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Abstract

The goal of this paper is to associate a Quantum Harmonic Oscillator to a Bosonic System,
try to simulate it in IBMQ-Experience (at 8192 shots) and further study it. We associated
the concept of Pauli Matrix equivalent to Bosonic Particles and used it to calculate the
Unitary Operators which helped us to theoretically visualize each Quantum states and
further simulate our system.
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1 INTRODUCTION

Harmonic oscillator is one of the most fundamental problems in the field of Physics and it is involved in
all aspects of Physics. The reason is still unknown to us but it is very natural for us to understand that
whenever a system is disturbed from its minimum energy state then in the course of attaining minimum
energy state again, the system will tend to oscillate. This is how a harmonic oscillator functions in a classical
sense. Hence, it is worth to search for such a system in the quantum world, too. Thus, Quantum Harmonic
Oscillator[1] is nothing but a quantum mechanical analog of the classical harmonic oscillator.

Figure 1: A Generalized Representation of Quantum Harmonic Oscillator [2]
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A Quantum Harmonic Oscillator is different from a Classical Harmonic Oscillator mainly on the basis of three
grounds: First, the ground energy state for a quantum harmonic oscillator is non-zero because there exists
fluctuations as a result of Heisenberg Uncertainty Principle[3]: Second, a particle in a quantum harmonic
oscillator potential can be found outside the region -A ≤ x ≤ +A with a non-zero probability: Thirdly, the
probability density distributions for a quantum oscillator in the ground low-energy state is largest at the
middle of the well[4]. It is commonly used as a model to study the vibrations of the atomic particles and
molecules under the effect of classical spring like potential which is a commonly accepted model for the
molecular bonding. QHO (quantum harmonic oscillator) is one of the exactly solvable models in the field
of quantum mechanics having solutions in the form of Hermite polynomials and it can be generalized to
N-dimensions[5]. Its application is not only restricted to the study of simple di-atomic molecule, but it’s in
fact expanded to the different domains of Physics, e.g. in the study of complex modes of vibration in larger
molecule, the theory of heat capacity, QHO as a thermodynamic heat engine[6], etc.

2 MATHEMATICAL MODELLING

We can derive the Pauli Matrix Equivalents for Bosonic Systems by using the following three equations[7]:

(σ3) jl =
〈s, j|Sk|s, l〉

s~
=

j
s
δi j (1)

(σ1) j l =
[s (s + 1) − j ( j − 1)]1/2

2 s
δ j l+1 +

[s (s + 1) − j ( j + 1)]1/2

2 s
δ j l−1 (2)

(σ2) j l =
[s (s + 1) − j ( j − 1)]1/2

2 i s
δ j l+1 −

[s (s + 1) − j ( j + 1)]1/2

2 i s
δ j l−1 (3)

∴ By using the above three equations, we have:

σ1 =
1
√

2

0 1 0
1 0 1
0 1 0

 (4)

σ2 =
1
√

2

0 −i 0
i 0 −i
0 i 0

 (5)

σ3 =

1 0 0
0 0 0
0 0 −1

 (6)

Where, σ1, σ2, σ3 are the Pauli Matrix equivalents for Bosonic particles.

3 HARMONIC OSCILLATOR IN BRIEF

The most common and familiar version of the Hamiltonian of the Quantum Harmonic Oscillator in general
can be written as:

Ĥ =
p̂2

2m
+

1
2

mω2x̂2 =
p̂2

2m
+

1
2

kx̂2 (7)

where Ĥ is the Hamiltonian of the System, m is the mass of the particle, k is the bond stiffness (which
is analogous to spring constant in classical mechanics), x̂ is the position operator and p̂ = −i~ ∂∂x is the
momentum operator (where ~ is the reduced Plank’s constant).

The analytical solution of the Schrodinger wave equation is given by Ref.[8]:

Ψ =

∞∑
nx=0

∞∑
ny=0

1
2n n!

(mω
π~

)1/2
e−

ζ2
2 e−

β2

2 Hnx (ζ)Hny (β)U(t) (8)

Where;

ζ =

√
mω
~

x and β =

√
mω
~

y



Here Hn is the nth order Hermite polynomial. U(t) is the Unitary Operator of the system showing its time
evolution and is given by:

U(t) = exp
(
−itEn

~

)
= e

−itEn
~ (9)

Where En are the allowed energy eigenvalues of the particle and are given by:

En = (nx +
1
2

)~ω + (ny +
1
2

)~ω = (nx + ny + 1)~ω (10)

And the states corresponding to the various energy eigenvalues are orthogonal to each other and satisfy:∫ +∞

−∞

ψ jψxdxi = 0 : ∀ xi (11)

A much simpler approach to the harmonic oscillator problem lies in the use of ladder operator method
where we make use of ladder operators i.e. the creation and annihilation operators (b̂†, b̂), to find the
solution of the problem.

Here b̂† denotes the ‘Creation’ operator and b̂ denotes the ‘Annihilation’ operator in Bosonic System. We
can also the Hamiltonian in terms of the creation and annihilation operators (b̂†, b̂)[9]:

Ĥ = ~ω(b̂b̂† −
1
2

) = ~ω(b̂b̂† +
1
2

)

Now the Hamiltonian for “a discrete quantum harmonic oscillator" is given by:

Ĥ =
(p̂d)2

2
+

(x̂d)2 + (ŷd)2

2
(12)

Where p̂d is the discrete momentum operator and x̂d and ŷd are the discrete position operators in in x and y
spatial dimension respectively. Also p̂d can be expressed as:

p̂d = (Fd)−1
· x̂d
· (Fd) (13)

Where Fd is the standard discrete Quantum Fourier Transform matrix[10].

4 UNITARY OPERATOR TRANSFORMATION

For the sake of reducing mathematical complexity, let us assume ~, ω and m is unity. So, we can write the
Schrodinger equation as:

i
∂Ψ
∂t

= ĤΨ (14)

Which further implies:
Ψ(t) = Ψ(0)exp(−iĤt)

From the above, it is vivid that the Unitary Operator to be computed is U(t) = exp(−iĤdt) where Ĥd is the
discretized Hamiltonian operator. So. the Unitary Operator is given by:

U(t) = exp
(
− it

( (p̂d)2

2
+

(x̂d)2 + (ŷd)2

2

))
(15)

Or if we consider the X-dimension only, then we get the Unitary Operator as:

Ux̂(t) = exp
(
−it
2

(
(Fd)−1

· (̂xd)2
· (Fd) + (x̂d)2

))
(16)

Due to the discretization of space; the position operator [x̂d], being a diagonal matrix, can be expanded by
using the concept of Matrix exponential as Ref.[11]:

exp
(
−

it
2

[A]
)

= I +

∞∑
m=1

(
−

it
2

)m [A]m

m!
(17)

Here A is the corresponding Operator Matrix.



5 IMPLEMENTATION ON A BOSONIC SYSTEM

The Hamiltonian of the full system is given by[12]:

Ĥ = Ĥ f ield + Ĥatom + Ĥint

where Ĥ f ield is the free Hamiltonian, Ĥatom is the atomic excitation Hamiltonian and Ĥint is the interaction
Hamiltonian.

5.1 MODEL

We have modeled our system using Rabi Hamiltonian[13]. However, in our case we will be using somewhat
modified version of Rabi Hamiltonian[14]:

Hs =

2∑
k=1

ωkb†kbk +
ω0

2
σ3 +

2∑
k=1

gk(eiθk bk + e−iθk b†k)σ1 (18)

Where ω0 is the frequency of the main oscillator, ωk is the frequency of the k-th environment oscillator; b†k
and bk are the creation and annihilation operators of the main system and the k-th environmental oscillator
respectively. Whereas gk’s are the coupling constant for the interaction between the k-th environment
oscillator and the main quantum oscillator. We set k=1 from now to prevent us from complicating the
process.

For simplicity, we will consider the simplest case of our model and substitute k=1 in our original Hamiltonian
[in Eq.(18)] to obtain the special case of our Hamiltonian which will be our working Hamiltonian from now:

H = ω1b†1b1 +
ω0

2
σ3 + g1(eiθ1 b1 + e−iθ1 b†1)σ1

For simplicity we will drop the sub-script 1 from our Hamiltonian and obtain:

H = ωb†b +
ω0

2
σ3 + g(eiθb + e−iθb†)σ1 (19)

5.2 RELEVANT TRANSFORMATION AND GENERALIZATION

Now, as our system involves Bosonic particles, so the following commutation relations uphold:

[bi, b
†

j ] ≡ bib
†

j − b†j bi = δi j (20)

[b†i , b
†

j ] = [bi, b j] = 0 (21)

Here δi j is known as ‘Kronecker delta’.

The operators used in the Hamiltonian can be transformed according to Holstein-Primakoff
transformations[15] (i.e. it maps spin operators for a system of spin-S moments on a lattice to creation
and annihilation operators) as:

Ŝ+
j =

√
(2S − n̂ j)b̂ j (22)

Ŝ−j = b̂†j
√

(2S − n̂ j) (23)

where b̂†j (b̂ j) is the creation (annihilation) operator at site j that satisfies the commutation relations mentioned

above and n̂ j = b̂†j b̂ j is the “Number Operator". Hence we can generalize the above equations as:

S+ =
√

(2S − b†b)b (24)

S− = b†
√

(2S − b†b) (25)
Where;

S+ ≡ Sx + iSy and S− ≡ Sx − iSy



Where; Sx (= σ1), Sy (= σ2), Sz (= σ3) are the Pauli matrices for Bosonic system (as mentioned in the previous
section).

Now by using the above transformations; we can write our creation and annihilation operators in terms of
Matrices as:

b† =

0 0 0
1 0 0
0 1 0

 and b =

0 1 0
0 0 1
0 0 0

 (26)

Now the Hamiltonian for our coupled Quantum Harmonic Oscillator in Eq.(19) can be decomposed as:

H = ωb†b ⊗ I +
ω0

2
I ⊗ σ3 + g(eiθb + e−iθb†) ⊗ σ1

Or the above equation can be written as:

H = ωb†b ⊗ I +
ω0

2
I ⊗ S3 + g(eiθb + e−iθb†) ⊗ S1 (27)

Now, we will evaluate each term to simplify the expression of the Hamiltonian in the form of matrix. Here,

ωb†b ⊗ I = ω

0 0 0
0 1 0
0 0 1

 ⊗
1 0 0
0 1 0
0 0 1



⇒ ωb†b ⊗ I =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 ω 0 0 0 0 0
0 0 0 0 ω 0 0 0 0
0 0 0 0 0 ω 0 0 0
0 0 0 0 0 0 ω 0 0
0 0 0 0 0 0 0 ω 0
0 0 0 0 0 0 0 0 ω


(28)

Similarly,

ω0

2
I ⊗ Sz =

ω0

2

1 0 0
0 1 0
0 0 1

 ⊗
1 0 0
0 0 0
0 0 −1



⇒
ω0

2
I ⊗ Sz =



ω0
2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 −

ω0
2 0 0 0 0 0 0

0 0 0 ω0
2 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 −

ω0
2 0 0 0

0 0 0 0 0 0 ω0
2 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −

ω0
2


(29)

Finally,

g(eiθb + e−iθb†) ⊗ Sx =
g
√

2

 0 eiθ 0
e−iθ 0 eiθ

0 e−iθ 0

 ⊗
0 1 0
1 0 1
0 1 0



⇒ g(eiθb + e−iθb†) ⊗ Sx =
g
√

2



0 0 0 0 eiθ 0 0 0 0
0 0 0 eiθ 0 eiθ 0 0 0
0 0 0 0 eiθ 0 0 0 0
0 e−iθ 0 0 0 0 0 eiθ 0

e−iθ 0 e−iθ 0 0 0 eiθ 0 eiθ

0 e−iθ 0 0 0 0 0 eiθ 0
0 0 0 0 e−iθ 0 0 0 0
0 0 0 e−iθ 0 e−iθ 0 0 0
0 0 0 0 e−iθ 0 0 0 0


(30)



Substituting the above values in Eq.(27), we get the value of H (a 9 × 9 matrix) as:

⇒ H =



ω0
2 0 0 0 geiθ

√
2

0 0 0 0

0 0 0 geiθ
√

2
0 geiθ

√
2

0 0 0

0 0 −
ω0
2 0 geiθ

√
2

0 0 0 0

0 ge−iθ
√

2
0 (ω + ω0

2 ) 0 0 0 geiθ
√

2
0

ge−iθ
√

2
0 ge−iθ

√
2

0 ω 0 geiθ
√

2
0 geiθ

√
2

0 ge−iθ
√

2
0 0 0 (ω − ω0

2 ) 0 geiθ
√

2
0

0 0 0 0 ge−iθ
√

2
0 (ω + ω0

2 ) 0 0

0 0 0 ge−iθ
√

2
0 ge−iθ

√
2

0 ω 0

0 0 0 0 ge−iθ
√

2
0 0 0 (ω − ω0

2 )


6 DERIVATION OF UNITARY OPERATORS

Clearly, we know that for a system with Hamiltonian H, the unitary operator is given by:

U = e−iHt (31)

Where H is the Hamiltonian of the system derived in the previous section.

But to find the unitary operator compatible, we need to change the form of our Hamiltonian and write it as
a sum of two matrices whose corresponding unitary operators are relatively easier to compute:

H = X + Y

Where,

X =



ω0
2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 −

ω0
2 0 0 0 0 0 0

0 0 0 (ω + ω0
2 ) 0 0 0 0 0

0 0 0 0 ω 0 0 0 0
0 0 0 0 0 (ω − ω0

2 ) 0 0 0
0 0 0 0 0 0 (ω + ω0

2 ) 0 0
0 0 0 0 0 0 0 ω 0
0 0 0 0 0 0 0 0 (ω − ω0

2 )



Y =



0 0 0 0 geiθ
√

2
0 0 0 0

0 0 0 geiθ
√

2
0 geiθ

√
2

0 0 0

0 0 0 0 geiθ
√

2
0 0 0 0

0 ge−iθ
√

2
0 0 0 0 0 geiθ

√
2

0
ge−iθ
√

2
0 ge−iθ

√
2

0 0 0 geiθ
√

2
0 geiθ

√
2

0 ge−iθ
√

2
0 0 0 0 0 geiθ

√
2

0

0 0 0 0 ge−iθ
√

2
0 0 0 0

0 0 0 ge−iθ
√

2
0 ge−iθ

√
2

0 0 0

0 0 0 0 ge−iθ
√

2
0 0 0 0


Thus we have,

U = e−iXt.e−iYt

=⇒ U = Ux(t).Uy(t)



Where Ux(t) = e−iXt and Uy(t) = e−iYt. First we will compute Uy(t), then Ux(t). We can see that Uy(t) can be
expanded using Taylor series of expansion of the exponential function as:

Uy(t) = exp(−itY) = I +

∞∑
m=1

(−it)m Ym

m!

=⇒ Uy(t) = I + (−it)1 Y
1!

+ (−it)2 Y2

2!
+ (−it)3 Y3

3!
+ (−it)4 Y4

4!
+ (−it)5 Y5

5!
+ ......

Now, for simplicity, let us denote g
√

2
= g′ . So, we have:

=⇒ Uy(t) = [1 +
(−itg′ )2

2!
+

(−itg′ )4

4!
+ ...]I + [

(−itg′ )
1!

+
(−itg′ )3

3!
+

(−itg′ )5

5!
+ ...]M

Where;

M =



0 0 0 0 eiθ 0 0 0 0
0 0 0 eiθ 0 eiθ 0 0 0
0 0 0 0 eiθ 0 0 0 0
0 e−iθ 0 0 0 0 0 eiθ 0

e−iθ 0 e−iθ 0 0 0 eiθ 0 eiθ

0 e−iθ 0 0 0 0 0 eiθ 0
0 0 0 0 e−iθ 0 0 0 0
0 0 0 e−iθ 0 e−iθ 0 0 0
0 0 0 0 e−iθ 0 0 0 0


(**We can observe that [Y2, Y4, Y6,....] will give Identity matrices whereas [Y1, Y3, Y5,...] will give the same
matrix which is given above as M. So we differentiate them in two groups.)

=⇒ Uy(t) = cos g
′

tI − iM sin g
′

t

=⇒ Uy(t) = cos
gt
√

2
I − iM sin

gt
√

2
(32)

Now for Bosonic particles, we need to use a 4-qubit system but for implementing a 4-qubit system we must
require a 16 × 16 matrix because any matrix of order N × N must satisfy the condition N = 2n (where n=
number of qubits). But we can express the above equation in form of a 16 × 16 matrix (which we have
shown in the next sub-section), instead of a 9 × 9 matrix, by adding 1 diagonally seven times and placing 0
in other positions. In our situation we need only nine of the sixteen 4-qubit states (mentioned in Table (I))
because for the other seven states we will get the same Unitary matrix as result (i.e. without any change).
We will use a 4-qubit system to simulate the above system. Therefore, we first note the results we get after
operating Uy(t) on different 4-qubit states so that we can go ahead on drawing the quantum circuit for the
same.



Now, we need to disentangle the final Quantum states after Uy(t) Operator acts on the Qubit states to be
able to create the Quantum circuit. So, we can disentangle the final result as:(

cos
gt
√

2
|0000〉 − sin

gt
√

2
e−iθ
|0100〉

)
= |0〉 ⊗

(
cos

gt
√

2
|0〉 − sin

gt
√

2
e−iθ
|1〉

)
⊗ |0〉 ⊗ |0〉

. .

. .(
cos

gt
√

2
|0110〉 − sin

gt
√

2
eiθ
|0100〉

)
= |0〉 ⊗ |1〉 ⊗

(
cos

gt
√

2
|1〉 − sin

gt
√

2
eiθ
|0〉

)
⊗ |0〉

. .

. .(
cos

gt
√

2
|1000〉 − sin

gt
√

2
eiθ
|0100〉

)
=

(
cos

gt
√

2
|1〉 − sin

gt
√

2
eiθ
|0〉

)
⊗ |1〉 ⊗ |0〉 ⊗ |0〉

Figure 2: Filter for |1000〉 in case of Uy(t) Operations (Upper image with cU3 gate and Lower image with
Simplification of the circuit)

So, in the above segment, we computed the Uy(t) operator and also disentangled the results. A filtered
portion of our quantum circuit for the qubit state |1000〉 is shown above in Fig.(2).



Now in order to compute Ux(t) which is equal to e−iXt, we first expand the expression using the Taylor
expansion of the exponential function just like we did in earlier case as:

Ux(t) = exp(−itX) = I +

∞∑
m=1

(−it)m Xm

m!

=⇒ Ux(t) = I + (−it)1 X
1!

+ (−it)2 X2

2!
+ (−it)3 X3

3!
+ (−it)4 X4

4!
+ (−it)5 X5

5!
+ ......

Therefore by using the above equation, we can express Ux(t) in terms of e as:

In case of Ux(t) Operator also; we will consider a 16 × 16 matrix (in place of a 9 × 9 matrix) because of same
reason mentioned before and also we will construct the matrix in the same pattern as mentioned in case of
Uy(t) operator. It is easy to observe as X is a diagonal matrix, each diagonal element of Ux(t) makes an exact
Taylor expansion of the exponential function

(**The 16 × 16 matrix for both Uy(t) and Ux(t) operators are mentioned in the next sub-section.)

Again, we operate this operator on different 4-qubits states (in our situation we need only nine of the
sixteen 4-qubit states because for the other seven states we will get the same Unitary matrix as result.) and
then study the results for the same given in Table(II):

From the above table we can see the effect of Ux(t) operator acting on the different 4-qubit states and we can
construct the Quantum circuit for the same. A filtered portion of our quantum circuit for the qubit state
|0000〉 is shown in Fig.(3) in the next page.



Figure 3: Filter for |0000〉 in case of Ux(t) Operations

Now, we know how to implement both the parts of our Unitary operator and the complete unitary matrix
(16× 16) can be implemented by operating both the operations in series. In this way we can easily calculate
our Unitary operators for Bosonic system and also simulate the Unitary Operators for a Quantum Harmonic
Oscillator. We present its simulation results on IBM quantum computer in the form of graphs later on. Each
simulation is carried on IBMQ-qasm Simulator using 8192 shots for better accuracy.

UNITARY OPERATOR MATRIX REPRESENTATIONS

The 16 × 16 Matrix representation of the Unitary operators Uy(t) and Ux(t) are:

Uy(t) =



A 0 0 0 B 0 0 0 0 0 0 0 0 0 0 0
0 A 0 B 0 B 0 0 0 0 0 0 0 0 0 0
0 0 A 0 B 0 0 0 0 0 0 0 0 0 0 0
0 C 0 A 0 0 0 B 0 0 0 0 0 0 0 0
C 0 C 0 A 0 B 0 B 0 0 0 0 0 0 0
0 C 0 0 0 A 0 B 0 0 0 0 0 0 0 0
0 0 0 0 C 0 A 0 0 0 0 0 0 0 0 0
0 0 0 C 0 C 0 A 0 0 0 0 0 0 0 0
0 0 0 0 C 0 0 0 A 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Where;

A = cos
( gt
√

2

)
; B = −i sin

( gt
√

2

)
eiθ and C = −i sin

( gt
√

2

)
e−iθ



Ux(t) =



S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1

S 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 P 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 Q 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 R 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 P 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 Q 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 R 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Where,

P = e−(ω+
ω0
2 )it ; Q = e(−ω)it ; R = e−(ω− ω0

2 )it ; S = e(− ω0
2 )it and

1
s

=
1

e(− ω0
2 )it

= e( ω0
2 )it

7 RESULTS

In our paper, we use the idea of Pauli Matrices Equivalents for Bosonic particles and see the implementation
of the equivalent matrices. Then we introduce a coupled Quantum Harmonic Oscillator to the Bosonic
system and try to implement its Unitary Operator to the system using our previous section’s knowledge
and also simulate the Unitary Operators using IBMQ-experience (in 8192 shots for better accuracy). The
Results of the simulation are shown in Fig.(4), Fig.(5) and Fig.(6) respectively.

Figure 4: Graph between θ vs Probability



Figure 5: Graph between ω0 vs Probability

Figure 6: Graph between ω vs Probability

8 CONCLUSION

In this project, we visualized the process for simulating a Quantum Harmonic Oscillator (QHO), associated
to a Bosonic system, using IBMQ-experience. In our case we derived the Unitary Operators for the (QHO)
by using the Pauli Matrix equivalents for Bosonic system and after that we associated the usable Quantum
States (4-qubit states) with the Unitary Operator (which is in-turn formed by combining the Uy(t) and Ux(t)
Operators in series). From the above process we can infer that the Unitary Operator is the sole factor which



is necessary for simulating the (QHO) and we simulate the system by taking 8192 shots in IBMQ-experience
because it will increase the effectiveness of our results and decrease the chance of any error in our simulation.

We conclude with one last important factor which we should consider while simulating the system and it
is related to the disentanglement of the final Quantum states after the Unitary Operator acts on the initial
different 4-qubit states associated with the system. For simulation purpose, it is very important that the
final quantum states are completely disentangled so that we can construct the different quantum circuits
which in-turn helps in simulation.
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