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Abstract: The autoregressive Hilbertian model (ARH) was introduced in the
early 90’s by Denis Bosq. It was the subject of a vast literature and gave birth
to numerous extensions. The model generalizes the classical multidimensional
autoregressive model, widely used in Time Sériés Analysis. It was successfully
applied in numerous fields such as finance, industry, biology. We propose here
to compare the classical prédiction methodology based on the estimation of the
autocorrélation operator with a neural network learning approach. The latter
is based on a popular version of Récurrent Neural Networks : the Long Short
Term Memory networks. The comparison is carried out through simulations and
real datasets.

In memory of Besnik Pumo

1. Introduction

The contribution of Denis Bosq to functional data analysis and modeling is major
for several reasons. First of ail his work has the flavor of pioneering steps. The article
[4] dates back to the very beginning of functional data. Of course some earlier papers
investigate functions as statistical observations such as [12], [17] but these authors
usually confine themselves to infer without modeling, restricting to first and second
order moment estimation or to corrélation analysis. The second interesting point
cornes from the model itself : the ARH(l) as defined in [4] and soon studied by
late Besnik Pumo and Tahar Mourid in their PhD thesis. It is seemingly the first
model acting on functional data. The linear régression model appears only a few
years later in [7]. The ARH(l) will pave the way towards a spécifie domain of FDA
which reveals fruitful: functional time sériés and processes. The reader interested
with this topic is referred to [1, 16] and references therein for instance. At last the
works by Denis Bosq had a clear methodological impact by introducing tools from
fundamental mathematics and connecting statistics with functional analysis and
operator theory.

The ARH model has been widely investigated and generalized in several direc-
tions. The underlying Hilbert space was replaced by a space of continuous functions
in [24] then generalized to Banach spaces in [22]. The autoregressive operator was
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extended to linear processes with early results in [21]. The celebrated monograph [5]
sums up the main results on the topic (see also later [6]). At last some authors pro-
posed variants of the original ARH by including dérivatives (see the ARHD model
[20]) or by adding exogenous variable ([10] and their ARHX model).

The outline of the paper is the following. The ARH(l) model is introduced in
the next section as well as the classical estimation procedure. Then we summarize
Long Short Term Memory blocks that were selected for a numerical comparison.
The results of our experiments are given in the last section. We first treated a large
simulated dataset, then compared two température datasets and finally focused on
a synthetic non-linear process.

2. The framework and the model

Let H be a real separable Hilbert space endowed with an inner product (.,.) and
a norm derived from it denoted ||.||. In the rest of the paper the space H is the
function space L2 (H), where H is assumed to be a real compact interval, usually
[0, T] for T > 0. The space H could as well be of Wm'2 (fl) a Sobolev space with
regularity index m.

Wm,2 = |/ g L2 (H) : G L2 (H)|.
We will consider in the sequel a sample (Ai,..., Xn) G HT When Ai is of func-

tional nature its whole path is assumed to be observed. The expectation EA is a
vector of H whenever it exists, satisfying E(< A, u >) =< EA, u > for ail u G H.
The covariance operator of A is denoted T. It is a positive, symmetric linear operator
from H to H defined by :

T = E [(A - EA) (8) (A - EA)]

where u (g> v = (u, ) v is the tensor product notation for rank-one operators. The
operator T is trace-class and self-adjoint whenever E||A||2 < +oo. The centered
autoregressive Hilbertian model reads :

(2.1) An+i = p (An) + £n+i, nG Z

where (£n)nen is a Hilbertian strong white noise and p is a bounded linear operator
acting from H to H. The model is studied in detail in [5]. Let ||p||£ dénoté the
classical -uniform- operator norm of p. We remind the reader this basic but crucial
fact (see ibidem Theorem 3.1 p 74) : if ||p||£ < 1 then the process An solution of
(2.1) is uniquely defined and stationary. In the sequel we assume that (An)neZ is
both stationary and centered.

Estimation of p is a difficult problem. Due to the functional framework, likeli-
hood approaches are untractable in a truly infinite-dimensional framework. It can
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be shown that p is the solution of a spécifie inverse problem. Namely if D =
E [(Xn, •) Xn+i\ is the cross-covariance of order 1 of the process :

(2.2) D = p-T.

The trouble with the above équation is that T-1 does not exist unless T is one-to-
one. Then it is an unbounded linear operator, though measurable, and is defined on
a domain V Ç. H. This domain is Borel-measurable but neither open nor closed and
dense in H. As a conséquence deriving from (2.2) p = D - T~l is not correct since p
is defined on the whole H whereas T-1 is not.

Any reasonable estimation procedures should simultaneously estimate D and T
and regularize the latter in order to define say “P”, approximation of T~1. The
estimation of D and T is usually simple though their empirical version :

n— 1 n—1

fn = -YXi
T) ^^

Xi Dn =

i—1
^ y ^ Xi ® Xi-^i.1

i—1

At this point note that two smoothing strategies may be applied to stabilize the pre-
vious estimâtes : either smoothing the data (e.g. spline smoothing or décomposition
in a basis of smooth function space) or smoothing the covariance operators only.

Approximation of T-1 is usually more tricky and requires the computation of a

regularized inverse denoted P above. This may be done directly by methods that
are classical in inverse problem solving. For instance a ridge estimate provides then
fn = (Tn + Tn)-1 where Tn is a regularizing (Tikhonov) matrix usually taken as
anI where an > 0, an | 0 and I dénotés the identity matrix. Spectral (PCA based)
regularization involve the random eigenelements of Tn, denoted (Ài)n, 0^n) G R+ x H
where Tn(j)i>n = AA classical output is then :

where kn must be selected accurately.
Following again (2.2) an estimate of p then writes :

Pn — Dn ■ ft
The predictor is pn (Xn+i) and stems from the preceding équation. Note that the

évaluation of pn at Xn+i simplifies the object under concern (the predictor is in H
whereas p is an operator on H) and has a smoothing effect on the inverse problem
mentioned above. Other results and further details may be found in [5, 19].

3. Long Short Term Memory Networks in a nutshell

The question of predicting time sériés from neural networks is absolutely not new,
see [2]. When addressing the spécifie issue of prédiction in time sériés, especially
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functional time sériés, Récurrent Neural Networks (RNN) appear as a natural and
potentially effective solution. The basic RNNs architecture links a sequential input
Xn -typically with a stochastic dependence between Xn and its past- with an output
Yn through an hidden layer Hn. The sequence Hn is often compared with the hidden
state in Hidden Markov chain modeling. We refer to the beginning of [18] for a nice
présentation of RNN’s. The System is driven by the two following équations :

(3.1)

where A, B and C are matrices and ah and ay are two sigmoidal activation
functions. Note that the previous matrices are fixed and not updated in the learning
step. This spécifie structure enables the hidden layer to keep a memory of the past.
As a conséquence RNNs were successfully applied in speech récognition and more

generally in treating dépendent data indexed by time. Numerous variants of the
RNN were proposed, many of them trying to make the network deeper, see [23].

One of the most efficient variants of RNN are Long Short Term Memory units,
trying to overcome the relative unability of RNN to capture long term dependence.
They were introduced in the late 90’s in [14]. Several tutorials may be found on
the internet about LSTM. We give a sketch of the way LSTMs run but we refer the
reader to [13] for a formai description. A key improvement in LSTMs over RNN relies
on the addition of a cell state to the hidden space Hn that appears in (3.1). Figure
1 shows the architecture of the single block LSTM which was used in this work.
The cell state for unit n is a vector denoted Cn. The cell state and the hidden state
influence each other through three channels, also called gates. Roughly speaking Cn
updates Hn within the LSTM block and will keep along the different layers the truly
important information. The three gates may be described in a few words. A first
“Forget” gâte sweeps off the unimportant coordinates in the new input and in the
current hidden state. Then the “Input” gâte aims at updating the cell state from
Cn to Cn+1- It applies a filter similar to the Forget gâte on the concatenated vector
(Hn-i,Xn). In parallel a tanh activation function is applied to the same vector,
exactly like a single layer neural network. Then an Hadamard-product (coordinate-
wise multiplication) merges the two preceding vectors. The by-product is added to
the cell state posterior to the Forget Gâte. The last step is the “Output Gâte” that
first scales the current Cn then filters (Hn-i,Xn) through a last sigmoid function.
The resulting two vectors are Hadamard-multiplied, simultaneously generating the
output and updating FTn_i to Hn.

LSTMs gave rise to numerous variants. For instance some connections may be
added between the three gates mentioned above and the current value of the cell
state (referred to as “peephole” connections). Conversely the LSTM architecture
may be simplified like in the Gated Récurrent Unit ([8]).
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Long Short Term Memory Ceil

Figure 1. Architecture of a LSTM block/unit

4. Numerical Experiments

Below we consider only the one-step (functional) predictor : pn (Xn+i). Keep in mind
that this predictor provides a forecast of the whole path of the functional data on
its period typically. Ail this cornes finally down to a multi-step prédiction in ternis
of univariate time-series.

After testing different stategies to evaluate our numerical results we adopted the
following methodology. First we decided not to consider the rough Mean Square
Error since it dépends on the data’s range and does not allow a comparison between
datasets and methods. The MSE may also be hard to interpret. The Mean Absolute
Relative Error (MARE) will be defined this way in our framework (we are aware
that concatenating Absolute and Relative in the same acronym is not especially
élégant) :

-| rite
MARE - — V Abs(xj,y)

where X{ = pntr (Xi), nte is the size of the testing set and :

Abs (Xi,= £■
3=1

The integer T is the (time-)grid size and the tj’s are the discretization times . One of
the problems with the above définition is that the denumerator may be null or very
small. In order to avoid this problem ail datasets were normalized to [0.01,1]. Others
normalizations were tested without any clear impact on the stability of the results.
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Notice that the absolute value at the denumerator in the définition of MARE may
be removed. Even if this methodology is certainly not optimal, it allows to compare

-roughly at least- ail the forthcoming results and to assess the overall performances
of the methods.

4.1. Simulations

The simulations were carried out with the freqdom.fda package ([15]). We had the
opportunity to process a rather large dataset this way. The data were generated by
the fts.rar function. They follow a centered ARH(l) process with Gaussian white
noise in a Fourier basis of dimension 2D + 1. This means that each data Xi obeys
(2.1) and is developed as a sériés made of a constant function and D harmonies such
as :

D

Xi (t) = ao + ^ jaj^ cos (2nkt) + sin (2n/ct)|
k=1

where ajy and are sequences of real random variables. In order to ensure
stationarity 50 burning itérations of the processes were conducted. The scenarii for
the simulations dépend on :

• Three different values for the Fourier basis dimension D,
• Two different autocorrélation operators p described just below.

The default autocorrélation operator of fts.rar was used. It is a large dimen-
sional matrix whose row z-column j cell pij is proportional to exp(\i — j\) hence
rapidly decreasing out of the diagonal. We also investigated the situation when the
cells decrease more slowly : pij oc ^yr—y2 • In both cases the Hilbert-Schmidt norm
of p was fixed so that ||p||#s — 0.5.

Once generated in the basis the data were evaluated on a regular grid of size 500
in order to draw them and to compute their norms. The sample size was 1000. The
data are consequently collected in a (500 x 1000) matrix. An overview of the data
is given at Figure 2.

For both méthodologies the initial dataset was first split in three subsets of size
ntr = 600, nv — 200 and nte — 200 respectively for training, validation and test.
In the classical approach, the data matrix was processed as an fdata object by the
far function of the package far by S. Guillas and J. Damon ([11]). The previous
package carries out the estimation of p by the spectral eut (PCA) methodology and
the prédiction. The cross-validation step correctly détermines the optimal value of
kn, around 2D + 1 in ail situations.

The Neural Network part was conducted under Feras (see [9]) with TensorFlow
2.0 as backend. The LSTM unit is followed by a dense layer whose output size
equals the grid size (here 500). The learning rate for gradient descent was fixed to
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Figure 2. Sample of size 5 of the simulated dataset with D = 21 and p of exponential type

le-4. The training step is stopped when the MARE does not decrease anymore on 5
consecutive epochs on the validation set. The best epoch is then used for the testing
step. The LSTM was carried out by taking into account the data in a sliding window
of varying size (denoted SWS below). Here since the data are simulated according to
an ARH(l) this optimal SWS is 1. In the case of an ARH(p) it would be obviously
P-

Table 4.1 displays the MARE values. We notice first that the autoregression op-
erator structure (exponential or power 2) does not seem to hâve a clear impact. The
MARE generally decreases when the latent dimension D increases. A penalization
tenu should certainly be added to balance this side-effect. Remind however that our

goal here is to compare two méthodologies. The ARH model was always optimally
calibrated and provides the best results which is not surprising. We checked that
the MARE decreases logically when the noise level in the model shrinks. Conversely
the LSTM cell was not specifically designed for this data. The gap is not wide and
seems rather promising in view of application on real data.

4-2. Real data

4.2.1. El Nino

The El Niho dataset is one of the first which was studied in the frainework of

dépendent functional data (see e.g. [3]). Our version cornes from the rainbow package
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P type Effective Dimension (2D+1) Stat pred MARE SWS LSTM MARE

exp

21 0.156
1 0.211
2 0.209

51 0.140
1 0.193
2 0.195

81 0.131
1 0.178
2 0.177

pow

21 0.156
1 0.200
2 0.202

51 0.141
1 0.178
2 0.178

81 0.132
1 0.192
2 0.191

Table 1

Simulated ARH : MARE for the statistical predictor versus LSTM

in R. It provides the sea surface température from January 1950 to December 2018
observed monthly. The bunch of curves is plotted at Figure 3.

Out of 69 curves-data, 40 were used for training, 15 for validation and 14 for test.
The modest size of the dataset restricted our study to SWS of size 1 and 2 only.
The summary of MARE is given in Table 4.2.1.

Stat. Predict MARE SWS LSTM MARE

0.226
1 0.301
2 0.308

Table 2

El Nino Dataset : MARE for the statistical predictor versus LSTM

The LSTM is again outperformed by the statistical predictor, but the MARE
range, above 20% is not good. At this point we must mention that we were faced
with two main numerical issues concerning this meteorological dataset.

First of ail, even if we do not aim here at proving (again) the global warming, it
seems that this fact could be retrieved from observations of the ten first versus the

ten last curves-data as plotted on Figure 4. The ten first are black-solid, the ten last
are red-dashed. It is plain that sea température for the six first months of observa-
tions tend to be higher for recent years. As a conséquence the basic assumption on

stationarity of the data is not clearly fulfilled.
Second we need to underline the problems encountered when applying the usual

strategy based on training, validation and testing for such dépendent functional
data. As explained earlier the training test is separated from the testing set by a
validation interval containing 15 years of data. This strategy is clearly more sensitive
to potential non-stationarity or slight perturbation in the model than in the situation
where the sample is i.i.d. It results in a potential overfitting. Ideally, validation,
training and test should be performed continuously along the sample. But the model
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Month

Figure 3. The Sea Surface Température in El Nino dataset

is not adapted to such strategies. Even if these results are not given here we noticed
a substantial improvement of the MARE when using only a training and a testing
set (without folding) plus a simple grid-search on kn.

4-3. Baie température dataset

It may be interesting to compare the previous popular El Nino file with another
température dataset retrieved freely from the website https://www.meteoblue.
com/fr/historyplus and ranging from 1985/1/1 to 2020/12/31. The températures
are recorded hourly in the city of Baie, Switzerland. We decided to consider the daily
agregated data (the daily mean was used) in order to reduce drastically the ratio
between the ambient dimension and the sample size. The data matrix is (35 x 365)
because ail February 29th records were removed. The reader must notice that the
sample size here is n = 35 hence the half of El Nino’s but the time frequency is the
day (against the month). A sample of curves is given in Figure 5.

The learning strategy was similar to El Nino. The prédiction error is provided in
Table 4.3. Learning and calibration is performed on curves 1 to 30 and prédiction
on curves 31 to 35. The optimal dimension choice for the ARH predictor is kn — 3.
Conversely to El Nino the high sampling frequency of data allowed to explore SWS
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month

Figure 4. The ten first (black solid) and ten last(red dashed) curves-data in the El Nino dataset

day

Figure 5. A sample of 4 curves from the Baie température dataset. AU data were picked in the
testing set.
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from 1 to 5. It is noticeable that the MARE are between 10% and 15% and improved
with respect to El Nino. The statistical predictor is again slightly better than LSTM.
Ail this tends to prove that the ARH model seems really compétitive for these
température datasets.

Stat. Predict MARE sws LSTM MARE
1 0.245
2 0.133

0.116 3 0.126

4 0.140
5 0.125

Table 3

Baie température Dataset : MARE for the statistical predictor versus LSTM

4-4- Nonlinear ARH

Following the remark of a referee we investigated a situation which is less favorable
to the ARH predictor and simulated a basic nonlinear functional autoregressive
process. Start from a basic ARH équation simulating Xn — po (Xn_i) + en. Then
construct the nonlinear process the following way :

X™'1 (t) = 3cos (1Ü7T • Xn (t)) - 2exp (—Xn (t))

A sample of four successive curves is plotted on Figure 6. For a fair comparison
with previous results, the dimension and sample size are the same as in section 4.1,
respectively 500 and 1000.

Stat. Predict MARE SWS LSTM MARE
1 0.647

1.235 2 0.661
5 0.655

Table 4

Nonlinear autoregressive process : MARE for the statistical predictor versus LSTM

The highly non-linear behaviour of X^1 is confirmed by the results in Table 4.4.
A “quick and dirty” search gives an optimal kn around 70. The MARE are very
high for this synthetic dataset close to a white noise. Anyway, despite this fact, the
LSTM performs almost twice better than the statistical predictor.

5. Conclusion

This work attempts to compare the historical/statistical track for prédiction in ARH
models with a Neural Network approach centered on LSTMs. Data and code are
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t

Figure 6. Plot of .XToo:203 for an overview of the nonlinear ARH process sirmilated on a grid oj
500 time points. The whole sample size is 1000.

available at https://gitlab.com/arh-lstm/. Several facts should be imderlined
in order to show the limits of our results.

• We did not study here the impact of the sampling frequency i.e. the size of
discretization grid for the functional data. We noticed however some improve-
ment between the El Niho and the Baie dataset. On this basis nothing solid
should be stated however. We could hâve also focused on the effect of the

sample size or of the p operator norm on the accuracy of the results.
• The architecture used here is simplistic because based on a single LSTM block.

Introducing some depth by adding several layers of LSTM should certainly
improve the prédictions of the simulated dataset. El Nino is certainly not
suited to a sequence of cells.

• We used the discretized version of the functional data coming down to a large
dimensional input vector (up to size 500 here). Clearly feeding the network
with the Fourier coefficient instead leads to a more compact entry and paves
the way to another approach.

Our framework was centered on the functional autoregressive process of order 1
and may be restrictive in some way. The design of LSTM is general enough to foster
a wider investigation : autoregressive processes of order p > 1 or even more general
functional times sériés with linear or non-linear dependence structure. Further work
is in progress in order to compare the numerical performance of Neural Networks
strategy against functional non-parametric techniques such as kernel-regression in
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this setting of dépendent functional data.

6. Acknowledgements

We are grateful to an anonymous referee for helpful comments that improved the
paper and for suggesting the simulations in section 4.4.

References

[1] Aue, A., Norinho, D. D., and Hôrmann, S. (2015). On the prédiction of sta-
tionary functional time sériés. Journal of the American Statistical Association,
110(509):378-392.

[2] Bengio, S., Fessant, F., and Collobert, D. (1995). A connectionist System for
medium-term horizon time sériés prédiction. In In Proc. Intl. Workshop Applica-
tion Neural Networks to Telecoms, pages 308-315.

[3] Besse, P. C., Cardot, H., and Stephenson, D. B. (2000). Autoregressive fore-
casting of some functional climatic variations. Scandinavian Journal of Statistics,
27(4) :673—687.

[4] Bosq, D. (1991). Modelization, nonparametric estimation and prédiction for
continuons time processes. In Nonparametric Functional Estimation and Related
Topics, pages 509-529. Springer Netherlands.

[5] Bosq, D. (2000). Linear Processes in Function Spaces. Springer New York.
[6] Bosq, D. (2007). General linear processes in Hilbert spaces and prédiction. Jour-

nal of Statistical Planning and Inference, 137(3):879-894.
[7] Cardot, H., Ferraty, F., and Sarda, P. (1999). Functional linear model. Statistics

and Probability Letters, 45(l):ll-22.
[8] Cho, K., van Merrienboer, B., Gülçehre, a., Bahdanau, D., Bougares, F.,

Schwenk, H., and Bengio, Y. (2014). Learning phrase représentations using rnn
encoder-decoder for statistical machine translation. In Moschitti, A., Pang, B.,
and Daelemans, W., editors, EMNLP, pages 1724-1734. ACL.

[9] Chollet, F. et al. (2015). Keras. https://keras.io.
[10] Damon, J. and Guillas, S. (2002). The inclusion of exogenous variables in

functional autoregressive ozone forecasting. Environmetrics, 13(7):759—774.
[11] Damon, J. and Guillas, S. (2015). far: Modelization for Functional AutoRegres-

sive Processes. R package version 0.6-5.
[12] Dauxois, J., Pousse, A., and Romain, Y. (1982). Asymptotic theory for the

principal component analysis of a vector random function: Some applications to
statistical inference. Journal of Multivariate Analysis, 12(1): 136—154.

[13] Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., and Schmidhuber,
J. (2017). LSTM: A search space odyssey. IEEE Transactions on Neural Networks
and Learning Systems, 28(10):2222-2232.

[14] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
Computation, 9(8): 1735-1780.



[15] Hôrmann, S. and Kidzinski, L. (2017). freqdom.fda: Functional Time Sériés:
Dynamic Functional Principal Components. R package version 0.9.1.

[16] Hôrmann, S. and Kokoszka, P. (2010). Weakly dépendent functional data. Ann.
Statist., 38(3): 1845-1884.

[17] Kleffe, J. (1973). Principal components of random variables with values in a sep-
arable Hilbert space. Mathematische Operationsforschung und Statistik, 4(5):391—
406.

[18] Li, S., Li, W., Cook, C., Zhu, C., and Gao, Y. (2018). Independently recur-
rent neural network (IndRNN): Building a longer and deeper RNN. In 2018
IEEE/CVF Conférence on Computer Vision and Pattern Récognition. IEEE.

[19] Mas, A. (2007). Weak convergence in the functional autoregressive model.
Journal of Multivariate Analysis, 98(6) : 1231—1261.

[20] Mas, A. and Pumo, B. (2009). Functional linear régression with dérivatives.
Journal of Nonparametric Statistics, 21(1):19—40.

[21] Merlevède, F. (1996). Central limit theorem for linear processes with values in
a Hilbert space. Stochastic Processes and their Applications, 65( 1): 103—114.

[22] Mourid, T. (2002). Estimation and prédiction of functional autoregressive pro-
cesses. Statistics, 36(2) :125—138.

[23] Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y. (2014). How to construct
deep récurrent neural networks. In Proceedings of the Second International Con-
ference on Learning Représentations (ICLR 201\).

[24] Pumo, B. (1998). Prédiction of continuous time processes by C[0,l]-valued
autoregressive process. Statistical Inference for Stochastic Processes, 1(3):297-
309.

Corresponding author
andre.masOumontpellier.fr




