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Abstract—Forecast errors constitute the main hurdle to inte-
grating variable renewable energies into electrical power systems.
Errors are inherent to forecasting, although their magnitude
varies significantly with respect to both the method adopted
and the time horizon. Their dynamic and stochastic modeling
is mandatory for power systems to efficiently balance out these
errors. A Markov Switching Autoregressive — MS-AR - approach
is proposed herein for wind power forecast errors. This particular
model is able to identify weather regimes according to the forecast
reliability. Such regimes are controlled by a Markov chain whose
state — not directly observable — determines the AR model pa-
rameters. The statistical features of the data artificially generated
by this model are very similar to those of the actual forecast
error. This model is used to solve the optimal management of a
storage associated with a wind farm. The resolution is performed
by means of stochastic dynamic programming while comparing
the proposed MS-AR approach with several other models. In
this illustrative problem, a 15% reduction in operating costs is
derived from a fine model of forecast errors.

Index Terms—Forecast errors, Markov switching autoregres-
sive, stochastic dynamic programming, wind power forecast

I. INTRODUCTION

The integration of variable renewable energies into elec-
trical systems is mainly hampered by the difficulty expe-
rienced in forecasting their electricity production [1]. This
low predictability compels the power grid as a whole to
compensate for their fluctuations in real time which may
take the form of adjusting production [2] and consumption —
Demand Side Management — or using storage [3]. This global
problem, which involves all players within the electricity
network, proves to be a particularly sensitive one when it
entails planning for future operations on the basis of forecasts.
Dynamically adapting the planned schedule becomes even
more difficult when the deadline arrives and actual production
is accessible.

Due to the burden inherent of forecast errors, a mojority
share of the literature is devoted to forecasting renewable
energy production. Several techniques are implemented and
their complementarity makes it possible to refine the fore-
cast gradually as more information becomes available as the
deadline approaches [4], [5]. Such techniques include very
short term forecasting, which can be carried out by means
of imagery, satellite or fisheye camera. Statistical models can
be introduced to extend forecasting horizons using time series
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[6], [7], [8] or neural networks [9]. Moreover global numerical
weather prediction — NWP — models [10] provide a high-
quality forecast with a several-day horizon.

However good they may be, these forecasts are definitely
flawed by an irreducible error inherent in the weather forecast-
ing task. Recent models provide information on the reliability
of their forecast, in the form of an error range or ensemble
forecast [5]. First, characterizing these errors [11] is important
to the advancement of forecasting models. Moreover, this
characterization is useful for electricity networks to anticipate
sufficient operating reserves and infrastructure [12], [13].

Nonetheless, error modeling must extend beyond a statis-
tical description [14]. The dynamic behavior of models is
also critical: how does the error evolve over time, will it
be prolonged or not [12]? Such information would be most
helpful to deciding how the error should be counterbalanced.
Calling upon storage resources is the easiest course of action
should their capacity permit. But if starting up a backup power
plant becomes mandatory, it would need to be anticipated.
Moreover, it seems obvious that error modeling must indeed
be stochastic [15], [16]. This demand is especially compelling
in the case of NWPs, which only deliver their results every
few hours.

Previous research on wind speed and wind power forecast-
ing has extensively used Autoregressive Moving Average —
ARMA — models [17], [12], [13]. Wind error forecasts requires
other models since the dynamic is not the same: zero mean,
varying volatility, less correlation in the long term for example.
However, it may be considered obvious that the forecast error
signal will most probably follow the same large scale structure
as wind. Yet ARMA models do not capture the diversity
of regimes that wind generation may encounter. Like any
weather variable, wind generation is driven by weather types
that can radically change its behavior. Several studies devoted
to wind speed and wind power forecasts have applied this
idea by introducing Markov Switching Autoregressive (MS-
AR) models [7], [18], [8]. The main feature of these models
is that their parameters are not unique but rather determined
by a hidden state, whose evolution follows a Markov chain.
Consequently, the signal characteristics can vary significantly
from one time period to the next. This approach has proven
its effectiveness in capturing different wind regimes. Weather
types have also exerted an impact on forecast errors. Some



types of weather produce easily predictable wind conditions
while others are much more chaotic and produce large errors.

This study focuses on the errors inherent in wind power
prediction as regards their grid integration. Since the relation
between wind speed and wind power is nonlinear, the model
coefficients should be reevaluated before use on a wind speed
forecast error. Nevertheless, the ability to accommodate regime
changes — i.e. the main contribution of this article — would
apply.

The objective of this study therefore is to describe wind
power forecast errors by a Markov Switching Autoregressive
model and highlight its relevance. Section II will be dedicated
to the model presentation and its validation by ways of
several statistical criteria. Other simpler models will also be
introduced for comparison purposes. Section III will provide
a representative application of such a forecast error model,
namely optimal management of a storage associated with
a wind power plant required to meet a generation commit-
ment. This optimal management problem will be solved using
stochastic dynamic programming. Solutions will be computed
for various forecast error models in order to highlight the
added value of a MS-AR model.

II. MODELING OF WIND POWER FORECAST ERRORS

The time series of wind power forecast P and realization P
are provided by [19]. Data are available from 2009 to 2018,
with a 1 h time step. Let P? denote the installed capacity, then
the forecast error at time t is defined as

t
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An example of a trajectory is shown in Fig. 1 (top panel).

A. Model description

Markov Switching Autoregressive — MS-AR — models allow
to describing a time series by a mixture of several autore-
gressive processes. These models were initially introduced by
[20] to capture different regimes in market-related time series.
Such models seem to be particularly relevant for wind power
forecast errors which exhibit periods with low error (see Fig. 1
around 15th Nov.) and others with highly varying errors (see
Fig. 1 end of Nov.). A latent variable 7, called a hidden state
or hidden regime, is introduced to capture transitions from one
physical regime to another.

The dynamic of the latent variable 7 is driven by a Markov
chain with M possible states. The transition probabilities are
defined by an M x M matrix, denoted I'. An element ~;;
represents the probability of switching from state ¢ to state j.
Moreover, at each time ¢, for a given state 7, the forecast error
is assumed to evolve like an AR(p) model whose coefficients
depend on ;. More precisely,

Y, = a(()m) + agm)Yt,l + ..+ az(,m)Y{g,p + o(me, 2)

where € is a Gaussian white noise.
Given a recorded time series and the MS-AR parameters,
at each time step ¢, the probabilities of being affiliated with
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Fig. 1: Example of smoothing probabilities (bottom panel) of
an MS(3)-AR(2) model for a given sequence of the time series
of wind power production forecast errors (top panel).

each hidden state — smoothing probabilities P(m|Y7,- -, Y7p)
— can be computed using a forward-backward (FB) algorithm
[21]. The most likely sequence of latent states can therefore
be deduced as illustrated in Fig. 1 for a three regime model.
However when implemented in a real-time context, it is
impossible to wait for future observations before estimating
the most likely state. It then becomes necessary to use forward
probabilities P(m¢|Y7, - -, Y;) instead of smoothing probabil-
ities to predict the regime.

The MS-AR model parameters — transition matrix I', AR
coefficients a§“> and innovation standard deviations o(™t)
— are calibrated using the Expectation-Maximization (EM)
algorithm [22], which leads to a maximum of the likelihood
of the model. The EM algorithm repeats two steps until
convergence. The first step runs the FB algorithm for the
current parameters values. The second step computes weighted
empirical estimates of the AR coefficients. These weights are
given by the smoothing probabilities.

B. Model selection and validation

Identifying a MS(M ) — AR(p) model first requires selecting
an order p for the AR models and the number M of hidden
states. For models with hidden variables it is common practice
to use the Bayes Information Criterion — BIC — because cross-
validation is typically too expensive. BIC yields a compromise
between model complexity and its likelihood. Fig. 2 reports
— negatively oriented — BIC evolution for various models
calibrated on the [19] wind power forecast error time series.
Note that M = 1 corresponds to the AR model.

An initial effect shown in Fig. 2 is that the larger the
value of M, the smaller the BIC value. Indeed, increasing the
number of hidden states tends to more closely approximate the
continuous variations of the actual meteorology. Nevertheless,
the interpretability of results quickly becomes impractical
when M > 4, in addition to a very small improvement of
BIC for 3 to 4 regimes. Secondly, increasing the autoregressive
order p offers a very small improvement. Since an order cannot
be chosen with certainty by the BIC criterion, this study will be
followed by the implementation into the optimal control of a
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Fig. 2: Bayesian Information Criteria for various model pa-
rameters: number of states and order of the AR model.
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representative system — see section III. The model complexity
will then be bounded by the resolution feasibility. However,
in an MS-AR model, increasing the AR order introduces
as many new parameters as the number of possible hidden
states. Moreover, a longer memory will increase resolution
complexity when such a model is integrated into the optimal
management of a power system. For this reason the remainder
of the present section will consider the AR(2) and MS(3)-
AR(2) models'. Estimated parameters are reported in Table 1.

The AR parameters provide an information on the regularity
of the time series inside the regimes: the higher the sum of
a1+as the smoother the series. The observed time series inside
the various regimes have a significantly different standard
deviation o. Although these coefficients were identified in
an unsupervised manner using the EM algorithm, a physical
interpretation of the results seems clear: hidden states are asso-
ciated with weather types characterized by strong, moderate or
weak predictability, respectively. These features are illustrated
in Fig. 1, which shows a sample of the time series and its
associated smoothing probabilities. The state 1 (green) is most
likely when the errors have a very small amplitude. The state 3
(purple) appears to reflect high amplitude and low correlation
errors. Intermediate situations are taken into account by a high
probability of belonging to regime 2 (orange).

The transition matrix of the hidden Markov chain is diago-
nally dominant, which implies that the regimes are relatively
stable. The measured mean duration of stay in regimes 1, 2,
and 3 is respectively 10 hours, 7 hours 38 minutes and 16 hours
40 minutes. The weather conditions are in fact also relatively
stable on an hourly scale.

Transitions between regime 1 (low and stable errors) and
regime 3 (high and variable errors) are nearly impossible, thus
suggesting no abrupt transition from a weather type where
forecasts are reliable to another where they are highly uncer-
tain. This finding seems to be consistent with an evolution in
weather conditions and supports the notion that these regimes
are well correlated with weather types.

For comparison, Table I reports the parameters of an AR(2)
model fitted on the same time series; they are very similar
to those of the third regime of the MS(3)-AR(2). Therefore,
these two models may behave almost identically under some
circumstances.

IThe AR(1) and MS(3)-AR(1) versions will also be used in the following
sections to compare the potential impact of different modeling approaches of
various complexities on the final applications.

TABLE I: Fitted parameters of the MS(3)-AR(2) and AR(2)
MS@3) - AR(2)

Transition matrix AR parameters
Reg. 1 2 3 ao ai ao o
1 090 0.10 8 © 5e— % 0.64 -0.08 9e 6
2 0.04 0.87 0.08 5e—4 073 -0.12 3e*
3 5e~13 006 094 —4e=3 067 -02 3e3
AR(2)
I ] 10 00 00 [ —15e3 068 -0.17 4e 3

Fig. 3 presents some of the scenarios generated by the
AR(2) and MS(3)-AR(2) models. Fig. 3a shows that the MS-
AR model indeed acknowledges that it lies in a regime with
small forecast errors, as illustrated by the 90% confidence
interval (CI). In contrast, Fig. 3b points out that the AR model
is incapable of taking this information into account, and the
dispersion in scenarios remains the same all along. Fig. 3c
shows that when initialized in a less predictable weather type,
the MS(3)-AR(2) produces more variable scenarios and will
occasionally reach more extreme values than those reached by
the AR(2) (see Fig. 3d).

For both models, Table II reports the Mean Absolute Error
(MAE), the model bias defined as the average error (BIAS),
and the Root Mean Squared Error for forecast horizons of
12hours and 24 hours. The MS-AR significantly improves
both MAE and RMSE scores. The limited BIAS amplitude
makes its rise insignificant. Overall performance on longer
forecast horizons tends to decrease. Indeed, after a few fore-
casting steps, the model tends to generate a time series close to
the mean of the stationary distribution. Therefore the positive
impact of the initial probabilities belonging in a particular state
has vanished.

Both the AR and MS-AR models facilitate the generation
of synthetic data. This feature can be used to infer how some
specific statistical characteristics are captured by comparing

02| - Cl90% = Real = Scenarios 02| ~ Cl90% = Real = Scenarios
0.1 0.1
3 00 % 0.0
-0.1 -0.1
-0.2 -0.2

0 5 10 15 0 5 10 15

hours hours
(a) MS-AR small error (b) AR small error

02 = Cl90% = Real = Scenarios 02 = Cl90% = Real = Scenarios
0.1 0.1
% 00 % 0.0
-0.1 -0.1
-0.2 -0.2

0 10 15 0 1 15

hours

(c) MS-AR large error (d) AR large error

Fig. 3: Fifty 15-hour scenarios generated by the AR(2) and
MS(3)-AR(2) models initialized on a test data sample and their
associated 90% simulation interval



TABLE II: The range of scores per scenario obtained by the
AR(2) and MS(3)-AR(2) models on the test dataset with 100
scenarios generated per time step

Metric 12H forecast horizon 24H forecast horizon

‘ AR MS-AR  variation | AR MS-AR  variation
MAE 0.0450  0.0408 [9.3%] 0.0489  0.0452 [7.6%]
RMSE || 0.0590 0.0544 [7.8%] 0.0632  0.0598 [5.4%]
BIAS 0.0049  0.0051 [-4.1%] 0.0054  0.0055 [-1.9%]

synthetic and original time series. Let’s now focus on statistics
that may be hard to reproduce with AR models. For instance,
AR models generate trajectories exhibiting certain symmetries:
the mean number of up-crossings for any value u — called
threshold below — equals the number of up-crossings of —u.
A set of 50 synthetic model-generated time series is compared
to the original series in Fig. 4 through two metrics: mean
duration of stay over a range of threshold values (bottom
panel) and the number of up-crossings (top panel) for the same
values. On both panels, the MS-AR model displays significant
improvements compared to the AR model. Fig. 4a shows
that the AR model overestimates variability for small errors,
whereas the MS-AR overlays the original series’ up-crossings.
For both models, the 50 scenarios exhibit very little variation
between one another. Fig. 4b indicates that both models fail
to perfectly reproduce extreme wind power forecast errors —
the reader’s attention is drawn to the logarithmic scale. In this
case, the distinction between scenarios is very clear, especially
for extreme values. Such values are indeed rarely realized. Any
slight variations are therefore more pronounced. However, the
MS-AR provides significant improvements in both capturing
the dynamic of small prediction errors and allowing for higher
absolute errors to be reached.

This section has presented the MS-AR model, which is
being suggested here to describe wind power forecast errors.
After discussing the relevant orders for both the AR model and
the number of hidden states, several statistical metrics were
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Fig. 4: Statistical characterization of the real series as well as
50 synthetic series of the same length generated by the AR(2)
and MS(3)-AR(2) models
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Fig. 5: Virtual power plant under commitment constraint being
considered for this case study.

used to validate that these models are able to accurately reflect
the behavior of forecast errors with a significant improvement
compared to typical AR models. It must be highlighted how-
ever that the values of the model coefficients are very sensitive
to the series on which they are identified. An illustration of
this sensitivity is presented in Appendix A, where the same
model is applied to another series [23]. Moreover, at the scale
of a single wind farm, wind power forecast errors are likely
to differ from errors aggregated over a vast geographic area.

ITI. APPLICATION TO OPTIMAL STORAGE STRATEGIES

To extend beyond a statistical validation, the aim of this
section will be to highlight how a better wind power forecast
error model can improve final performance in a representative
application. For this purpose a virtual power plant — VPP —
consisting of the association of a wind farm and a storage
unit is considered as in Fig. 5. A day ahead commitmnent
constraint represents either a market context or a grid operation
necessity. This commitment is assumed to be set equal to the
forecast P. The goal of this VPP then is to minimize the
expected cost over time of the commitment gap penalties —
assumed to be quadratic — and the losses — also quadratic®.
The optimal management problem can therefore be stated in
the following form:

;((APT — Pg,) +a (Pg,)°) 16

commitment gap

min E
Pet,o (t) AP

losses

subject to Vt, VT,

P:to S P;io S Pgto (3b)
0<SoE<1 (3c)
SoE(t + AT) = SoE(t) + (3d)

AT - (P, + P! )

sto loss

Esto

where a > 0 is a loss coefficient and SoFE denotes the state
of energy of the storage unit. The sign of P, is the opposite
of Psto‘

2These objective functions have deliberately been selected as basic for
illustration purposes but can be replaced by any convex function.



Note: The capacity to shed producible is not considered
herein. In a real-world situation, the plant operator could
deoptimize conversion efficiency — via the wind turbine blade
pitch — which would provide an additional decision variable.
Although this set-up could be perfectly taken into account
in the solving method presented, this possibility will not be
addressed subsequently on because this study focuses on the
impact of the forecast error model. Taking production shedding
into account would indeed complicate the results interpretation
step. First, it would introduce an asymmetry between the
cost linked to positive and negative errors, and second, the
commitment calculation would no longer equal the forecast
expectation.

To support the stochastic and temporal coupling character-
istics of the problem while minimizing the real-time compu-
tational cost, stochastic dynamic programming [24] is used to
solve (3). The algorithm leads to an optimal strategy describing
the best decision to make for any state vectir configuration.
The result obtained therefore is not only the decision to be
made in the current situation, but the optimal decisions for
all possible configurations as well. The real-time control then
consists of a simple interpolation of the matrix describing the
optimal strategy. Stochastic dynamic programming solves the
Bellman equation and it returns the costs associated with each
state vector configuration when the optimal decision is applied.
It is computed from the final system state at the 7" horizon and
going backward in time.

V(T,X) = 0 (4a)
vVt < T Vx e X,
V(taX) = min f('rapsto) + (4b)
SEO  \—

instantaneous cost

AEP(V(t + AT, fdyn (‘T7 PStO)))

expectation of the future cost

The horizon T' of the problem is not associated with any
particular value. This final value is thus initialized to zero.
However, no horizon value would be preferable in this context.
Instead, it would be preferable to have an infinite horizon
rather than become myopic beyond a given time frame. The
resolution is therefore iterated back in time until the optimal
strategy converges, so that it does not change from one itera-
tion to the next. A strategy considering an infinite optimization
horizon is then obtained.

fayn represents the dynamic system function; it links the
current state and current control to the future system state:

z(t + AT) = fayn (x (1), Psto (1)) 5)

In the present case, this dynamic function includes not only the
deterministic component of (3d), but also a random component
due to the evolution in forecast error that cannot be perfectly
anticipated. All quantities involved in the forecast error model
must therefore be included in the state vector in order to
evaluate the anticipated forecast error at the next time step.
Since this study is comparing several models, the state vector

Myopic strategy uniform error model
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Fig. 6: Cross-sections of optimal storage strategies obtained
with different forecast error models for E.;, = 5 MWh. For
the MS-AR model, the optimal strategy is three-dimensional.
Only a cross section for m = 3 is represented.

composition will then differ from one resolution to another.
The state of energy SoF and forecast error A P are mandatory.
The hidden state m must be added in the case of MS-AR
models.

<50E> SoE
T = or AP (6)
s

In the case of the resolutions involving a second order AR
model, all possible forecast error configurations at the two
previous time steps must be enumerated. AP then appears
twice in the state vector, once for the current time step forecast
error and after for the forecast error at the previous time step.

f denotes the convex instantaneous costs of the problem 3.
This generic notation emphasizes that the resolution algorithm
can handle any formulation depending on the system status x
and its command Pg;,. During the optimal strategy calculation,
the cost f is evaluated for each configuration of the x= state
vector, hence the disappearance of the time index.

The Bellman equation (4) is solved using the various
forecast error models. For each one, the result is a response
surface associating every state vector configuration with the
optimal storage power. Fig. 6 presents a number of cross-
sectional views. The interpretation of these strategies is that
if the system is in a configuration where the energy state is
x on the abscissa and the forecast error is y on the ordinate,
then the storage power described by the optimal surface must
be applied. The first panel in this figure depicts the optimal
strategy when no anticipation is made. The storage then seeks
to perfectly compensate for the forecast error as long as SoE
is sufficient. The iso-powers curves are therefore perfectly
horizontal until the storage can no longer provide. On the



second panel, the forecast error is modeled by a uniform
distribution. All error values are therefore equiprobable at the
next instant, regardless of the current state. This approach
entails a strong forward-looking behavior of the optimal strat-
egy. Indeed, even in a state vector configuration with small
error, it is necessary to anticipate that very large errors could
occur during the next time steps. Consequently, the iso-powers
curves are very steep, which means that the forecast error
is never perfectly compensated, but merely attenuated. On
the third panel, the optimal strategy is determined using an
AR(1) model. Although rudimentary — this model uses only
autocorrelation and a standard deviation — it allows for much
better anticipation of future errors. More specifically, when
the errors are of small amplitude, near total compensation is
possible because it can be reliably anticipated that the error
will remain of small amplitude during the next few time
steps. On the last panel of the figure, the optimal strategy
is determined using an MS(3)-AR(1) model. The overall
behavior is therefore very similar to that of the strategy based
on an AR(1). However, the optimal strategy based on an MS-
AR model contains an additional dimension compared to the
AR model. There is in fact an optimal strategy corresponding
to each hidden state. We are only representing here a section
corresponding to one of the three hidden states of the model
— m = 3. Since the MS-AR model introduces the possibility
to switch between hidden states, the corresponding strategy
slightly differs from one hidden state to another because of
the difference in standard deviations and error correlations.
When used in real time, the probabilities of belonging to a
hidden state are reconstructed according to the observations
available up to the present time — forward probabilities. The
storage power decision is then the weighted average of the
decisions for each of the 3 hidden states.

Note: Although persistence is usually an excellent way to
easily anticipate weather phenomena, this model leads to quite
disappointing results. In the considered context, persistence
would suggest that the currently observed forecast error would
persist until the end of time. In such a case, any storage
system will eventually be saturated regardless of its capacity.
Therefore, the optimal storage strategy using such a model
would be to do nothing.

These storage strategies have been applied over the last year
of the time series of wind power forecast error [19], with the
previous years being used to identify the models. At each time
step, the state vector is formed, then the optimal strategy is
interpolated. In Fig. 7, the temporal evolution of the stored
power and corresponding energy state are displayed over a
700 hour sample. The forecast error is shown in blue. The
storage power seeks to compensate it as much as possible.
In red, the myopic strategy — without any anticipation —
offers perfect compensation until saturation and then becomes
basically useless. In yellow, the strategy based on a uniform
noise model always seeks to maintain an energy state close
to 0.5. The compensation for current errors is downgraded
because of an overemphasis on possible future extreme errors.
Autoregressive models — with or without a hidden state —
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Fig. 7: Top: Time trajectories of the forecast error and asso-
ciated stored power according to various strategies. Bottom:
Corresponding state of energy of the storage device

exhibit an intermediate behavior that allows them to largely
mitigate forecast errors while regulating the storage energy
state, i.e. avoiding SoE = 0.0 or 1.0. Indeed, a few percent
margin makes it possible to keep attenuating small amplitude
variations.

However, battery capacity plays a crucial role in storage
strategy performances: the best strategy is ineffective if it uses
a too small storage. To dissociate the effects of battery capacity
and management strategy, Fig. 8 shows — in blue, left axis
— the evolution of total cost — associated with (3) — when
storage is controlled without anticipatinf the future. Obviously,
costs are reduced as capacity increases, even using such a
rudimentary strategy. Yet, the addition of a simple forecast
error model is sufficient to obtain a significant gain compared
to such a short-sighted strategy. Using the latter as a reference,
the other curves show the improvements obtained when other
forecast error models are introduced. It should be noted that
a gain is only possible if the storage is large enough, starting
from a 1 Wh/W ratio between storage capacity and wind rated
power. It can be observed that a further improvement of up to
10% can be achieved when the autoregressive model order is

= e 60%
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Fig. 8: Left axis: Normalized operating costs depending on
battery size with myopic control — in blue. Right axis: Relative
enhancement versus myopic control.



increased and hidden states are used. Performance improves
when increasing the number of hidden states and the degree
of the autoregressive model, with this latter factor being the
more significant of the two, unlike what could be expected
from the BIC criterion alone — see Fig. 2.

IV. CONCLUSION AND FURTHER OUTLOOK

Since errors are inherent to any forecast, power systems
must mitigate them in real time. A dedicated forecast error
model of wind power has been proposed here, as it cannot
be inferred from a wind power model. A Markov Switching
Autoregressive model has been proposed and its relevance
demonstrated on the basis of several statistical metrics. This
MS-AR model was then used to solve a representative prob-
lem: managing a virtual power plant with a production com-
mitment. The storage control strategy was optimized by using
stochastic dynamic programming on the basis of several fore-
cast error models. The contribution of effective error modeling
was highlighted, with the management strategy based on an
MS-AR model significantly improving overall performance.

One avenue of future work calls for adding covariates
(temperature, pressure, etc.) into the model to better specify
the meteorological conditions that could undermine forecast
reliability. This would lead to non-homogeneous transition
probabilities within the MS-AR model. In addition, using this
model together with other predictive models (energy prices,
solar production) may reveal couplings. Furthermore, taking
spatial correlations into account for multisite forecast error
models would offer an interesting development given that
geographic effects are crucial for the power grid [25], [26].

APPENDIX

A. Comparison with a model identified on another time series

TABLE III: Parameters of the MS(3)-AR(2) identified on [23]
MS(3) - AR(2)

Transition matrix AR parameters
Reg. 1 2 3 ao ai as o
1 093 007 2T 5e 1 134 -041 3e°
2 003 092 005 de—4 135 -042 2e 4
3 9e=% 027 073 | —2¢73 121 -034 23

The AR coefficients are quite dissimilar. However, the range
of variances o show that the regimes are differentiated by their
predictability. The transition matrix is once again diagonal
dominant. This results in persistent hidden states whose mean
time of duration are measured at 14 hr 16 min, 12 hr 30 min
and 3 hr 42 min.
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