
HAL Id: hal-02922098
https://hal.science/hal-02922098v1

Submitted on 25 Aug 2020 (v1), last revised 7 Mar 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient, Situated and Ontology based Referring
Expression Generation for Human-Robot collaboration
Guilhem Buisan, Guillaume Sarthou, Arthur Bit-Monnot, Aurélie Clodic,

Rachid Alami

To cite this version:
Guilhem Buisan, Guillaume Sarthou, Arthur Bit-Monnot, Aurélie Clodic, Rachid Alami. Efficient,
Situated and Ontology based Referring Expression Generation for Human-Robot collaboration. The
29th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN),
Aug 2020, Naples, Italy. �10.1109/RO-MAN47096.2020.9223485�. �hal-02922098v1�

https://hal.science/hal-02922098v1
https://hal.archives-ouvertes.fr

Efficient, Situated and Ontology based Referring Expression Generation
for Human-Robot collaboration

Guilhem Buisan1*, Guillaume Sarthou1*, Arthur Bit-Monnot1, Aurélie Clodic1,2 and Rachid Alami1,2

Abstract— In Human-Robot Interaction (HRI), ensuring non-
ambiguous communication between the robot and the human
is a key point for carrying out fluently a collaborative task.
With this work, we propose a method which allows the robot to
generate the optimal set of assertions that are necessary in order
to produce an unambiguous reference. In this paper, we present
a novel approach to the Referring Expression Generation
(REG) problem and its integration into a robotic system.
Our method is a domain-independent approach based on an
ontology as a knowledge base. We show how this generation
can be performed on an ontology which is not dedicated to this
task. We then validate our method through simulated situations,
compare it with state of the art approach and on a real robotic
system.

I. INTRODUCTION

Communication, be it verbal or not, is a key aspect for the
success of a Human-Robot collaborative task. This becomes
especially important in complex environments with a wide
variety of entities: objects, places, people. Referring to a spe-
cific entity in such an environment can become challenging
when one must account for the context of the task, the variety
of facts that can be extracted from the situation depending
on available perception modalities and the common ground
between the robot and its human partners. The need to
communicate on particular objects happens in many everyday
tasks and it is important to endow the robot with the ability
to estimate if and how referring to an object is feasible as
well to assess the intelligibility of a referring expression
(RE). This need is also important since deictic pointing is
not always available in cooperative tasks when hands might
be occupied to do something else.

Consider the situation where a robot needs to ask for a
given pen which is not reachable by it but which is visible
and reachable by its human partner. The action to refer to the
pen can occur in situations of different complexities (Fig. 1).
When only one pen is present (Fig. 1a), the reference is
obvious to produce. If however there are two pens in two
pencil boxes of different colors (Fig. 1f), the robot has to
generate an expression referring to one of the pencil boxes
in order to refer to the target pen.

Until now, we considered that the robot knows the con-
cepts of pen and pencil box as well as their names in natural
language to speak about them. However, if our robot has to
speak French and does not know the translation of pencil
box, it will have to resort to a more generic term, such

1LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
firstname.surname@laas.fr
2Artificial and Natural Intelligence Toulouse Institute (ANITI)
*These authors contributed equally to this work

Fig. 1. Six situations where referring to a pen leads to different
mechanisms to deal with ambiguities. The views are shown from the side
of the Human, the Robot is placed in the other side of the table

as ”container”. This may raise new ambiguities which will
have to be solved, e.g. in the case where other containers are
visible to the human. The robot must also pay attention to
the relationships it uses to refer to an entity. For instance,
using the exact weight of an object wouldn’t be useful and
using the color will not be the most suitable property for a
color blind person. This means that the robot has to only use
relations known and perceived by the human partner. This is
done by taking into account the theory of mind and therefore
by generating the RE on the estimation by the robot of the
knowledge base of the human partner. In the rest of the paper,
the knowledge base considered will therefore always be the
set of the human beliefs which the robot estimates, which
ensures that all of the concepts and relationships used are
known to the partner and take into account his perspective
of the current state of the world.

The underlying process of all of the previous examples is
what is commonly called a Referring Expression Generation
task. It is often composed of two sub-tasks: the content deter-
mination (determining the relations to use) and the linguistic
realization (choosing the words to use to communicate the
content) [8]. While the focus of this paper is on the content
determination, it is impossible to consider these two sub-
tasks entirely independently. Indeed, the generation and the
valuation of the content depends strongly on the concepts
usable in natural language. This can be ensured by using
a dedicated knowledge base, containing only verbalizable
concepts, but such knowledge bases can be hard to maintain
during the interaction. In a cooperative scenario, one should
also ensure that the referring expression does not rely on any

fact unknown to the human partner.
The main contribution of this paper is an ontology-based

and domain-independent algorithm for the generation of
referring expressions. Using a customizable cost function
estimating the cognitive load required for a human to inter-
pret the RE, it produces the optimal set of verbalizable as-
sertions, allowing to discriminate unambiguously a given
entity referred to by the robot. We show that our method
outperforms state-of-the-art methods on existing benchmarks
and scales to realistically sized knowledge-bases (77 objects
distributed in a three-room apartment) when integrated in a
complete robotic architecture.

In §II, we briefly discuss related work and how our
method addresses new issues. The problem is defined in
§III. We provide in §IV a description of our resolution
procedure. Comparisons with state of the art algorithms and
an integration of the method on a real robotic system are
respectively presented in §V and §VI.

II. RELATED WORK

Referring Expression Generation has been studied for
decades and ”is concerned with how we produce a descrip-
tion of an entity that enables the hearer to identify that entity
in a given context” [13]. Criteria for good RE include the
referential success (the target entity is unambigously identi-
fied), the ease of comprehension (the RE must be understood
quickly by the receiver, note that it depends on person) and
the avoidance of false implications1 (especially be as short
as possible) [4]. Moreover, the computational complexity in
term of generation time should also be considered, as they
could be generated in a dynamic and changing environment.

Two pioneer fundamental approaches to the REG problem
are the Depth First Search (DFS) [2] and the Full Brevity [3]
algorithms. While the first does not always find an optimal
solution, the second does at the cost of an exhaustive search.
Early in the field, the notion of preference over features has
been highlighted in [4] with the Incremental Algorithm (IA)
in order to promote the use of certain features such as the
color or the shape of an object rather than spatial relations.
However, due to an attribute-value pair representation, these
solutions can only refer to entity attributes and cannot refer
to relations between entities.

The Graph-Based Algorithm (GBA) REG proposed in [7]
introduces a new representation in the form of a labeled
directed multi-graph also known as the REG graph. This
representation allows to use relations between entities to
generate a RE and integrates the preferences over features
by assigning costs to each edge of the graph. These costs are
called Preference Ordering (PO) and aim for physiological
realism. On top of this representation a branch&bound algo-
rithm is used to find the optimal RE. Many extensions of the
GBA have been made with for example a basic-level category
descriptor [8] which also addresses the problem of the
hierarchy of entity types. [10] proposed some optimizations
on the original GBA allowing an efficiency gain close to 56%

1Saying ”the green pen” implies the presence of another non-green pen.

but since their task involves only cubes, they do not take into
account the types of objects. An other interesting GBA is the
Longest First (LF) algorithm [16] but, as we will show later,
its exhaustive search entails poor performance when used on
larger realistic knowledge bases.

Other approaches have been proposed like the belief
network based disambiguation method, introduced in [20]
with the ability to work on several object attributes. However,
the authors indicate that a specific belief network should
be constructed and therefore trained for each attribute. This
limitation reduces the genericity of the method. [5] face the
same problem with a log-linear model trained from a corpus
of the probability distribution of REs. An important aspect of
the REG problem is highlighted in [20]: by working on belief
bases, their algorithm runs on the human partner’s estimated
belief base which ensures that the robot generate a referring
solution compatible with concepts known by the human.

All solutions mentioned above are highly domain-
dependent, whether through training on corpus or dedicated
representations integrating only relations relevant to the task.
In [18], the authors presented a hybrid approach between
domain-dependent and domain-independent with the DIST-
PIA, a distributed Incremental Algorithm. The idea is to have
domain-dependent consultants [17] on each of the distributed
knowledge bases in order to have a domain-independent IA
querying these consultants. While this is a good solution
for distributed knowledge bases, it still raises some issues
regarding the hand made ordering of relations in the consul-
tants and the impact of the order of the consultants in the IA.
However, it is worth mentioning that this method has been
successfully integrated into a robotic architecture [19].

The closest work to ours is introduced in [14] and an
integration in a robotic system is presented in [9]. Like
ours, this method is based on a knowledge base coded as
an ontology and is independent of the perception modality
(i.e. the kind of relation present in the knowledge base)
making it domain-independent. However, it only supports
entity attributes and not relations between entities.

A common point between the presented methods is that
they all consider the linguistic realisation [8] as perfect in the
sense that every concept available in their knowledge bases
has a word in natural language. As we focus on determining
the content using a domain-independent knowledge base,
with this work we want to make a first step in taking into
account the language in the REG by not assuming that all
the concepts in the knowledge base can be used in natural
language.

To sum up, we identified a number of key desired features
for a REG to be used by a robot in human-robot collaboration
contexts and which are presented in Table I: Domain inde-
pendent: it is important to that the REG can be performed
on standard and domain-independent knowledge bases which
can allow easy extension and use of the available inference
engines. Representation type: For a dynamic robotic ap-
plication, the REG must be done on a data type expressive
enough to represent a large variety of situations and which
can be easily updated through perception and inference. Use

TABLE I
SUMMARY OF THE FIVE MAJOR FEATURES IDENTIFIED FOR THE MOST REPRESENTATIVE CONTRIBUTIONS IN THE FIELD

[2] [3] [4] [7] [16] [20] [18] [14] Our
Domain independent No No No No No No Yes Yes Yes
Representation type knowledge - attribute- REG graph REG graph Belief Distributed Ontology Ontology

base entity value pairs network KBs
Use of types No - Yes No No No No No Yes
Preference ordering No No Yes Yes Yes Yes Yes Yes Yes
Referring to other entities No No No Yes Yes No Yes No Yes

of types: The type of an entity is the minimal information to
use to refer an entity. Without type, linguistic realisation can
not be done. Preference ordering: As discussed in early
works on REG [4], some attributes are better and faster
understood than others. Being able to order relations ensures
finding efficient referring expressions. Referring to other
entities: It is important to be able, when necessary (Fig.
1(f)), to refer to an entity by referring to another one.

III. PROBLEM DEFINITION

In this section we present the chosen knowledge represen-
tation as an ontology and the specific extensions targeting
the REG problem in a HRI context. We then discuss how
the situation in which REG is performed can influence the
resolution process. Finally we formally define a solution to
a REG problem.

A. Knowledge representation

We have chosen to use an ontology as a knowledge
base since it is a largely used representation in many fields
and also to ensure for future extensions and inclusion of
standardized ontologies and inference engines. Additionally,
efforts have been and will be dedicated to create ontologies
for robotic applications with the IEEE-SA P1872.2 Standard
for Autonomous Robotics (AuR) Ontology.

1) Ontology definition: Let us define a semantic knowl-
edge base K represented as an ontology by K = 〈A,T,R〉
as defined in [6]. The TBox T defines a type hierarchy
as a finite directed acyclic graph T = 〈T,H〉 with T the
set classes (types) and H the directed edges representing
the inheritance/inclusion links between theses classes, com-
monly referred as ”isA” links (e.g. (Dog, isA, Animal)).
The RBox R = 〈P, Incl, Inv〉 is the roles/properties tu-
ple, with P the set of properties, Incl the finite directed
acyclic graph edges of the properties representing the in-
heritance/inclusion links between the properties and Inv =
{(pi, pj) ∈ P 2} the set representing the properties inverses
(e.g. (isHeldBy, isHolding) ∈ Inv). Finally, the ABox
A = 〈A,C0, R〉, with A the set of individuals/entities, C0 the
set of direct types of A such as C0 = {(a, t)|a ∈ A, t ∈ T}
(an instance a can have several direct types) and R the
set of relations between entities (i.e. the triplets) such as
R = {(s, p, o)|(s, o) ∈ A2, p ∈ P} where s is the subject, p
the property and o the object. With theses relations we can
both represent the attributes of an entity but also represent
relations between entities such as spatial relations relating to
other entities.

While C0 contains the direct types of entities, we
use C to denote set of direct and inherited types.
For instance, an entity dog23 with a direct Dog type
((dog23, Dog) ∈ C0) would also inherit the Animal type
((dog23, Dog), (dog23, Animal) ∈ C) through the type
hierarchy of T. When appropriate, the REG will take benefit
of this inheritance to refer to entities with a higher level of
abstraction.

Note that to fully match the Hutchison definition [6],
we also need to add the disjunctive, transitive, reflexive
and chain relations declarations in R and disjunctive class
declarations in T. Since we will not use them in here we
chose to not take them into account in this definition. We
also assume that all inference processes have already been
made resulting in complete and consistent knowledge base
to be used by the REG.

2) Ontology extension for the REG problem: To represent
writable/speakable names, we define a class labeling function
Lt : T → str ∪ ⊥ where str denotes a set of strings to be
used as words in the vocabulary. This can be done using
the rdf:label property commonly used in ontologies. We say
that a class t ∈ T is labeled if Lt(t) 6= ⊥ and refers to
Lt(t) ∈ str as the label of t. We further require labels to
be unique, i.e., for any two labeled classes t, t′ ∈ T 2, t 6=
t′ ⇔ Lt(t) 6= Lt(t

′). Similarly, we define an entity labeling
function La : A → str ∪ ⊥, which associates unique labels
to a subset of the entities.

We also define a comprehension cost function which aims
at ordering relations to reflect that some are harder/longer
for a human to understand than others. These ”preferences”
have been identified early in REG studies. Dale and Reiter
[4] identified that the use of some properties or types should
be preferred to others and defined a preference ordering on
properties (e.g. it is preferable to use the color of an object
than its size). This is intended to account for the ease with
which a human can include a relation in his mental repre-
sentation of an object. Moreover, this preference ordering
can change from one person to another. Persons subject to
mild color vision defect can prefer and be more efficient
when presented with size or shape than color properties. The
comprehension cost function is defined as C : P → R+∗.

3) Ontology in the context of Human-Robot Interaction:
Since we are dealing with HRI applications, it is pertinent to
maintain a knowledge base per agent in order to implement
theory of mind decisional mechanisms. This is provided
by the system we use, Ontologenius [15] which is an
efficient framework designed for robotic applications and

which allows to manage several ontologies corresponding to
the knowledge of the robot and to its estimated knowledge
of its human partners.

We define the robot’s own knowledge base KRO =
〈ARO,TRO,RRO〉. The robot maintains, for each agent AG
it knows of, an estimation of this agent’s knowledge KAG =
〈AAG,TAG,RAG〉. The robot’s knowledge thus encompasses
both its own perception of the environment as well as an
estimation of the other agent’s knowledge. In the rest of this
paper, we use only the knowledge base - simply noted K -
corresponding to the estimation of the human knowledge for
the generation of referring expressions. This is to account
for perspective-taking and to ensure that REG will only use
the concepts and relations it believes the human understands
and is aware of.

B. Contextualization and Restrictions for Situated REG

We are aiming to unambiguously designate, through its
relations to other entities, an entity at ∈ A in a knowledge
base K. However, the RE is meant to be used in the context
of a task and its generation has to take this into account.
When a Human-Robot collaborative task concerns object on
a table between the human and the robot, the other entities
in the room are clearly out of context. In the example of
Fig. 1a, the human knows about the object on the table but
may also be aware of other pens in the room. Despite this,
if the robot has to designate to the human the pen which
is on the table, the assertion ”take the pen” will not lead
to any ambiguous situation because in the context of the
task, it is obvious that the robot is currently speaking about
the pen which is on the table and which is visible by the
human. This is why the problem must be given a context
Ctx = (Rctx, Cctx), a set of relations and direct types that
are implicit in the current situation, which will be used to
reference at, but not included in the generated RE. For the
table-top interactions of Fig. 1, the context could be defined
as Ctx = ({〈at, isOn, Table1〉, 〈at, isV isibleBy,Bob〉,
〈at, isReachableBy,Bob〉}, ∅) where at is the entity to
be referenced and Table1 the identifier of the table where
the task is performed. With this context, we restrict the
disambiguation to the entities present on the table Table1
and visible and reachable by Bob, the human partner.

Finally, in a more general case, some properties might be
present in the knowledge base, but cannot be used in the
discrimination process. For example, the hasMesh property
should not be used for a verbal communication with humans.
Thus, the problem must be provided with a set of so-called
usable properties U ⊆ P . Because of properties inheritance
Incl all the properties inheriting from the ones in U are
usable in the problem. Thus, the REG problem is a tuple
P = 〈at,K,Ctx, U〉.

C. Solution: structure and validity criteria

A solution to the REG problem is a set of relations which
could be verbalized afterwards. Because some entities are not
labeled with a unique name (anonymous) and thus cannot be

Fig. 2. Disambiguation of a scene with three pens, the two blue ones being
in a green and a blue cup respectively. Given is the set of classes C and
relations R of the knowledge base and the search space of the algorithm
to reference entity P 1. Hashed arrows correspond to typing actions and
grayed states do not respect the constraints C1 or C2.

referred to directly, some of the relations might be under-
specified. For instance, the sentence “the pen is blue” is
under-specified in that “the pen” does not identify a unique
entity but any entity with the class “pen”. In addition, it might
be the case that a unique, anonymous, entity participates in
more than one relation, e.g., “the pen is blue and on the
table”. To keep track of anonymous entities in underspecified
relations, we introduce a variable set X , representing the
anonymous entities. By convention, variables will be prefixed
with a question mark (e.g. ?y ∈ X). An underspecified
relation is thus a triple (s, p, o) ∈ (X ∪A)× U × (X ∪A),
e.g., (?y, Color, red) where ?y ∈ X is a variable and red ∈ A
is a labeled entity in the knowledge base.

When speaking about anonymous entities, one must know
its type to serve as a placeholder in sentences (e.g. ”the pen”).
Thus, the solution should associate each variable and a type.
For simplicity, we chose to represent them also as triplets:
X × ”isA”× T (e.g. (?y, isA, Pen)).

Thus, a reference E is a set of triplets, each triplet in E
being either an under-specified relation in (X ∪ A) × U ×
(X ∪A) or a type ascription in (X × ”isA”× T).

A valid reference must respect three constraints:

C1. Nameability of entities. Each entity a ∈ A present
in any tuple of E (as first or third component) must
have a label: La(a) 6= ⊥.

C2. Nameability of the variables. For each variable
x ∈ X present in any tuple of E (as first or third
component) there must also be a unique tuple in E
specifying one of its labeled type ((x, ”isA”, t) ∈
E with t ∈ T and Lt(t) 6= ⊥.

C3. Correct instantiation of variables. The reference
E is valid if there exists at least one substitution
function f : X → A of the variables in E into
entities in A such that the types and relations
linking entities in E are still present in T and R
once f has been applied. In practice, f transforms
the underspecified relations of E into fully specified
ones that must appear in the knowledge base.

In the situation of Fig. 2, let the references E1 =

Fig. 3. A scene where disambiguating between the two cups by referring
to the pens can be done either by leaving the ambiguity on the pen (R1) or
also disambiguating the color of the pen (R2).

{(P 1, Color, blue)}, E2 = {(?y, Color, blue)} and E3 =
{(?y, isA, Pen), (?y, Color, green)}. These are not valid
because: (1) since P 1 is not labeled E1 violates C1, (2)
the variable ?y has no type in E2, so it violates C2 and (3)
there is no green pen in the knowledge base K, thus the
mapping of ?y is not possible and E3 violates C3.

To a REG problem P = 〈at,K,Ctx, U〉 we now define a
solution S = 〈E, xg〉 composed of E a valid reference and
xg a variable designating the target entity at in E. Moreover
a solution must respect the following requirement:

R1. Unambiguity of the target entity. For all the
mapping function f respecting C3 for E, we have
f(xg) = at.

We say a solution is complete if it respects the stronger R2:
R2. Unambiguity of all the entities. The mapping

function f respecting C3 for E is unique.
In Fig. 3, to designate the cup B, the solution {(?y, isA,

Cup), (?z, isA, Pen), (?y, hasIn, ?z)} and xg =?y violates R2,
because it is unclear which pen is ?z. However, ?y resolves
only to the cup B (here at), for every ?z possible, it is thus
a valid solution as it respects R1. Another solution {(?y,
isA, Cup), (?z, isA, Pen), (?z, Color, Red), (?y, hasIn, ?z)}
respects R2 and is complete: ?z resolves unambiguously to
the red pen, and ?y to the cup B.

Finally, we define an optimal solution S∗ = 〈E∗, xg〉 as
being a solution minimizing

∑
r∈E∗ C(r) over the set of all

the possible solutions for a REG problem. In case of equal
costs, S∗ would be the reference with the smallest number
of triplets.

IV. ALGORITHM

A. Formalisation as a search problem

In the REG problem, we define a state s as a set T ⊆
R ∪ C of relation r representing relations present in the
referenced knowledge base K. The initial state is specified
by the user’s query through the context of the problem.

To find all substitutions defined in III-C (C3), and thus,
all the entities which can be bound to the variables in
the reference, we use SPARQL queries. SPARQL is a query
language allowing to retrieve information from an ontology.
From any state s we can easily construct a SPARQL query,
and submit it on the knowledge base to know how many
entities can bound to the variables of the request. A state s
is a target state if at is the only solution to the variable
xg of the SPARQL query created from the state (R1), and
possibly all the variables in the SPARQL query have only
one assignation (R2).

An action a in the unambiguous reference generation
problem consists in the insertion of a new triplet (s, p, o) to
the set T of a state s resulting in the creation of a new state
s′. The inserted relation in a state s can be a typing relation
(p ≡ isA) or a relation which differs between ambiguous
entities in s. We define two kinds of difference between
ambiguous entities. 1) Hard difference (ai, ∆ , aj) exists
when two entities own the same property towards a different
entity (i.e (ai, p, oi) ∈ R ∧ (aj , p, oj) ∈ R|oi 6= oj). 2)
Soft difference (ai, δ , aj) exists when an entity owns a
property that is not owned by another ambiguous entity (i.e
(a1, p, oi) ∈ R ∧ (aj , p, ·) /∈ R).

Finally, the cost of a state is the sum of the cost of each
action leading to this state. If we assume that each action aj
corresponds to the fact of adding a relation rj to the state
s with a cost C(rj), the cost to s is cs =

∑Ts C(rj). As
the hard differences respect the open-world assumption but
the soft differences do not, we propose to encourage the use
of hard difference when possible by adding an extra-cost to
actions coming from soft differences.

B. Algorithm presentation

Our REG algorithm performs a graph search in the space
of states (Alg. 1). From an initial state built from the context
of the query, the algorithm generates new states by adding
possibly disambiguating relation to the current state. We use
an uniform-cost search which is optimal and complete with
positive action costs and a finite number of entities and
properties in K. Just like Dijkstra’s algorithm, it expands the
states in increasing cost order until a solution is discovered
or the search space is exhausted.

TOVARIABLE: We globally define a symbol table S to
keep track of the variables assigned to the entities without
labels. When needed, this symbol table assigns a unique
variable identifier to an entity a. We note S−1 the inverse
table, allowing to retrieve the entity from an existing variable.

TOQUERY: Performs a direct translation of a set of
triplets into a SPARQL query. For each triplet, its subject
and object are given a string representation with the function
v(a) : A× T 7→ str:

v(a) =

{
str(a), if La(a) 6= ⊥
S(a), otherwise

SPARQLRESULT: The function that takes a SPARQL
query as input and returns a match table M in the way that
M(x) is the set of entities matching the variable x in the
given query.

GOALTEST: The test succeeds for the degraded solution
if the target entity at is the only solution to the variable v(at)
in M. For the complete solution, the test succeed if all the
variables of M have exactly one solution.

ACTIONS: At each step, we consider two kinds of
possible actions. The TYPINGACTIONS function (Alg. 2)
consisting in the addition of an inheritance relation if at
least one entity has no label and no inheritance relation
in T . Otherwise, the hard difference actions (Alg. 3) and
the soft differences (Alg. 3 with the δ operator at line 6)

Algorithm 1 Uniform-Cost Search for unambiguous reference generation
function DISAMBIGUATE(problem)
state← CREATE-INITIAL-STATE(problem.context)
frontier ← a priority queue o states ordered by their cost, with state as only element
explored← an empty set
loop

if EMPTY(frontier) then return failure end if
state← POP(frontier)
if GOALTEST(problem, TOQUERY(state)) then return SOLUTION(state) end if
add state to explored
for all action in ACTIONS(state) do
child← state ∪ {action}
if child is not in explored or frontier then frontier ← INSERT(child, frontier) end if

add relations that differ as hard and soft differences between
ambiguous entity for each variable in M.

In the TYPINGACTIONS function, the function USABLE-
CLASSES returns the most specific labeled classes of an
entity a, i.e., the set of classes t ∈ T such that (a, t) ∈ C, t
is labeled and there are no labeled subclasses of t.

Algorithm 2 Typing actions pseudocode
function TYPINGACTIONS(state)

for all (s, p, o) in state do
if 6 ∃x s.t. (s,”isA”, x) ∈ state ∧ La(s) = ⊥ then

return { (s, ”isA”, t) | t ∈ USABLECLASSES(s) }
return OK . every anonymous entity is typed

This strategy differs from the one of [4] that prefers the
least specific types (so called basic-level classes). However,
in domain-independent knowledge bases such as ours their
scheme could often resolve to ”Object” or ”Thing” which
can lead to confusion. Furthermore, by being conservative
in our estimation of the receiver’s knowledge base, we can
guarantee that the labels of the considered classes are known
to the human partner. Finally, using the most specific classes
might reduce the ambiguities, and thus the branching factor
early in the search, without impacting completeness.

The TYPINGACTIONS function stops at the first entity
which has no label nor type. This specificity reduces the
branching factor while ensuring that each entity has a label
or at least a type. Since typing actions are the first tested in
the ACTIONS function, all entities not tested during a first
execution will be performed during the next ones.

The ∆ (resp. δ) operator returns all the relations that are
hard differences (resp. soft) between two entities as defined
in IV-A. In the difference actions algorithm, an action can be
added only once and must not be present in the current state
to avoid redundancy. The inverse relation to the one added
by the action is also retrived from the Inv set defined in
the knowledge base and checked if not present in the current
state and in the current actions set, again to avoid redundancy.
In the example of Fig. 2 the relation (P 1, isIn,G 2) will be
redundant if the relation (G 2, hasIn, P 2) has been already
used in the current state.

Algorithm 3 Hard difference actions pseudocode
1: function HARDDIFFERENCEACTIONS(state)
2: actions← an empty set of actions
3: matches← SPARQLRESULT(TOQUERY(state))
4: for all (x, a) in matches do
5: if a 6= S−1(x) then
6: for all r = (S−1(x), p, o) in S−1(x) ∆ a do
7: rinv = (o, Inv(p),S−1(x))
8: if r 6∈ sate ∧ rinv 6∈ state ∧ p ∈ U then
9: actions← actions ∪ {r}

return actions

V. RESULTS

We present hereafter the solutions given by our algorithm
to the illustrative examples. Then we provide results involv-
ing a large scale knowledge base describing a full apartment
in terms of time-execution, solution length and composition.
Finally, we provide comparative performance measures with
two state-of-the-art methods on their own domains.

A. Solutions analysis

In order to familiarize with solutions, we propose to
present some of them. For every presented solution, the
variable denoting the entity to refer to will be xg =?0.
The first setup is for illustration purposes, and operates
on the static knowledge base illustrated in Fig. 2. Since
this setup is really small, the context is always empty, all
the relations are usable and no entity is labeled. We only
tested with two interesting entities since the others present
similar characteristics. The solutions for P 1 and G 1 are
respectively {(?0, isA, Pen), (?0, isIn, ?1), (?1, isA, Cup),
(?1, Color, blue)} and {(?0, isA, Cup), (?0, Color, blue)},
which can be read respectively as ”the pen in the blue cup”
and ”the blue cup”. These two solutions are R2 (allowing
to read ”the” and not ”a” in the verbalization), as ?0 and
?1 bind to only one entity. Here, we see how referring to
another entity lead to interesting solutions.

In order to give the reader a sense of how the context
is useful as defined in the problem, we propose to come
back to the Fig. 1. In a knowledge base describing Fig. 1(b),
with a labeled entity Bob, representing the human, giving a

empty context to the problem would lead to the solution
{(?0, isA, Pen), (?0, isReachableBy, Bob)}, which would
read as ”The pen reachable by Bob”. Whereas, if the robot
wants the human to give it the pen, the reachablity of
the pen is obvious. So the context would become: {(pen0,
isReachableBy, Bob)}, the ensuing solution would be {?0,
isA, Pen)}, simply verbalizable as ”the pen”, as taking into
account the given context resolve the ambiguity.

B. Scaling up

To assess the relevance of our approach, we created a
larger, realistically-sized, knowledge base (101 entities, 36
classes, 40 properties and 497 relations), describing an apart-
ment with three rooms including several furniture (tables,
shelves) and objects (cups, boxes) linked through geometrical
relations (atLeftOf, onTopOf) and attributes (color, weight).
We ran our algorithm over all the 77 entities inheriting from
the ”Object” class, representing physical entities.

As this algorithm must be used in a human robot interac-
tion application, we want it not to spoil the interaction when
the robot is computing an explanation. In this setup, 100%
of the entities have been referred in under 4.33ms that is
well bellow 100ms which is the maximum system response
time for the user to get a feeling of instantaneity [12]. More
over, 50% are referred under 357µs and 75% under 772µs.
On average, 10.6 nodes are explored to refer to an object
with an average of 67.35µs/node explored.

Over the 77 entities, 32 (41.56%) are referred with 2 or
less relation meaning that only the type of the entity and one
relation is needed to refer to them. We can also note that 25
entities (32.46%) are referred using 4 or more relations with
a maximum of 6 for one of them. Finally, 49.4% need to
be referred by referring to another entity and two of them
need to be referred by referring to two other entities. This
mean that 49.4% of the entities can not be referred using
approaches like [14] or [4]. For this reason we will not
compare more of these two works.

These results over a large scale knowledge base highlight
the need to be able to refer to an entity through the use
of relation linking it with other entities. They also shows
that the use of the type of an entity is often sufficient with
the use of only one attribute. With this experiment we also
demonstrate that our algorithm is suitable for a use with a
realistic large scale knowledge base.

C. Comparisons with other state-of-the-art algorithms

1) Longest First: The Longest First (LF)2 algorithm [16]
has been tested on the GRE3D3 Corpus composed of 20
scenes with three objects with different spatial relations
relative to one another (onTopOf, atLeftOf). Each object can
be referenced by its color, its size (large or small) and its
type (cube or ball). The target referent is marked by an arrow
and is always in a direct adjacency relation (onTopOf or
inFrontOf). Among the 20 scenes, 8 target objects can be
referenced without any ambiguity using only their type, 7 can

2http://www.m-mitchell.com/code

be referenced using only their type in addition to an attribute
(color or size) and the other five can be referenced using
their types and both color and size attribute. This means that
spatial relations are never necessary to reference the target
object. We perform the comparison on the 19th case which
consists of a small green cube on a large green cube and a
small blue cube to the right of the green cubes. We chose
this case with only cubes because the LF algorithm does not
consider the types when generating the RE and adds them
only as a post-process. The other cases requiring only the
type are resolved in less than 100µs and those requiring the
type and an attribute are resolved in less than 250µs with
our algorithm.

Because of their objective of obtaining an over-
specification of the RE, their results are strongly impacted
by the maximum length parameter. By setting it to 4 as
recommended, we get the result which we can read as ”The
small green cube on top of a cube” in 311ms. By setting the
maximum length to 3 we obtain the shortest admissible result
which can be read as ”The small green cube” in 109ms. This
last result is the one given by our algorithm in just 0.87ms.

We see here that the results given by the LF algorithm
largely depend on the maximum length parameter. This
parameter also has a significant impact on the execution time.
Besides, in the realistic scenario presented previously, 13%
of the entity need a reference expression length greater than
4. Thus, even if the over-specification is the goal of the LF
approach, it can hardly scale-up. Moreover, for a maximum
length fixed at the optimal length, the two approaches give
identical results.

2) Graph Based Algorithm: A speed up of the original
GBA [16] is presented in [10]. It aims at extracting, from a
dedicated entities relations graph G, the lowest cost subgraph
which is graph isomorphic to one and only one subgraph
in G containing the entity to refer to. Their approach is
evaluated on a corpus containing multiple tabletop scenes
[11], presenting numerous cubes of different colors.

We generated the graph (relations and costs) used for the
scene 1, converted it into an ontology, and ran our algorithm
on it. This scene contains 15 cubes, GBA algorithm and ours
are able to find a solution for the same 10 of them. In all the
10 cases, as we used the same costs, both algorithms returned
the same solution (with the types of used entities added in our
approach). For the other 5 cases, the two algorithms detect
the absence of a solution in a few milliseconds.

On all the 10 cases with a solution, our approach performs
faster than theirs (29.4 times faster in average). We can note
that the speed increase is more important in cases where there
are many solutions (under 4 times faster on 50% of the cases,
but more than 50 times faster for 25% of the cases, up to
130 times faster). Indeed, the GBA approach uses a branch
and bound algorithm where the search graph is bounded
if the branch exceeds the cost of the current best found
solution. Thus, it can explore a large part of the graph if the
optimal solution is not found early in the search. Whereas
our approach uses an uniform cost search algorithm, ensuring
the first found solution is optimal. Moreover, we think that

on cases where the knowledge base contains entities with
different types, our approach should work faster, since we
prioritize the use of the type. We were not able to test this,
as we could not manage to run their approach on other data
than their own corpus.

VI. INTEGRATION

Our ontology-based REG method has been integrated on a
PR2 robotic platform and used in a tabletop scenario. The ob-
jects on the tables are detected with the ROBOSHERLOCK3

[1] perception system. It provides the position (not used to
extract relations), the shape (”circular” or ”rectangular”),
the color and the size of the objects (”large”, ”medium”
or ”small”). Since the types of objects is not determined
by the system, all the objects were set with the labeled
type ”Object”. This allows us to challenge our method with
situations where the robot is not able to use high-level
concepts and where various ambiguities will be raised.

The knowledge base is managed using the Ontologenius4

system [15]. It uses a custom internal structure to store
and manipulate assertions as triplets, and offers reasoning
capabilities in the form of plugins. Ontologenius provides a
low level API allowing to manipulate the knowledge base as
a classical data structure in addition to a SPARQL interface.
The ontology is dynamically fed to keep it up to date on
the basis of a simple situation assessment consisting only of
filtering and object tracking.

A simple linguistic realisation has been made, taking as
input a SPARQL query and generating an English sentence
as output. For example, it transforms the query ”?0 isA Cup,
?0 isOn ?1, ?1 isA Table, ?1 hasColor black” into ”the cup
on the black table”. It is an ad hoc implementation based on
a simple grammar and the labels present in the ontology.

The task 5 involves six objects on a table. The entity
to reference is obj 4 (a white mug). The robot generates
the solution ”The white circular object” since there are
other non-white circular objects and other white non-circular
objects. Then, a human adds a new object which is a white
and circular milk bottle (obj 5). When the robot is asked
to describe the white cup, it generates the sentence ”The
white small circular object”. With this simple task, we
show that our REG algorithm can be used within a robotic
architecture, can deal with dynamic environment and can
adapt its explanation to the current situation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we formalized the REG problem adapted
to hierarchical knowledge bases such as ontologies. We
proposed an algorithm solving this problem by searching
for a set of expressions using entities, usable attributes and
relations to other entities, based on properties costs as an
optimisation criterion. The flexibility and efficiency of our
method are illustrated by (i) comparing its performances with
other state-of-the-art approaches, (ii) showing its efficiency

3http://robosherlock.org/
4https://sarthou.github.io/ontologenius/
5Commented video available at: https://frama.link/TWU_VE0o

on a realistically-sized ontology, and (iii) integrating it in an
operating robotic architecture.

We aim at integrating this method within a cost-based
human-aware task planner in order to equip it with an
informed criterion to decide if and when to use a communi-
cation action including reference to an entity.

ACKNOWLEDGEMENT

Authors want to thank Amandine Mayima for her work on
the integrated scenario. This work has been funded by the
French Agence Nationale de la Recherche JointAction4HRI
project ANR-16-CE33-0017 and the Artificial and Natural
Intelligence Toulouse Institute (ANITI).

REFERENCES

[1] M. Beetz, F. Bálint-Benczédi, N. Blodow, D. Nyga, T. Wiedemeyer,
and Z.-C. Márton, “Robosherlock: Unstructured information process-
ing for robot perception,” in IEEE ICRA, 2015.

[2] R. Dale, “Cooking up referring expressions,” in 27th Annual Meeting
of the association for Computational Linguistics, 1989.

[3] ——, Generating referring expressions: Constructing descriptions in
a domain of objects and processes. The MIT Press, 1992.

[4] R. Dale and E. Reiter, “Computational interpretations of the Gricean
maxims in the generation of referring expressions,” Cognitive Science,
vol. 19, no. 2, 1995.

[5] N. FitzGerald, Y. Artzi, and L. Zettlemoyer, “Learning distributions
over logical forms for referring expression generation,” in Proc. of the
Conf. on Empirical Methods in Natural Language Processing, 2013.

[6] A. Fokoue, A. Kershenbaum, L. Ma, E. Schonberg, and K. Srinivas,
“The Summary Abox: Cutting Ontologies Down to Size,” in The
Semantic Web - ISWC. Springer Berlin Heidelberg, 2006, vol. 4273.

[7] E. Krahmer, S. v. Erk, and A. Verleg, “Graph-based generation of
referring expressions,” Computational Linguistics, vol. 29, no. 1, 2003.

[8] E. Krahmer and K. van Deemter, “Computational generation of
referring expressions: A survey,” Computational Linguistics, vol. 38,
no. 1, 2012.

[9] S. Lemaignan, R. Ros, E. A. Sisbot, R. Alami, and M. Beetz,
“Grounding the Interaction: Anchoring Situated Discourse in Everyday
Human-Robot Interaction,” Int. Journal of Social Robotics, vol. 4,
no. 2, 2012.

[10] S. Li, “Automatically evaluating and generating clear robot explana-
tions,” Master’s thesis, Carnegie Mellon Uni., Pittsburgh, PA, 2017.

[11] S. Li, R. Scalise, H. Admoni, S. Rosenthal, and S. S. Srinivasa,
“Spatial references and perspective in natural language instructions
for collaborative manipulation,” in IEEE RO-MAN, 2016.

[12] R. B. Miller, “Response time in man-computer conversational trans-
actions,” in Proceedings of the December 9-11, fall joint computer
conference, part I. Association for Computing Machinery, 1968.

[13] E. Reiter and R. Dale, Building natural language generation systems.
Cambridge University Press, 2000.

[14] R. Ros, S. Lemaignan, E. A. Sisbot, R. Alami, J. Steinwender,
K. Hamann, and F. Warneken, “Which one? Grounding the referent
based on efficient human-robot interaction,” in IEEE RO-MAN, 2010.

[15] G. Sarthou, A. Clodic, and R. Alami, “Ontologenius : A long-term
semantic memory for robotic agents,” in IEEE RO-MAN, 2019.

[16] J. Viethen, M. Mitchell, and E. Krahmer, “Graphs and spatial relations
in the generation of referring expressions,” in Proceedings of the 14th
European Workshop on Natural Language Generation, 2013.

[17] T. Williams and M. Scheutz, “A framework for resolving open-world
referential expressions in distributed heterogeneous knowledge bases,”
in Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[18] ——, “Referring expression generation under uncertainty: Algorithm
and evaluation framework,” in Proc. of the 10th International Confer-
ence on Natural Language Generation, 2017.

[19] T. Williams, F. Yazdani, P. Suresh, M. Scheutz, and M. Beetz,
“Dempster-Shafer theoretic resolution of referential ambiguity,” Au-
tonomous Robots, vol. 43, no. 2, 2019.

[20] Y. Yamakata, T. Kawahara, H. G. Okuno, and M. Minoh, “Belief
Network based Disambiguation of Object Reference in Spoken Di-
alogue System,” Transactions of the Japanese Society for Artificial
Intelligence, vol. 19, 2004.

http://robosherlock.org/
https://sarthou.github.io/ontologenius/
https://frama.link/TWU_VE0o

	Introduction
	Related Work
	Problem definition
	Knowledge representation
	Ontology definition
	Ontology extension for the REG problem
	Ontology in the context of Human-Robot Interaction

	Contextualization and Restrictions for Situated REG
	Solution: structure and validity criteria

	Algorithm
	Formalisation as a search problem
	Algorithm presentation

	Results
	Solutions analysis
	Scaling up
	Comparisons with other state-of-the-art algorithms
	Longest First
	Graph Based Algorithm

	Integration
	Conclusion and future work
	References

