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Abstract. We conduct a study on the design of a partition crossover for
the QAP. On the basis of a bipartite graph representation, we propose to
recombine the unshared components from parents, while enabling their
fast evaluation using a preprocessing step for objective function decom-
position. Besides a formal description and complexity analysis of the
proposed crossover, we conduct an empirical analysis on its relative be-
havior using a number of large-size QAP instances, and a number of
baseline crossovers. The proposed operator is shown to have a relatively
high intensification ability, while keeping execution time relatively low.

1 Introduction

One of the key ingredients in the success of evolutionary algorithms is the design
of effective and efficient crossover operators. In the context of gray-box optimiza-
tion, problem-specific properties can help in designing dedicated operators. This
is the case of partition crossovers, developed for a number of combinatorial prob-
lems (e.g., TSP [18], SAT [2], NK-landscapes [17]), and allowing to efficiently
explore large search spaces. The term partition crossover is here used in a general
sense, to render the idea of decomposing the variables according to their values
in the parents, and then recombining them in such a way that the best improv-
ing offspring can be computed efficiently. In other words, a partition crossover
is based on the idea of optimal recombination of two parents, which requires
to find the best possible offspring among all possible ones, while fulfilling the
genotype inheritance principle. As such, two issues must be considered.

Firstly, one should specify the recombination mechanism allowing gene trans-
mission while fully exploring the improvement potential of parents. In particular,
the shared genes from parents are kept identical and the other genes are to be
properly mixed. Secondly, since the set of possible offspring underlying such a
process is typically huge, one must rely on some properties to compute the best
offspring in the most efficient manner. For instance, the so-called k-bounded bi-
nary problems [17] can be decomposed as a linear combination of sub-functions
of at most k variables. This guarantees that the contributions of non interacting
variables to the global fitness are additive, and hence, the choice of the optimal
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gene sequence when performing recombination can be performed greedily in an
efficient manner. Another example is TSP [18], where the cost of the global tour
is additive with respect to the length of different sub-paths sharing the same
cities, but in different order, in the parent solutions.

In this paper, we are interested in the Quadratic Assignment Problem (QAP)
[4, 7, 11, 13], for which no partition crossover has been developed so far, despite
the broad range of dedicated algorithms. A main difficulty comes from the defi-
nition of its objective function, where the contribution of every single variable is
sensitive to all other variables. Hence, it becomes a challenging issue to design
a decomposition process which enables both parent recombination and fast off-
spring evaluation. This is precisely the aim of our work, and our contribution is
to be viewed as a first step towards the design of an efficient and effective par-
tition crossover operator for the QAP. More specifically, we rely on an intuitive
bipartite graph representation for decomposition. We then show how recombi-
nation and offspring evaluation can be performed on that basis. Moreover, we
conduct an empirical study rendering the performance of the designed crossover
comparatively to existing ones, either by itself, or when combined with a fast
local search process. Our analysis shows that the proposed crossover has a high
intensification power while keeping execution time relatively low.

The paper is organized as follows. In Section 2, we introduce the QAP and
review some existing crossovers. In Section 3, we describe our main contribution
towards the design a partition crossover for the QAP. In Section 4, we report
our experimental findings. In Section 5, we conclude the paper.

2 Background

2.1 Problem Definition

The Quadratic Assignment Problem (QAP) [4, 13] aims at assigning n facili-
ties I, to n locations J . Let fhi be the flow between facilities h and i, and dsj
be the distance between locations s and j. The objective is to minimize the sum
of the products between flows and distances, such that each facility is assigned
to exactly one location. The solution space can be defined as the set Π of per-
mutations of {1, . . . , n}. Given a permutation solution π, the ith element π(i)
corresponds to assigning facility i to location π(i). The QAP is then stated as:

arg min
π∈Π

∑
h∈I

∑
i∈I

dπ(h)π(i) fhi (1)

The QAP is NP-hard [13], and is considered as one of the most difficult prob-
lems from combinatorial optimization. As such, we have to rely on heuristic
approaches such as stochastic local search and evolutionary algorithms [7].

2.2 Representative Crossover Operators

In this paper, we are interested in designing efficient and effective crossover
operators. Among the large number of hybrid genetic algorithms for the QAP;
see, e.g., [6,9,10,19], crossover appears to be a crucial component. In this respect,
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we can distinguish two families of crossovers [11]. In half-structured crossovers,
the offspring preserve only a part of the parent genes, whereas the remaining
part is typically generated at random. In fully-structured crossovers, the offspring
genes are obtained by preserving the ones from parents. In our work, we consider
four usual and representative baseline crossovers, two from the first family, and
two from the second one. We first describe the half-structured crossovers, namely
Opx and Ux, and then the fully structured ones, namely Cx and Spx. Notice
that these crossovers can also find applications in other problems such as TSP [5].

The Opx crossover. This is a standard one-point crossover, e.g., [6]. Given
two parent permutations, a random point is selected to define two parts for each
parent. A new offspring is obtained by first preserving the locations from the first
parent up to the chosen random point. The remaining part is filled by copying the
elements from the second part of the second parent, excluding those that were
already copied from the first parent. This may lead to the situation where some
facilities are not assigned to any locations. The offspring is hence complemented
at random, using the remaining locations that were not yet included.

The Ux crossover. This is a standard uniform crossover operator, e.g., [16].
Some locations are selected at random following a Bernoulli distribution with
parameter 1/2. The locations occupied by the selected facilities in the first parent
are copied. The locations occupied by the remaining facilities in the second
parent are also copied unless they were already included from the first parent.
The offspring is complemented by randomly assigning the missing locations.

The Cx crossover. This is the so-called cycle crossover [8,9,12]. For clarity, we
consider the example of Fig. 1a. All shared assignments are copied, i.e., facilities
1 and 7 assigned to locations 5 and 9. The crossover starts iterating from the first
different facility assignment, which is facility 2 assigned to location 3 in the first
parent. Looking at the second parent, facility 2 is assigned to location 8. This
location is occupied by facility 3 in the first parent. Similarly, facility 3 is assigned
to location 4 in the second parent, and so on. A cycle – alternating between the
same set of locations in a different order on both parents – is then detected
when arriving to facility 8 assigned to location 3 in the second parent. Hence,
one parent is selected at random and the so-computed locations are preserved
in the offspring. This procedure is repeated until all facilities are assigned.

The Spx crossover. This is the so-called Swap Path Crossover [1, 3]. The
crossover is based on iteratively swapping unshared locations. In Fig. 1b, it
starts with facility 2 assigned to location 3 (resp. 6) in the first (resp. second)
parent. In the first (resp. second) parent, location 6 (resp. 3) is occupied by facil-
ity 5 (resp. 8). Hence, a swap is performed between locations 2 and 5 in the first
parent, as well as between locations 2 and 8 in the second parent. Two offspring
are obtained, respectively to the first and second parent. Then, the best of the
two replaces its corresponding parent, say the first one as in Fig 1b. Notice that
after this iteration, the two new parents have one more location in common.
The same is then repeated iteratively until both parents become the same. The
output offspring is the best ever created during all iterations.
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(a) The Cx crossover. (b) First steps of the Spx crossover.

Fig. 1: Illustration of the Cx and Spx crossovers.

3 A Partition Crossover for the QAP

A partition crossover is based on the idea of decomposing the evaluation func-
tion as well as the set of variables during recombination. This decomposition
should enable to construct and to evaluate offspring using partial evaluations.
The fastest the evaluation step, the fastest the exploration of a large number
of offspring, eventually leading to an improving one, hence exploring the so-
called dynastic potential of parents at best. It should be clear that none of the
previously-described crossovers fulfill this requirement, although Cx and Spx
attempt to construct an offspring based on the idea of gene transmission.

In the following, we aim at designing a new partition crossover for the QAP.
We start by introducing some notations, then we describe a decomposition pro-
cess for the QAP, and the underlying recombination (Proposition 1) and function
evaluation process (Corollary 1), in a formal, but intuitive, manner.

3.1 Recombination based on a Bipartite Graph Representation

Following standard notations from graph theory, a bipartite graph G is a graph
whose nodes can be divided into two disjoint sets U(G) and V (G), such that an
edge in E(G) can only connect a node in U to one in V . Given a subset of nodes
Q ⊆ U and R ⊆ V , we denote by G[Q,R] the subgraph induced by Q ∪R in G.

Let π be a permutation solution for the QAP. Let us define the bipartite
graph whose nodes sets are respectively the set of facilities I and locations J ,
and where every facility i is connected to its unique location j according to
permutation π. This corresponds in fact to a very natural representation of a
feasible assignment of the facilities to the locations; see Fig. 2.

Definition 1. Let Gπ = (I, J, E) be the bipartite graph such that E(Gπ) =
{(i, j) | π(i) = j}.

Let us now consider two permutation solutions π1 and π2 which will play the
role of parents for our target crossover. Let Ĩ (resp., I) be the set of facilities that

are assigned (resp., not assigned) to the same locations, denoted J̃ (resp., J).

Definition 2. Let Ĩ = {i ∈ I | π1(i) = π2(i)} and I = I \ Ĩ. Then, let J̃ =

{π1(i) | i ∈ Ĩ}, and J = J \ J̃ .

Notice that for any facility i ∈ I, the corresponding locations π1(i) and π2(i)
are different, and both belong to J . Let us now define the bipartite graph Gπ1π2

obtained by merging the edges of Gπ1
and Gπ2

; see Fig. 2.
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Fig. 2: Illustration of a bipartite graph representation. Solid (resp. dashed) edges

are with respect to Gπ1 (resp. Gπ2). We have Ĩ = {2, 8}, J̃ = {3, 8} and the
corresponding edges in gray. There are k = 3 connected components C1, C2 and
C3 in Gπ1π2

[I, J ], with U(C1) = {1, 3, 4}, U(C2) = {5, 6}, and U(C3) = {7, 9}.

Definition 3. Let Gπ1π2
= (I, J, E(Gπ1

) ∪ E(Gπ2
))

Let us focus on the connected components of the so-obtained graph. First,
we have that every facility i ∈ Ĩ is connected, by exactly two edges in Gπ1π2

, to

a unique location j = π1(i) = π2(i) ∈ J̃ , and j is not connected to any other
facility. Hence, this implies exactly one connected component with these two
nodes connected by two parallel edges. Apart from such components (in Ĩ ∪ J̃),
the other components of interest connect nodes in I to nodes in J . Then,

Definition 4. Let k be the number of connected components in Gπ1π2
[I, J ], and

let C = {C1, C2, · · · , Ck} be the set of these connected components.

Notice that k = 0 iff π1 = π2. In the following, we assume that π1 6= π2, and
hence k ≥ 1. By definition, we also have that for every ` ∈ {1, . . . , k}, C` is a
bipartite graph whose edges form a cycle that are alternatively in E(Gπ1

) and
in E(Gπ2). An offspring can hence be constructed by: (i) preserving the shared

assignments of facilities in Ĩ, and (ii) choosing for every set of facilities U(C`),
` ∈ {1, . . . , k}, the locations they are connected to either in Gπ1

(first parent) or
in Gπ2

(second parent). More formally, let m : {1, . . . , k} 7→ {1, 2} be an arbitrary
mapping function. Such a mapping can be used to decide which of π1 or π2 to
consider when choosing the locations of U(C`) for every `, i.e., if m(`) = 1 then
use π1, otherwise use π2. This is stated in the following proposition summarizing
the proposed crossover recombination mechanism.

Proposition 1. Given two permutations π1 and π2 and an arbitraty mapping
function m : {1, . . . , k} 7→ {1, 2}, ⊗

π as defined in the following is a feasible
permutation offspring.

• ∀i ∈ Ĩ,
⊗
π(i) = π1(i) = π2(i)

• ∀i ∈ I,
⊗
π(i) = πm(`i)(i), where `i ∈ {1, . . . , k} is such that i ∈ U(C`i)

The previous proposition is to recall the Cx crossover, where a cycle cor-
responds to a connected component in our formalism. However, we consider to
explore not solely one random offspring, but the whole set of offspring solutions
that can be constructed by Proposition 1 to find the best possible one. Since,
the recombination process is fully and uniquely determined by the choice of the
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mapping function m, we have to consider all possible mappings. Obviously, there
exist 2k possibilities (including parents) leading to as much possible offspring.
Since evaluating one offspring from scratch costs Θ(n2), a naive approach to com-
pute the fitness values of these possible offspring has a complexity of Θ(2k · n2),
which can be prohibitive. In the next section, we show how to reduce it.

3.2 Decomposition of the Evaluation Function

Following the previous notations, let m : {1, . . . , k} 7→ {1, 2} be an arbitrary
mapping function, and let us define for every ` and `′ in {1, . . . , k}:

Q``′ =
∑

h∈U(C`′ )

∑
i∈U(C`)

dπm(`′)(h)πm(`)(i) fhi ; Q` =
∑
h∈Ĩ

∑
i∈U(C`)

dπ1(h)πm(`)(i) fhi

R =
∑
h∈Ĩ

∑
i∈Ĩ

dπ1(h)π1(i) fhi ; Q′
` =

∑
i∈Ĩ

∑
h∈U(C`)

dπm(`)(h)π1(i) fhi

where Q``′ represents the contribution of facilities in C` w.r.t. the facilities in
another connected component C`′ . Similarly, Q` (resp. Q′

`) represents the contri-
bution of facilities in C` w.r.t. facilities having the same locations in both parents
π1 and π2. Finally, R represents the pairwise contribution of the facilities that
have the same locations in π1 and π2. The following proposition shows that the
QAP objective function can be decomposed using these contributions.

Proposition 2. Let
⊗
π be a permutation offspring as defined in Proposition 1. Then,

f(
⊗
π) = R+

k∑
`=1

(
Q` +Q′

` +

k∑
`′=1

Q``′

)
Proof. By decomposing the facilities w.r.t. Ĩ, I, we get:

f(
⊗
π) =

∑
h∈I

∑
i∈I

d⊗
π(h)

⊗
π(i)

fhi =
∑
h∈I

∑
i∈I

d⊗
π(h)

⊗
π(i)

fhi +
∑
h∈I

∑
i∈Ĩ

d⊗
π(h)

⊗
π(i)

fhi

=
∑
h∈I

k∑
`=1

∑
i∈U(C`)

d⊗
π(h)

⊗
π(i)

fhi +
∑
h∈Ĩ

k∑
`=1

∑
i∈U(C`)

d⊗
π(h)

⊗
π(i)

fhi

+
∑
h∈I

∑
i∈Ĩ

d⊗
π(h)

⊗
π(i)

fhi +
∑
h∈Ĩ

∑
i∈Ĩ

d⊗
π(h)

⊗
π(i)

fhi

=

k∑
`′=1

∑
h∈U(C`′ )

k∑
`=1

∑
i∈U(C`)

d⊗
π(h)

⊗
π(i)

fhi +
∑
h∈Ĩ

k∑
`=1

∑
i∈U(C`)

d⊗
π(h)

⊗
π(i)

fhi

+

k∑
`′=1

∑
h∈U(C`′ )

∑
i∈Ĩ

d⊗
π(h)

⊗
π(i)

fhi +
∑
h∈Ĩ

∑
i∈Ĩ

dπ1(h)π1(i) fhi

=

k∑
`′=1

k∑
`=1

∑
h∈U(C`′ )

∑
i∈U(C`)

dπm(`′)(h)πm(l)(i) fhi

+

k∑
`=1

∑
h∈Ĩ

∑
i∈U(C`)

dπ1(h)πm(`)(i) fhi +

k∑
`′=1

∑
i∈Ĩ

∑
h∈U(C`′ )

dπm(`′)(h)π1(i) fhi +R
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=

k∑
`′=1

k∑
`=1

Q``′ +

k∑
`=1

Q` +

k∑
`′=1

Q′
`′ +R ut

As a result, we obtain the following corollary which follows from the fact that
the contributions appearing in the decomposition of Proposition 2 can only have
a constant number of values, for all possible choices of the mapping m.

Corollary 1. The whole set of offspring that can be generated by Proposition 1
can be explored and evaluated in O(n2 + k2 · 2k) time.

Proof. Let us first notice that computing the components of the bipartite graph
can be done inΘ(n) time. Over all the possible mapping functionsm, (m(`),m(`′))
can only take 4 different values, namely, (1, 1), (1, 2), (2, 1) and (2, 2). Hence, for
every fixed values of ` and `′, Q``′ can only take 4 possible values. These four
values depend solely on π1 and π2. Therefore, there can only be Θ(k2) possible
values for Q``′ over all ` and `′, and all possible choices of m. All of these Θ(k2)
values can be precomputed by a simple preprocessing step. Since by definition
C` and C`′ do not share any nodes for every ` 6= `′, this preprocessing step takes
obviously O(n2) time. Similarly, there are only Θ(k) possible values for Q` and
Q′
` over all possible values of `, and all possible choices of m. Hence, they can also

be precomputed in Θ(n2) time. Finally, R does not depend on m, and can also
be precomputed in O(n2) time. To summarize, all possible values taken by Q``′ ,
Q`, Q`′ , and R can be precomputed in Θ(n2) time and stored in Θ(k2) memory
space before even any specific choice of the mapping function m is made.

Now, let us consider a specific choice for the mapping function m, which
fully determines an offspring permutation

⊗
π according to Proposition 1. Then,

according to Proposition 2, and given the contributions Q``′ , Q`, Q`′ , and R were
already precomputed by the previous discussion, it takes Θ(k2) time to compute

f(
⊗
π). The corollary follows since there are 2k possible mapping functions m. ut

4 Experimental Analysis

In the rest of the paper, we provide an empirical analysis of the designed partition
crossover, denoted by Px.

4.1 Experimental Setup

We consider the following 8 QAP instances from the literature4 [14,15]: tai343e0i
with i ∈ {0, . . . , 7}. They have been selected due to their challenging size of
n = 343 facilities and locations, which is rarely addressed in the literature. We
consider the following scenarios.

Scenario #1. The goal of this scenario is the study the relative ability of
the Px crossover to find an improving offspring. As depicted in the high-level
template of Experiment 1, we consider two settings where the initial parents are

4 http://mistic.heig-vd.ch/taillard/problemes.dir/qap.dir/qap.html

http://mistic.heig-vd.ch/taillard/problemes.dir/qap.dir/qap.html
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Experiment 1: Pseudo-code of the first experimental scenario

1 Let π1 and π2 be either (i) two random solutions or (ii) two local optima;

2 Apply crossover on π1 and π2 to obtain an offspring
⊗
π;

3 Apply a local search with
⊗
π as initial solution to obtain

⊗
π
′
;

Experiment 2: Pseudo-code of the second experimental scenario

Input: G: maximum number of generations; p ∈ [0, 1]: local search ratio;
1 Generate an initial random population P ;
2 for g = 1 to G do

3 Apply crossover on two randomly selected parents π1 and π2 to obtain
⊗
π;

4 if p < rand(0, 1) then

5 Apply local search with
⊗
π as initial solution to obtain

⊗
π
′

and let
⊗
π =

⊗
π
′
;

6 Replace the oldest individual of the population with
⊗
π;

either (i) random solutions, or (ii) local optima. For the latter case, we run a basic
hill climbing local search using the standard swap neighborhood to construct the
initial local optima. Starting from a random permutation, the best swap move is
performed until no improvement is possible. The local search is executed as much
times as needed to find as much different local optima as needed. All competing
crossovers are applied 100 times using 100 pairs of different initial parents. Once
an offspring has been generated by crossover, we also consider to check if it is a
local optimum w.r.t. the swap neighborhood by running the local search again.

Scenario #2. The goal of this scenario is to study the relative performance of
the Px crossover when plugged into a simple evolutionary algorithm. As depicted
in the high level template of Experiment 2, we consider a hybrid evolutionary
algorithm embedding the swap-based local search discussed previously. In each
generation, a new offspring is generated by performing crossover followed by a
local search with probability p. We consider a simple random parent selection
and a non-elitist replacement where the newly generated offspring replaces the
oldest individual. The value of p is chosen in the set {0, 0.05, 0.2}. This allows us
to study the relative behavior of crossover using a variable amount of local search,
ranging from no local search at all (p = 0), to a small (p = 0.05) and a high
(p = 0.2) amount. For each configuration, 10 independent runs are performed
with a maximum number of generations G = 1 000 and a population size of n.

CPU running time. Let us finally notice that we manage to analyze the CPU
execution time. It is hence important to recall that the implementations of all
algorithms were optimized as much as possible. In particular, computing the best
move in a swap-based local search can be performed in a very efficient manner
for the QAP. In fact, this can be done in an incremental manner on the basis of
the current solution [14, 15]. For the sake of fairness when analyzing execution
time, this well-established and important consideration is carefully implemented
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Fig. 3: Results from Experiment 1. Results are over all eight instances.

in all experiments. Moreover, when running the Px crossover, we restrict the
maximum number of explored offspring to at most 215, which means that when
the number of connected components k > 15, not all possible offspring from
Proposition 1 are explored. All algorithms are implemented in C++ and run on
an Intel Xeon(R) CPU E3-1505M v6 3.00GHz.

Let us finally notice that more advanced settings including other QAP in-
stances and algorithms, as well as finely tuned operators/components using au-
tomated algorithm configuration methods, etc, are left for future investigations.

4.2 Experimental Analysis and Results

We start our analysis by reporting our findings from Experiment 1 in Fig. 3.

Crossover improvement ratio. In Fig. 3a, we can see that the Px crossover
has a significantly higher improvement rate. Using random parents, it can pro-
duce an improving offspring in almost 100% of the cases, whereas all other con-
sidered crossovers have a ratio of around 28%. Using local optimal parents, the
Px is still able to find improving offspring in around 30% of the cases. This is
to contrast with the other crossovers that fail in almost all cases. This first set
of observations shows that the Px crossover has a relatively high intensification
ability since it is even able to improve over local optima.

Local optimality. In Fig. 3b, we further show the number of moves performed
by the local search initialized with the generated offspring (in line 3), i.e., 0 moves
means that the offspring is a local optima w.r.t. the swap neighborhood. For all
crossovers except Px, the local search improves the constructed offspring in-
dependently of using random or local optima parents. This means that these
crossovers are more diversification-oriented, since even when using local optimal
parents, they are likely to produce an inferior offspring that can be improved by
local search. Hence, we can think about these crossovers as acting in a perturba-
tive manner. The situation is completely different for the Px crossover. On one
side, with random parents, where the offspring improvement ratio was found to
be almost 100%, the local search can still find improvements. On the other side,
with local optimal parents, where the offspring improvement ratio is about 30%,
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Table 2: Ranks of crossovers (a lower rank is better). The first (resp. second)
part is with respect to solution quality (resp. execution time). For each value
of parameter p (local search ratio), a rank c indicates that the corresponding
crossover was found to be significantly outperformed by c other ones w.r.t. a
Wilcoxon statistical test at a significance level of 0.05. Rows are w.r.t. instances.

p = 0 p = 0.05 p = 0.2
#Ins Opx Ux Cx Spx Px Opx Ux Cx Spx Px Opx Ux Cx Spx Px

Mean average deviation to the best (in subscript)

1 2810 2809 2808 1796 0710 00.38 00.39 00.37 00.37 00.37 00.26 00.24 00.30 10.32 10.34

2 2105 2105 2105 1103 094 00.04 00.04 00.03 00.04 10.05 00.02 00.03 00.02 00.03 00.03

3 2115 2115 2115 1113 0102 00.04 00.03 00.03 00.04 10.05 00.02 00.02 00.02 30.03 30.03

4 296 296 296 195 084 00.04 00.04 00.04 00.04 10.05 00.03 00.02 00.02 10.03 20.03

5 2107 2107 2108 1106 096 00.04 00.03 00.03 00.04 10.04 00.02 00.02 00.02 10.03 20.03

6 2123 2123 2124 1121 0110 00.06 00.05 00.05 00.06 10.06 00.04 00.04 00.03 10.05 10.05

7 2115 2115 2115 1113 0101 00.04 00.04 00.04 00.05 00.04 00.03 00.03 00.04 00.04 00.03

8 2110 2110 2110 1108 0 96 00.04 00.03 00.03 00.03 10.04 00.02 00.02 00.01 30.03 30.03

Mean CPU execution time (in subscript)

1 00.61 10.62 20.75 4286 33.39 0194 0198 0196 4478 0185 1705 1714 1676 4870 0502

2 00.61 10.62 20.72 4287 33.44 0202 0202 0199 4475 0187 2698 1697 1662 4857 0494

3 00.60 10.63 20.70 4286 33.38 0210 0208 0206 4481 0195 1712 1730 1682 4876 0510

4 00.60 10.62 20.75 4287 33.41 0193 1198 0194 4468 0175 1724 1728 1693 4880 0513

5 00.60 10.62 20.74 4287 33.39 0189 0187 0183 4463 0172 1681 2684 1643 4842 0488

6 00.61 10.62 20.72 4286 33.39 0209 0212 0206 4481 0193 1714 1725 1690 4876 0515

7 00.61 00.62 20.69 4286 33.37 0207 0206 0205 4477 0193 1697 2701 1670 4875 0505

8 00.61 10.62 20.70 4287 33.40 0221 0223 0219 4494 0200 1715 1734 1693 4890 0521

the local search cannot find improvements, which indicates that the produced
offspring is also likely to be a local optimum. This means that the Px crossover
has some ability to act as a tunneling operator allowing to jump from two local
optima to a new improving local optimum (with around 30% success rate).

Solution quality vs execution time. In the following, we report our findings
from Experiment 2. In Table 2, we rank the different algorithms according to:
(i) the quality of the best solution that the evolutionary algorithm is able to
find during its execution, and (ii) the total CPU execution time. The situation
is clearly different depending on whether a local search is used or not.

When performing only crossover with no local search (p = 0), the Px crossover
is able to find substantially better solutions, followed by Spx, and then by Opx,
Ux and Cx, which do not show any significant difference statistically. Without
surprise, these crossovers run however faster than Px and Spx. Notice here the
extremely high cost of Spx. Interestingly, the proposed Px crossover implies
a relatively reasonable increase in terms of running time (about 3.5 seconds)
compared against Spx (about 287 seconds).

When performing crossover with local search (p ∈ {0.05, 0.2}), we can first
see that, compared to not using local search at all, all variants can find much
better solutions, while having a higher execution time. Interestingly, the Px and
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Fig. 4: Experiment 2 on first instance. Top: convergence profile. Bottom: execu-
tion time. Left: p = 0 (no local search). Right: p = 0.2.

Spx crossovers (which were previously found to perform better than Opx, Ux,
and Cx) now provide slightly worst solutions. On the other side, when analyzing
the execution time, we found that using the Px crossover is significantly faster
than all other variants, with at least 25% CPU time gain; e.g., for p = 0.2,
the average execution time over all configurations is of 506 seconds with Px,
against 677, 706, 714, and 871 with Px, Cx, Opx, Ux, and Spx, respectively.
As commented before, knowing that our swap-based hill climbing local search
was carefully implemented using a state-of-the-art fast incremental evaluation
procedure for finding the best move [14,15], such an observation might be surpris-
ing at first sight. However, it can be explained from two perspectives. Firstly,
due to Corollary 1, performing the Px crossover is reasonably fast. Secondly,
the Px crossover was previously found to have a relatively high intensification
power. Thus, it is likely to produce a high-quality offspring, eventually being a
local optima. Hence, it is more likely that the local search stops more quickly
when attempting to improve the produced offspring. In this case, the cost of the
local search is also reduced, hence leading to a decrease in the overall CPU time.

Finally, the previous results about solution quality and execution time are
found to hold at any generation, independently of the configuration. This is illus-
trated in Fig. 4 rendering the convergence profile and the CPU execution time as
a function of generations for the first QAP instance. This also confirms that the
Px crossover is more intensification-oriented, and should be complemented by
other diversification mechanisms when effectively integrated into more advanced
evolutionary search processes.

QAP connected components. To complement our analysis, we provide fur-
ther observations on the characteristics of the QAP and the relevance of the Px
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Fig. 5: Left: Number of connected components (k). Right:
∣∣I∣∣ /n in %.

crossover. More precisely, remember that given k connected components implied
by the unshared facility assignments I, the Px crossover is able to provide the
best over 2k possible offspring. In Fig. 5, we report the average value of k (Left),
as well the percentage of unshared facility assignments (Right), i.e.,

∣∣I∣∣ /n in %,
over all generations and all considered Px runs. We can see that for all consid-
ered QAP instances, solutions contain very few shared facility assignments, i.e.,
less than 1.5%, and the value of k stays relatively low, i.e., 6 in average with
the exception of a few outliers exceeding 10. This suggests that the exploration
power of the Px crossover can be improved in different ways, since its time com-
plexity guarantees (Corollary1) should be able to support the fast evaluation of
much more offspring solutions. For instance, it would be interesting to investi-
gate the splitting of existing connected components into smaller ones at the aim
of processing, and hopefully finding, more improving offspring.

5 Conclusion

In this paper, we presented our first investigations on the design of a partition
crossover for the QAP. The proposed recombination and evaluation process is
proved to provide a reasonable trade-off between the intensification power and
the running time complexity. Our empirical study provides first insights towards
the design and integration of more powerful partition crossovers for the QAP.
In particular, a future challenging issue is to investigate complementary de-
composition techniques allowing to break the QAP bipartite graph into further
smaller connected components, while maintaining a reasonable recombination
and evaluation cost. In this respect, a promising idea would be to investigate
the knowledge about the flow and distance values in order to identify the critical
facilities and locations when performing decomposition. The challenge is then to
guide the recombination process by identifying the most promising components
to consider while keeping evaluation cost as low as possible.
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