased noise (since the limiting magnitude required by WEAVE-
QSO will be 1 magnitude fainter than BOSS), ∼100 Å binning), and
(at times) limited wavelengths coverage. Realistic J-PAS mocks are
needed to fully address this challenge. To take initial steps towards

a more realistic test including all these effects simultaneously, we
perform the analysis on a modified sample combining the cases
rebin100, noise4, and blue2. Our noise4 modification should produce
spectra of roughly the expected signal to noise of J-PAS pseudo-
spectra (Carolina Queiroz, private communication). We stress that
here we are considering the worst-case scenario in which all the
data have limited wavelength coverage. The results of this exercise
are given in Fig. 12. We can see that the performance obtained
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in this case is lower than the performance obtained in the cases
noise4, rebin100, and blue2. Purity and completeness drop below
90 per cent for all redshift, but we recover a 90 per cent completeness
and 95 per cent purity for the Ly α quasars. We note that all these
changes combine in a non-trivial way. Interestingly, the purity seems
to be higher when the original training is used, but we believe this
is a direct consequence of the reduced completeness. For example
for pmin = 0.3 and for Ly α quasars purity is better by ∼ 3 per cent,
but completeness drops by ∼ 10 per cent, and this is even worse for
higher values of pmin = 0.3. A high purity sample can be achieved
using the retrained sample with a sufficiently high choice for pmin

with less cost in terms of completeness compared to using the original
training. The results presented here suggest that SQUEZE will be able
to adapt to this challenge, but we leave such detailed tests for future
studies.

Other surveys such as Euclid or WEAVE-LOFAR (another survey
part of the WEAVE Collaboration) may also benefit from the
use of SQUEZE, but their specific requirements have not yet been
explored.

8 SU M M A RY

In this work, we have explored the universality of the performance
of SQUEZE (presented in Paper I), a software packaged designed
to identify quasar spectra, among a set of contaminating spectra,
and estimate their redshifts. We define this universality two ways.
First, we confront SQUEZE with the more straightforward challenge
of training on and processing data with different spectroscopic
properties (compared to BOSS data in Paper I) and explore how these
changes affect performance. Secondly, we assess the universality
of SQUEZE combined with the training established in Paper I by
confronting BOSS-trained SQUEZE with different data. This latter test
allows us to assess the sensitivity to the realism of the training set,
and even exploring whether SQUEZE needs retraining on the different
data at all.

We have addressed the effect of changing the signal to noise, the
spectral binning (and resolution), the wavelength coverage, and the
brightness of the sample. After all these tests, we are confident that
the performance of SQUEZE is largely survey independent. However,
for optimal performance we do recommend altering BOSS spectra
to resemble the characteristics of the survey to be analysed and
retraining the model on the modified data. If more precise and reliable
tests are required, a more realistic contamination sample matched to
the details of the given survey must be explored (such a sample could
be obtained, for example, in the survey validation phase). We do not
recommend retraining using synthetic spectra, unless full modelling
of the contaminants is also taken into account.

All the tests performed here assume that the visual inspection is
always correct, but this is not necessarily the case. We will explore
this in more detail in a subsequent paper of the series. However, we
remark that the tests are fair since what we analyse is the difference
in the results on the original and modified spectra, and whatever

misclassifications are present in truth table for the original samples
are also present in the modified samples.

Finally, we make initial tests of SQUEZE performance on upcoming
surveys. We conclude that SQUEZE will perform satisfactorily on
spectra from DESI (including single layer spectra from the first
pass), and WEAVE-QSO. We also explore the case of J-PAS pseudo-
spectra, which will be used for the target selection of WEAVE-
QSO, reaching the same conclusion. Other surveys such as Euclid or
WEAVE-LOFAR may also benefit from the use of SQUEZE, but their
specific requirements have not yet been explored.
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