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Abstract

Considering  ordered  and  coherent  Al3Li  clusters  embedded  in  concentrated  AlLi

alloys as a model case, precipitation is investigated using Atomistic Kinematic Monte

Carlo (AKMC) simulations. The free energy of clusters is extracted from simulations as

a function of their size and monitored from the initial disordered state until coarsening.

It is found that all components of cluster free energy vary linearly with the chemical

potential of monomers, a property easy to implement into classical precipitation models.
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1. Introduction

Whatever  the complexity of precipitation in modern multi-components alloys, the

fundamental laws describing the behaviour of spherical and coherent precipitates in a

model  binary alloy  remain  an essential  reference.  The description  of this  ideal  case

slightly improved over a century, mostly through theoretical advances. Forty years ago,

the development of numerical tools based on Statistical Physics brought new tools to
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explore  this  classical  subject.  Then,  the  computing  capabilities  became sufficient  to

confirm the validity of classical theories, mostly thanks to Atomistic Kinematic Monte

Carlo  simulations  (AKMC);  at  least  for  alloys  of  low  concentration  and  low

supersaturation [1]. 

In the mean time, aluminium industry, for instance, raised questionings about the

validity of classical approaches for alloys of non negligible concentrations and/or super-

saturations, typical situations which were out of reach of numerical simulations until

twenty years ago. 

To investigate this question, using AKMC simulations as a reference, Al3Li clusters

embedded in an aluminium matrix were chosen as a model case, for both industrial and

academical reasons (e.g. the high solubility of this phase). 

The properties of clusters (including fluctuations and precipitates) were first explored

with an oversimplified atomic model limited to second near-neighbour bonds [2]. To

move beyond this necessary simplification, a classical atomic potential accounting for

both first- and second- near neighbour bonds (noted NN1 and NN2, respectively) has

been proposed recently [3]. Furthermore, a method to directly extract the free energy of

clusters from AKMC simulations has been generalised and applied to AlLi alloys at the

solubility limit, in the range 50°C-300°C. In the present paper, this method is applied to

clusters built during precipitation kinetics, in various conditions, in order to:

(i) check the validity of previous findings [2] using a more realistic potential,

(ii) try to express results in a form simple enough to be implemented into classical

precipitation models like Cluster Dynamics (CD) [4] or KWN method [5]. 

It is reminded that in the Classical Nucleation Theory the free energy Fn of clusters

of size n is based on the capillary approximation Fn=Gv(n)+A(n)g(n) where Gv(n) is the

nucleation energy,  g the free surface energy and  A(n) the surface [6]. Note that this



description fails to describe small clusters while the form validated by Perrini et al. [7]

is not limited by cluster size but requires 4 parameters (cf. next section). By analogy

with the capillary approximation, the first term is usually identified with a volume term

while the other terms can be grouped in a generalised surface term depending on cluster

size [6]. 

In  classical  mean  field  approximations  (e.g.  ideal  or  regular  solid  solution),  by

construction, Gv varies during precipitation; if matrix frustration is taken into account, g

is no longer constant [6]. In both cases these changes directly arise from the evolution of

cluster distributions. By consequent, although to our knowledge it is never explicitly

discussed in the literature, the evolution of cluster free energy during precipitation is not

a new concept. The present work is a contribution to build a more general theory, not

limited by solute concentration, supersaturation or cluster size. 

2. Methodology

2.1 A classical atomic model for AKMC simulations

AKMC simulations (see [1] for details) of the precipitation of d' Al3Li clusters (L12

structure) in aluminium have been performed with an atomic model model based on

NN1 and NN2 [3]. It is mostly derived from the parametrization proposed by Garland

and Sanchez [8] for the two effective pair interaction parameters, i.e.  w2=[1871J/mol]

for NN2 and w1=-2w2 for NN1. Although it is built to reproduce various thermodynamic

and kinetic  properties  of this  alloy,  this  atomic  model  should evolve,  following the

availability of DFT calculations. Nevertheless, it is very convenient for our present goal.

AKMC simulations were performed using a box of 2003 or 5003 atoms, depending on

conditions and purposes. Figure 1 shows a typical sequence. 



Figure 1: a typical sequence of precipitation. T=85°C, C0=9%, 5003 sites. Only cluster

of size larger than 100 (a) or 1000 (b) are shown. The colour indicates the number of

solute neighbours. (a) early nucleation (b) coarsening

2.2 Definitions

The key quantity for precipitation is  Fn, the free energy of clusters as a function of

their  size  n (the  number  of  solute  atoms).  However,  for  modelling  purposes,  the

required quantity  is  the difference  of  free energy Fn+1-Fn which can be fit  with a  4

coefficients function [7]: 

Fn+ 1−Fn=a+b ((n+ 1 )2 /3−n2 /3 )+c ((n+ 1 )1 /3−n 1 /3 )+d ln ( (n+ 1 ) /n ) (1)

To extract a, b, c and d from AKMC simulations, clusters are analysed following the

‘CapRel’  method  based  on the  calculation  of  the  so-called  ‘Capture’  and ‘Release’

coefficients,  Pn→n+1
*

 and Pn+1→n
*

 respectively (see [3] for details). The ratio of these

two coefficients is related to the difference of free energy in Equation (1):

Pn→n+1
*

Pn+1→n
* =exp(

h1
kBT )exp(−

Fn+1−Fn
kBT )

(2)

with h1 the monomer enthalpy, T the temperature and kB the Boltzmann constant. The

symbol ‘*’ indicates that these coefficients account for the risk of coagulation between a

cluster and its neighbours, when it captures a new solute atom. It has been shown that



this ratio is the right quantity to be used in Cluster Dynamics (CD) to reproduce cluster

distributions at equilibrium, which is an elementary test of validity [3]. 

Another fundamental quantity required to analyse results is the chemical potential of

monomers m1 [2]:

(3)

with C1 the concentration of monomers and M1 the concentration of Al sites whose NN1

and NN2 are all  occupied by Al atoms. In the following,  x̄  denotes the quantity  x

normalised by  kBT; to simplify we note  ā
*
= ā− h̄1  and  μ̄1

*
=μ̄1− h̄1 . At the solubility

limit  a=m, thus ā
*
= ln (C 1/M 1)  [2-3]. Finally, with these notations, the quantity to fit

writes:

Pn→n+1
*

Pn+1→n
* =exp (−( ā*+ b̄ ((n+1 )2/3−n2/3)+ c̄ ( (n+1 )1/3−n1 /3 )+d̄ ln ( (n+1 ) /n )))

(4)

3. Results

This  section  examines  the  evolution of  coefficients  ā
*

,  b̄ ,  c̄  and  d̄   during

precipitation kinetics, analysing clusters with the ‘CapRel’ method [3].

3.1. General behaviour

Starting from a random distribution, a supersaturated system exhibits first a transient

regime  before  reaching  quasi-equilibrium  (QE),  as  previously  observed  with  a

simplified  atomic  potential  [2].  QE could  be  defined  as  a  stage  such  that  average

properties of clusters are consistent with their distribution, like at true equilibrium [2].

Note that the onset of QE can be only assessed [2-3] but we checked that its choice is

( μ1kT )=(
h1
kBT )+ ln (

C1
M1

)



not critical for our purpose.

To compare different situations, it is convenient to report  Pn→n+1
*

/ Pn+1→n
*

 versus

the excess of chemical potential Δμ = m̄1
*
(t) - m̄1

*
(∞) , where m̄1

*
(∞)  is simply the value

of m̄1
*  at the solubility limit (SL), supposed to be known [3].

In Figure 2, we have reported the measured values of Pn→n+1
*

/ Pn+1→n
*

 for several

intermediate states between the beginning of QE ( Δm =0.587) and the asymptotic state

(SL) for T=200°C, C0=10%. As can be seen in Figure 2, in these conditions, the change

of cluster properties during precipitation is rather large, which is likely to be important

for the nucleation and growth stages. 

Figure  2: Evolution  of  Pn→n+1
* / Pn+1→n

*  during  precipitation  for  T=200°C,

C0=10% (simulation box: 2003 sites). The upper bold curve “SL” refers to the

solubility limit (C0=6.3%) and the dashed line represents its asymptote. Symbols

are related to measures performed on a given distribution of clusters obtained by

AKMC simulations. The plain curves are the fits corresponding to the symbols of

same colour. The lowest curve “<Eq.” is taken in the transient stage preceding

QE. 



In  Figure  3  we  have  reported  the  values  of  ā
*

,  b̄ , c̄  and  d̄  versus  Δm

corresponding to the fits shown in Figure 2. Of course, there is no ‘exact’ solution for

any of these fits but many approximative solutions. Thus, any justified simplification is

welcome to secure the fitting procedure. For instance, at 200°C ā*  ~  Δm , like at the

solubility limit, thus to simplify the fit we imposed this value.  Generally speaking, the

challenge is not to find the best fit for each cluster distribution but to find the best

compromise  between  accuracy  and  simplicity,  convenient  for  the  whole  range  of

precipitation  kinetics.  It  is  worth  noting  that  whatever  the  simplifications  the

consequences  for  the  coarsening  stage  are  negligible,  because  the  Pn→n+1
*

/ Pn+1→n
*

curve becomes necessarily very close to the asymptote (see Figure 2) which can be

known with a good accuracy [3].

The lowest curve (open red symbols) in Figure 2 is an example of early state, taken

before reaching QE, i.e. when Equation (2) is not yet fulfilled.  As can be seen, this

curve  exhibits  a  very  different  shape,  thus  its  fit  would  require  a  very  different

combination of parameters. Using such a state as starting point in Cluster Dynamics, for

instance,  to  predict  the  evolution  of  cluster  distributions  would  require  a  too

complicated model. On the contrary, this task is fairly easy if the initial state is taken

around the onset of QE, as shown in Figure 3: all components of Fn vary linearly with

Δm .



(a) (b)

Figure 3:  Evolution of the different coefficients used to fit  Pn→n+1
* / Pn+1→n

*  vs.  Δm

during precipitation, in two very different cases of high concentration. The beginning of

QE is at the right end of curves while the left one corresponds to the solubility limit.

This  property  of   Pn→n+1
*

/ Pn+1→n
*

 vs.  Δμ  means  that  Fn
*

 can  be  written  as  a

combination of both initial (QE) and final (SL) solutions:

Fn
*
(λ )=λ F n

*
(QE)+(1−λ)F n

*
(SL) (5)

where λ is simply the ratio Δμ /(μ(QE )−μ(SL)) , varying from 1 to 0 (at t infinite).

3.2. Influence of temperature

Figure 2 is compared with two other situations of similar super-saturations: T=250°C

and C0=10.5% (Figure 4a),  T=85°C and C0=4.75% (Figure 4b). Like in Figure 2, the

lower and upper curves correspond to the onset of QE and the solubility limit (SL),

respectively. In addition, we have reported a few intermediate curves from nucleation to

coarsening. For both cases we carefully fit the first curve, around the onset of QE, then



we assumed that coefficients ā* , b̄ , c̄  and d̄  vary linearly with Δμ, as found in the

previous case (Figure 2). All other fits shown in Figures 4a-b follow this principle. As

can be seen, these fits are in good agreement with measured data. The largest difference

(a few %) with the best solution is observed in Figure 4a in the range  n=5-30. The

analysis of cluster distributions suggests that this small discrepancy is associated with a

percolating  heterogeneous  phase  containing  up  to  300000  connected  solute  atoms

(100000 for Δμ =0.264 in Figure 4b) which coexists with a classical cluster distribution.

This percolating phase appears during the nucleation stage and disappears before the

coarsening stage, a behaviour which might be related to spinodal decomposition [8-9].

Although this behaviour might be interesting to explore, it is beyond the scope of the

present work. However, it is interesting to note that even in such complex situations, the

proposed procedure still provides good results for true clusters.

As can be seen in Figure 4a-b, although the temperature difference between these two

cases is less than 200°C, the curves exhibit very different shapes and take very different

values.  This  behaviour  makes  extrapolation  between two known temperatures  rather

difficult.

(a) (b)



Figure  4:  Evolution  of  Pn→n+1
*

/ Pn+1→n
*

 during  precipitation  in  two  cases  of

comparable supersaturation (C0-CSL) (i.e. 2.64% in (a) and 2.05% in (b)). In both cases

the lower curve is the best fit of AKMC data (symbols) for the beginning of QE, while

the upper curve (SL) refers to the solubility limit. Thin lines in (a) are the best fits of

AKMC data.

3.3. Influence of concentration

In Figure 5, for two values of Δμ, taken at early nucleation and early coarsening,

respectively,  we  reported  Pn→n+1
*

/ Pn+1→n
*

 vs.  Δm  at  T=200°C  for  two  close

concentrations. As can be seen in Figure 5 the difference between two curves of same

Δμ is small and the shape of curves is preserved. This suggests some relation between

curves related to different concentrations, at constant temperature. Figure 5 shows also

that  this  effect  is  obviously  more  important  for  nucleation  and  growth  than  for

coarsening.



Figure 5: Influence of a small difference of solute concentration on Pn→n+1
* / Pn+1→n

* .

Symbols are related to AKMC simulations while plain curves of same colour are the

corresponding fits. “SL” corresponds to the solubility limit. 

Figure  6  compares  two  situations  of  very  different  concentrations  at  T=85°C:

C0=9%, reported  for  three  values  of  Δμ (0.682,  0.516 and 0.34)  and C0=4.75% for

Δμ=0.34. First we fit the three first cases with the solution obtained for C0=9% and

reported in Figure 2b. Then to fit the fourth case with the same solution, we had to set

Δμ~0.34/1.5. In other words, for a given temperature,  the lower the initial excess of

chemical potential Δμ, the faster Fn converges towards its asymptotic value. To confirm

the generality of this property, all curves in figure 4b for C0=4.75% were fit with the

data reported in Figure 3b for C0=9%, using Δμ/1.5 instead of Δμ (the values at Δμ=0

are unchanged by construction). 

The quality of these fits proves that the relations between the different components of

Pn→n+1
*

/ Pn+1→n
*

 are controlled only by temperature. Thus, to guess Pn→n+1
*

/ Pn+1→n
*

for a concentration Cj, knowing the result at a concentration Ci>Cj, it is sufficient to

determine the corresponding value of λ(Ci)<1 at the beginning of QE for the new case

Cj.

For  this  reason,  it  is  preferable  to  spend  computation  time  on  a  case  of  large

supersaturation, e.g. C0=9% here, which provides valuable information even with a 2003

simulation  box.  Then,  to  explore  a  smaller  concentration,  e.g.  C0=4.75% here,  it  is

worth using a large simulation box to get the required information about clusters at the

onset of QE, the earlier possible starting point for classical models. 



Figure 6: Influence of solute concentration on  Pn→n+1
* / Pn+1→n

* . Symbols are related

to AKMC simulations while plain curves of same colour are the corresponding fits.

“SL”  corresponds  to  the  solubility  limit.  Note  the  magenta  curve  related  to  a

concentration half of others.

3.4. General trends

No general solutions for the variations of ā
*

, b̄ , c̄  and d̄  with Δμ as functions of

temperature can be provided because of the influence of concentration.  Nevertheless

some general trends emerge.

As  already  mentioned,  for  T≽200°C it  is  easy  to  impose  ā
*

=Ln(C1/M1)  which

means d/ ā
*

d(Δμ)=1. On the contrary, at lower temperatures, at the onset of QE, ā
*

 is

already close to its asymptotic value, then d/ ā
*

d(Δμ) tends towards 0. In other words,

while ā
*

 instantaneously adjust with Δμ at high temperature, ā
*

 become less and less

sensible to Δμ and concentration when T decreases. The evolution of d b̄ /d(Δμ) is more

dependent on concentration, but its range of variation at a given temperature remains

fairly small. The evolution of d c̄ /d(Δμ) is roughly similar to that of -d b̄ /d(Δμ) with a



much higher dependence on the concentration, which leads to large variations. Finally,

d d̄ /d(Δμ) is weakly sensible to the concentration and its values remain of the order of

a few units.

4. Conclusion

In  this  paper,  some previous  findings  about  the  evolution  of  cluster  free  energy

during precipitation [2] have been confirmed with AKMC simulations, using a more

classical potential. The ‘CapRel’ method [3] has been used to extract the free energy of

clusters during precipitation kinetics. 

For the first time it  is shown that  the evolution of cluster free energy  Fn and its

components are linear functions of Δμ, the excess of chemical potential of monomers.

The simplicity  of  this  result  makes  it  easy to  implement  into  classical  precipitation

models. Ideally, Δμ should be managed simultaneously in a consistent way; it depends

on  M1 (Equation  (3)),  a  variable  closely  related  to  the  notion  of  cluster  volume

(discussed in a next paper). It is also shown how the information required to upgrade

classical models can be obtained while minimizing the amount of atomistic calculations.



Acknowledgements

Dr. E. Clouet is gratefully acknowledged for providing his AKMC package. Dr C. Sigli

is warmly acknowledged for numerous fruitful discussions.

This research did not receive any specific grant from funding agencies in the public,

commercial, or not-for-profit sectors.

References

[1]  F.  Soisson  and  G.  Martin,  Monte  Carlo  simulations  of  the  decomposition  of

metastable solid solutions: Transient and steady-state nucleation kinetics, Phys. Rev. B

62(1) (2000) pp. 203-214.

[2]  J.  Lépinoux  and C.  Sigli,  Multiscale  modelling  of  precipitation  in  concentrated

alloys: from atomistic Monte Carlo simulations to cluster dynamics: I thermodynamics,

Phil. Mag. 98(1) (2018) pp. 1-19.

[3] J. Lépinoux and C. Sigli, Extracting free energy of clusters in concentrated binary

alloys from atomistic Monte Carlo simulations, Modelling. Simul. Mater. Sci. Eng. 27

(2019) p. 085001

[4] E. Clouet, A. Barbu, L. Laé and G. Martin, Precipitation kinetics of Al3Zr and Al3Sc

in aluminum alloys modeled with cluster dynamics, Acta Mater. 53 (2005) pp. 2313-

2325

[5]  M.  Perez,  M.  Dumont  and  D.  Acevedo-Reyes,  Implementation  of  classical

nucleation and growth theories for precipitation, Acta Mater. 56 (2008) pp.2119-2132.

[6]  E.  Clouet,  Modeling  of  nucleation  processes,  in  Fundamentals  of  Modelling  for

Metals Processing,  D.U. Furrer and S.L. Semiatin (Eds.),  Materials  Park, OH, ASM



Handbook, vol. 22A Fundamentals of modelling for metals processing (2010) pp.203–

219.

[7] A. Perini, G. Jacucci and G. Martin,  Cluster free energy in the simple-cubic Ising

model, Phys. Rev. B 29 (1984) pp. 2689–97

[8]  J.S.  Garland  and  J.M.  Sanchez,  Cluster  variation  method  calculation  of  the

metastable aluminium-lithium phase diagram, in Kinetics of Ordering Transformations

in Metals, H. Chen and V.K. Vasudevan (Eds.), TMS, Warrendale, PA, (1992) pp. 207–

216. 

[9] Y.H. Wei and S.T. Wang, Experimental evidence for spinodal decomposition along

with simultaneous ordering in Al-12.7 at% Li alloy, Materials Letters 28 (1996) pp.123-

127


