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Machine Learning for Receding Horizon
Observer Design: Application to Traffic

Density Estimation ?

Didier Georges ∗

∗Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000
Grenoble, France,

(e-mail: didier.georges@grenoble-inp.fr).

Abstract: This paper is devoted to the application of a simple machine learning technique for
the design of a receding horizon state observer. The proposed approach is based on a neural
network trained to learn the inverse problem consisting in deriving the current system state
from past measurements and inputs. The training data is obtained from simple integrations of
the system dynamics to be observed. The approach is here applied to the problem of estimating
the car density on a highway online. A comparison with the solution of an receding horizon
observer based on an adjoint method and used as reference demonstrates the effectiveness of
the proposed approach.

Keywords: Receding horizon observers, neural-network-based machine learning, traffic
monitoring, adjoint method.

1. INTRODUCTION

Getting some accurate estimates of the state of a dy-
namical system apart from a limited number of sensor
measurements appears to be of the greatest importance
in many monitoring applications, especially for risk as-
sessment. The early detection of hazards or vulnerabilities
and the ability to predict spatial and temporal evolution
of dynamical hazards still remain a big challenge for dis-
aster risk assessment and mitigation (see Zio (2018)).
A large number of applications are concerned: Weather
hazards, environmental monitoring of landslides, earth-
quakes, flooding, wildfires, air pollution, water quality,
or crops; critical infrastructures monitoring (see Alonso
(2018)): power, gas, water, oil, traffic and transportation
networks; large-scale structural health monitoring : En-
gineered structures of bridges, buildings and other related
infrastructures submitted to various stresses (earthquakes,
structural ageing, attacks); human or animal health mon-
itoring: epidemics and pandemics.

Our goal in this paper is to propose an effective way to de-
rive a state observer that will provide a state estimate from
a limited number of measurements, as an alternative to the
Receding Horizon Observer (RHO) approach, which has
been studied by many authors (see for instance, Michalska
(1995), Muske (1995), Rawlings (2006), Alamir (2007),
Kuhl (2011), Rangegowda (2018)). In most of the cases
and especially for medium to large scale systems with
small time constants, solving the RHO problem (relying
on the online computation of a nonlinear least-square op-
timization problem) appears to be uncompatible with real-
time operations. In addition non convexity of the nonlinear
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least-square problem may lead to unsatisfactory solutions
corresponding to local minima.

The approach proposed in this paper relies on simple
integrations of the system dynamics and offline training
of a neural network. For that reason, the online computa-
tional cost is limited to the evaluation of the approximate
observer function trained offline. Furthermore, under the
assumption of system observability, the existence of non
accurate estimates due to local minima of nonlinear least-
square RHO is mitigated by the neural network training
process. Indeed, the data used for training is based on
accurate sample pairs of initial states / outputs and the
final accuracy only depends on the quality of the train-
ing process. This approach is different from Alessandrini
(2011) which computes an approximate solution to a least-
square RHO by using a neural network.

The organization of the paper is as follows: Section 2
provides some background on receding horizon observers.
Section 3 is devoted to the design of receding horizon ob-
server based on the training of a neural network. In section
4, the application of the proposed methodology is applied
to the vehicle density estimation based on the Lighthill-
Whitham conservation law governing macroscopic dynam-
ics of traffic flows. The overall performance of the machine
learning approach is compared to the one of an optimal
receding horizon observer based on the calculus of varia-
tions. Finally, the paper ends with some conclusions and
perspectives.

2. SOME BACKGROUND ON RECEDING HORIZON
OBSERVERS (RHO)

We consider the following class of nonlinear systems:



ẋ= F (x, u), x ∈ Rn, x(0) = x0, u ∈ Rm (1)

y =H(x), y ∈ Rp,
where x denotes the state vector, u is the vector of known
exogenous inputs, and y is the vector of measured outputs.

Observability can be defined as the injectivity of the
operator initial state to output (the observability function
y(t) = Φ(t, x(t0))), that can be also reformulated as the
preservation of initial state distinctness or the nonzero
output sensitivity to initial state (see Besançon (2007)
for more details).

Φ(t, x1(t0)) = Φ(t, x2(t0)), ∀t ∈ [t0, t0 + T ]

⇒ x1(t0) = x2(t0). (2)

The state estimation problem consists in using a sequence
of output measurements over a time interval to retrieve
the state vector x. The measurements are assumed to be
obtained from physical sensors.

The following notation will be used in what follows to
denote the forward solution of (1) at time τ , starting from
state x at time t− T :

X(τ, x, u(.)), τ ≥ t− T.

State Receding or Moving Horizon Observers (RHO) (see
Michalska (1995), Muske (1995), Rawlings (2006),
Alamir (2007), Kuhl (2011), Rangegowda (2018)) pro-
vide an estimate of x by minimizing the output prediction
error in the least-square sense over a past receding horizon
defined by horizon length T , at each time t:

{x̂(t− T )} = arg min
z∈X (t−T )

{J(t, z, y(.), u(.))

=

∫ t

t−T
‖y(τ)−H(X(τ, z, u(.)))‖2R−1dτ + ‖z‖2M−1}, (3)

where weighting matrix R can be interpreted in the
Bayesian framework as the covariance matrix of a noise
vector affecting the output measurement. R−1 can also be
used to reflect the degree of trust in the measurements.
R can also depend on time to introduce some forgetting
factor with respect to past measurements. M can be
viewed as a regularization matrix or the covariance matrix
of uncertain z. X (t) is the set of admissible values of
the state at time t (often the set is used to impose the
state remains positive, for instance, in the case of physical
densities). In what follows, X (t) is assumed to be the full
state-space (no state constraints).

It is worth mentioning that (3) provides in fact an estimate
of state x at time t, since it suffices to integrate (1)
from estimate state x̂(t − T ), knowing u(.). In practice,
the continuous time t will be replace by a sampled time
tk = kTs defined by some sampling period Ts > 0.

Rather than solving optimization problem (3), which can
be computationally expensive for online applications, the
idea here is to approximate the inverse observability func-
tion Ψ defined by

x(t) = Ψ(y(.), u(.)), (4)

where both y(.) and u(.) are defined on time interval
[t− T, t].
If this function is available, x(t) can be obtained online for
every receding horizon [t− T, t].

2.1 Differences between the proposed approach and RHO
design

The two approaches are fundamentally different:

Solving RHO problem (3) provides an estimate of any state
x(t) for a given set of (u(.), y(.))) defined on any interval
[t− T, t] by computing a solution of the related nonlinear
least-square problem.

The here-proposed approach consists in estimating the
inverse observability function in order to provide all the
estimates of any x(t) belonging to a compact set of Rn
corresponding to inputs/outputs (u(.), y(.))) belonging to
a compact set of L2([0, T ],Rm+p).

3. RHO DESIGN BASED ON SUPERVISED
LEARNING

In order to approximate the inverse function Ψ, three main
ingredients are needed:

(1) The definition of a one-hidden-layer neural net-
work, with N neurons in the hidden layer with
(m + p) × NT input neurons and n output neurons
(where NT is the number of time samples), used to
approximate Ψ(y(.), u(.)):

Ψ(Z) ≈
N∑
i=1

wiσ(αTi Z + bi) + c = Φθ(Z), (5)

where

Z = (y(t1), y(t2), ..., y(tNT
), u(t1), u(t2), ..., u(tNT

))

is the vector of 2NT sampled inputs and outputs
defined on a grid of time interval [0, T ]. σ(x) =

1

1 + e−x
or tanh(x) represents the neuron activation

function, and wi ∈ Rm, αi ∈ Rn, bi ∈ R, ci ∈ R, and
θ = (wi, αi, bi, c)i=1,...,N .

It has been shown in Cybenko (1989) that such
networks can be used as multi-dimensional approxi-
mants. In this paper, best results have been obtained
with tanh activation function.

The use of multi-layer networks seems not to pro-
vide significant improvements in the here-proposed
application according to the preliminary experiments.
However when the number of input neurons (corre-
sponding to the size of the sequences u(ti) and y(ti))
is greater than 500, the use of Convolutional Neural
Networks should be considered, which are now well
known as being able to effectively process large input
and output data sets in classification and regression
applications (see Goodfellow (2016)).

(2) Some low-discrepancy sequences such as the ones
proposed by Halton, Sobol, Faure (see Niederre-
iter (1988) for instance) to generate M learning
samples of initial state xk(T ), and inputs Uk =
(uk(t1), uk(t2), ..., uk(tNT

)), for k = 1, ...,M .



Such sequences have been proposed to solve the
problem of optimally choosing M samples xi defined
in a hypercube C = [0, 1]n to ”minimize holes” in the
sense of the best possible approximation of integrals:

| 1

M

M∑
i=1

f(xi)−
∫
C

f(x)dx| ≤W (f)
log(M)n

M
(6)

W (f) is the variation of f in the sense of Hardy &
Krause.

Here the hypercube is defined as

N∏
i

[ai, bi]×
N∏
i

[ei, fi] (7)

, where (ai, bi)’s is the bound of the components of
state xk, and (ei, fi) is the bound of the inputs in Uk.

(3) The generation of output samples

Yk(T ) = (yk(t1), yk(t2), ..., yk(tNT
))

from each sample pair (xk(T ), Uk(T )), k =
1, ...,M via a simple time integration of system (1)
on time interval [0, T ].

A supervised learning technique is finally used to tune
parameters θ of the neural network, as solution of the
following nonlinear regression problem, using M samples
Zk = (Yk(T ), Uk(T )), k = 1, ...,M generated above:

min
θ

1

2

M∑
k=1

‖Ψθ(Zk(T ))− xk(T )‖2. (8)

Many approaches can be used to solve this problem
(stochastic gradient, quasi-Newton ...) (see Mohri (2012)
for instance). The Levenberg-Marquardt algorithm (Kelley
(1999)) implemented in MATLAB Deep Learning toolbox
has been used. Due to non convexity, several learning trials
may be needed to get an effective approximation of Ψ.

4. AN ILLUSTRATIVE CASE STUDY: OPTIMAL
CAR TRAFFIC DENSITY ESTIMATION

Various traffic estimation problems have focused the inter-
est of researchers in the past decades (see the extensive re-
view proposed in Seo (2017)). In this context, an adjoint-
based approach was proposed in Nguyen (2016) for traffic
density estimation on a road section based on the well-
known hyperbolic PDE for macroscopic flow dynamics
proposed in Lighthill (2011):

∂tρ(t, x) + ∂xφ(ρ(t, x)) = 0, (9)

with flux φ(ρ) = ρV (ρ), and where ρ(t, x) is the density of
cars on the highway, and V (ρ) is the car speed defined by
the fundamental diagram:

V (ρ) = Vmax(1− ρ

ρmax
), (10)

where is Vmax is the maximum speed, and ρmax is the
maximum car density. Even though this basic model is
known to have some limitations which makes it impossible
to reproduce complex phenomena, such as capacity drop,
hysteresis effect, traffic instability, stop-and-go waves, etc,
(see Seo (2017)), it is interesting to use it for demonstra-
tion purpose of the here-proposed approach.

For the purpose of the observer design, a finite-dimensional
model is derived using the method of lines based on an
finite-difference upwind scheme defined on a 1D grid:

ρ̇i(t) =
1

dx
(ρi−1(t)V (ρi−1(t))− ρi(t)V (ρi(t))), (11)

i = 1, ..., n,

where ρi(t) denotes ρ(t, x = idx), and dx is the spatial size
of the grid discretizing domain [0, L].

Here traffic flows φ(ρ(t, 0)) = ρ(t, 0)V (ρ(t, 0)), φ(ρ(t, L)) =
ρ(t, L)V (ρ(t, L)) at both extremities of the highway sec-
tion of length L are supposed to be measured.

The upstream flow acts as a Dirichlet boundary condition
of conservation law (9).

Under these measurement assumptions, state observability
of traffic density (and flows) of finite-dimensional model
(11) is ensured, provided that maximum density of cars is
not reached (traffic congestion).

The performance of the NN observer is compared to
the one of an optimal observer (which is a least-square
RHO) defined as the solution of the following problem (see
Nguyen (2016) for a closely-related formulation):

min
ρ(t−T,x),v(τ,x)

1

2

∫ t

t−T
‖y(τ)− ym(τ)‖2dτ

+
1

2

∫ L

0

‖v(τ, x)‖2dxdτ

+
ε

2

∫ L

0

‖ρ(t− T, x)− ρg(t− T, x)‖2dx

(12)

subject to

∂tρ(τ, x) + ∂xφ(ρ(τ, x)) = v(τ, x),

φ(ρ(τ, 0)) = u(τ),

y(τ) = φ(ρ(τ, L)), (13)

where ym(τ) denotes the flux measured at the downstream
end, v(τ, x) is a corrective source used to take input flow
disturbances into account, and ρg is an intial state guess.
ε is a regularization term. Then ρ(t, x) is obtained by
integrating (13) from estimate ρ(t− T, x), using v(t, x) on
a discretized grid of both spatial domain [0, L] and time
interval [t − T, t]. By using the variational calculus and
following a similar derivation as the one in Nguyen (2016)
based on Lagrangian functional

L(ρ, v, λ) =
1

2

∫ t

t−T
[‖y(τ)− ym(τ)‖2 +

∫ L

0

‖v(τ, x)‖2dx]dτ

+
ε

2

∫ L

0

‖ρ(t− T, x)− ρg(t− T, x)‖2dx

+

∫ t

t−T

∫ L

0

λ(t, c)(∂tρ(τ, x) + ∂xφ(ρ(τ, x))− v(τ, x))dxdτ,

(14)

the solution of (12)-(13) can be obtained from the following
set of necessary conditions for optimality, provided that
regularity properties are met (with no shock occurrence):



∂tρ(τ, x) + ∂xφ(ρ(τ, x)) = v(τ, x), (15)

φ(ρ(τ, 0)) = u(τ), (16)

ε(ρ(t− T, x)− ρg(t− T, x))− λ(t− T, x) = 0, (17)

v(τ, x)− λ(τ, x) = 0, (18)

∂tλ(τ, x) + φ′(ρ(τ, x))∂xλ(τ, x) = 0, (19)

λ(τ, L) = −(φ(ρ(τ, L))− ym(τ))φ′(ρ(τ, L)), (20)

λ(t, x) = 0, (21)

where the left parts of (17) and (18) provide the gra-
dient of the cost function w.r.t. initial state ρ(t − T, x)
and v(τ, x) respectively, by using a descent method (for
instance a quasi-newton method) combined with the use
of the method of lines for the computation of the two
PDEs. Here λ(t, x) refers to the adjoint of ρ(t, x). The
necessary conditions are obtained after performing two
integrations by parts (in time and space respectively) and
then computing the directional derivative of Lagrangian
functional L in directions δρ(τ, x), δρ(t − T, x), δρ(t, x),
δρ(τ, L), and δv(τ, x). Necessary conditions for optimality
(15)-(21) are derived by cancelling the gradients associated
to each direction.

In this paper, the car density estimation of a highway of
length 100 km is considered. The domain is discretized
into 10 spatial sections (n = 10). The observation horizon
is T = 1 h. The sampling time is dt = 0.0256 h, which
corresponds to NT = 40 time samples. Maximum vehicle
density ρmax = 300 vehicles/km and maximum speed
Vmax = 150 km/h. Boundary conditions φ(ρ(t, 0)) =
u(t) and horizon T are both chosen to avoid appearance
of shocks (singularities in the solution). Regularization
coefficient ε is chosen equal to 1e−7 without measurement
noise and 1e−3 with measurement noise. Initial guess
ρg(t − T, x) is equal to zero. MATLAB function fminunc
has been used to compute the solution of (12)-(13).

4.1 Comparison without measurement noise

3000 samples (Zk, xk) are generated using Sobol’s se-
quences defined in the hypercube [0, 170]n × [0, 1e4]NT .

The hidden layer of the neural network contained 10
neurons only. The setting and training of the network were
performed by using MATLAB functions feedforwardnet
and train, respectively. Fig. (1) provides an example of the
traffic dynamics generated by a training sample (xi, Ui).

The trained network is validated using a set of 100 new
validation inputs Zk generated randomly. For each Zk,
k = 1, ..., 100, problem (12) is solved. Then the relative
root-square error (RRSE) defined by

RRSE =
‖x̂(t)− x(t)‖2
‖x(t)‖2

,

where x ∈ Rn will denote the vector of the ρi(t)’s and
x̂ is the estimate provided by each of the two methods,
is computed for each of the two methods (neural network
observer (NN) and optimal observer (OO)). Fig. (2) shows
the residuals of the regression function using both training
and validation data, which demonstrates the effectiveness
of the approach. Fig. (3) and Fig. (4) provide some
examples of car density estimation. Fig. (5) clearly shows
that the NN observer performs very well (with RRSE less

than 3%) even though the optimal observer performs the
best as expected in average. It is worth mentioning that
sometimes the optimal observer gives worse results (with
RRSE greater than 20 % ; those results are not included
in the comparison to be fair). This seems mainly due to
non convexity that induces local minima.
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Fig. 2. Regression performance without Noise.

4.2 Comparison with measurement noise

The neural network is now trained with noisy sample
pairs (Yk, Uk) (a centered Gaussian noise with standard
deviation 100 is added to each component of the training
samples).

It appears that the NN observer still performs remarkably
well in the presence of the noise as seen in both Fig. (6) and
Fig. (9), although the optimal observer provides more ac-
curate results in average (except again when local minima
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are obtained). Fig. (7) and Fig. (8) show a comparison of
the car density estimates obtained with the two methods
in the presence of noise in the same conditions.
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Fig. 6. Regression performance with noise.
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5. CONCLUSIONS AND PERSPECTIVES

A simple approach for designing a Receding Horizon Ob-
server has been proposed in this paper. A neural network
has been used which makes it possible to approximate the
inverse of the observability function. The training samples
have been obtained from simple integrations of the system
to be observed. The estimation of the traffic density over
an highway section based on Lighthill-Whitham model,
has been investigated to demonstrate the effectiveness of
the proposed approach at least for medium-scale systems
compared to an optimal observer design.
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Future works will be devoted to the extension of the
approach to large-scale systems (for instance physical phe-
nomena governed by 2D PDEs such as wildfires (Georges
(2019)) or pollution spreading (Georges (2013))) using
Deep Learning approaches such as Convolutional Neural
Networks.
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