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ABSTRACT

The high-throughput data generated by new biotechnologies used in biological studies require

specific and adapted statistical  treatments.  In this work, we propose a novel and powerful

framework to manage and analyse multi-omics heterogeneous data to carry out an integrative

analysis. We illustrate it using the package mixOmics for the R software as it specifically

addresses  data  integration  issues.  Our  work  also  aims  at  confronting  the  most  recent

functionalities  of  mixOmics  to  real  data  sets  because,  even  if  multi-block  integrative

methodologies exist, they still have to be used to enlarge our know-how and to provide an

operational  framework  to  biologists.  Natural  populations  of  the  model  plant  Arabidopsis

thaliana are employed in this work but the framework proposed is not limited to this plant and

can be deployed whatever the organisms of interest and the biological question. Four omics

data  sets  (phenomics,  metabolomics,  cell  wall  proteomics  and transcriptomics)  have  been

collected, analysed and integrated in order to study the cell wall plasticity of plants exposed to

sub-optimal  temperature  growth conditions.  The methodologies  presented  start  from basic

univariate statistics and lead to multi-block integration analysis, and we highlight the fact that

each method is associated to one biological issue. Using this powerful framework led us to

novel  biological  conclusions  that  could  not  have  been  reached  using  standard  statistical

approaches.

Keywords:  abiotic  stress,  Arabidopsis  thaliana, integrative  analysis,  statistical  framework,

systems biology.
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   1. INTRODUCTION

Biological processes can be studied using measurements that are ever more complex.

Today, biologists have access to plethora of new technologies to address their questions. The

high-throughput  measurements  have  revolutionized  the  way  to  evaluate  and  predict  the

behavior of organisms for example in response to environmental changes.  Nowadays, one

biological  sample  can  deliver  many  types  of  “big”  data,  such  as  genome  sequences

(genomics), genes and proteins expression levels (transcriptomics and proteomics), metabolite

profiles  (metabolomics)  and phenotypic  observations  (phenomics).  The revolution  of high

throughput technologies has also greatly reduced the cost of those omics data production,

opening new prospects to the development of tools for data treatment and analysis (Li, Wu, &

Ngom, 2016; Meng et al., 2016).

The heterogeneous data collected from cellular to organism levels are associated to a

wide  variety  of  techniques  sometimes  species-specific.  The acquisition  of  data  requires  a

particular  experimental  design and a suitable  methodology to highlight  their  mining  (Rai,

Saito,  & Yamazaki,  2017).  An experimental  design inadequate  for an integrative  analysis

could complicate  the final  interpretation of the collected data.  On the contrary,  a suitable

methodology of analysis can be optimized and brings keys to improve the visibility of the

whole data. This point of view was previously stated in (Kerr, 2003) for microarray studies:

“While a good design does not guarantee a successful  experiment,  a suitably bad design

guarantees a failed experiment—no results or incorrect results”. 

Use of multi-omics data makes possible a deeper understanding of a biological system

(Zargar  et  al.,  2016,  Rajasundaram  &  Selbig,  2016).  Indeed,  quantification  technologies

improve  accuracy  and  create  great  potential  for  elucidating  new  questions  in  biology.

However,  this  technological  revolution  must  be  carefully  used  because  the  correlation

between quantification analyses is not effective. For example, it is known that it is usually
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difficult  to correlate  transcriptomic and proteomic data  (Duruflé et al.,  2017; Jamet et al.,

2009; Maier, Güell, & Serrano, 2009). Each of these technologies has its own limitations and

collecting  different  types  of  data  should  help  understanding  the  effects  of  one  or  more

experimental conditions. A cohort of hypotheses can be proposed with multi-omics analysis.

Thus, biological candidates can be identified as biomarkers (e.g. genes, proteins, molecules)

under complex environmental conditions, and/or new complex regulations can be found.

Altogether, it is generally admitted that studying a single kind of omics data is not

sufficient to understand the effects of a treatment on a complex biological system. To obtain a

holistic view, it is preferable to combine multiple omics analyses. To highlight the interest of

such integrative approaches, let us consider a toy example with two variables (Vx and Vy)

measured on 12 individuals (6 from one group called Controlled,  and 6 from another one

called  Treated).  The  values  are  presented  in  supplemental  Table  S1.  Statistical  tests

(Wilcoxon rank sum test and Student t test) do not reveal any significant difference between

the two groups for both the Vx and Vy variables when they are analysed separately (p-values

higher than 0.3). But, a simple scatterplot (Figure 1) highlights the interest of combining the

two variables. Indeed, it clearly appears that the two groups are separated if we consider the

Vx and Vy variables together.

Thus,  in the same vein,  we claim that  the integrative  analysis  of several  data  sets

acquired on the same individuals can reveal information that single data set analysis would

keep hidden. Furthermore, the toy example also highlights the interest of a relevant graphical

representation: information hidden in supplemental Table S1 is clearly visible in Figure 1.

The recent work by  (Matejka & Fitzmaurice, 2017) is assuredly a good way to be strongly

convinced about data visualisation.

This  article  focuses  on a  powerful  framework we propose to  manage and analyse

heterogeneous data sets acquired on the same samples. It proceeds step by step, from basic
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univariate statistics to multi-block integration analysis  (Singh et al., 2016; Tenenhaus et al.,

2014). We illustrate the gaps bridged by each method from the computation of univariate

statistics  to  a  thorough  implementation  of  multi-block  exploratory  analysis.  The

implementation  of  the  methods  and  the  graphical  visualizations  have  simply  been

accomplished  with  existing  tutorials  for  the  R  software  (R  Core  Team,  2018) and  the

mixOmics package (Rohart et al., 2017). But, since their interpretation is not easy (González

et al., 2013), this article will provide a better understanding of the statistical integration and a

way to include it in a global reflexion structured in a workflow summarized in Figure 2. We

also aim at increasing our know-how related to these novel methodologies by confronting

them to new real data sets. The first section presents the background of our study and the data

sets  we  have  dealt  with  detailed  in  (Duruflé,  2019a;  2019b).  Then,  we  describe  several

statistical methods used to address specific biological questions. Afterwards, we explain in

detail the statistical results and give clues to interpret them.

2. BIOLOGICAL CONTEXT

In  the  global  warming  context,  seasons  are  altered  with  modifications  of  the

temperatures.  The  elevation  of  the  temperature  is  the  most  studied  change  because  it  is

already observed (Savo et al., 2016). The occurrence of cold stress can also appear without

any  previous  chilling  period  and  it  could  become  a  problem  to  maintain  agricultural

productivity in the future (Gray & Brady, 2016). The model plant Arabidopsis thaliana of the

Brassicaceae family has a worldwide geographical distribution and therefore has to adapt to

multiple and contrasted environmental conditions (Hoffmann, 2002). The huge accumulation

of molecular data concerning this plant is very helpful for studying complex multiple levels

responses. It is expected to transfer obtained results to other plant species of economic interest

for translational pipelines (Sibout, 2017).
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2.1. Experimental design

First,  a  compromise  is  necessary  to  determine  the  ideal  number  of  biological

replicates. It is hard to find an agreement between the reality of the biological experimentation

(e.g. limitation in material, space, time, work force and cost) and the necessity to get robust

information  for  the  statistical  analyses.  The  method  used  for  the  randomization  of  the

replicate  also  needs  to  be  considered.  For  these  reasons,  the  experimental  protocol  must

minimize potential external impacts within and between the replicates and avoid confounded

effects.

To  strengthen  the  results,  each  biological  replicate  can  be  the  average  of  several

technical replicates, if the type of analysis allows it. For the biologist, it is important to know

the  number  of  experimental  repetitions  to  appreciate  the  variability  between  the  different

conditions. But, for a statistician, the information resides into the intrinsic variability of the

different  samples  or  repetitions.  For  all  these  reasons,  one  sample  considered  as  “out  of

norms” by the biologist could be valuable in a multi-omics analysis.

Our experimental design was built with two crossed factors: i) ecotypes with 5 levels

(4 Pyrenees Mountain ecotypes Roch, Grip, Hern, Hosp, living at different altitudes, and Col,

a reference ecotype from Poland, living at low altitude) and  ii) temperature with 2 levels

(22°C and 15°C). For each ecotype, rosettes and floral stems were collected and analysed. At

22°C, rosettes were collected at 4 weeks, i.e. at the time of floral stem emergence. At 22°C,

floral stems were collected at 6, 7 and 8 weeks respectively for Col, Roch / Grip and Hern /

Hosp. At 15°C, rosettes and stems were collected 2 weeks later than at 22°C. More details

about  the  plant  culture  conditions  can  be  found  in  (Duruflé,  2019a).  Three  independent

biological  replicates  were  analysed  for  each  sample  including  20  plants  per  sample.  To

6

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 25, 2019. ; https://doi.org/10.1101/357921doi: bioRxiv preprint 

https://doi.org/10.1101/357921


minimize the experimental effect, each plant was grown at a randomly chosen place according

to the experimental design represented in Figure 3.

2.2. Omics data sets and curation

In this project, the four following omics data sets (called blocks thereafter) were collected:

(i) Phenomics, i.e. a macro phenotyping analysis, was performed on two organs: rosettes

and floral stems (Duruflé, 2019a). Indeed at the time of sample collection and prior to

freezing,  9  phenotypic  variables  were  measured:  5  on  rosettes  (mass,  diameter,

number of leaves, density, and projected rosette area), and 4 on floral stems (mass,

diameter, number of cauline leaves, length).

(ii) Metabolomics,  i.e. identification  and  quantification  of  seven  cell  wall

monosaccharides  (fucose,  rhamnose,  arabinose,  galactose,  glucose,  xylose  and

galacturonic  acid),  were  performed as  previously  described  (Duruflé  et  al.,  2017).

Theoretical  cell  wall  polysaccharide  composition  was  inferred,  based  on  the

monosaccharide  analyses  according  to  (Duruflé  et  al.,  2017;  Houben  et  al.  2011;

Duruflé, 2019a).

(iii)  Proteomics, i.e. identification and quantification of cell wall proteins by LC-MS/MS

analyses, were performed as described (Duruflé et al., 2017). Altogether, 364 and 414

cell wall proteins (CWPs) were identified and quantified in rosettes and floral stems,

respectively (Duruflé, 2019b).

(iv) Transcriptomics, i.e. sequencing of transcripts also called RNA-seq, was performed

according  to  the  standard  Illumina  protocols  as  described  (Duruflé  et  al.,  2017).

Altogether, 19763 and 22570 transcripts were analysed in rosettes and floral stems,

respectively (Duruflé, 2019b).
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3. TIDYING DATA

Statistical  data  analysis  requires  efficient  data  pre-processing.  As  mentioned  in

(Wickham,  2014),  “It  is  often  said  that  80% of  data analysis  is  spent  on the  process  of

cleaning and preparing the data”.  So in an integrative analysis  framework, each data  set

needs to be structured in the same way, and (Wickham, 2014) has also stressed the following

statements:  1/ Each variable forms a column. 2/ Each observation forms a row. So, in our

context, each data set is structured with biological samples in rows and variables in columns.

Handling missing data  is  always a big deal.  As stated by Gertrude Mary Cox (an

American statistician of the 20th century), “the best thing to do with missing values is not to

have any”. Fortunately, many methods exist to deal with missing values. For instance, the

methodologies implemented in the missMDA package (Husson & Josse, 2013) are dedicated

to the handling of missing values in the context of multivariate data analysis. For example in

this work, missing proteomics quantification data were dealt with considering two situations:

(i)  non-validated  proteins  (identification  with  a  single  specific  peptide  and/or  in  a  single

biological  replicate);  and  (ii)  undetectable  proteins  (no  peptide  identified  in  a  given

condition). In the former case, a background noise, corresponding to the minimum, and the

first statistical quartile of the biological replicate, was applied. In the latter case, a background

noise of 6 (value lower than the minimum value found in the whole experiment) was applied.

This treatment allowed combining the quantification process with the qualitative study and

provided a higher confidence in the final result.

More  recently,  a  study  focused  on  missing  rows  in  data  sets  in  an  integrative

framework (Voillet et al., 2016). Within an integrative study, we can easily be in this case if,

for  instance,  the  number  of  biological  replicates  is  not  the  same for  transcriptomics  and

proteomics analyses. The main idea to remember would be to deal with missing values with
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an ad-hoc method taking into account the specificity of the data. In our case, two replicates of

the  transcriptomic data  had to be deleted  due to their  low quality.  Following the method

proposed in  (Voillet et al., 2016), these missing rows were imputed using the samples for

which all the data were available, i.e. the two other replicates.

4. RATIONALE SUPPORTING THE PROPOSED FRAMEWORK 

4.1. Software

As mentioned in the Comprehensive R Archive Network (CRAN, cran.r-project.org),

R “is a freely available language and environment for statistical computing and graphics

which provides a wide variety of statistical and graphical techniques: linear and nonlinear

modelling, statistical tests, time series analysis, classification, clustering, etc.”

R functions with a command-line interface that, even if it can appear not user-friendly,

allows the user to build scripts that can be run on various data sets with rather few tuning. R

gives access to the newest methodological developments due to its very active community (R-

bloggers, R-help, UseR conference...) motivated by open science considerations. Furthermore,

efficient  tools  such  as  RStudio  (www.rstudio.org)  were  developed  in  order  to  make  the

initiation to R easier. In addition, many resources are available on CRAN to start with R.

Therefore, it seems highly reasonable to expect that the user can read, use and adapt existing

scripts  available in the examples  of each manual of packages after few hours of practice.

Specifically considering the community of biologists using R, the Bioconductor repository

(http://www.rstudio.org/)  provides selected tools for the analysis of high-throughput genomic

data (Gentleman et al., 2004).

The  dynamism  around  R  appears  in  the  packages  developed  by  and  for  the

community. So, several packages exist to address statistical integrative studies. We focus on
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the mixOmics package (Lê Cao et al., 2009; Rohart et al., 2017), but other packages such as

FactoMineR  (Husson  &  Josse,  2013) can  also  be  used  for  nearly  similar  purposes.

Methodologies presented in  (Bécue-Bertaut & Pagès, 2008) and  (Sabatier et al.,  2013) are

also alternatives, as well as the Multi-Omics Factor Analysis (MOFA) approach proposed in

(Argelaguet et al., 2018). Regarding commercial software for instance, SIMCA-P (Umetrics,

umetrics.com/) propose several methods to perform integrative analyses, and toolboxes for

Matlab are also available (The MathWorks, Inc., Natick, Massachusetts, United States). We

choose to favor an open source software, as it is easier to promote a free software than a

commercial  one  when  people  are  not  specialists  in  the  domain  (Carey  & Papin,  2018).

Furthermore, mixOmics appears as a very active package addressing data integration issues. It

has been downloaded more than 25,000 times (unique IP address) in 2017, 5 versions were

released in 2017, the reference article (Lê Cao et al., 2009) has been cited 300 times and the

mixOmics team has published 16 articles related to this package since 2008.

4.2. One purpose, one method

In this section, partly inspired from the tutorial of mixOmics (mixomics.org), we wish to

highlight  the  link  between  a  biological  question  (purpose)  and  the  appropriate  statistical

method.

 Purpose: explore one single quantitative variable (e.g. what is the level of expression

of one gene?). Method: univariate elementary statistics such as mean, median for main

trends,  and standard deviation or variance for dispersion, can be completed with a

graphical representation such as boxplot.

 Purpose:  assess  the influence  of  one single categorical  variable on a quantitative

variable  (e.g.  Are  the  plant  growth  different  in  two  or  more  environmental
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conditions?). Method: statistical significance test such as Student t test or Wilcoxon

rank sum test for two groups and ANOVA or Kruskall-Wallis for more groups will

address this question  (McDonald, 2009). In this context, a special attention must be

paid to  the  structure  of  the  data:  independent  samples  (e.g. independent  groups

observed in various conditions) or paired samples (e.g. same samples observed twice

or more in various conditions).

 Purpose: evaluate the relationships between two quantitative variables (e.g. Is there a

correlation between the concentration of one protein and its transcript abundance?).

Method: correlation coefficients  (Pearson for linear  relationships and Spearman for

monotonous  ones)  (McDonald,  2009).  Graphical  representations  of  correlation

matrices  can  provide  a  global  overview  of  pairwise  indicators  (Friendly,  2002;

Murdoch & Chow, 1996).

 Purpose: explore a single data set (e.g. transcriptomics) and identify the trends or

patterns in the data, experimental bias or, identify if the samples ‘naturally’ cluster

according to the biological  conditions  (e.g.  Can we observe the effect  of  different

environmental  growth conditions  on different  ecotypes?).  Method:  an unsupervised

factorial  analysis  such  as  Principal  Component  Analysis  (PCA)  (Mardia,  Kent,  &

Bibby, 1980) provides such information about one data set without any a priori on the

result. Centering and scaling the data, such that all variables have zero mean and unit

variance, before performing PCA is usually useful when dealing with omics data to

make the PCA results meaningful.

The previously mentioned methods are rather standard and usually used for biological

data analysis whereas the methods mentioned hereafter are less usual.
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 Purpose: classifying samples into known classes based on a single data set (e.g. Can

we classify  various  ecotypes  according to  their  transcriptomics  profile?).  Method:

supervised classification methods such as Partial Least Square Discriminant Analysis

(PLS-DA)  (Lê Cao, Boitard, & Besse, 2011) assess how informative the data are to

rightly classify samples, as well as to predict the class of new samples.

 Purpose:  unravel  the  information  contained  in  two  data  sets,  where  two  types  of

variables are measured on the same samples (e.g. What are the main relationships

between the proteomics and transcriptomics datasets?). Method: using PLS-related

methods (Wold et al. , 2001) enable knowing if common information can be extracted

from the two data sets (or highlight the relations between the two data sets).

The following methods are very recent and few applications have been published so

far. This work contributes to improve their efficiency on real data sets.

 Purpose: the same as above but considering more than two data sets (e.g. What are

the  main  relationships  between  the  proteomics,  transcriptomics  and  phenotypic

data?). Method: multi-block PLS related methods were recently developed to address

this issue (Günther et al., 2014; Singh et al., 2019).

 Purpose: the same as above but in a supervised context (e.g. Can we determine a

multi-omics signature to classify ecotypes?). Method: multi-block PLS-DA (referred

as  DIABLO  for  Data  Integration  Analysis  for  Biomarker  discovery  using  Latent

variable approaches for Omics studies) was recently developed to address this issue

(Singh et al., 2019).
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A schematic view of the data sets and the methods implemented is presented in Figure 4.

The way to perform an integrative statistical study is illustrated through several cycles (Figure

4B).  We prefer this  view rather  than a  straightforward pipeline  beginning with univariate

analysis  and  ending  with  multi-block  approaches.  Each  method  contributes  to  the  global

comprehension of the data and can challenge the others. For instance, univariate statistics may

highlight outliers or essential variables. On the other hand, multi-block approaches may focus

on new samples and/or variables showing specific behavior that should be studied through a

univariate  method. We claim that,  facing integrative studies,  a relevant  statistical  analysis

must go through these cycles, with progress and feedback.

4.3. Sparse extensions

Every methods developed in mixOmics are proposed with a sparse extension (sparse

PCA (S-PCA), sparse PLS (S-PLS)...). Sparse methods are useful to remove non-informative

variables (e.g. which can be considered as background noise)  regarding the purpose of the

multivariate  method.  Concerning  PCA  for  instance,  the  sparse  version  selects  only  the

variables that highly contribute to the definition of each principal component (PC), removing

the others. Sparsity is mathematically achieved via Least Absolute Shrinkage and Selection

Operator (LASSO) penalizations (Tibshirani, 1996).

In practice, the use of sparse methods in the context of omics data is very useful as it

reduces the number of potentially relevant variables displayed on the graphical outputs. Thus,

it  facilitates  the biological  interpretation of the results  and minimizes  the list  of potential

candidates for further investigations.

4.4. Numerical and graphical outputs
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As  previously  mentioned,  statistical  analysis  should  be  associated  with  graphical

representations (Figure 4C). A famous sentence assigned to Francis John Anscombe (a British

statistician of the 20th century) emphasized this point of view: “... make both calculations and

graphs.  Both  sorts  of  output  should  be  studied;  each  will  contribute  to  understanding.”

(Anscombe,  1973). Based  on  this  principle,  a  recent  work  by  Matejka  and  Fitzmaurice

(Matejka & Fitzmaurice, 2017) illustrates in a quite funny way how same numerical outputs

can provide very different graphical representations (including a scatterplot  looking like a

dinosaur named datasaurus).

The results of univariate and bivariate approaches are mainly reported as p-values for

statistical testing. Boxplots and barplots, as produced, for instance, by the ggplot2 package

(Wickham, 2016), may complete and reinforce the interpretation of the results (Figure 4C).

Regarding  barplots,  one  core  question  relies  on  the  error  bars  that  are  frequently  added:

should they be based on standard deviation or on standard error of the mean? A thorough

explanation  about  the  difference  is  provided  in  (Cumming,  Fidler,  &  Vaux,  2007).  The

authors also mention this statement that may seem obvious but that is sometimes forgotten:

“However,  if  n  is  very  small  (for  example  n  =  3),  rather  than showing  error  bars  and

statistics, it is better to simply plot the individual data points.”

We also used graphical representations of correlation matrices (Figure 4C) such as

those produced by the corrplot package  (Wei & Simko, 2016) for the R software. This is

essential when dealing with (not so) many variables: with 50 variables, 1225 (50 x 49 / 2)

pairwise correlation coefficients are computed and have to be analysed and interpreted.

Regarding  multivariate  analyses  (from PCA to  multi-block analyses),  we used  the

graphical outputs provided by the mixOmics R package (Rohart et al., 2017). They are based

on the representation of individuals and variables projected on specific sub-spaces (Figure
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4C). A thorough discussion about the complementarity between several graphical displays is

given in (González et al., 2013).

In a multivariate supervised analysis, the individuals (biological samples) of the study

are represented as points located in a specific sub-space defined by the first PLS-components

(Figure 4C).  Interpretation is  based on the relative proximities of the samples and on the

equivalent representation for variables. 

The standard representation for the variable plots is frequently referred as correlation

circle  plot  (Figure 4C).  It  was primarily  used for  PCA to visualise  relationships  between

variables,  but  it  has  been extended to deal  with multi-block analysis.  In  such a  plot,  the

correlation between two variables can be visualised through the cosine of the angle between

two vectors starting at  the origin and ending at  the location of the point representing the

variable. The representation of variables can also be done through a relevance network. These

networks are inferred using a pairwise similarity matrix directly obtained from the outputs of

the integrative approaches (González et al., 2013). A Circos plot (Singh et al., 2019) can be

viewed as a generalization of relevance network where the nodes are located on a circle.

Then, based on the same pairwise similarity matrix used for relevance network, a clustered

image map can be displayed. This type of representation is based on a hierarchical clustering

simultaneously operating on the rows and columns of a real-valued similarity matrix. This is

graphically represented as a 2-dimensional colored image, where each entry of the matrix is

colored on the basis of its value, and where the rows and columns are reordered according to

the hierarchical clustering.

5. RESULTS
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In this section, we provide neither a thorough biological interpretation of the results,

nor a comprehensive view of every statistical analysis performed. Instead, we highlight the

limits  of each method leading to the next step of the statistical  analysis  and show how a

biologist can interpret and take over the conclusions of a statistical study.

5.1. Bivariate analysis

We  illustrate  the  bivariate  analysis  through  some  graphical  representations  of

phenotypic  data  linked  to  one  parameter  of  the  experimental  design.  Figure  5A displays

parallel boxplots as well as individual observations of the number of leaves for the 5 ecotypes

at the 2 growth temperature conditions. Figure 5B only displays the average values of one

triplicate for each ecotype and temperature.

The main information extracted from these graphics concerns a quality control of the

data.  The  relatively  low  scattering  of  points  representing  individuals  of  each  biological

replicate  (Figure 5A) indicates  a rather  good reproducibility  between all  the samples  and

between the repetitions. So, the values from several plants of a given biological repetition can

be  averaged,  to  go  on  with  the  analyses.  The  visual  impression  provided  by  Figure  5B

regarding the temperature and ecotype effects can be confirmed via statistical testing such as

two-way ANOVA (Bingham & Fry) (results not shown). However, this kind of analysis does

not provide any information about the potential relationships between several variables. This

drawback justifies the next step of analysis which deals with a whole data set.

5.2. Multivariate analysis

The multivariate approach is illustrated on the  rosettes cell wall transcriptomics data

set. It is composed of 364 variables (or transcripts). The first way to question the whole data

set can be through the computation of pairwise correlation coefficients. For instance, Figure 6
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displays the correlation matrix between samples. It indicates that the levels of gene expression

for each sample are positively correlated (only green color and identically oriented ellipses)

with all the others.

Then, a PCA can be performed as an extension of the quality control. For instance,

Figure 7A highlights the distance between the three replicates corresponding to one condition.

We can observe that  the Grip ecotype is  well  gathered,  whereas the Col ecotype is more

scattered.  This  information  must  be  moderated  because  of  the  rather  low  proportion  of

variance explained by the first two principal components displayed here. Having a look at the

following components could be meaningful to consolidate and complete this information.

However, the interpretation of the PCA brings a first trend. Indeed, the samples are

clearly separated along the first (horizontal)  axis according to the temperature: samples at

22°C are all located on the left (negative coordinates on PC1), whereas samples at 15°C are

on the right. This indicates that the effect of temperature is stronger than that of ecotypes

because PC1 capture the most important source of variability in the data. The representation

of the variables, i.e. the transcripts (Figure 7B), is not of great interest at this step; it mainly

highlights the need for selection methods to facilitate the interpretation of the results in terms

of gene expression level. However, the interpretation of such a plot jointly with the individual

plot  enables,  for  instance,  identifying  over-expressed  genes  in  samples  at  15°C:  they  are

located on the right of the variables plot (in the same area as samples at 15°C in the individual

plot).

5.3. Supervised analysis and variable selection

To illustrate a supervised analysis, we deal with the same data set as before (cell wall

transcriptomics  for  the  quantitative  block)  to  discriminate  the  samples  according  to  the
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temperature (qualitative block) by performing a PLS-DA analysis. A similar analysis could be

made  with  the  ecotype,  but  interpretation  would  be  more  complicated  with  5  categories

instead of 2 for temperature. Moreover, we have already seen that the temperature effect is the

strongest for this data set (Figure 7A). Furthermore, to address the problem of interpretability

of the results, we also consider the sparse version of PLS-DA to select the most discriminant

genes for the temperature effect. The number of variables to select has to be determined by

the user. It  depends on the way the potential candidates will be validated. For instance, if

validation  has  to  be  done  through  new  biological  experiments,  the  number  of  selected

variables  must  not  be  too  large  (about  10).  But,  if  the  validation  consists  in  querying  a

biological database, this number can be higher (about hundreds).

Figure 7 also displays the results of PLS-DA (C, D) and S-PLS-DA (E, F). Individuals

plots (Figure 7C, E) and variables plots (Figure7D, F) are interpreted in the same way as

PCAs. Individuals plots only use two colors corresponding to the two temperatures. For both

PLS-DA and S-PLS-DA, the discrimination between the samples is clear-cut (Figure 7C, E).

This result confirms the overriding effect of the temperature. In other words, the variability

due to the five ecotypes does not impede from detecting the temperature effect. The result of

S-PLS-DA indicates that the discrimination can be observed with only a few genes. Indeed,

the difference between PLS-DA and S-PLS-DA relies on the number of genes involved in the

discrimination process. The list of the most relevant genes displayed in Figure 7F has to be

investigated through for instance functional analysis, but these developments are outside the

scope of this article.

These examples of sparse methods highlight the specificity of a supervised analysis: it

enables studying the impact of the factors of the experimental design (here the temperature)

on the quantitative variables. Thus, the biologist can play with these factors to answer its main

biological question and to identify potential future prospects.
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5.4. Multi-block analyses

Multi-block  analyses  can  address  the  main  purpose  of  an  integrative  study  by

analysing together all the blocks acquired for each sample. As an illustration, we expose the

results of a five-block supervised analysis focused on the rosettes, considering phenotypic,

cell  wall  transcriptomics,  proteomics  and  metabolomics  as  quantitative  variables  and

temperature as the qualitative (or categorical) block.

The statistical  relationships  between blocks must be defined by the user through a

design matrix. This matrix is a square of size [(number of blocks) x (number of blocks)], it is

symmetrical and contains values between 0 and 1. A value close to or equal to 1 (respectively

0) indicates a strong relationship (respectively weak or no relationship) between the blocks to

be integrated. Fixing the values in the design matrix is crucial and complex because it requires

expressing biological relationships as numerical values (e.g. can we consider that the link

between proteomics and transcriptomics data is stronger than the link between proteomics and

metabolomics data?). For the sake of simplicity, 0 and 1 values can be used in a binary point

of view: blocks are linked or not. In a supervised context, the values also enable balancing the

optimisation between, on the one hand the relationships between quantitative blocks and, on

the other hand, the discrimination of the outcome. In our example, we considered a design

matrix  composed  of  0  between  blocks  to  favor the  discrimination  task  rather  than  the

relationships  between  the  blocks.  A  full  design  matrix  (composed  of  1)  highlights  more

clearly relationships between blocks, but can lead to misclassified samples.

The  interpretation  of  a  multi-block  supervised  analysis  requires  several  graphical

outputs.  Some of them are presented in Figure 8. Figure 8A allows to check whether the

correlation between the first components from each data set has been maximized as specified

in the design matrix (Tenenhaus et al., 2014). Globally, correlation values are close to 1 and
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mainly due to the separation of the two categories (22 vs 15°C; because of our design, this

matrix favors discrimination). With a full designed matrix, we get higher correlation values

but with less separated groups. Regarding the individual plots (Figure 8B), it appears that the

discrimination is better for the transcriptomics and proteomics blocks than for the others. The

sample plot (Figure 8B) has also to be interpreted regarding the variable plot (Figure 8C). To

make the interpretation easier, we present here the results of the sparse version of the multi-

block analysis. Therefore, we can identify variables from each block mainly involved in the

discrimination according to the temperature. For instance, variables located on the right on the

correlation  circle  plot  (Figure  8C)  contribute  to  the  discrimination  between  the  samples

growing at 22°C because they are also located on the right in the  individuals plots (Figure

8B). Another way to display the results is presented in Figure 8D. The clustered image map

highlights the profiles of selected variables among the samples. It also includes the results of

hierarchical clustering performed jointly on variables and samples. Regarding the samples, the

two groups based on temperature are visualized through the dendrogram on the left. However,

let us note that the cluster gathering the samples at 15°C can be split into two sub-clusters

with the Col ecotype isolated. Regarding the variables, it mainly points out global trends of

the  behavior of  selected  variables.  The  interpretation  can  then  lead  to  retro  analyses  to

validate potential candidates. This can be done through new statistical analyses as well as new

biological experiments (Chawla et al., 2011).

5.5. Relevance networks

Another way to interpret the results of a multi-block approach consists in producing

relevance networks between variables. On Figure 9A, each selected variable is a node located

on  a  circle.  Variables  are  sorted  first  according  to  their  block,  then  depending  on  their
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importance in discrimination. An edge links two nodes if their correlation is higher than a

threshold subjectively set by the user (we chose 0.9 in Figure 9A).

The correlations are mainly positive and concern a few variables from each block. To

complete the interpretation,  we focus on another network generated with only two blocks

(Figure 9B, cell wall transcriptomics and proteomics). It accentuates the relationships between

pairs of proteins and transcripts. The selection of variables is a precious information for the

biologist to focus on some of them for validation and draw conclusions in biological terms.

Relevance  networks  can  also  be  viewed as  a  first  step  to  modelling  as  it  mimics

biological networks and provides clues to address inference networks issues through further

dedicated experiments.

6. CONCLUSION

In an integrative biology context, the huge quantity of data produced, which can also

be heterogeneous, requires adapted and specific statistical methods tentatively summarized in

Figure 2. Even if the multi-block approaches can be viewed as the best tool to address a given

issue,  other  more  basic  standard  statistical  methods  (univariate  for  instance)  must  not  be

omitted. A deep understanding of a biological phenomenon requires a sequence of various

approaches to analyse the data. Finally, we consider that each method contributes to a better

interpretation  of  the  others  as  we  intended  to  express  it  with  the  schematic  view of  the

protocol as intertwined cycles (Figure 4). The statistical analysis of the large omics data sets

can be a never-ending story because each step of the framework provides information. The

results presented  in this case study could not have been obtained using standard statistical

approaches.  Actually,  it  is  our  global  integrative  strategy  that  led  us  to  novel  biological

results.

21

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 25, 2019. ; https://doi.org/10.1101/357921doi: bioRxiv preprint 

https://doi.org/10.1101/357921


Acknowledgements

The  authors  are  thankful  to  the  Paul  Sabatier-Toulouse  3  University  and  to  the  Centre

National de la Recherche Scientifique  (CNRS) for granting their work. This work was also

supported  by  the  French  Laboratory  of  Excellence  project  "TULIP"  (ANR-10-LABX-41;

ANR-11-IDEX-0002-02). HD was supported by the Midi-Pyrénées Region and the Federal

University  of  Toulouse.  Thanks to  Dr Kim-Anh Lê Cao,  Pr  Philippe Besse and François

Bartolo for their support and help with the graphical outputs and interpretation of the multi-

block analysis.

Supplementary Files:

Supplementary Table S1. Toy data set containing 12 observations and 3 variables.

22

498

499

500

501

502

503

504

505

506

507

508

509

510

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 25, 2019. ; https://doi.org/10.1101/357921doi: bioRxiv preprint 

https://doi.org/10.1101/357921


Figure captions:

Figure 1. Scatterplot representing Vy values (vertical axis) according to Vx values (horizontal

axis). Control and treated observations are represented with grey triangles and black circles,

respectively.

Figure 2. Workflow for our multi-omics integrative studies. The different parts of this article

are  represented  with grey boxes  and the green boxes  close  the  workflow with  biological

concepts. The workflow converges towards the functional analysis required to validate the

whole study.

Figure 3. Schematic overview of the strategy and experimental protocol used in this study.

Each circle represents one plant and each color stands for one ecotype of A. thaliana. For each

of the three biological replicates, the position of a given ecotype has been changed randomly

to avoid position effects.

Figure  4.  One  purpose,  one  method  to  analyse  qualitative  and  quantitative  blocks.  A)

Schematic representation of the different blocks (or data sets) co-analysed in this study. The

samples are represented in rows and the variables in columns. B) Schematic overview of the

methods  implemented  represented  by cycles  within  an integrative  study.  C)  Examples  of

graphical outputs detailed in the results section. PCA: Principal Component Analysis; MB:

Multi-Blocs; PLS: Partial Least Squares regression; DA: Discriminant Analysis. Qualitative

and quantitative blocks are represented in green and grey respectively.

Figure 5. Examples of graphical outputs of a supervised bivariate analysis illustrated by A) A

boxplot (each color corresponds to the different values obtained for each triplicate) and B) An

individual plot. (each color corresponds to the average obtained for one triplicate, and does

not match with color used in A). The number of leaves for 5 ecotypes of  A. thaliana (Col,

Roch, Grip, Hern and Hosp) and 2 growth temperatures (22 and 15°C) was used. These plots
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were obtained using functions geom_point() and geom_boxplot() from the ggplot2 package

(Wickham, 2016).

Figure  6.  A  graphical  representation  of  the  multivariate  analysis,  pairwise  correlation

coefficients  of  cell  wall  transcriptomics  data  sets  in  the  rosettes  of  the  five  A.  thaliana

ecotypes grown at 15°C or 22°C. The color code and the ellipse size represent the correlation

coefficient  between the levels of expression of genes for each sample.  The areas and the

orientations  of  the  ellipses  represent  the  absolute  value  of  the  corresponding  correlation

coefficients. The eccentricity of the ellipses represents the absolute value of the corresponding

correlation coefficients. This plot was obtained using the function corrplot() from the corrplot

package (Wei & Simko, 2016).

Figure 7. Graphical representation of the unsupervised (A, B) and supervised (C-F) analysis

of the rosette cell wall transcriptomes from ecotypes grown at 22°C and 15°C. A) Individuals

plot of a PCA from ecotypes grown at 22°C (bright color) and 15°C (pale color) associated to

the B) Variables plot. C) Individuals plot of a PLS-DA from ecotypes grown at 22°C (orange)

and 15°C (blue) associated to the D) Variables plot and E) Individuals plot of a S-PLS-DA

associated  to  the  E)  Variables  plot.  Two circles  of  radius  1  and 0.5  are  plotted  in  each

variables plot to reveal the correlation structure of the variables. These plots were obtained

using  the  functions  pca(),  plsda(),  plotIndiv()  and  plotVar()  from the  mixOmics  package

(Rohart et al., 2017).

Figure  8.  A graphical  representation  of  a  multi-block analysis  realised  on the rosettes  of

ecotypes grown at 22°C (orange) and 15°C (blue). A) plotDIABLO shows the correlation

between components from each data  set  maximized as specified in the design matrix.  B)

Individuals plot projects each sample into the space spanned by the components of each block

associated to the C) Variables plot that highlights the contribution of each selected variable to

each component, D) Clustered image map of the variables (Protein: red; Transcripts: green;
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Metabolites: grey; Phenotypes: black) to represent the multi-omics profiles for each sample

(15°C: blue,  22°C: orange).  These plots  were obtained using the functions block.splsda(),

plotIndiv(), plotVar() and cim() from the mixOmics package (Rohart et al., 2017).

Figure 9. Example of network representation.  A) A Circos plot represents the correlations

between variables  within and between each block (edges inside the circle)  and shows the

average value of each variable in each condition (line profile outside the circle). B) A network

displaying the correlation between the transcriptomics (.T, green) and the proteomics data (.P,

red) colored from blue to red according to the color key. These plots were obtained using the

functions circosPlot() and network() from the package mixOmics (Rohart et al., 2017).
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Figure 1. Scatterplot representing Vy values (vertical axis) according to Vx values (horizontal axis). Control and treated
observations are represented with grey triangles and black circles, respectively.
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Figure 2. Workflow for our multi-omics integrative studies. The different parts of this article are represented with grey 
boxes and the green boxes close the workflow with biological concepts. The workflow converges towards the functional 
analysis required to validate the whole study.
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Figure 3. Schematic overview of the strategy and experimental protocol used in this study. Each circle represents one
plant and each color stands for one ecotype of A. thaliana. For each of the three biological replicates, the position of a
given ecotype has been changed randomly to avoid position effects.
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Figure 4. One purpose, one method to analyse qualitative and quantitative blocks. A) Schematic representation of the
different blocks (or data sets) co-analysed in this study. The samples are represented in rows and the variables in
columns. B) Schematic overview of the methods implemented represented by cycles within an integrative study. C)
Examples of graphical outputs detailed in the results section. PCA: Principal Component Analysis; MB: Multi-Blocs; PLS:
Partial Least Squares regression; DA: Discriminant Analysis. Qualitative and quantitative blocks are represented in green
and grey respectively.
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Figure 5. Examples of graphical outputs of a supervised bivariate analysis illustrated by A) A boxplot (each color
corresponds to the different values obtained for each triplicate) and B) An individual plot. (each color corresponds to
the average obtained for one triplicate, and does not match with color used in A). The number of leaves for 5 ecotypes
of A. thaliana (Col, Roch, Grip, Hern and Hosp) and 2 growth temperatures (22 and 15°C) was used. These plots were
obtained using functions geom_point() and geom_boxplot() from the ggplot2 package (Wickham, 2016).
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Figure 6. A graphical representation of the multivariate analysis, pairwise correlation coefficients of cell wall
transcriptomics data sets in the rosettes of the five A. thaliana ecotypes grown at 15°C or 22°C. The color code and the
ellipse size represent the correlation coefficient between the levels of expression of genes for each sample. The areas
and the orientations of the ellipses represent the absolute value of the corresponding correlation coefficients. The
eccentricity of the ellipses represents the absolute value of the corresponding correlation coefficients. This plot was
obtained using the function corrplot() from the corrplot package (Wei & Simko, 2016).
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Figure 7. Graphical representation of the unsupervised (A, B) and supervised (C-F) analysis of the rosette cell wall
transcriptomes from ecotypes grown at 22°C and 15°C. A) Individuals plot of a PCA from ecotypes grown at 22°C
(bright color) and 15°C (pale color) associated to the B) Variables plot. C) Individuals plot of a PLS-DA from ecotypes
grown at 22°C (orange) and 15°C (blue) associated to the D) Variables plot and E) Individuals plot of a S-PLS-DA
associated to the E) Variables plot. Two circles of radius 1 and 0.5 are plotted in each variables plot to reveal the
correlation structure of the variables. These plots were obtained using the functions pca(), plsda(), plotIndiv() and
plotVar() from the mixOmics package (Rohart et al., 2017).
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Figure 8. A graphical representation of a multi-block analysis realised on the rosettes of ecotypes grown at 22°C
(orange) and 15°C (blue). A) plotDIABLO shows the correlation between components from each data set maximized as
specified in the design matrix. B) Individuals plot projects each sample into the space spanned by the components of
each block associated to the C) Variables plot that highlights the contribution of each selected variable to each
component, D) Clustered image map of the variables (Protein: red; Transcripts: green; Metabolites: grey; Phenotypes:
black) to represent the multi-omics profiles for each sample (15°C: blue, 22°C: orange). These plots were obtained
using the functions block.splsda(), plotIndiv(), plotVar() and cim() from the mixOmics package (Rohart et al., 2017).
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Figure 9. Figure 9. Example of network representation. A) A Circos plot represents the correlations between variables
within and between each block (edges inside the circle) and shows the average value of each variable in each condition
(line profile outside the circle). B) A network displaying the correlation between the transcriptomics (.T, green) and the
proteomics data (.P, red) colored from blue to red according to the color key. These plots were obtained using the
functions circosPlot() and network() from the package mixOmics (Rohart et al., 2017).
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