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EXPANSIONS IN THE LOCAL AND THE CENTRAL LIMIT
THEOREMS FOR DYNAMICAL SYSTEMS

KASUN FERNANDO AND FRANCOISE PENE

ABSTRACT. We study higher order expansions both in the Berry-Esséen estimate (Edge-
worth expansions) and in the local limit theorems for Birkhoff sums of chaotic probability
preserving dynamical systems. We establish general results under technical assumptions,
discuss the verification of these assumptions and illustrate our results by different examples
(subshifts of finite type, Young towers, Sinai billiards, random matrix products), including
situations of unbounded observables with integrability order arbitrarily close to the optimal
moment condition required in the i.i.d. setting.
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Given a chaotic probability preserving dynamical system (PPDS), (f, M, u), and a cen-
tered observable ¢ : M — R, we are interested in the asymptotic behaviour of the sequence
of centered random variables (S, = Zz;é do fF),>1 as n — oo. More precisely, we are
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interested in establishing expansions in the central limit theorem (CLT) and in the mixing
local central limit theorem (MLCLT) for (S,),>1 in the context of hyperbolic dynamical
systems.

Let us recall that (S,),>1 is said to satisfy a nondegenerate CLT if (S, /y/n),>1 converges
in distribution to a centered Gaussian random variable Z of variance o2 > 0 with distribution
function N, that is if

n—-+oo n

VreR, lim M(S—\/igx)—m(x).

The MLCLT is a generalization of the local central limit theorem (LCLT) and has been used
in [13] and [17] to prove limit theorems for flows. The MLCLT has the following form

E, (4 g(S,) €0 /) = mjg

where I(g) := [, g(x)dz if ¢ is nonlattice and I(g) := >, ., g(k) if ¢ is Z-valued. When
¢ =1 and v is the density of a probability measure P with respect to u, the above estimate
corresponds to the LCLT with respect to PP.

Our goal is to investigate the rate of convergence in the two preceding results, via expan-
sions of arbitrary order. We focus on expansions of the form

I(g) B (O)EL(€) + o(n™2), asn — 400,

(0.1) P (% < x) = N(x)+ Z i]j“(/f) +o(n"?), asn — 400,
k=1

(corresponding to expansions in the CLT beyond Berry-Esséen estimates, such expansions
are called Edgeworth expansions) and expansions of the form

[r/2]
02) E,(bg(Sn) o f1) = 3 BE0E) o0,

1
lip
k=0 nz

_rtl

2)7

with ag(g,v,§) = M(0)I(9) E,(¢)EL(§) (corresponding to expansions in the MLCLT), un-
der assumptions analogous to those of the classical case of sums of independent identically
distributed random variables.

We recall that in the case when (S,),>1 is a sum of independent identically distributed
random variables (the so-called i.i.d. setting), (0.1) and (0.2) hold true as soon as these
random variables admit a moment of order r+2 (together with another assumption for (0.1)
implying the fact that S; is far from being lattice). Here we obtain such results in a general
dynamical context under assumptions close to the optimal condition in the i.i.d. setting. In
particular, we exhibit a family of examples of ¢ on expanding Young towers such that for
every n > 0, one can find ¢ € L™?(u)\ L™ *" (1) for which (0.2) holds true (see Theorem 6.1
and the remark afterwards). The construction of such examples is based on operators acting
on a chain of Banach spaces.

Estimates of the form (0.1) have been established in [10] for one-sided subshifts of finite
type. More recently, both (0.1) and (0.2) with ¢» = £ = 1 have been proved in [23] for general
expanding dynamical systems, and independently, motivated by expansions in mixing for Z?-
extensions of chaotic dynamical systems, analogues of (0.2) have been shown for particular
class of observables in [12, 18]. In all of these, expansions have been obtained for chaotic
dynamical systems and bounded observables. Our goal here is to extend the results of [23]
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to hyperbolic systems modeled by Young towers with exponential tails and to the case of
unbounded observables.

We point out the fact that, in the context of dynamical systems, the study of expansions
for MLCLT and CLT is not just a curiosity from probability theory. There are important
applications of these expansions to dynamical systems. For example, if f is a map of a
compact manifold M preserving a measure i, g; is a flow on a compact manifold Y preserving
a measure [, and ¢ : X — R is a bounded zero mean observable, then the skew product
F(z,y) = (f(), gs)(y)) preserving p x pg exhibits decay of correlations provided that

e the base map f has decay of correlations
e f admits a higher order expansion in the MLCLT for ¢

and a few mild assumptions on tail probabilities [12, Section 6]. Even though we will not
state the precise formulation here, this shows that there is a new mechanism to establish
decay of correlations for dynamical systems via the expansions we study.

Moreover, these expansions imply moderate deviation principles and local limit theorems
for S,,. We refer to [23, Section 5| for a detailed discussion of these applications. Edgeworth
expansions are also used in statistics to improve the accuracy of bootstrap in sampling
when the underlying process is Markov. See, for example, [11]. So proving the existence of
these expansions may be considered as the first step of extending the bootstrap from the
Markovian situation to deterministic dynamical systems. This is part of an on-going project
with Nan Zou, and has also been independently considered in the recent preprint [32] where,
in addition, a criterion to characterize the existence of the first order Edgeworth expansion
is presented.

Therefore, we not only introduce new classes of weakly dependent random variables for
which these expansions hold but also pave the way to establish interesting results about
dynamical systems. Other interesting results can be obtained by considering the asymptotics
for the large deviation principle as in [24]. However, to keep the exposition as concise as
possible, we focus only on the CLT regime.

This article is divided in two parts. In Part I, we state expansions in a general context
adapted (but not restricted) to a class of dynamical systems characterized by having an
extension which has an appropriate factor whose twisted transfer operators enjoy nice spec-
tral properties. This is implemented thanks to the Nagaev-Guivarc’h perturbation method
(39, 26, 29] via the Keller-Liverani approach [34] combined with recent developments from
[13, 14, 15, 3, 2, 37, 38]. In Part I, we start by a detailed discussion of the verification of
our assumptions (in Section 4) and illustrate our general results by several examples: mixing
subshifts of finite type (SFTs) with Lipschitz observables ¢ (in Section 5), systems mod-
eled by Young towers including Sinai billiard with unbounded observables ¢ (in Section 6
completed with Appendix A), and random matrix products (in Section 7).

PART I — EDGEWORTH EXPANSIONS UNDER GENERAL ASSUMPTIONS

In this part of the paper, we state asymptotic expansions in a general context prove their
existence of asymptotic expansions in that setting. Section 1 is dedicated to the statement of
the general assumptions about random variables, the resulting theorems, and our choice of
the broad class of dynamical systems. In Section 2, we state a key result about the asymptotic
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expansions of the characteristic functions of S,,. These expansions are of independent interest
in probability theory (see, for example, [/, Chapter 2]). We end this part with Section 3
where we show how expansions of characteristic functions lead to expansions in the CLT and
in the MLCLT for S,,, and hence, prove our general theorems.

1. GENERAL SETTING AND RESULTS

Let (Sp)n>1 be a sequence of X-valued random variables with X = R or Z defined on
a probability space (M, u). We consider a double sequence of real valued random vari-
ables (¢, &n)n>1 on (M, ). We are interested in asymptotic expansions for E, (¢,9(S,)&n)
and (Y, p)(S, < xy/n) (for the latter, assuming that 1, is a probability density and that
&, = 1). Our proofs are based on Fourier transforms, and thus, will involve the quantity
E, (¥ne™r&,). We set X* =R if X =R and X* = [-7, 7] if X = Z.

We write SP (resp. LP) for the set of sequences of real numbers (a,)n>1 (resp. (by)n>1)

converging to 0 super-polynomially fast (resp. dominated by any positive power) such that,
for all p > 0, a, = o(n™?) (resp. b, = o(nP)).
Assumption (a)[r]: Let 6 > 0 and no > 1. The function s — E, (¢,e*5"&,) is C"*? on
[—4,0] and there exist (b,)n>1 € LP, (an)n>1 € SP, a C" % -smooth complex valued function
s +— A(is) on [—6,0] and constants B;,j = 0,1,...,7 + 2, such that for all n > ng and all
|s| <0,

o242

sup ‘Hflj)(()) — B;j| =0O(a,) and IA(is)"HY ()] < bpe™ 5 +ay,

|s|<é
where H,(s) := \(is) "E, (¢,,e"9¢,) and with A(is) =1 — 02232 + 0o(s%), with o2 > 0.
Assumption (f): For any compact K of X*\ {0}, there exists (a,),>1 € SP such that

sup [E, (e’ &) | < an,
seK

Assumption (v): Either X = Z, or there exists K > 0 such that there exist (a,)n>1 € SP,
there exist three positive constants Ky, o, aq, 0 such that

Vs| > K, |E, (¥ne*5¢,)| < K, (an+ |S|1+a€_na15\s|—a> .

Assumption ()[r]: X =R and for any B > 0, there exists K > 0 such that

18Sn
/ 3 |]El‘ <wn€ )l ds = O(nfr/Z) )
K<|s|<BnTT |S|

Assumption («)[r] is related to the existence of moments of S,, up to and including the
order  + 2. In particular, in the i.i.d. setting, if S, = Y, X with (Xj)x>1 a sequence of
i.i.d. random variables and if ¢, = &, = 1, since E,(e*5") = A\ where ;s = E,,(¢"**1) is the
characteristic function of X3, Assumption («)[r] corresponds to the existence of the moment
of order r + 2 of X;.

Assumption (/) is an non-arithmeticity condition which translates in the i.i.d. to the fact
that X, is not supported by a strict sublattice of X.

While Assumptions («) and (3) deal with the behaviour of E,,(1,e"%¢,) for respectively
small and intermediate values of s, Assumptions (y) and (6) deal with the behaviour of
this quantity for large values, and should be compared (when X = R) with 0—Diophantine
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property or equivalently, Cramér’s continuity assumption (see [22, Chapter XVI]) in the i.i.d.
setting as:
lim sup |E(e”*)| < 1

n—oo
which gives us that [E(e**%")| = |E(e?*X)|" < 4™ for some v € (0, 1), and more generally, the
a—Diophantine property of supp X:

o~

IE(e¥)] < 1— <

Bl
which guarantee the existence of Edgeworth expansions of all orders r < a~!+1/2 provided
X has r + 2 moments (see [10]).

Now, let us introduce the space §}' of functions for which we prove expansions in the

MLCLT. Set
(1.1) g(s) :== / e Tg(x)d\(z), s€X*,
X
where A is the Lebesgue measure if X = R and where A is the counting measure if X = Z.

We also set 50|
g(s
C™(g) = sup —————
9= SR (L o)
Observe that Cj(g) < maxo<j<i [y |27 |g(z)| dA(z) if this last quantity is finite. When X = R

and ¢ is m times continuously differentiable, C™(g) < maxo<;<m ||g(j)||L1(R). When X = Z,
C™(g) < 7Y,z lg(n)]. Define

Cy'(g) == C™"(g) + Ck(g).

If X =R, wesay g € §}' if g : R — R is continuous, M-integrable and if g : X* — C is k times
continuously differentiable with C}"(g) < oo. In particular, if X = R, compactly supported
smooth functions are in §* for all k,m. If X = Z, §* = F, is the set of functions g : Z — C
satisfying the following summability condition

> Inlflg(n)] < oo

nez

—nCls|—

= |E(eiss")| <e

and  Ci(g) = 7"

Under our assumptions, we set 91 for the distribution function of a centered Gaussian
random variable with variance o2 and n for the corresponding probability density function
(that is n is the derivative of ).

1.1. Main abstract results. Here we state the three main abstract results of this paper.

Theorem 1.1 (Global expansion of order r in the MLCLT). Let (Sy)n>1,(%n)n>1 and (§,)n>1
be three sequences of real valued random wvariables defined on the same probability space
(M, p), with S, taking values in X. Let r be a nonnegative integer.

Suppose the Assumptions («)[r], (8) and (y) hold. Then there exist polynomials R; such
that
d 1
By (4n9(S) &) = >~ /X<Rj n)(z/v/n)g(x) dA(x) + CT2(g) - o(n~"?),

J=0

for all g € & where q > a(l+ 2?71)
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Theorem 1.2 (Local expansion of order r + 1 in the MLCLT). Let (Sy)n>1,(¥n)n>1 and
(&n)n>1 be three sequences of real valued random variables defined on the same probability
space (M, p) with S, taking values in X Let r be a nonnegative integer.

Suppose the Assumptions (a)[r|, (8) and () hold. Then there exist polynomials Q; such
that
lr/2] 1
2 —r
VB, (60 (50 6) = 3 = [ 9(0)Qs(0) dN(w) + CLfEa) ol ),
=0

for all g € T where ¢ > a1+ L),

2001

Remark 1.3. When X = Z, the two theorems above are true for g € 9 and g € &QH,
respectively. Later when we discuss these results in the setting of a specific example (see
Theorem 5.3, Theorem 0.1, Theorem 6.3 and Theorem 7.1), we only mention the condition
on q corresponding to X = R. For X =7, it is understood that ¢ + 2 = 0.

Remark 1.4. Note that the second result is local because we consider rapidly decaying g
and hence, the contribution away from the origin is negligible whereas in the first for large
n even values of g further away from the origin contributes significantly (and hence, global).
Moreover, in both the cases we have precise control over the error in terms of g.

Remark 1.5. Observe that assumptions of the our two first above results are closed to the
optimal moment assumptions in the i.i.d. setting. Indeed, the C™2 smoothness coming from
Assumption («)[r] is the spectral equivalent of the existence of a moment of order r + 2 in
the 1.1.d. setting.

The third and the last main theorem is on Edgeworth expansions which provide a uniform
control over the error term in the CLT for S, when it is non-lattice.

Theorem 1.6. Let (S,)n>1,(¥n)n>1 and (§, = 1)n>1 be three sequences of real valued random
variables defined on a same probability space (M, ). Let r' be a positive integer and r > 1
be a real number. Let P, be the probability measure on M admitting the density 1, with
respect to .

Suppose the Assumptions (a)[r’], (8) and (0)[r] hold. Then there exist polynomials Pj
such that
Sn A Pk(l’) — min(r,r’")/2
P, ﬁﬁx = N(z) + n(x) 2 gz Toln )

uniformly in x.

For completeness, let us indicate that the R;’s, );’s and F}’s appearing in Theorems 1.1,
1.2 and 1.6 are given respectively by formulas (3.4), (3.5) and (3.6).

Finally, we state two Corollaries about the first order Edgeworth expansions. We note
that for the first order expansion with an error of o(n~'/2), only the assumptions ()[1] and
(B) are required.

Corollary 1.7 (Order 1). Let (Sn)n>1,(¥n)n>1 and (&, = 1),>1 be three sequences of real
valued random variables defined on a same probability space (M, p). Let P, be the probability
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measure on M that is absolutely continuous with respect to p with probability density function

V.
Suppose the Assumptions («)[1] and (8) hold with X = R. Then

Sn Py() —~1/2
P, (% < a:) =N(z) + Y5 n(z) + o(n~1?),

uniformly in x.

If we have slightly better control, that is («)[2], (8) and (0)[r] with r € (1,2), then the
error in the expansion improves to o(n~"/?) but could not be better in general because the
second term in the expansion is O(n™1).

Corollary 1.8. Let (S,)n>1,(¥n)n>1 and (§, = 1),>1 be three sequences of real valued random
variables defined on a same probability space (M, i) Let P, be the probability measure on M
that is absolutely continuous with respect to u with probability density function ,,.

Suppose the Assumptions («)[2], (B) and (§)[r] hold for some real number r € (1,2), Then

i x| =Nz h(z) z) +o(n"/?
Pn(ﬁs) M)+ —7=na) +o(n77),

uniformly in x.

Finally, we recall from [23, Appendix A] that there is a hierarchy of expansions. Suppose r
and q are positive integers. Then the Figure 1 shows implications among different expansions.

Edgeworth expansions: order r
global expansion in LCLT: order r for g € § — order r for g € F4
local expansion in LCLT: order r for g € §& — order r for g € F4

F1GURE 1. Hierarchy of expansions.

Here — indicates that the implication is obvious due to the inclusion of spaces §¢ C 3’3:
if r > 7" and ¢ > ¢’. One cannot expect expansions in the MLCLT to come from Edgeworth
expansions because the former keeps track of both S,, and S,, — S,,_1 whereas the latter keeps
track of S,, only. However, expansions in the MLCLT imply expansion in the LCLT in the
obvious way. Even in the LCLT case, there are elementary examples where expansions in
the LCLT of all orders exist but Edgeworth expansions of higher order fail to exist. We refer
the reader to [23] for more details about this.

As expected stronger control over the decay of E,(1,¢**") than the one provided by
Assumption (§) leads to stronger results. In fact, if we know that E,(1,e) < Cs™# for
|s| > n® with 8 > % — for example, when S, is close to a Gaussian and 1, bounded —
then Theorem 1.1 and Theorem 1.2 hold for g € §} and g € §,4, respectively. We refer the

reader to [23] for a proof of this fact in the case ¢, = &, = 1.
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1.2. Technical assumptions in a dynamical context. In this section, we state assump-
tions tailored for hyperbolic/dispersive dynamical systems and implying our previous as-
sumptions («), (5), () and () (see Propositions 1.11 and 1.12). Recall that our goal is to
study the case of Birkhoff sums S, = Zz;é ¢ o f* for some ¢ : M — R and for a PPDS
(f, M, ). So here we take 1, = ¢ and §,, = o f™.

In order to prove our general Assumptions («), (f), (7) and (§), we use a natural and
efficient strategy based on transfer operators [39, 26]. The key idea is to approximate

E,. (™€ o fT)
by
By (1 557, 4 0 F™)
where m = m(n) ~ n and S,, = 3.1} do F* is a Birkhoff sum for a PPDS (F, A, 7) (which
may be different from the initial on (f, M, u)) of which the transfer operator £ enjoys nice

spectral properties. Recall that £ satisfies E;(g.h o F) = E;(hL(g)). This implies the
following key formula

ED(&n,seisgmgms o Fm) = Eﬂ(én,s[’?;(&n,sn)) s

with Li(h) = L(e**®h). Thus our strategy to prove (a), (3), (v) and (6) will be to prove
Assumptions involving L.
Note that this classical approach has its equivalent in the case of additive functional of

Markov processes (see [29, 30] and our application to random matrix products in Section 7).
Indeed, if S, = >, _, ho(Xs) where X is a Markov chain on (M, p), then

E,(hi(X0)e™5 " ho (X)) = By (hi L1 (h2)), with Li(h) = E, (eI n(X1)]X,) .

This approach has already been used for expansions in the CLT and in the LLT in [23]
in the case when (f, M, u) = (F,A, ) is an expanding PPDS. We generalize it here in two
directions: first, our assumptions below are tailored to study hyperbolic systems, and second,
we weaken the regularity assumptions on L;, in order to treat also the case of functions ¢
not admitting moments of all orders.

In our series of assumptions below (and more precisely in assumptions (A) and (C)), if
(f, M,u) = (F,A,7), we assume that k = 9% = 0. Otherwise the assumptions have to hold
for any k € N.

The first assumption describes the abstract model we work on. Those who are familiar
with towers in [17], while reading, may keep in mind the tower construction (F, A) associated
to a mostly hyperbolic map (f, M) and the subsequent quotienting along stable directions
to obtain an expanding tower (F, A).

Assumption (0):

Let (f,M,pn), (F,A,v) and (F,A,7) be three PPDS such that (F,A,v) is an extension
of the two others by p: A — M and p : A — A, respectively (see the Figure 2).

Let ¢ : M — X with X = R or X = Z be a centered observable, i.e., E,(¢) = 0. We
further assume that ¢ is not a coboundary in L?(M, i), i.e. ¢ # h —ho f for all h € L*(p).
Define S,, := Z;é ¢ o f¥ and let 1, : M — R be two observables. Take £ to be the
transfer operator of F' with respect to . For any complex Banach space B — L'(7), we
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(F,A,v)

__/ N

(F,A (f, M, )
FIGURE 2. Associated dynamical systems.

define || - [[s by [lglls = supjpz<1 ‘IE (gh) ’ Here — denotes continuous embedding of
spaces, i.e., B C L'(7) and there exists ¢ > 0 such that || - |1 < ¢]| - ||5.

The next assumption states conditions to ensure that (£, A) and £ retain sufficient infor-
mation about S, upto a controlled error. Combined with the favourable properties of (F, A)
and L, this assumption would lead to the expansions we seek. The introduction of a “double
chain of spaces” is crucial for our study of unbounded functions. For the study of bounded

functions, we can work with a single Banach space B and assume that X, = x5 =B

Assumption (A)[r]:

There exist § > 0, po > 1 and a double chain (A, XUS+))
containing 15 and satisfying

Va=0,...r+1, X=X XD o Xy = Xy = XT) — L7 (0)
and three non negative real numbers rg, q(v), (&) with o > 7, q(§) + q(¥) < ro — 1,
§ € L%(D) and ¢ € L%(D) such that the following holds true.
(1) There exist X-valued functions x € L"**(A,v) and ¢ € L™*?(A, ) such that ¢op =
¢op+x—xoF

(2) Set

++2 of complex Banach spaces

-----

i
L

Lis(-) = L(e"?) for s € R,

1
@\

l

Il
=)

and )
Bism = (H ope™X)o FRe™™ 5 for H € {4, &}
Denote the jth derivative of a function with respect to s by the superscript (j).

There exist ¢ € (0,1) and Ay o5 : A — C where H € {¢, £} that are C™*2 in s such
that for all j =0,1,...,7 + 2 and for H € {¢, ¢},

(1.2) ||Bk757H|| rg+2 <y,
[ i+a(H) (?)
(1.3) I =B robll rerz < Cod*(1+ |s])(1+ kY,
. Li+a(H) (y)
(1.4) 12 Rs) D], + 1Al ary < ColL+ s+ EY

(3) For any a =0, ...,r + 2: )
e The operators L;,(-) = L(e*?.), s € R are bounded operators on X, and xh
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e The map s — L, € L(A,, Xéﬂ) is continuous,
e For any integer j = 1,...,7 +2 — a, the map s — L;, € E(Xa(ﬂ, X,+;) is C7 on
(=6, 6) with j-th derivative (£7)0) ;= £1((iS,)7 ) € LX), Kot j)-

(4) Either all the sets X,, X\ are equal or there exist C' > 0 and % € (0,1) such that,
for every X = X, or X = !t

Vhe X, supl|[Lihllx < C ®Ax + 2] o)) -

|s|<é

In addition to allowing ¢ unbounded, the Assumption (A)[r] with 7o > r allows us to
consider unbounded test functions ¢ and €. Also, to make a link with the notations H,, , =
gn,s,&n75 introduced at the beginning of Section 1.2, let us indicate that ]:Iw = BO7S,H if
(f,M,pn)=(F,A,p) and H, , = Bmogn)zJ,&H otherwise.

In the case of SFTs, Assumption (A)(1) above is reminiscent of the well-known theorem
due to Sinai that any Holder function on the two-sided shift space is a function on the
one-sided shift space upto a coboundary and upto some loss of regularity. It is, in fact,
what allows us to compare S, with S, and hence, make use of L;;. Assumption (A4)(2)
states that the error made in this comparison is under control. When (f, M, u) = (F, A, v),
Assumptions (A)(1) and (A)(2) (except (1.4) for j = 0) are vacuous because p = p = Id,
x =0, 9 =0 and we take k = 0.

Assumption (A)(3) when the &, and X are all equal is the standard assumption to
implement the classical Nagaev-Guivarc’h perturbation method of bounded linear operators
as in [29, 33]. The uniform Doeblin-Fortet estimate contained in Assumption (A)(4) will
allow us to apply this perturbation method via the Keller Liverani theorem when the A,
and the X ™ are not all equal. This approach has been used in [30], in a Markovian context,
to establish various limit theorems under moment assumptions very close to the optimal
assumptions in the i.i.d. setting.

Moreover, some favourable spectral properties of twisted transfer operators L;; are as-
sumed in order to use the Nagaev-Guivarc’h approach, [39, 26]. However, we would require
more control over the spectra because we seek higher order terms in the central limit theorem.
This is our next assumption.

Assumption (B):

(1) The operator £ acting on each X, and X! has an isolated and simple eigenvalue 1,
the rest of its spectrum is contained inside the disk of radius smaller than 1 (spectral

gap).

(2) For all s € X*\ {0}, the spectrum of the operator L;s acting on either X} or acting
on Xéﬂ is contained in {z € C | |z] < 1}.

(3) Xnso 1£7¢ll12(5) < oo

Observe that Assumption (B)(3) is automatic as soon as X; < L?(7) and Assumptions

(B)(1) and (A)(3) are satisfied. Note that (A)(3) implies that £(¢) € A}. This will be the
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case in most of our examples. Moreover, Assumptions (A)[r] and (B) will imply Assumptions
(a)[r] and (B) for ¥, =1 and £, = £ o f™.

Next two assumptions state how much control over L, is required for large values of s in
order to guarantee the existence of expansions.

Assumption (C):
Either X = Z or there exists K > 0 such that:

(1) There exist two complex Banach spaces By = By < L!(7) both containing 14, and

real numbers a > 0, a; € (0, 1] and 6 > 0 and n; such that for every 0 > 0, every
|s| > K and every n > ny,
H‘E’?S”BI%BQ < C‘S|a€—na13|8\*a '

(2) There exists C{, > 0 such that, for every |s| > K,
(1.5) L8R swlls, < Colsl and  [hysells, < Cp -

Assumption (D)]r]:
X =R and there exist two complex Banach spaces By < By < L'(7) and dy, dy > 0 with
di + dy = 1 such that for all B > 0, there exists K > 0 such that

(1)

L .
/ H stilaBQ ds — o(n_i) :
K<|s|<Bn(r=1)/2 |s|%

122 ()| 5, < 0.

(2)

sup |57 | hg—s 1|15,
K<|s\<Bn%l, k>1

Assumption (C') combined with Assumption (A)[r] imply Assumption (). In addition,
Assumption (D)[r] along with Assumption (A)[r] imply (0)[r] with ¢, = 1. Even though
the Assumptions (C') and Assumption (D) seem technical, Assumption (C')(1) and sufficient
conditions for Assumption (D)(1) appear naturally in the study of decay of correlation for
hyperbolic flows and are implied from Diophantine conditions on periodic orbits of these
flows (see [13, 14, 15, 37]). These ideas are discussed in greater detail in Section 4.3.

When d; = 0, (C)(2) is sufficient for (D)(2), and (C)(2) readily follows from the way
hi.s.pm is defined in our examples. In the case of (f, M, ) = (F,A,v), Assumption (D)(2)
is vacuous. In this case, (D)(1) with d; = 1 and By = By(= B) is already used in [23]
to establish expansions for bounded observables. In particular, if there are some constants
€ > 0 and ¢ > 0 such that

(1.6) [¢lls < oo and sup I£% 15 = O(n™)

|s|€(K, Bn(r=1+¢)/2)
(D)(1) holds for all r > 1 with dy = 1.

Now we prove how our assumptions (A) — (D) imply our previous assumptions (a) — (9).
In what follows, £(B;,By) denotes the space of bounded linear operators from a Banach
space B; to a Banach space By. When By = B,y, we write L(B1,5;) as L(B;). We will also
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continue to use £ to denote the transfer operator of (F, A). The implied meaning of £ will
be clear from the context.

Proposition 1.9 (follows from [30]). Suppose Assumptions (0), (A)[r](1,3,4) and (B)(1,3)
hold. Then there exist k1 € (0,1) and a family (A(is), s, Ais)se(—s5,5) which is C™-smooth
as functions from (—9,6) to C x L(A], Xj(:zl) x L(X;, X;j}n) forany0<j<j+m<r+2
such that

r+2
(1.7) L= Ais)" s + Al in (1) (£(X) N LX)

a=0
where

i5)?) — n — T [.11-
(1.8) e e 0 ITAGS) Ty, = OT), o = Bp[-]15
and
o2

(1.9) Ais) =1 — 2% + o(s%), with o, = lim E,(S:/n)> 0.

2 n—-+4oo

Remark 1.10. This allows us to write the j derivative of hy s ¢ L2 (hgsy) € LY(P) in s as
follows

ST RIY(LE I (L2 (B ) € X C X, G =0, 42,
J1tje+i3=j

even if the spaces to which Eg&, (L172Y02) (L2K(hy, o 0))U2) belong vary with ji, ja, js.

Proof. Assume first that for all a the spaces X, and Xa(Jr) are equal to B. Then, due to the
perturbation theory of bounded linear operators (see [29], [33, Chapter 7)), for all |s| < d (if
required, after shrinking d), £;s can be expressed in L(B) as

(110) [’is = )\(ZS)Hw + Ais;

where Il is the eigenprojection to the top eigenspace of L;,, the essential spectral radius
of Ajs is strictly less than |[A(is)|, and A Il = IsAjs = 0. In particular, Ay = 1 and
[y = E;[]1a. Also, s — (A(is), I, Ajs) is C™2 from [—6,d] to C x (L(B))?. Tterating
(1.10), it follows that

(1.11) L1 = A(is)"T;, + A7

18 )

.....

In the general case, we apply [30, Proposition A, Corollary 7.2] with
[={X, k=0,.,r+2}U{x" k=0,.,r+2}

and the family of operators {L;s,s € (—9,d)}. There is a slight deviation from the original
notation in [30] where I is the set of indices of the chain of Banach spaces. But the purpose
of Ty and T} defined below remain the same.

We first have to check Hypothesis D(r + 2) of [30, Appendix A]. Consider two maps
Ty,17 : I — I such that

To(Xe) = X7, Ty = Xy
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Definition of Tj and T} for other values is immaterial for us. This implies Condition (4) of
Hypothesis D(r + 2) of [30]. Our assumptions on the Banach spaces imply Condition (0)
and our Assumption (A)(3) implies Conditions (1) and (2). It remains to prove Condition
(3") of Hypothesis D(r + 2) of [30]. Due to the Keller-Liverani perturbation theorem [31]
recalled in [30, Section 4], this Condition (3') comes from our Assumptions (A)(3 —4).

Thus the conclusions of Proposition A and Corollary 7.2 of [30], ensure the existence of
d > 0 (if necessary reducing the original §) such that and of a family (A(is), ILis, Ais)se(—s.)
which is C7"-smooth from (—4,6) to C x L(V,,, Vo) X LVay, Vo, ) satisfying (1.7), (1.8)
with A(0) = 1, and the characterization of Iy and A(0) comes from our Assumption (B)(1).

It remains to prove the expansion of ;. Since [ A odv = i) wm @dp =0, it follows from [29,
Chapter 4] and from [30, Lemmas 8.3, 8.4] that X'(0) = 0 and

o2 = \'(0) = Jim Eﬂ(Sg/n) = lim E,(S2/n) >0
Since Y0 [I1£5()]l2 < oo (from Assumptlon (B)(3)) and since ¢ is not a coboundary in
L?(7) (from Assumption (0) and (A)[r](1)), o3 = >0 E,(¢LF$) > 0. Therefore,
2

2% 4+ o(s%) with o > 0.

(1.12) Ais) =1-

O

Proposition 1.11. Suppose Assumptions (0), (A)[r] and (B)(1,3) hold. Set ¢, = ¢ and
& =&o f". Then
(1.13) E, (e g o f1) = By (hi—s e L1 2 (L3 hys)) + O((1+ |s])9*)
uniformly in s € X*. Moreover,
e (@)[r] holds with 0® = o} and By = E,(¢))E,(§), and

o Assumption (C) implies (7).
o Assumption (D)[r] implies (§)[r].

Proof. For s € X*, we set
(1.14) H,(s) =E, (e o fr)N(is) ™.
The idea is now to approximate both H,(s) and A(is)” by some expansions. Recall that

(Sn) € Lroﬂi(u) and that ¢ € L%(V) and ¢ € L%(V) with ¢(¢) + q(¢¥) < 1o —r. Note
that H, is C"™2 on (—4,6). So, for L < r + 2, we have

— HM(0)
(1.15) Hn(S)—Z & sV < sup |H(L)(us)‘ 5%,
N! "
N=0 u€[0,1]
where H," ( ) = Hn(0) = E,[tp o f7] for all n. Observe that the Assumption (A)[r](1)
implies that S, op = S, 0p + x — x o F". Combining this with the fact that p = p,v we
obtain that
E, (16" € o %) = B, (10 p e 5 0 p o) o 1)

E

co Q@ ah k i n-+k
E (w opo erzson e'LsSnopoF 50 po Fn+ke isxoF )
E

([¢ o p o erisonke—isgkoﬁ]eisgnoﬁ[5 opo Fk:e—isonkeisgkoﬁ] o Fn)
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(1.16) = Ey(hk,57¢€isgnoﬁhk7_57£ o Fn) ,

using the notation hy s g given in the Assumption (A). Recall that the superscript (j) denotes
the jth derivative of a function with respect to s, and that the duality relation

(1.17) E,(ge* ho F") = E,(h L1 (g))

holds.
Estimating hy s i by hionm for H € {1, &}, using (A)[r] along with (1.16), and assuming
3k < n, we obtain that for N < r 4 2,

8N

HN(s) = = (B, (46" € o f*)\(is) ™)
N! om L
_ (m1) isSp0 . \—n17 (m3) n
B Z mﬂmg!ms!EV (hk’s’ldj Osm2 e "Alis) ]hk’js’g °F )
mi+mo+mz=N
N' 7 (m am2 i57 . —n m n
B Z mﬂmz!mg!ED (hl(f’s’ltzast [ S”/\(Zs) ]hl(g’ Lok )

mi+ma+mz=N

+ 0" (1 + [s)(1+ [s[9")0"AGs) ),

uniformly in s € X* where we used (1.3) combined with the fact that

om2 e
S| e = O (I8l ) = O™))
‘ Osmz2 L%(D) Lrov*(
and that for H =& or H = 1),
_ kG op) . _ j
2 gz, = N0vo = S0 pPhsall s = O((1+4Y)
which with (1.3) implies that ||2{) | e <O((1+ |s|9F)(1 + k)7). When N = 0, we
alH) ()
replace the above estimate of ||hkSH|| _rg¥2 J(rz) by (1.2) and obtain (1.13).
LitaH

We assume from now on that |s| < . Due to (1.9), up to decreasing (if necessary) the
value of §, s — |A(is)] is decreasing on (0, d) and increasing on (—d,0), and

30252 0'252
(1.18) Vs € (=0,0), e 1 <|A(is)|<e 3
Thus
AV = 3 B, (A 20 () A5) ] ) + OV oM |AGis)] ™)
noT gl 7 \TRs ggny Trist R
ni+nz=
Nl ni a n— To) ™M : -n
= > (hé o [ (L2 D )M Gis) ])w(nwwsn )
Tn1iMg.
ni+no=N
_ Z N! E- B(m) o2 [()\(is)_QkH‘ (£2kﬁ )—f—/\(iS)_nAn_Qk(,CQk}_L )]
B nilng! -\ R T8 ggme i\ is This is is ks

ni+ne=N

+ O(nNO*|A(is)| ™),
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uniformly on s € (—0, ), using (1.7). From this, we deduce the first formula and the following
three things:

e First, for all N <r + 2, Hq(zN)(O) converges exponentially fast as n — oco. Let n < m.
Note that if (f, M, u) = (F,A,7), then HfLN)(O) converges to E; <§H%V)(1/J)>. Other-
wise, taking k := |n/5] and, using (1.4) combined with (1.8),
I HM(0) — HM(0)] < k¥922% 4 mNok < 98 + mNon/s

and if n < 2n < m < 2, then

[HM(0) — B (0)] < [HY (0) — BV (0)] + Z |Hy,) (0) = Hy,'h, (0)

< Z 191123 N2 j+1) N192]n/5>

< 19”/2 /10

This ensures the existence of By := lim,, 0o Hy"(0) and that HS"(0) = By + O(d7) for
all N <r+ 2, where By = E,(¢)E, (&) and ¥, := max(9¢, 910).
We have proved that ey(n) := H) (0) — By = O(¥}) for every nonnegative integer
N <r+2. Note that if » =1 or £ = 1, then ey(n) = 0.
e Second, for s € (=4, ),

sup |H7(LL) (us)| < [A@is)| " (n" 0" + K"957F) + K5 [A(is)| 7.

uel0,1]
e Finally, observe that when N = 0,
H,(0) = Ep (hpy sl —sg 0 F™) + O(9F),
= Ep (7,56 L" (htsp)) + O(0),
=E; (he—sg) Eo (hrsw) + O(|AG ] +9%).

This ends the proof of (o) with By = E,(¢)E,(§) by taking k = 0¥ = 0 if (f, M, ) =
(F,A,7) and k = |(logn)?| otherwise.

Now let us assume (C') and prove (7). The only case to study is the case X = R. Let K
be a compact subset of R\ {0}. Recall that (1.13) ensures that

B, (e o 1) = By (s e L5 2 (L s)) + O((1+ [s])0%)
uniformly in s € K. But Assumption (C') implies that
[Es (s e 37 (L8 Ps1)) | < Whisllmg 1657 |5, , €5 Prsiol s,
< (CoPIs(Cls|emmm20m k)

and we conclude by taking k = 0 if (f, M,u) = (F,A,7) and k = | (logn)?| otherwise.
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Finally, assume (D)[r]. Let K > 0. Then for the B given by Assumption D[r], using
(1.13), we compute,

[ B,
K<|s|<Bn" 7 ||

Ei (hi,—s 1 L35 2 (L2 Py s
:/ | ( k,—s,1 ( k, ¢))| ds_i_(/)(n(rfl)/Zlgk),
K<|s|<Bn 2 | ‘

and

/ [Es (Rt L7 (L2 Py0) |
K<|s|<Bn 2 ’ |

N Vel sl | £ o,
= Jr<s)<Bn™T |s] ~ K<|s|<Bn"7" | 5|

provided

ds

sup |s| =% 1ok —s a1y || L35 (Pt || 5, < 00

K<|s\<Bn%l, k>1
Then Assumption (§)[r] follows by taking again k = 0 if (f, M,u) = (F,A,7) and k =
| (logn)?| otherwise.

0

The next result translates Assumption (B)(2) in terms of uniform estimates of operator
norms and proves that (f) is a consequence of Assumptions (A)[0] and (B).

Proposition 1.12. Suppose Assumptions (0) and (B)(2) hold, s — L;s is continuous as
a function from X* to ,C(XO,XOH)) and L;s € E(X(](+)) for every s € X*. Set ¢, = ¢ and
En=Eo0 [

Then, for all compact subset IC of X*\ {0}, there exists v € (0,1) such that

Sup ||‘Czs||)( —)X(+> O(’Yn)
Moreover, if Assumptions (A)[0] and (B)(1,3) hold true, then () holds true.
Proof. Let 0 < § < K (with K = 7 if X = Z). Let us prove the existence of 7 € (0, 1) such

that

sup || L7 o =0"").
50 L = OG7)

This follows from the fact that, for every s € [, K], there exists n, such that

HE ||X —)XH—) <1

and we conclude by continuity of s — LP from X* to L(Xy, X, T )) and by compactness
of [§, K]. The continuity of L}, comes from the following computatlon combined with our
assumptions

ﬁ;;_ZL” RV (Liy — La)CE
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Let us assume Assumptions (A)[0] and (B)(1 — 3) and prove (/). Due to Proposition 1.11
and the above, for all § < |s| < K, we have

}E (Ye'sSng o f) | = |]E (Pgo,—s, e L Qk(ﬁzkhhsw))} + O,
< el o, O™ ) el + O
=0+ 0" |
uniformly in s, and we conclude by taking k = 9% = 0 if (f, M, u) = (F,A,7) and k =
| (logn)?| otherwise. O

2. EXPANSIONS OF CHARACTERISTIC FUNCTIONS

Let us show that our assumptions guarantee the existence of asymptotic expansions for

Eu<wne vn gn)
as n — oo. In the next section, we use these expansions to establish our main results about
higher order asymptotics for the CLT.
Lemma 2.1. Assume (a)[r]. Then, up to a reduced value of § if necessary, there erist
polynomials A;’s of the form > 1_, a;;8%% such that

isSn 022 ! A
1) E, (bae T 6) = 30 ) (), Js] <,

J=0

t,(s) =0 (e_”if (]3|T+2¢££5/\/ﬁ) eo(n) + |s| + |s|37“+3) . |S|r+1>

n%-&- nr-i—%

where

1
i
with 1y continuous and vanishing at 0 and ey(n) := E,(¢n.&,) — By where By = agg =

Proof. For s € (=9, 6), we set again H,(s)
uniformly for s € (=4, ). Therefore, for s
Eu(¢neissn£n)
= A\(is)"H,(s)

(22) = A(is)" (Z %TSN + O(eo(n) + an(|s| + |S|T))> + 0( (bne*# + an> E |7"+1)

N=0

E,. (¢, €5 &,)A(is) ™. Tt follows from («) that,
(=

€ (—4,0),

with eg(n) := E[¢,.&,] — Bo. Due to (1.12), and since X is C"2, there exists a function
1y € C™2 such that ¥(0) = ¢} (0) = ¢§(0) = 0 and

0'2.5‘2 .
A(is) = e~ T2 Hvolis)

_ o (r+2)
Writing o (is) = s%1),.(is) + 8”21y (s) where 1, (s) = ( o4t ;2( , Y0(0) = 0 and

< emax(a (’ _ﬁ| + (|5|T+1 )

+ 1)

g is continuous and using

m
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with « := nig(is/y/n) and § := SQwr(%), we obtain, up to decreasing the value of 0 if
necessary,

(e ()" R e O
V(i) —ZM )<@( (BB 1YY,

for |s| < 04/n. Combining this with (2.2), we obtain

isSn

B, (ne v &) = A(ﬁ>H(%>
co LT B () (o (M Y

m=0 n=

+O(|Z|:;1 [bne*# —|—an]> +O< ‘A (%) n (eo(n) + 97 (% + |§|2>) ) ,

for |s| < dy/n. Collecting the individual terms in the principal part of the right hand side
according to ascending powers of \/iﬁ and absorbing higher order terms into the error term,

we obtain
(2.3)
s (P (3R)T GOBy s\ e (S Ay(s) [Pt 4[]+
D e Zm(ﬁ) R O +O( ()2 )
m=0 N=0 =0
where A;’s are polynomial of the form anzo Um, ;5" where
_ (D" S~ By T M (0)
ang = 2N 2 1
m . (k1)
N=0 Kt yeokm >3 k1A + N=2m-j 1=1
(2.4) _ LR B [l )M 00)
ml £~ N!2m+j— N)!

recalling that 15 (0) = ¢’(0) = ¢”(0) = 0. Substituting this back and choosing k = | (logn)?],
we obtain (2.1) with Ay = By. O

Remark 2.2. Note that A; (as a function) has the same parity as j (as an integer), and its
coefficients, an, ;’s, are explicitly expressed by (2.4) where

By = lim [E,(tn e &)\ (is) ™).

n—-+0o0o

In the particular case of (f, M, ) = (F,A,v) = (F,A, D), this reduces to
By = E, (11" ().

The computation of By in the general case is more delicate (see [12, Appendix A]).

Remark 2.3. In the special case of &, = 1 and E,(¢y,) = 1, in particular, if ¢,’s are
probability densities, we have that eg(n) = 0 for all n. Hence,

29) b= (o[ (e L LR L LY

1
nati

NH
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This fact is used in the proof of Theorem 1.0.

3. PROOFS OF THE MAIN RESULTS

In this section, we prove our main general theorems stated in Section 1. First, we prove
Theorem 1.1.

Proof of Theorem 1.1. Let g € Sq+2 with g > a(l + L) Recall g has been defined in (1.1)
and that [g(s)| < C9?(g) min(1, |s|™") with b = ¢+ 2 > 24 o+ £, Since g is continuous
(if X =R), M-integrable and g is integrable on X*, it follows that

(3) mmwwmziﬂﬂ%memw

Step 1: Using Assumptions (/3), (7) and the decay of g(s), it follows that

[

: / 151 [5(5)] Olan, + [s|" T &™) ds + €7+ (g) - O(a,)
seX*, |s|[>K

goﬂ@/ SO te ™ Y ds + € (g) - O(ay)
[s|>K

q

< 01t (g /|u|na O(n>1(- |u|a b 6|“|_a)du + C12(g) - O(n'~ =)

(3.2) — C12(g) - O (no‘l(l’T) +n *%) = C12(g) - O (nm(l*@) .

The last equality is true since b = ¢ + 2.
Recall that, due to Assumption («), for every s € (=9, 9),

; 0242
(B (™5 &0)| = IN(is)" HO ()] < bue™ " +an.
Fix e > %' For velogn < ‘8‘ <9, Eu(wneiss”ﬁn) =0 (n_(r+2)/2) , and hence,

~ _ C(g)
o~ i8S,
e BBt 5 5 e [ s 5 S
This combined with (3.1) and (3.2) leads to

1 . .
Ey (Y0 9(Sn) §n) = o /eX* ‘ |<\/mg(s)ﬂ“iu (llin i55n gn) ds

q

+012(g) - O 0 4=

1 S i 5Sn
3.3 = — 7l — |E ne v &) d
(53 s o T B (05 60)
+C1(g) - O ma) 4+ n”

Note that our assumption on ¢ ensures that the above error term is o(n~2).
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Step 2: Recall the polynomials A;’s from Lemma 2.1. Note that

S 0'252 S
A~3A—>e_ 2 d3:/ A~3A—>e_
/X* J( )Lq(\/ﬁ |s|<v/clogn J( )Lq(\/ﬁ
‘ = ~(r+0/2) yniformly in |s| > \/clogn .

0252 —

(is)"e™ 2" = (is)"fi(s) = n)(s),

(9) - o(n™"/?)

because |A;(s)e”
Also, because

S2

(320'

V2mro

(3.4) Ry (e)nls) = gty (i) nte).

we conclude that Aj(s)e_# = ﬁj-\n(s), and so
1 0'232
| Vi () Byomis) i = - [ G(Z=) Ayt s

Substituting from (2.1), integrating, and using the above observations, we obtain,
e )3 ()

Y g\ —= n€ V" Gn S

20y Jg<yerogn /"

where n(s) =

=, defining the polynomials R;’s via the relation

Aj(s)ZJ\(i)e_# ds + Cq+2(g) . o(n_r/Q)
Is]<veTogn n

1
=2 e

1 1 S o252
=N - Ai(8)G(—=)e "2 ds + C2(g) - o(n "2
J;Om/?%\/ﬁ JRxe ﬂ<3)9<\/ﬁ>6 s+ 0 g) - o(n™)

! 1 1 —_ ~ —r
=" mas | R msvi(s) ds+ 07 () -o(n )
=0

r

=3 o [ (B (%) gla) dA(@) + C7¥(g) - o(n ).

J=0

In fact, when X = R, the last equality is due to the inverse Fourier formula, and when
X =7, it is due to the Plancherel formula and the Poisson formula which ensures that

ST R; u((s + 2mm)v/n) = als)

meEZ
where a : Z — C is given by

1 m
= R;n <—>
am) = 5= -w)( %
Finally, substituting this in (3.3), and combining error terms, we obtain the required
expansion:

T

B (60 9(5:)60) = 3 ot [ (B )V )g(a) dr(s) + CT(g) ol 7).

7=0
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Next, we prove Theorem 1.2.

Proof of Theorem 1.2. First part of the proof is the same as Step 1 in the previous proof.
Construction of the actual expansion (Step 2 above) is different.

Note that because of the slightly stronger assumption of ¢ > a(l + %), applying the
Step 1 of the proof of Theorem 1.1, we obtain (3.3) and so

E, (40 9(S0)61) = o

r+1

T,

G(S)Eu (Yo €™ &) ds +CT2(g) - o(n”

K«J@g(

since 1 — £ < —% and oy € (0,1], with ¢ > (T+3).

Because g € Sr 11, we can replace g with its order r Taylor expansion,

Sr+1

1
/ (1 — )" (zs) dx

' Jo

{151 < /75| Here [904(0)] < Cralo)

- sSn
Along with this, we use the expansion of E, (@Dn a f’n) provided by (2.1) to get

N PN
g(s) = ZQ(])(U)j +
=0 J:

! / §(£)E (w eissﬁf ) ds + C%(g) - o(n"%)
2 |s|<\/Tgn \/ﬁ AN ! r

T l)
g I -
ZZ l+g n+3)/2]1 / s'Aj(s)e

[s|<v/c logn

VIE, (n 9(Sh) &) =

r

r+1 (g> ’ O(TL_§>.

As in the previous proof, we can replace the integrals with integrals over R due to our
choice of c. In addition, because A; has the parity of j, when [ + j is odd,

2.2

s'Aj(s)e” 2

/ ds =0.
|sl<v@Togn

Therefore,

VnE, (wng( )€n)
:_Z Z l+j /2l|/3AJ'(3)€ #dk?*l—cfif(g)-o(n’%)

m=0[l4j= 2m
1 _0252 _r
Z > [ (cinfa@anag [ Sas)e s+ i) o)
0 I+j=2m TJR

where

(35) i) =5 ([ a0




22 KASUN FERNANDO AND FRANCOISE PENE

with A;’s defined as in (2.3). Then, absorbing the higher order terms into the error we obtain
the required expansion.

[r/2]
VB, (U g(Sn) &) = ) nim /[R 9(5)Qm(s) ds + CTF(g) - o(n™3).

Now, we prove Theorem 1.6.

Proof of Theorem 1.6. Recall the polynomials R;’s defined by (3.4) with &, = 1 and v,, = 1.
Define P;’s to be the polynomials satisfying

(3.6) () Ry(r) = - [n() Py(x)]

P;’s are candidates for the polynomials appearing in the expansion.

Step 1: From the Berry-Esséen inequality

isSn

LT | Baltne ) = Ennls) | o, Co
) — Oy < — HATT r'n Co
(3.7) |Fu(x) &m@N_WRKT : 5+ &
where
—p (2 _ " Py(a)
]:
c —isx 0252 " A (s
87'/771,(8) - /Re dgrl’n(x) = e 2 ,rjj(/Q)’
7=0

and C) is independent of T'.

We refer the reader to [22, Chapter XVI1.3,4] for a detailed discussion of the Berry-Esséen
inequality and its utility in establishing Edgeworth expansions for i.i.d. sequences of random
variables. Here we adapt those techniques to the non-i.i.d. setting we deal with.

Step 2: Now, we estimate the RHS of (3.7) for an appropriate choice of T":
Given € > 0, choose B > % Then

2 - Sn ~
1 (B E, (0 Vi) — & n(s) Co
3.8 F.(x)— &y < = parn R d
68 IA@-gu@i<z [ : st
€
<L+ I+ I3+ R
n
where
. Sn o~
1 E n Zsﬁ _Sr’n
11:_/ p(n e V) n(8) ds.
T J|s|<sv/n s
isSp
1 E, (¢, e v
I, = _/ Eu(ne ) ds
T Jé/n<|s|<Bnr/2 S
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1 /\r’ n
&:_/ £ a(s)
T J|s|>6y/n
Using (2.5),

: . : L4 [s]Pr*2\ o2 "
(3.9) L=0 (n_r /2/ <@/}0 <i> ||+ i) e s + ’S/l ds)
|s|<8v/m Vn ni nztl

= o(n_TI/Q) )

Also, note that there exists a polynomial

ds.

such that ‘gm(s)‘ <e

1 0'252 P /
I3 = —/ e 2 <|S|)ds:(9(e_c”),
|s|>dv/n

for some ¢ > 0.

Because our choice of € > 0 is arbitrary, if I, = o(n™"/2), then the proof is complete. To
show this, we split I to two integrals:

E " 18Sh
(3.10) ]2:/ By (¢ ™) ds +/
I<|s|<K K<|s|<Bn(r=1)/2

s
where K as in the assumption (J)[r| for our choice of B. From the assumptions (5) and
(0)[r], it follows that

E, (¢, e'son )

S

ds,

E " 18Sn
/ H(w € ) ds = 0(n77"/2).
§<|s|<Bn(r=1)/2 S
This gives the required asymptotics for the right hand side of (3.10). O

Finally, we prove Corollaries 1.7 and 1.8.

Proof of Corollary 1.7. We apply Theorem 1.6 with " = r = 1, noticing that (J)[1] holds

true with K = B. O
Proof of Corollary 1.8. We apply Theorem 1.6 with 7" = 2. Since r € (1,2), min{r/, [r]} =
min{r’, 1} = 1, so there is only one term in the expansion. The error is o(n ~min{rs’}/ 2) =
o(n?)asr<2=r. O

PArT II — EXAMPLES

4. VERIFICATION OF ASSUMPTIONS FOR DYNAMICAL SYSTEMS

In this section, we describe how to verify the assumptions stated in the abstract setting.
The two key examples we focus on are
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mixing subshifts of finite type (SFTs):

We will consider the case when (F,A,v) = (0,%4,m) is an SEFT on k—symbols A =
{1,...,k}, with incidence matrix A € {0, 1}**4 endowed with the Gibbs measure associ-
ated to a Lipschitz continuous potential. Recall that o is the restriction of the shift map
0((Tp)nez) = (Tpi1)nez to the subset ¥4 of A% made of words ¥ = (z,)nez such that
A(zp, xpy1) = 1 for every n. A will be assumed to be irreducible and aperiodic. A more
detailed description is provided in Section 5. For the rest of the paper, we will write ¥
instead of (x,,)nez.

tower systems (with exponential tails) constructed by Young in [17]:
We will also consider the case when (F, A, v) is the Young tower tailored to some hyperbolic

system (f, M, u) as in [17]. Recall that this corresponds to a space
A= J@ixA{0,...r; —1})
i>0

for some nice sets A; C M and positive integers r; corresponding to some nice return time
constant on A; of the initial map f to the set A :=J,5,A; along with dynamics given by
F(20,1) = (z0,1+1) and F(zg,7; — 1) = (f"(20),0) if 2o € A; and [ < r; — 1. More details
are in Section 6.

In particular, our setting allows us to obtain more precise CLT's for axiom A attractors, Sinai
billiards and Hénon-type attractors.

4.1. Assumptions (A)(1) and (A)(2) in a hyperbolic framework. Any dynamical sys-
tem that satisfies the two assumptions (H0) and (H1) given below, satisfies (A)(1) and
(A)(2). In particular, we will see in the next section that our two key examples satisfy these
assumptions.

Assumption (H0):

Separation time. We consider a dynamical system (F, A, r) endowed with a separation
time §(-,-) : Ax A — NogU{oo} satisfying §(x,y) = n+ §(F"z, F"y) whenever §(x,y) > n.

For an SET: §(Z,y) :=inf{k >0 : x # yi}.

For a Young tower: Consider the numerable partition of A in A;; introduced in [17]. Re-
call that each A, ; is contained in the [-th level A; of the tower A. We take for 5(x,y) the
infimum of the integers n > 0 such that F™(z) and F™(y) do not belong to a same atom
of the partition {A;, I, j}.

Hyperbolicity. We assume that (F,A,v) is hyperbolic in the following sense. There

exist a family I'* of measurable subsets v* of A and a family I'* of measurable subsets +*

of A such that

— there exist a unique v*(z) € I'* and a unique v*(z) € I'* both containing z;

— for every z,y € A, §(z,y) = oo if and only if v*(x) = v*(y);

— for every z,y, z € A such that v*(z) = ~+*(y), §(z, z) = §(y, 2);

— For all z,y € A such that §(z,y) > n, v*(z) = v*(y) if and only if v*(F"(z)) = v*(F"(y))
and 7"(z) = v"(y) if and only if v*(F™"(z)) = v*(F"(y))-
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For an SET: (%) ={¢ : Vm >0, ym = xp} and v(Z) ={y : Ym >0, y—pm = T }).
For a Young tower: Using the notations A, v*(z) and " (x) of [17, Section 1.1], v*((z,1)) =
(AN~%(z)) x {l} and v*“((z,1)) ={z € An~y"(x) : §(x,2) > 1} x {I} .

e Product structure. We assume that there exists an at most numerable partition of A
in subsets of the form AEO) ={y e A : 3x% y) > 1} and that each AEO) has a product
structure of the following form: for every x,y € AZ(-O), ~v¥(x) Ny*(y) contains a single point.

For an SFT: The partition {AEO)} corresponds to the partition in O-cylinders {y : yo =i},
2@ being a fixed element of AEO).
For a Young tower: Consider the partition of A to Ay ;’s.

e Quotient system. We define A := J, v*(z®) and p : A — A to be the projection along
the 7*, that is, for any = € AEO), p(x) is the intersection point of *(z) with v*(z®). We
define F': A — A such that Fop =po F and ¥ = p,v. This ensures that (F,A, D) is a
factor of (F, A, v) by p. Also note that § is preserved under composition by p.

For an SFT: Define p on AEO) by setting p(¢) = Z with z, = y, and z_,, = J:% for all
n >0, so that (F, A, D) is the one-sided subshift associated to (F, A, v) (up to identifying
p(Y) = Z with (21)n>0 = (Yn)n>0)-

For a Young tower: (F, A7) corresponds to the quotient (expanding) Young tower.

e Spaces of smooth functions. Let 5 € (0,1). Asin [18, Section 3.4], we define Bg)) as
the space of functions ¥ : A — C such that the following quantity is finite
v v, o W) - oE W)

4.1 (0 0. V|]|oo+ sUp ——FF————+
(41 | HB Il YU eyt pEey) n20, v%; z,yey* pr

Due to the product structure, this space corresponds to the set of functions which are
Lipschitz continuous with respect to the metric (z,y) — %@ with

(4.2) So(x,y) :=inf{n >0 : Va' € F7"(x), Vy' € F"(y), §(«',y) <2n}
In the case of SFTs, §p reduces to $o(Z, %) = inf{m >0 : (T, T—m) # (Ym, Y-m)}-

Denote by B the space of functions ) : A — C that are bounded and Lipschitz
continuous with respect to the metric (x,7) > B5@Y).

Assumption (H1): )
Assume moreover that any point z € A has a number at most numerable of preimages by
F and that the transfer operator £ associated to (A, F',7) has the following form

_ _ ‘eg(y)—g(x) —1] _

(43) 3g: A =R, C5:= sup g <o and Li(x) = Z eI z)
eysey)>1 B 2P (a)

and that for all x,y € A such that 3(z,y) > 0,

(4.4) IW,, : F'({z}) — F'({y}) injective such that Vz € F'({z}), 8(2, W, ,(2)) > 1.

For an SFT: F~Y({Z}) = {(20, 70, 71,...), 20 € A, A(20,20) = 1} and W, , (20, 0, 71,...) =

Wx,y(207 Yo, Y1, - - - )
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For a Young tower: if z = (x¢,[) with [ > 1, then z = (zo,l—1) and W (z,y)(2) = (yo,l—1);
if z = (20, 0), then F’ defines a bijection between A; x {r;—1} and A and given z = (z,7;—1) €
Ay x {r; — 1} such that F'(z) =z, then W, ,(2) is the only element of A; X {r; — 1} such that
FWey(2)) =y

The following result describes how (H0) = (A)(1) and (HO0),(H1) = (A)(2).

Lemma 4.1. Assume (HO). Let ¢,1,& : A — R be three functions such that ¢ € B(O),
P, €€ BE(/%. Then

o Assumption (A)(1) holds true for p = id, more precisely, there exists ¢ € B 5 and
XGB% such that = pop+x — xo F.

o [f, in addition, (H1) is true, then Assumption (A)[r](2) holds true for any integer r > 0,
po =00, X, = XCEJF):B\/B%Ll(D),rozr,q(H):(),p:idandﬁ:\/B.

Proof. Following [18, (3.27)], we prove Assumption (A)(1) with
x=3 (60 F* —¢poFop) eBY
k>0
and

€ Bs.
A

¢ = (qb—i—Z((boFk—(boFkloF))

k>1

First observe that since v*(x) = 7*(p(z)), |[¢p o F* —po FFop| < ||¢||(ﬂo)6k. Analogously,

since v*(F(x)) = v°(F(x)), [0 F* —po F¥1o F| < [|¢]|S3* . This ensures that x and ¢
are well defined and we have proved the identity

p—x+xoF=¢op+) (poFop—goF " opoF)=gop

k>1
since po F' = F o p.

Let us prove that ¢ is in B /3. Since ¢ € Béo), for any z,y € y* C A,
6(x) = ()| < |o(x) = (W) +2 > g0 FF—¢oF* " opo P

k2[8(z,y)/2]+1

[8(z,y)/2]
Y [o(F (@) = S(F (y) — [6(F" (p(F()))) — o(F* (B(F(y)))]]
k=1
[5(z,y)/2]
< ||¢||§50) /33(:v,y) +2 Z /Bk_l +92 Z ﬁé(x’y)_k
k>[8(x,y)/2]+1 k=1
<ollys*#” (1+42)
since, whenever 1 < k < 3(z,v), §(F*(z), F*(y)) = 5(x,y) — k and

S(x,y) = 5(F(x), Fy)) + 1 =3(p(F(2)),p(F(y))) +1
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= S(F" 7 (p(F(2))), F* (p(F(2)))) + k-

0

Now, let us prove that x belongs to BE/%. Let x,y € v* C A, then

[4(z.y)/2]
(@) = xWI < D [(@oFHa)—¢o F¥y)) = (do FFop(x) — do F¥op(y))|
k=0
+2 Z ¢ F¥ —poFFopl|_
k>[5(x,y)/2]+1
[3(z,y)/2]

S D M R ]

k>[5(z,y)/2]+1

and, for any z,y € v°* C A and any integer n > 0, then p(F"(z)) = p(F"(y)) and so
FE (™ ()]

X(F™ (@) = X(F" ()] < ) ¢ o FF(F"(x)) — "(y))

k>0

¢ (O)Bn
<oy 3 g = 1 1”5 .
k>0

Let us establish (A)[oo](2). Let H € {4,£} C B%. Using the definition of ¢ and y as
above, we define

n—1
. k _ ol — . — —
his = H o Fhelsxol o=isSkop  with S = E poF*,
and

Bk,s,H(x) = e_isgk(x)E,,[H o FkeisxeF* |3(-, ) > 2k], x€A.

Observe that for any p > 1, HB]C’S’HHLP(E) < \|\his, il r ) = || H|| £r(ny and so (1.2) and for
all x € A,

P (@) =By [0

$(,2) > 2k
_ e—isgk(x)EV [H o FF . (@(X o FF — Sk( )))

(- ) > 2k].

and so

||h’lcsHOIJ h sHHOO

SZ(m)HSkH&m sup |(HX"e ) (F* () — (HY"e™)(F*(y)|

z,y€A, §(x,y)>2k

j oy —m m _isx||(0) k
< Kl Blloo )} | Hy e ,
< (m)( [plloc) ™™ [ HX™e IIﬁ\/B

m=0

since §(z,y) > 2k implies that 3o(F*(x), F*(y)) > k. But H,x € B% and

is 0 0
e < 1+ [lsx]| .
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Therefore, there exists C' > 0 such that

e B . k
| =B 0| < cO+1shE VE
and we have proved (1.3). Next, we note that

(4.5) 132 selloo < I oo (Sklloo + xlloo) < I oo (l1xlloo + Fll6l1c)?
which leads to the second part of (1.4) since B ;5 — L'(7).

It remains to prove the first part of (1.4). Recalling that £2F = £ (552 .} and using
(4.3), we obtain that for every z € A,

Lhpon(x) = > S W) gisSko P W, [ o Freisx°F" | 3(. y) > 2k],
yeF—2k({z})
with S, := Zii:ol go F™. Therefore,
(L3 o)) ()
= ¥ SRR, [i(Sy 0 F¥(y) + x 0 F*¥) H o FreGoF @xoF™) | 5. 1) < of]
yeF—2k({z})
= LR (@), with () = e#5oT @R, [H o FRe™F" | 5(. y) > 24].
From this, we have the following estimate

” *C%hksH ) H < HH”OO ||Sk||oo+ ||X||OO) ||£2k1A||w < ||H||OO(||X||oo+k||¢||OO) ‘

Finally, we need to estimate the Lipschitz constant of (L2 hy, H)(J) Due to (4.4), for any
z,y € A such that §(z,y) > 1, there exists a bijection L,,, : F7"({z}) = F~"({y}) such
that, for all z € F~"({z}), 5(2, LWT( )) > r, with L, ,, being deﬁned inductively on 7 > 1

by Lyya = Waey and Ly yy1(2) = WF(Z),LI,y,r(F(z))(Z)-
Then it is immediate that, for all z € F~"({x}),
Voo (2) = B [H o F* . F" | 3(. 2) > 2k]
remains unchanged if z is replaced by L, , ox(2). Therefore, writing
¢k,s(2’) _ ez‘sgk(,z)7

we have

(4.6)

(ﬁf?khk s H)(j)( ) — (ﬁ?ﬁlk,s,H)(j)(y)
- z%mksH)( ) = L) )
= ST o FF(z) — 558 Cawan @) o B[ (=)
> ) (PR Fr ) e ) 0 F¥(Luyan(2) )19 (2)
r=0 z€F—2k({z})

Next, we estimate each term in the above sum. Observe that

(4.7) 7 oo < IH oo (1 + [Ixlo) "
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Also,

S OY) 0 FH(z) — e ConarDy) o P (L, (7))

< esé?(z)u _ esg)(Lzka S(g)(z Hw o Fk(z)‘

(4.8) + %5 Lawae D0 o FR () — ) o F¥(Lyyan(2))]
Note that the first part of (4.3) implies that

s(x,y) >1 = e~ CavE Y < 1+Cg\/_ ) < 1+C'g\/_ < CaVB Y

and so

Cﬁ §(z,y)+1)/2
=5

11— esék)(Lw%(z)) (9 ’ < oCa Sk e t2zhom | < max(1,er f)

Moreover,

) 0 F*(2) — Yo F* (L yau(2))]
|

< [(Sp(F*(2))) €St E @) (S (F*(Ly yon(2)))) €5t (F FomarGD)|
k—1

<Y SEM™ Ly ak(2)) = GE ()] (]ISl + Isl1ISklI%)
m=0
5. BGEw+/2
|6l , B

< (k|| Dlloc)st + |s| (K] loo)”) -
=3 (r(Kl[0lloc) [s|(Ell¢llee)")
Combining this with (4.6), (4.7) and (4.8), we obtain
(L2 hys) D () = (L3Ehrs) V()] _
\/BS(LZJ)
as required. This establishes (A)[r](2) for all 7. O

Remark 4.2. In the case of SFTs, E,[g o F*|3(-,x) > 2k| = E,[g|C 4. _x(F*(x))] where
C_y.. k(2) is the two-sided cylinder {y : Ym = —k, ...k, Ym = 2m}.

,,,,,

O((1+[shk)

4.2. Assumptions (B) and (A)(3). Assumptions (A4)(3) and (B) describe the spectrum of
the transfer operator and its perturbations, and is typical for the Nagaev-Guivarc’h approach
to establishing limit theorems for dynamical systems and Markov processes. However, As-
sumption (B)(2) gives more control than the conventional approach allowing us to prove
the first order strong Edgeworth expansion as well as expansions in the local limit theorem.
In this section, we describe general techniques to verify these assumptions for dynamical
systems.

For Assumption (B), the standard tool available is a Doeblin-Fortet inequality. This idea
is summarized in the following proposition.

Proposition 4.3 ([31, 28]). Suppose P is a bounded linear operator on a complex Banach
space (B, || - ||g) and that || - ||« is a norm on B such that

(1) B—bounded sets are precompact in (B, || - ||«),



30 KASUN FERNANDO AND FRANCOISE PENE

(13) There exist positive constants A, B, 0 such that 0 < 6 <1 and
(4.9) VheB, Vn, [Phls < A" [hlls + Bl|h].
Then the essential spectral radius of P : B — B satisfies T.ss(P) < 6 < 1.

Note that (4.9) holds true as soon as there exists a positive integer ng such that ||P"0h||z <
0" ||h||s + Bo||h||« and if sup,,~; ||P"||. < oo.

In our setting, we will take P = L;,. Recall that these define bounded operators on L'()
and that if 1o € B, then it is an eigenvector of £ associated to the eigenvalue 1 and if the
hypothesis of Proposition 4.3 is satisfied by P = L;s then

(1) The spectrum o(L;s) of L;s : B — B, is contained in the closed unit disc, and is
the union of the essential spectrum, oess(L;s), and finitely many eigenvalues of finite
multiplicity {As1, ..., Ask, } with 6, < |As ;| <1 (quasi-compactness).

(2) If L;s has eigenvalues of modulus 1, they are semi-simple, i.e., no Jordan blocks
(applying Proposition 4.3, this comes from the fact that (i) implies that || - ||« is
dominated by || - ||z and so by (ii) sup,>; [|P"|lz < 00).

To conclude (B)(1, 2), we need to understand the eigenvalues of modulus 1 of £;5. From the
positivity of L, it follows that all its eigenvalues of modulus 1 are roots of unity, and hence,
the corresponding eigenfunctions yield invariant densities for F". Since v is F—invariant,
L(1x) = 1z and L*(r) = v where L£* is the adjoint of £, 1 is an eigenvalue of £. It
follows that 1 is simple if and only if 7 is ergodic. This is because ergodicity is equivalent
to F'—invariant functions being constants. Also £ not having eigenvalues other than 1 on
the unit circle is equivalent to exactness of the transformation F which we have to establish
through dynamical arguments.

Recall also that £ can often be written, by a change of variable, under the form

(4.10) Lh(z)= > Phn(z),

2eF-1({z})
where e™9 = JF is the Jacobian of F' with respect to .

Definition 4.4. The function ¢ : M — X is said to be non-arithmetic if it is not
f—cohomologous in L*(M, p) to a sublattice-valued function, i.e. if there exists no triple
(a, B,0) with a € X, B a closed proper subgroup of X and 6 € L*(u) such that ¢+~ —~o f €
0+ B p-a.s..

Lemma 4.5. Suppose Assumptions (0) with ¢ : M — X non-arithmetic and that the conclu-
sion of Proposition 4.3 holds true for L;s for all s € X* and that the spectral radius of L;s on
B is dominated by 1. Further assume that (F,7) is exact, (4.10) holds v-a.s. with F~'({z})
at most numerable and that Assumption (A)(1) is true. Then Assumption (B)(1,2) is true.
If, in addition, ¢ € B — L*(), then the entirety of Assumption (B) is true.

Proof. Due to the conclusion of Proposition 4.3, we know that £ is quasicompact. By
exactness of the system, we already know that 1 is the only eigenvalue of £ and that it is
simple. Thus
3e>0, Y LDz < e Y IIL"(@)lls < oo,
n>0 n>0

since ||£"(¢)||s decreases exponentially fast as n — +o0.
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Let s € X*\ {0}. Let us show that £;; does not have eigenvalues on the unit circle. To
see this, assume that e is an eigenvalue of £;, with h € B as a corresponding eigenfunction.
Then, Lish = ¢?h in L'(). Observe that, for v-almost every x, the following holds true

Llpl@) = Y lhz) 2

zeF=1({z})

and thus £"|h| > |h|, v-a.s. for all n. But lim, ,(£"|h]) = [ |h|dv in L' () because F is
exact. So [ |h|dv > |h|. This implies that |h| is constant 7-a.e. Without loss of generality,
we assume |h| = 1. So h = €"0) for some 7 : A — R. Substituting back

Lih(z) = Z IEAFTi(6()11() — i0H1(@)  for pae x € A,
2eF-1({z})

ST OO )| = |Lh(2)] = [eh(z)] = b)),

zeF~1({z})

and so
Z eI@Fi(s6() ()= F(D=0) — 1 for peae. v € A.
2€F-1({z})

SinCe7 £<1A>($) = Zzeﬁ'*l({x}) €g(z) =1 for v-a.e. T and 6is¢(2)+7(2)77($)*9) are unit vectors
and thus we conclude that

(4.11) s¢+v—v0oF+60=0 mod2r ©¥—a.ec.

which, combined with Assumption (A)(1), contradicts the non-arithmeticity of ¢. O

Now let us focus on Assumption (A)(3). The following lemma applies typically (but not
only) when B is a Banach algebra

Lemma 4.6. Suppose Assumption (0) is true with (F,_D) exact. Assume that L defines a
continuous operator on B and that the multiplication by ¢ defines a continuous linear map on
B and that s — ¢ x - defines a C* map from R to L(B) with derivative s +— (i¢)e’® x -.
Then Assumption (A)(3) holds for any r > 0.
s (eisé_ew‘z’ — 1 —iju )
u
L(B)

goes to 0 as u — 0. Thus s = L;; is C*! from R to £(B) with derivative L;s(i¢ -) and we
conclude by induction. O

Proof. Let s € R and uw € R\ {0}. Observe that

1 -
a“ﬁi(S-l-u) - Eis - EiS(ub ')UHC(B) =

We will see in Section 5 and Section 6 how these results can be applied in the case of
subshifts of finite type and Young towers.

4.3. Assumptions (C) and (D). We assume from now on that X = R. Let us start by
some comments on our Assumptions (C') and (D). We first observe that both of them deal
with [|£7.] 5, for some By < By — L'(7).

Recall that Assumption (C')(1) is true if there exists K > 0 such that

Ja> 0,00 > 0,6 >0, V|s| > K, VYn>ny, 1Ll 5, 5, < C|5’a€*na15|s|—a
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and that (D)(1) holds true if for all B > 0, there exists K > 0 and d; € [0, 1] such that

Bn(r—1)/2 £
/ || ||Bl—>l32 ds = o(nfg).

K | 5|
Observe that (C') does not imply (D) when a > 0 but when a = 0 it implies (D)[r](1) for
all 7 with d; = 0 and (C)(2) and (D)(2) coincide (hence, dy = 1).
The next lemma gives a useful sufficient condition for Assumptions (C')(1) and (D)(1) and
will be used in our examples.

Lemma 4.7. Assume 15 € By and that there exist positive constants oy € (0,1], K,C, «,
and an integer ng such that

(4.12) Vn > ng, Y|s| > K, ||L8|5,o8, < C|s|%e " with By < By < LY(7).

Then Assumption (C)(1) holds true. Moreover, Assumption (D)[r](1) hold also true for any
dy €[0,1] andr >0

Proof of Lemma /.7. To establish Assumption (C')(1), choose € (0, K“C). Due to (4.12),
for any n > ng

€251y S D870 < Js]7e” ™ B < Jsfee ™™ P for || > K.

Assumption (D)[r](1) is also straightforward because

K<|s|<Bn'Z" \8| ! K<|s|<Bn'Z"

< 2max(K*%4, \/ﬁ(‘" dl)(r_l))n(rfl)/zefcn% _
]

In Section 4.3.1, we present general strategies to prove Assumptions (C)(1) and (D)(1).
In Section 4.3.2, we explain how to infer Assumption (C') with o > 0 for a tower over a
Gibbs Markov map satisfying Assumption (C).

4.3.1. Dolgopyat type inequalities. In order to verify our Assumptions (C) and (D), we
present here two strategies that have been extensively used since the seminal works of Dol-
gopyat [13, 11] to establish rates of decay of correlation for suspension flows.

These two strategies rely on two different argument: the uniform non-integrability (UNI)
and the absence of approximate eigenfunctions (AAE, see Section 4.3.2). While the former
(UNI) will imply both (C') and (D), the latter (AAE) will only lead to (C'), and may be used
when the first strategy fails. We refer the reader to [2, 13, 15] for a discussion about UNI
and its applications to decay of correlations for flows, and to [141, 37, 38] for AAE.

Both conditions can be interpreted in terms of contraction of the transfer operators L,
and to talk about examples in the literature in general, we assume that there exist seminorms

| -1;, 7 =1,2 such that |- |; + |- |2 is a norm which is equivalent to | - ||z, and such that for
the new norm
(4.13) Il = -l +@+Ish ]2,

on B;. UNI implies the following Dolgopyat inequality: there exist ¢, C, K > 0 such that
(4.14) V|s| > K, Yn > clog|s|, [|L%]ls <e ",
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and AAE leads to an estimate of the following form: there exist ¢, C, K > 0 such that
(4.15) Vis| > K, ||LIS o < 1= Cls| < e

_a/

The following lemma describes how the above estimates lead to estimates in Assumptions
(C) and (D).

Lemma 4.8. Let K > 1. Suppose
(4.16) Vsl > K, ||Li ) < e
with g(s) > 0 and M = sup,,, ||L.| sy < oo. Then, for every e >0,

— n (s)
(4.17) Vi 2 0, Vls| > max (K¢ ), L0l < Me2eolem B
and hence, there exists My > 0 such that

ng(s) ng(s)

(4.18) 1£2]18, < My max(|s|, e*9))e ~ies  and 1L By < M9 e Toss

Proof of Lemma /.8. Without loss of generality assume s > K. From (4.16), we have
k[clogs clog s —ka(s
128 Ny < NEL =TI < e

Assume s > ¢ ', which implies clogs > 1 and so [clogs] < clogs + 1 < 2clog s.
If n=k[clogs]| + r where 0 <r < [clogs]| then

I8l < €Ly < Mo R < Mo T
If n > [clogs], then k > 1 and so k/(k+ 1) > k/(2k) = 1/2 and so
12| < Me™ fefoes |
If n < [clogs], then e~ nefigt > gelelossTiEg > e72¢¢9(9) "and so
1Ly < M < Me¥es(s) =5 |
This ends the proof of (4.17).
Inequalities (4.18) follows directly from this and from
(L+ )7kl +[Al2) < [[Plls) < [kl + 1Al
combined with the fact that | - |; + | - |2 is equivalent to || - ||5,. In fact, taking

Co = |||d||31—>\~|1+\-|2|“d||\~|1+\-|2—>517
we obtain

1£5]8, < oL+ 8) 1 Lisllesy and [|£5 ], < (€5 )

The following is a direct consequence of the Lemma Lemma 4.7 and Lemma 4.8.

Corollary 4.9. Assume the hypothesis of Lemma 4.8.
o IfCls|™**log|s| < g(s), and
— if €22990) = O(|s|%) with By = {f : |f|1 < oo} and Assumptions (B)(2), (A)[0](3) hold,
then Assumption (C') holds true.
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— if max(|s|,e?*9)) = O(|s|*) with By = By, and Assumptions (B)(2), (A)[0](3) hold,
then Assumption (C) holds true.
e [f0 < inf,g(s)/log(]s|) < sup,g(s)/log(|s|]) < oo, then Assumption (D)[r| holds true for
any r > 0 for any choice of dy € [0,1] in the cases of By = By and By = {f : |f]1 < oo}.

Remark 4.10. Note that (4.14) implies (4.16) with g(s) = Cclog|s|. sup,,, ||L}]|s) < oo
holds as soon as sup, ,, |L7 |1 < oo and if Ly satisfies a uniform Doeblin Fortet inequality of
the following form

EIpE (0,1),E|é> O, \V/S,Vhe B, |['zsh|2 §p|h|2+é(1+8)|h|1

Remark 4.11. The same conclusion holds if || - ||s) is replaced by |- |1 + |s|7!] - |2 since
(K/(K+1)s7! < (1+s)" <s7h orif| - | is replaced by max (|- |1,|s|7"| - |2) since
max(a,b) < a+b < 2max(a,b).

Now we list some examples for which (4.14) holds.

e Subshifts of finite type with the set of Hélder continuous functions as Bj:
(4.14) follows directly from the work of Dolgopyat (see [15]) provided that ¢ is strongly
non-integrable, an analogue of UNI in the symbolic setting. This condition is satisfied by
an open and dense class of observables. This is detailed in Section 5.

e Uniformly expanding Markov maps (see [2, Definitions 2.2, 2.3, Proposition 7.4]) with the
set of C! observables as B;:

Let (A,7) be a John domain and {A;}rer (with E C N) be a full measure partition of
A, let F': g Ak — A and set J for the inverse of the Jacobian of F' with respect to .
Suppose that there exists A > 1 such that, for every k € E, the following properties hold
true:

(1) F is a C'—diffeomorphism between A, and A,

(2) There exists Cy > X such that for all v € T,A, Mjv|| < [|[DF(x).v|| < Ciljv,

(3) log J is C* on Ay,

(4) There exists C’ such that for all inverse branches h of F™, ||D(log J) o h||o < C.
Further assume that ¢ : A — R is C* on each A, and there exists C(¢) € (0, +00) such
that for all inverses branches of h of ', [|[D(¢ o h)|le < C(0).

Under these assumptions, (F, ¢) satisfies UNI: There exist C' > 0,n € N such that for
all n > ng there exist two F"—inverse branches h, k and a continuous unitary vector field
T such that

|D(S,, o h)(z).T(x) — D(S, 0 k)(x).Y(z)| > C,
if and only if
¢ is not almost surely cohomologous (up to a measurable coboundary) to a
function constant on each Ay.

From this, it is proved in [2, Proposition 7.16] that ||£7]|s) < C'min(1,e*"|s|) taking
[l =l e and | ]2 = [ D()loe. This implies £ M||) < =%, Applying
Lemma 4.8 with B; for the set of C'-observables, we obtain

1£7 s, < C'[sle™™ and [|L7]l5-1 < C'ls

for any ¢ € (0,¢/8), and hence, Assumption (C) with By = B; and ay = a = 1, As-
sumption (C') with By = L, a3 = 1 and any a > 0, and finally, Assumption (D) for

de _
ce "
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(f, M, u) = (F,A,v) if » € L*(¥) hold.

e A particular case of the previous example — Uniformly expanding maps of the torus:
Let £ € C"(T,T) with r > 2 be such that inf |[F/| > A > 1 and ¢ € C""!(T,R). Then
(F, ¢) satisfies UNI in the following sense: There exist C' > 0, ny € N such that for all
n > ng there exist two inverse branches h, k of F" satisfying

d d
= = >
denOh(x) de”Ok(x) >C

for all € T if and only if
¢ is not cohomologous to a function constant on each maximal invertibility do-
main.

This implies that (4.14) holds. See [19, Appendix BJ.

4.3.2. Assumption (C) for towers via AAE. We assume here that (F, A, ) is a tower over
a Gibbs Markov map (F := FEO Y,y := i(-|Y)) where Y = A, is the base of the tower A
and R : A — Ny U {oo} is the first visit time to Y of (F'(:));>1, so R(y) — 1 is the height of
the tower A over y € Y. Let £: A — Ny be the level function given by ¢(x,1) = I. Let L be
the transfer operator associated to F' with respect to iy = (-|Y). We have

(4.19) L8 =" L"(yairi—ny ) -

n>1

where L is the transfer operator corresponding to the tower and Ry(-) := Z;:é R(Fi.),

We consider a separation time so : Y X Y — Ny U {+oc} such that so(y,y’) > m if and

only if for every j =0,....m —1, Fi (y) and Fi (v') belong to the same atom of the partition
m = {Y;, i} of the Gibbs Markov map. Recall that R|y, is constant (let us write r; for this

constant), F; := Fly, : Y; — Y defines a bijection and that £ has the following form:

(4.20) Lh=Y (e®h)o F ', with |e#W)=0W) — 1] <y oy

The map (A, F) is also endowed with a separation time § : A x A — Ny U {oo} which
satisfies:

so(y,y')—1

SF ). Py = Y. RoFy) | —j=soly.y))—J.
k=0
We also write 5; Y — R for the induced function associated to ¢ : A — R, i.e.,

R(-)-1
Q= Z poF*.
k=0
Consider the family of operators (Eis’iu)seR, uel—m,x given by

Lisin = E(eis&&-iuR).
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Fix g € (0,1). Let B be the set of [-dynamically Lipschitz functions on Y, i.e. the set of
functions h : Y — C such that the following quantity is finite

. h(y) — h(y’
1hllz = [Ihlloc + [Rlg, with |h[g:= sup s )80(3:_3/)( !
y,y' €Y, y#y's so(y,y')>1 Feote:

Let us also consider, as in Section 4.1, Bg to be the set of S-dynamically Lipschitz functions
on A, i.e., the set of functions h : A — C such that

P85 = [Pl + sup M < 00.
vy’ €Y, y#y's 8(yy')>1 ey

Assume that ¢ € L'(7) and that
(4.21) Fy € (0,1], Zuy 0.
This implies that ¢ is in L'(vy) and that

[l
Z vy (Y, 8161]5 Tl < 00,

which is enough to apply ideas in [38].

Observe that ||Lisiullec < 1. Moreover it has been proved in [33, Propositions 7.7 and

8.10] (combined with [37, Lemma 3.14]) that
3C >0, ¥n >0, YVhe B, |LV,.hls < OO+ [s])]|h]e + CB"|Als.

Here, we define the norm || - [|5) as in (4.13) with |- [ = || - ||, | - [2 = | - |5

Definition 4.12. We will say that (Y, F gf) R, B) has no approzimate eigenfunction (hereafter
written as (Y, F,$, R, ) is AAE) if there exist a subset Zo C'Y and ag > 0 such that for
any a,& > ag and C > 0 and any sequences (Sk, Ug, Uk, hg ) with |sg| — 400, uy € [—m, 7],
Y €[0,27), hi € B where |hy| = 1 and |hy|s < Csul,

y € Zo, Ik >1, | Eito SF @R (Fri(y)) — eVihy (y)] > Clsi| ™,

for ny. == [£log |sk|].

We refer to [38, Section 5] for a presentation of different criteria (temporal distance func-
tion, Diophantine conditions on periods and good asymptotics, all of which are innately
dynamical) ensuring AAE, which is proved to hold for a wide class of ¢.

Proposition 4.13 (Lemmas 7.7 and 7.12 of [35], Lemma 3.14 of [37]). If ¢ is a real valued
v-integrable function satisfying (4.21) and if (Y F,¢,B) is AAE, then there exist o/, 3" > 0
and C,C",C" > 1 such that H/Jw log]s HH ) <1=C'|s|= and £ s) < C" forall s € R

18,7U lS’LUH
with |s| > 1, and u € [—m, 7.

These estimates are key to establishing estimates of the form ||(I — Zis,iu)_lu(s) < Cls|*
and ensuring, due to Lemma 4.8, that for every positive integer n and every real number
such that |s| > max(1,e’ ),

255/0/ _ eC'n eC'n

7
7 7 Al _eCn
<O 1517 e Islefoss < CMe 1519108 < O T TSI

||‘Czs 'Lu||B—>L°0 < ”‘Czs zuH
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with C" = C"e*#' " for any o > /. Therefore Assumption (C) holds for (F,Y,7y) for the
observable ¢ with ay = 1, any o > o/, By = B and By = L®. The next lemma provides an
estimate of L7, by a direct proof (let us indicate that the strategy used in [37, Lemma 4.4]
and [38] to prove such a result is based on the resolvent).

Let ¢, : Ng — [1,+00) and let Z be the set of h : A — C such that
Ihllz == sup |<(&)7[(ho F¥)ly;llec + o(k) (R o F¥)ly, H < o0
g,k k<r;
In Section 6, we will consider generalization of the spaces considered by Young in [17], which

corresponds to taking , gy of the form (k) = e and (k) = €' with &’ > «.

Lemma 4.14. Let py € (1,+00) and v € (0,1]. Assume the following:
o M= [[S(O)ll ooy < 005 En(co(€)) < 00 and

ri—1

(4.22) Zay Zkg gboFk)]j;%<oo.
J
e there exist ¢; > 0 and ¥y € (0,1) such that for every j > 0, oy(R>j) <
e there exist a > 0 and positive real numbers ag, ng, C > 0 and K > 1 such that

< 5\3|O‘e_%g.

B—)LPO (Vy)

(4.23) Vn > ng, V|s| > K, sup

w€|[—m,m]

E’ﬂ

18 ’L’LL

Then for all p1 € [1,po), there exist C' > 0 and oy > 0 such that

1L zpm ) < Cs|' %™ el for all |s| > K and n > ny.
In particular, Assumption (C)(1) is satisfied with 6 = K, By = Bg, By = LP*(v), oy = 1 and
a being replaced by 1 + 2.

Proof. Let sy € (1,4+00) be such that pio +4 = pil. Let u > 0 be such that E,, (e*?) is finite.

S0

Let us prove that there exists z > 0 and ¥ € (0, 1) such that
(4.24) vy (Ry > aN) =0 (¥)) .
Due to (4.20), £h = > ;(e%h) o F' and

eg()(l'}fl(y)) < / ego(F " <1+C 550 vy +1> diy (y )S eCQO/E(lyi)dVy :ngo,;Y(YZ.)’
Y

Y
and thus,

Vhe L(oy), [IL(e"h)lloe <Y e“0my (Y)e [hlow < €“0Epy ()R] o -

Therefore, the linear map Eoﬂ =L (e“R X ) acts continuously on L*>(py). Let x be such
that ¥y := e *||Loullc < 1. Then Ep, (e"¥) = K5, (L, (1y)) < [[L£ou]|Y and hence, it
follows from the Markov inequality that

Dy (Ry > aN) = vy (e"™ > e™N) < e7*NE, (") = O (9))

and we have proved (4.24).
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We write A; := FJ(Y N{R > j}) for the j-th level of the tower A and S, := 327! poF*.
Recall that R, := 1 Ro F*. Let N be a positive integer. If z = F/(y) € A;, then

(4.25) Sn(x) = Sn(F(y)) = Si(y) — S;(y) + Sm(F*(y))

with N = Ry(y) —j+mand 0 <m < Ro F*(y) (i.e. k,m are such that FN(z) € A,, and
#{{=1,.,N—1: F(z) e Y} =k). Thus

(4.26) LY = Z Lis,Njkm s

7,k,;m>0:m+k—j<N

with Lis njgm = L (1Ajﬁ{N:Rk+m}mF—N(A ) Let e € (0,1) and h € Z. Observe first that

Z £is,N,j,k,m<h)

m>eN,m,j LP1(7)
PN N
S ‘ s (1Um251\7 AJ © F h) Lpl < “1Um>€N mﬁis (h) Lpl(D)
1 1
50
( U a > 1£3% ()| ro @) < (Z 2% (Rzm)> M|hliz
m>eN m>eN
1
El) N
(4.27) < (w) > o <Rzm>) M)z =0 (v fAlz) -
m>eN
Note that if m < eN, then R, = N+ j—m > (1 —€¢)N +j > (1 — ¢)N and that, in this

case, k < ay implies R, > (1 —¢)N. Set ay : ; (1—€)N/x. Set p € (1, +00). Observe that

= £y (Z 1Ajﬂﬁj(Yﬁ{RaN>(1—€)N})’m)

>0

Z Eis,N,j,k,m(h)

ZY, VSTt >

LP1 (D) LP1(v)

IN

|7l £eo )
L0(5)

Z Lg (YN{R>j, Ra,y >(1—€)N})
Jj=>0

1

(Y)Y oy (R> ], Ry > (1 - E)N)> ’ M|[hl|2

Jj=0

IN

(7(V)Esy (Rl{r,y>0-0ny)) ™ M|hlz
< ()| Rl o)) * (Py (Ray > (1 — €)N)) 500 M||R]|z .

IN

(1—e)N

But oy (Ray > (1 —€)N) =0O(9, © ) due to (4.24), and so

(A=9(=-HN
(1.25) > owan| =05 a2

(1— e)N .
< >
k , 7;m>0 L7 ()
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. To this end, we observe that
LP1(p)

It remains to estimate HZkzaN,OSj,mgeN EiS,NJ’k’m(h)‘
Lisnjrm(h) = LY <€is‘§” LA, 0{N=Ry+m} nF-N (A,,) h)
= LN ((eisgN1Ajﬂ{N=Rk+m}ﬂF*N(Am)h> © Fj)
= £ (5P Ty iy (o P e gy Lyngromy © B
Therefore, using (4.25) and (4.19), we obtain
Lis N jram(h) = LY ((1Ym{R>m}€iSSm) o F* 1{Rk:N+j—m}eiS§k lyn{r>j} e85 b o Fj)
=L" (Zk ((1Ym{R>m}€iSS’”) 0 F*1 gy sjmy €5 € *Silyrpsgy ho F J>>
= £ ((yngrom @)L (Lnansgomy €S e lyogragy ho F7) ) |
Moreover, setting H; := ¢~*% lyngs ;3 h o F7, we obtain

i/ o~ u(N+j—m) fk <6is§k+uRkHj> du
27'(' [ }

ﬁk <1{Rk:N+jfm}eiSSkH> —

1 -
_ —iu(N+j— mﬁk 1 <£ - (H.: > du .
o [ﬂm]e is i is,iu(Hj) | du
Now using (4.23) combined with the Hélder inequality with pio + % = pi, we obtain for
|s| > K,
Z Z ||‘Ci57N,j,k,m||LP1(17)
k>ay §;m>0
_~ kol ~ 'LS—
R T e
k>ay 5,m>0 Loo(py)
Zan j,m2=
o, —0kt ) & — L
=0 2 2l |rcis,m<Hj>ngy<R>m)so)
k>an j,m>0
a iy
(4.29) = O [ |sP* Y 1 LiwiulHy)llge ) :

7>0

agk
since ) g€ Tl = O(]s|*). Now it remains to prove that

(4.30) Y LisiuH) g < C"(1+Is)) ]2

3>0
where H; := e~ is5 lyngrsjy ho FJ. First we observe that

Eis,iu(Hj) = Z <€go+zur /+zszk ¢>0F ho F]) o ﬁ,]Tl '

j’:rj/>j
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Therefore,

(4.31) Y Ciu(Hlloo <Y <)l ze% oy (R > j) < [|h]| 26 Es (<) /2(Y) .

§>0 7>0

Next, let us control Z >0 |E,S i Consider y,y" such that so(y,y’) > 1, and their

Ol

primages y;:, 7 under F belonging to Y}/, then
(1.32) P |(F () = B ()] < €@ (Vi) [ z50()B )
(4.33)

B () (00 — e 050)| < ]l 25()e @) Cof ) < ||y (¥ )o ()CH0),
and

'h(pj(yj,))ego(yj/)(eis Z;j:'j_l GoFk(y;) _ els ZZL';I a_ﬁopk(yj/))

7‘/1 v

S (y:y)+1
(4.34) < ||kl zs(5)e%my (Y;)2 | || Z (o FR)y,| 187

1 vy

’Y

Gathering (4.32), (4.33) and (4.34) (using the fact that (3, ax)” < >, a} since v € (0,1])
and summing over » > .., -, We obtain

7 .Tj/>j7
§ ‘Ezszu

j>0

rj/fl

< C[R]| 28 | Baso(€) +<(0)/o(Y) + [sI” Y v (Yy) Y ks(B)|[ (@0 F)y, 11 ]

3! k=0 b

which is O ((1 4+ |s])||k||z) due to our assumption (4.22) on ¢. Combining this with (4.31),
we obtain (4.30) and end the proof of the Lemma thanks to (4.27), (4.29) and (4.28). O

Therefore, whenever the factor (F, A, 7) in our setting (recall Figure 2), and the observable
¢ given by Assumption (A), satisfy the hypothesis of the Lemma 4.14, we have Assumption
(C). In fact, there is a large class of nonuniformly hyperbolic dynamical systems for which
this Lemma applies. For example, the quotient system defined in Section 4.1 for a Young
tower (F,A,v) is a tower over a Gibbs Markov map. So any system (f, M, ) modeled by
a Young tower with exponential tales is a suitable candidate. We describe them in detail in
Section 6.

5. SUBSHIFTS OF FINITE TYPE

In this section, we establish exact limit theorems for mixing invertible subshifts of finite
type (SFTs). Many concrete dynamical systems like Axiom A diffeomorphisms can be stud-
ied by converting them to SFTs via a symbolic coding. Hence, the exact limit theorems we
establish here, apply beyond the setting in which they are introduced. To illustrate this, we
end this section with an application of our results to co-compact group actions on H?Z.
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5.1. Context and results. Let us recall some facts about SFTs without proof. [10, Chap-
ters 1-4] contain a detailed account of the theory as well as proofs of the following.

Let A be a k x k matrix with only 0 and 1 as entries. Define
Yig = {f: (xj)jeZ IS {1,2, .. .,k‘}, A(Ij,l‘j_H) =1, Vje Z}

We consider the shift o : ¥4 — ¥4 acting on a sequence by moving elements to the left by one
position, i.e., O’((xn)nez) = (Tpt1)nez. Then, (0,%X,) is called a subshift of finite type (also
known as a topological Markov chain). Define the period d of A by d = ged{n | 3j, A}, > 0}.
If d =1, A is called aperiodic. Also, A is called irreducible if for all 7, j there exists N such
that Af-}f > 0. We assume from now on that A is irreducible and aperiodic. Let 5 € (0,1).
We endow ¥4 with the metric d given by d(Z, %) = 8~ where N € Z is the supremum of the
nonnegative integers N such that z; = y; for all |j| < N. For ¥ € X, we write Z = (,)n>0
and Z_ = (xp)n<o-

Take Fj3 to be the set of complex valued Lipschitz continuous functions on ¥4. We
endow this space with the norm || - || = | - |« + | - |3 Where |h|o = supy, |h| and |h|g =

SUDzy %. Then, (Fjs,| - ||3) is a Banach space such that || - [[s—bounded sets are

| + |oo—compact.

Definition 5.1 ([10]). Let ¢ € Fz be real valued. ¢ is said to be generic if the only solution
H € Fs to H(o(%)) = e’ D H(Z) is a constant H and t = 0.

z

Definition 5.2 ([15]). Let ¢ € Fy be real valued. ¢ is said to be strongly non-integrable
if there exist 0,4, §? with §* = §% and a neighbourhood of y*, U, such that for all 7* € U
with T~ = g there exist 2%, 2%, with 72 = y*, 72 = = =97, B =7,
dzt, %) < BN, d(23,7Y) < BN and |2, 2%, 2%, 7Y > 68N/2  where ¢ is the temporal

distance function

@(fl,f2,53,f4) — Z[(b(akfl) o ¢(0kf ) o (b(akfg) + ¢(ka4)] .

kEZ

Note that strong non-integrability implies genericity, and due to ideas in [13, 14, 5],
the strong non-integrability condition will be the key to ensure Assumptions (C') and (D).
Moreover, this condition is satisfied by an open and dense subset of observables ¢ of Fj.

Given a real valued g € Fj, called potential, we consider the unique invariant probability
measure v, on Y4 which is o(")-invariant and maximise p ~ h,(cH)) + sz gdp where

h,(c)) is the entropy of o with respect to w. This measure v, is called the stationary
equilibrium state of g, or Gibbs measure with potential g.

Theorem 5.3. Let 5 € (0,1). Suppose (0,2 4,v,) is an invertible subshift of finite type with
an irreducible, aperiodic A, endowed with a Gibbs measure, vy, with potential g € Fs. Let

¢ € Fg be X—valued. Assume ¢ is vg-centered and set S, := Z;é ¢ oot

o /[fX =R and ¢ is generic, for any probability measure P absolutely continuous with respect
to vy having density ¢ € F 5, then the order 1 Edgeworth exapnsion for S, exists. If,
moreover, ¢ is strongly non-integrable, then all order FEdgeworth expansions for S, exist.

o I[f X =R and ¢ is strongly non-integrable, or if X = Z, then, for all ¢, € F /3, and for
all g € Sg+2 where ¢ > 0, both local and global expansions in the MLCLT of every order
exist.
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Proof. Up to add a constant to g, we will assume without any loss of generality that
fEA gdv = —h,(0). Recall that SFTs fit the framework of Section 4.1 with (F,A) = (0, 4)

and with (£, A) isomorphic to (¢, ¥%), where
EX = {f: (xj)jZO Iy € {1,2, .. .7]{3}, A(ZL‘j,ZL‘j+1) = 1, Vj S N()},

and 0 ((#n)n>0) = (Tp+1)n>0-
Fj corresponds to Bg)) in Section 4.1 with §(z,y) = inf{n > 0 : z, # y,} and ||f|z <

| f ||(50) < 2||fllg- The corresponding function spaces on 37 are defined analogously, replacing
Z by the set of nonnegative integers, and are denoted by a superscript +, and (Fy, || - ||) is
also a Banach space. It corresponds exactly to (Bg, || - ||5,) of Section 4.1.

With the above identifications, (A, F,v) = (X4, 0,m) satisfies the condition (H0) of Sec-
tion 4.1. Hence, Assumption (A)(1) follows from Lemma 4.1, which ensures the existence of

b € F\J/FB and of x € F /5 such that ¢ = ¢ op+ x — x o F. Assumption (0) holds true with

(fa M: :u) = (F7 Av V) = (Ua Ez‘h Vg) and (F7 A? D) = (0-+7 E:’ ﬁ*(”f])) with ﬁ(f> = (xn)nZO
and p = ¢d. The non-arithmeticity is ensured by the genericity of ¢.

It is known that p.(v;) corresponds to the Gibbs measure on X7 associated to a potential

g€ F\J/FB such that ¢ = gop+h—hoF with h € F, ;5. Thus Assumption (H1) of Section 4.1

holds also true with this g. Condition (A)[r|(2) then follows due to the second part of
Lemma 4.1. It is clear that (L;s)ser is an analytic family of bounded linear operators on

F:/FB (see Lemma 4.6). So we have A[r|(3) for all 7.

Assumption (B)(1) follows from the Ruelle-Perron-Frobenius Theorem (see [0, Theorem
2.2]). The aperiodicity and irreducibility of A implies that the system is exact. Combining
all this with the genericity of ¢ and F\J/rB — L*(7), we have the hypothesis of Lemma 4.5,

and hence Assumption (B). This ends the proof of the first part of the first statement.
Assume from now on that ¢, and so ¢, is R—valued and strongly non-integrable. Due

to the work of Dolgopyat (see [13, 14]), the strong non-integrability condition implies the
existence of C| sg,a’ > 0 and v € (0,1) such that
(5.1) Vls| > so, [ILLNps < Cmin{y"|s|*', 1} .

Without loss of generality we assume o/ > 1. Fix a > 0 such that ¢ =1 > a(l + %) Due
to Lemmas 4.8 with ¢ = (o/ — 1)/|log(v)| and ¢(s) = log |s|, this ensures Assumptions (C')
with By = Fz, By = L™ and a; = 1. Also (D)[r] holds for ¢ € Fj for all r. When ¢ is
Z-valued, Assumptions (A)[0](3) and (B)(2) imply Assumption (C') with @ =0 and «; = 1.
This establishes the rest of the theorem. 0J

5.2. An application to co-compact group action on H2 Let I' C PSL(2,R) be a co-
compact or a convex co-comapct group acting on H? via linear fractional transformations.
This action can be coded using a subshift of finite type (X}, 0") by associating it to finite
directed graph whose edges are labelled by the generators of I' and their inverses. Fix y € H?.
Then for a sequence of infinite path # € X7 in the associated directed graph, there is induces
an action on OH? via the map 7 : ¥ — OH? given by 7(Z) = lim,, 00 Gu,_, - - - GuoY-

Let g : ¥ — R be a f—Holder continuous function and j, be the unique Gibbs measure
associated to g. Then there is an associated measure 7*(p,) on OH? which is absolutely
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continuous (same measure class as the Patterson-Sullivan measure) when p, is the measure
of maximal entropy. For a detailed discussion about this construction and claims we make
without proofs, we refer the reader to [14].

Our results imply the existence of Edgeworth expansions, local and global expansions
in the MLCLT for S, = ¢(&) + --- 4+ ¢(0" ') = log (g, , ---95,) (7(Z)) where ¢(Z) =
log |[(g5g) (w(Z))] — Ay and A, = limy, o0 2d(2, Gay - - - G, @) (as a pra.s. limit). The associ-
ated operators L;s acting on Fj satisfy Assumptions (A)[r], (B) and (D)[r] for all r (recall
that we are in the case (F', A, 7) = (f, M, p)). In particular, given § > 0, there exist C5 > 0,
05 € (0,1) and v > 0 such that for all |t| > 0,

€241y < Csmin(B]e[. 1).
As a consequence, apart from the results in Theorem 5.3 (which is a significant refinement

of [14, Corollary 1.2], prescribing all order asymptotics), we have the following statistical
results due to [23, Section 5].

(1) Moderate deviations: Then for all ¢ € (0,7), when 1 < z < Vco?Inn,
17 e S | 108 (g, ) (1@)] — A < 2V
n 300 1—M(2)

(2) Local limit theorems: Let r € N. Suppose €, — 0 and £,n"/? — 0o as n — co. Then

NG

P

= 1.

p{7 € 55| 108Gy - 9an) (T@)] = 1A € (1= 20,0+ 2,)}

1 u?
- e 2% + O(min(n~ %, e,n ™)) + o(e,'n ")
V2ro? "

as n — oo, uniformly for v € R. Thus, we recover [11, Theorem 1.3] but with more
precise asymptotics.

6. YOUNG TOWERS

6.1. Context. In [17], Young considered hyperbolic dynamical systems (f, M, 1) and mod-
eled them using towers by considering a subset A = |J,, Ai C M with a product structure
and with a return time R : A — N* (that is, Fi(z) := fE®(z) € A for all z € A) which is
constant equal to some positive integer r; on each A;. Let us insist on the fact that R is a
priori not the first return time to A. We will recall only the properties we will use.

Recall that the tower (A, F') is given by:

e The space A is given by A = J;5 (Ai x {0, ...,m — 1}),
e The map F' is given by F(zo,l) = (2o, + 1) and F(zg,7; — 1) = (f"(x),0) if zg € A;
and [ < r; — 1.

For any integer [ > 0, we write A; for the I-th level of the tower A, i.e., A; = (U,,,,5; Ai) X
{l}. There is an SRB measure v on A such that (F,A,v) is an extension by p : A — M
of the initial system (f, M,u) with p(z,l) = f'(z). We consider also the quotient tower
(F,A,7) obtained from the hyperbolic tower (F,A,v) by quotienting along stable curves,
which is a factor of (F,A,v) by p : A — A (which is a projection along the v* on ¢ x N
where 7 is some fixed unstable variety). We set A; := p(4,) for the I-th level of the quotient



44 KASUN FERNANDO AND FRANCOISE PENE

tower A. Recall that each A; admits an at most numerable partition in {A; ;; j} (such that
{F7Y(Ap1); 7} is finer than {F~YA;11) N AL 5)).

Let us consider the separation time $(z,y) corresponding to the infimum of n such that
F™(x) and F™(y) do not belong to the same atom of the partition {A;;; [,j}. Recall that
these systems fit the general scheme of Section 4.1 (in particular, Assumptions (H0) and
(H1) therein).

The following family of complex Banach spaces of functions defined on A is used in [47]:

Bs.={h:A— C||hlpge < c0}.
This family is labeled by (8,e) € (0,1) x [0,00); where || - ||gc is defined by ||h|z. =
|7le00 + [Pl e.Lip with

h(y) — h(y/'
(6.1)  |hleno = supe ||z, lloc and |hlsepp = supe™  sup w
l l,j y,y’eﬁl’j 5 ’
We define the height function ¢ : A — N given by
lx,l)=1.

This function will play an important role in our exposition. Observe that Bs corresponds
to the set Bg of Lipschitz functions considered in Section 4.1 and that Bg. corresponds to
the set of functions h : A — C such that e=‘h is in the Lipschitz space Bs = Bg.

Due to [47, Lemmas 1 and 2], there exist 3y € (0,1) and a function g : A — R which is
null outside Ay such that (4.3) (of Assumption (H1)) holds, i.e.,

ledW)=9(@) _ 1]

_— = = g(Z)

(6.2) Cy: my'i(liz)>l ) < oo and Liy(x) Z eI (z),

T 0 z€F~1(z)
with £ the transfer operator associated to (F,A, ) (see [17, Lemma 2 and Section 3.2]).
(4.4) of Assumption (H1) also holds.

Moreover, there exists ¢; > 0 and ¥, € (0, 1) such that

(6.3) P(R>j) <]
Note that the first part of (6.2) implies that
(6.4) S,y)>1 = o—CaBy ™" < 9@)-90) < CaBs ™"

Also there exists €y > 0 such that the transfer operator £ of the quotient Young tower
(F,A,v) is quasicompact on By, for every ¢ € (0,50] and every 3 € [f, 1).

The assumptions made by Young on €y can be expressed as follows in terms of the height
function ¢: first, e € L*(v), and second, m(e‘1p-1(a,)) < 2m(Ag) where m is the reference
measure used by Young and which is equivalent to v with a density taking values in a
compact subset of (0, 00).

Here, we relax these two conditions as well as Young’s assumption that £ > N for some
N large enough by assuming instead that
(6.5) eV e L'(v),

which ensures that Bg. < L'(7) for any e € [0,£0]. Moreover, we assume from now on that
ged(r;) = 1, which will imply that 1 is the single dominating eigenvalue of £ and that it has
multiplicity 1.
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Below, for ¢ : A — C, we set ¢ : A x {0} — C defined by ¢(z) = S0 § o F(z).

6.2. Main results. Our goal is to study the case of possibly unbounded observables ¢.
We first state a result in the case of the expanding Young towers for possibly unbounded
observables satisfying integrability conditions close to the optimal ones in the i.i.d. setting.

The more natural unbounded observables ¢ : A — R are the ones belonging to a Young
space Bg, ,. In order to study these observables, it is natural to define the following new
spaces (see the begining of Section 6.5) that generalize the Young spaces:

BB,E,&’ = {h : A — (C| ||h||5757€/ < OO}
where || - || g 18 defined by ||h]|ge = |hleco + B

3.’ Lip, SO that Bg. . coincide with Bg .

Theorem 6.1. Consider the expanding Young tower system (F,A, ) with Bo,eq satisfy-
ing (6.2) and (6.5). Suppose this tower has exponential tails and satisfies ged(r;) = 1. Let
¢ € Bpg, e et be X-valued and v-centered with max(5y, 1) < e~1, gy,el,e > 0,7 € (0,1),

e+ (r+2)er +2veh <o and By < B < e . Set S, =S 1o o FE

o If X =R and ¢ non-arithmetic, for any probability measure P absolutely continuous with
respect to v ¢ having density ¢ € Bgy . e, then the order 1 Edgeworth expansion for Sy
exists.

o If X =R, &] < e, (A, F,é,R, B1) satisfies AAE and o > o (with o as in Proposi-
tion 4.13), or if X = Z, then for all ¢ € By . .o and for all § € LEO*E*E%M@) (for
somen > 0) and for all g € 33*2 with ¢ > (2a+1) (1 + g), both local and global expansions
in the MLCLT of every order exist.

Remark 6.2. Observe that the condition on ¢ of Theorem 6.1 is very close to the optimal
moment condition in the i.i.d. setting (existence of a moment of order r + 2).

First, since gq satisfies e} € L(0), Bg, o, 1 C L%(D). The condition (r+2)e; +27ye] <
o implies that eq/e1 > (r + 2) 4+ 2v&! /e1.

Second, suppose €' admits a critical integrability order kg, i.e., €' admits moment of every
order strictly smaller than kg and no moment of order strictly larger than ko. Such a kg exists
for exzample if e7®™ < Dy(R > m) < e~ for some positive a,b. Then if (r + 2)e; + 2ve| <
ko < (r+2+0)e1 (we can take for example €] = 0), the space Bg, ¢, o is contained in L™(v)
but not in L™ ().

Now, we state an analogous result for the initial map (f, M, 11). Recall that, by the Young
tower construction, a function ¢ : M — R being Holder continuous, translates to ¢ € B, 3,
and ¢ o p € Béo) for some § € (0,1) (see (4.1)). In the next result, we allow ¢ o p to be
in the set Vé?s)l of possibly unbounded functions h : A — C such that he=*' belongs to
the space Bg)) defined by (4.1). As we will see it later, this holds true for example when
(f, M, p) is the Sinai billiard and ¢(z) = h(z)d(x,Sy)~ for small a, where Sy is the set

of unit vectors tangent to the boundary of the billiard domain and where h : M — R is
Lipschitz continuous.
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Theorem 6.3. Suppose (f, M, ) is a nonuniformly hyperbolic map modeled as in [17] by
a Young tower with exponential tails, ged(r;) = 1. Let ¢, ¥, & : M — R with ¢ : M — X
non-arithmetic and p-centered. Set S, := Zz;é ¢ o fF. Assume

e cither that ¢,v,& are Holder,
e or that there exist 3,y € (0,1) and some &, > 0 such that max(By, /B) < e, (r +2+
27)e1 < g9 and By < B% < e ° such that
popeV? popeV? | copev® |
’ B2 .e3

B2 g2
where €2 + 3 + (1 + 2 + 27)e; < &.

Then, for any probability measure P absolutely continuous with respect to v ¢ having density
Y, the order 1 Edgeworth expansion for S, exists.

If, in addition, Assumption (C') holds true (this is true with oy = 1, for example, if X = Z
(while dropping the assumption of ¢ non-arithmaticity), or if (A, f, 5, R,3%) is AAE and
o > of with o as in Proposition 4.13), then for all g € F&* where ¢ > (20 + 1)(1+ ﬁ)
both local and global expansions in the MLCLT of every order exist.

6.3. An application to Sinai-Billiards. For completness, we provide an illustration of the
above result in the context of the Sinai billiard with finite horizon. Consider a finite family
O, ...,Or of I open convex sets in the torus T? = R?/Z?, with pairwise disjoint closures
and with boundary C®-smooth, with non null curvature. The O;’s are called obstacles. We
consider the billiard domain given by Q := T?\ UZ.I:1 O;. We assume the horizon of the
billiard to be finite, which means that the projection on T? of every line in R? intersects
at least one obstacle O;. The space M of configurations of the billard system is the set of
(q,7) € Q x S* where ' is a post-collisional vector, i.e. is a vector pointing inward into @, i.e.
' is such that (77,, v) > 0 where 7, is the unit vector normal to 9Q at ¢ directed inward into
Q. The map f: M — M maps a post-collisional vector (¢, ) € M to the post-collisional
vector at the first collision time s > 0 such that (¢ + st’) € dQ. This maps preserves the
probability measure g absolutely continuous with respect to the Lebesgue measure, with

' o (i)
density (¢, ) — 2|§Q| :

Let us write Sy for the set of (¢,7) € M corresponding to vectors tangent to 0Q), i.e.
So = {(¢,v) € M : (7, ¥) = 0}. Observe that f is discontinuous at points of f~(S;). The
presence of these discontinuities and the fact that the differential explodes at these points
complicate seriously the study of this system. Nevertheless f™ is C* from M\ J;_, f7"(5)
to M\ Uy f*(S0)-

The ergodicity of the Sinai billiard (f, M, u) has been proved by Sinai in [15]. Since this
seminal work, further stochastic properties of this system have been studied. Central limit
theorems have been proved in [3, 7]. Exponential rate of mixing for Holder observables
has been proved in [17]. Using the tower constructed by Young in [17] to model the Sinai
billiard, Szdsz and Varji established the local limit theorem in [16]. We refer to [9] for a
general reference on billiard systems.

Example 6.4. Assume (f, M, u) is the Sinai billiard system with finite horizon as described
above. Let ¢ : M — R p-centered and non-arithmetic be such that

(66) |¢($)| < C(d(x, S()))_a and |¢(:L’) — ¢(y)| < Cd($7y) max(d(x, SO>_1_Q, d(y, SO)_l_a)-
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For any integer v > 0, if o is small enough, then the hypotheses of Theorem 6.3 (except
maybe Assumption (C)) hold true for some parameters (,7,e1 and so the corresponding
conclusions.

Observe that, if h is Lipschitz continuous, then ¢(-) = (d(-, Sy)) “h(-) satisfies (6.6).

Proof. Recall, from [17], that, for every z,y € A, $o(z,y) < s1(p(z),p(y)) where $y has been
defined in (4.2) and where s;(z,y) is the infimum of the integers n > 0 such that x and
y do not lie in the same connected component of M \ U;__, f7%(So). By hyperbolicity of
f (see for example [15, 9]), there exist ¢y > 0 and ¥y € (0,1) such that, for all z,y € M,

d(z,y) < 50531(1"9). Finally, we recall that there exists ¥ such that for every 9, € (1, 7], Young
constructed in [17, Section 8.4] a tower (F, A, v) with base A C M on which d(f*"(-), Sg) >

'5151_” for some ¢; > 0.
Now, let us study ¢ o p. Observe first that for any (z,[) € A,

$(p(x,1)) = ¢(f'x) < C(d(f'(x), )™ < C (515?) <o

Moreover, for every u € (0,1] and x,y € A such that $y(z,y) > 1,

6(p(2)) — 6(p(y))| < Cmin (2 max d(p(=), S0)) ", d(p(x), p(y)) max d<p<z>,so>-1-a)

ze{z,y} z&{z,y}

< C2'7" max d(p(z),S0)) " *d(p(z), p(y))"

z&{z,y}

< C9l-u (511;14(@) T g 6@

T s ()
u )
oY .

<2 (53,

Thus the function ¢ o p is in the space Vé?e)l with g = 58 and el = 5}”“.
It remains to prove that, if a is small enough, the conditions on ,e1,~v of Theorem 6.3
are satisfied for a good Ch01ce of tower and an appropriate adjustment of parameters. Let

us recall the dependences between 190, 191, €0, Po: 190 and [y are related to the billiard system
(f, M, ), U1 > 1 can be taken as close to 1 as we wish; the tower (F,A u) and so gg

depend on the choice of ;. Let v € (0,1] small. We fix 9, € (1,9] so that ¢ 19’"+2’L7 <1
(which implies in particular that Y9? < 1). Next choose u € (0, 1] small enough so that

~ (r+242v)u

By < VB = 5(? and e > V2" (this is true for example if e > J, 2 ). Assume
a > 0 is small enough so that

52 eC1(r+2+7) \/ggu{g?(u—i-a)(r-i-%-’y) <1,

ol ~u =~ (u+ _
B =07 <ot = e,

e > PUTEIEE) oo that (r 424 27)e; < gp.

This is possible by continuity since all these inequalities holds true for a = 0. 0J
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6.4. Proof of Theorem 6.3 when ¢, § w are Holder. We will check our Assumptions
of Section 1 with pp = oo and X, = X! = B _ (for some v € (0,1) and € < €g) and

By = B 50 and By = LP'(7). Assumptions (HO) and (H1) of Section 4.1 are satisfied (see
[17] for details). Thus, due to Lemma 4.1, Assumption (A)[r]|(1,2) holds true for every r > 0.

The fact that the £;; have essential spectral radius strictly smaller than 1 follows from
Proposition 4.3 combined with Lemmas A.4 and A.5 applied with ey = ¢} = 0. Along
with exactness and Lemma 4.5, this implies that Assumption (B) holds true. The fact that
Assumption A[r|(3) holds true for any r > 0 is due to Lemma 4.6 combined with ¢ € B, 5 5% 0
and from the following fact

VheBﬂ o VgEBB

R

o lghllys, < Nallgs gllolg

Assumption (C) follows from AAE for (/} g, R,32)if X =R. Apply Proposition 4.13 and
Lemma 4.14 with ¢ = ¢y = 1 since |(¢o F¥) ]y |f <ol gorpB " and 32, vy (Y))r; < oo.

6.5. Proof of Theorem 6.1. Before stating the proof of the theorem, let us make a few
remarks. We assume for the moment that ¢ € Bg, ., with £; > 0.

The first difficulty in the study of £;; = £(e*? - ) is that the multiplication by e*? € B, o,
does not preserve the spaces Bg, .,. Indeed it maps Bg, . into Bg, . .1, and more generally
maps By . into Bgy . cine, for any v € (0,1] (since €% € Bg, o, C Bgyg.e,). This remark
has led us to the introduction of these new Young spaces with three parameters. This first
difficulty is solved by noticing that the multiplication by €**? and then L;, acts continuously
on Bﬁ?,s,€+’ys1 .

The second difficulty is that s — L;, is not continuous from R to L(Bﬁf,a,a—&—wa)- But it
is continuous from R to L(Bgy c cire;, Bgo eer cqne, +ev) (for € > 0), and more generally, it
is C" from R to L(Bgy ¢ cive; s Bgy ere) 1o etrer4ye14e) (for € > 0). So we cannot hope our
Assumption (A) to be true with a single space. However, our Assumption (A) is true with
a double chain of spaces. Let us assume for the moment the following result, the proof of
which is provided in Appendix A.

Proposition 6.5. Let (F,A,v) and By, &q be as above. Let ¢ € Bg, ¢, e with max (B, £1) <
e and 0 < g1. Let e,¢” > 0 and v € (0,1) such that € + (r + 2)e; + 2ye} + " < &
and By < B] < e~1. Then Assumptions (A)[r](3,4) and (B) hold true with X; = Véf) and

L= VIS:) and py 1= = 50%, , where we set
Ple) ap =k ([ 1+ —H and by, = ai + —6//
= ~ / . :
p Bay et0e1 e10e147e1s Ok (r + 3)e, k T or 4+ 3)e

Moreover, the L;s are quasicompact on the Vés)for every 6 € (0,7 + 2+ i—;’]

Proof of Theorem 6.1. Since p = p = Id, Assumption (A)(1) is automatic with y = 0. Thus
h,(jiH = Ho F* and we can take k = 9% = 0 (the term appearing in (1.3) is now null and the
term appearing in (1.4) is dominated by a constant). Our assumptions ensure that i € &}
and £ € (XT(I%) if ¢” is small enough since XT(I% C LfH”;i())ElﬂLf”(D). This combined with
Proposition 6.5 ends the proof of Assumptions (A) and (B).
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Assume now that X = R and let us prove that Assumption (C') holds true with oy = 1,
By = Xy and By = L™(v) if (A, F,¢,R,(]) is AAE. Indeed, ¢ € Bg, ., . implies that
¢ € L*(A,p) (since g1 < gp) and

ri—1 ri—1

= yelr
61 eVe1’i

- k ke! oY(rj—1—Fk)
o, [, < Z| $o ¥, Z\(b\m L€ F 8 SW\%QLIP

and 1% € L'(A, o(-|A)) (since ve|, < &y). This allows us to apply Proposition 4.13, which
combined with Lemma 4.8, ensures (with the notations of Section 4.3.2) that || £ <

18 zuHB—>L0°
O™ TTetogs Finally we conclude by applying Lemma 4.14 with ¢(I) = e ¢(I) = elEFre)!
(so that Z = &), po = = > py, v and § = f3]. Indeed the quantity appearing in (4.22) is
bounded by

ri—1

I — / —k—1 - /
1013, o pip O P (Y3) Y ke H BT <6, o pipBa(CeT) < 00,
k=0

J

€ €0
since €] < g9. Moreover ¢(¢) € Lﬁ(’) and ¢ (¢) € L=+ (v) C L' (v) since € +7¢)] < &g. Our

assumption on £ ensures that £ € Leo et (7). Thus Assumption (C') holds true for some and
a; = 1. We conclude by Lemma 4.8 that Assumption (C') holds true with any ¢ > 0. O

6.6. Proof of Theorem 6.3 when ¢ is not Hoélder. Let ¢ € Vé?gl. Due to Lemma 4.1
and y € V(O) B such that

el

applied to ¢e %1, there exist two functions ¢ € Bs,.— .

€1,€1

p—x+xo F ¢ o p. Observe that both y and ¢ are dominated by a constant times e
which is in L7 (7). Thus Assumption (A)(l) hods true with rq : —2>7r42y.

In view of Condition (A)[r] with py := =, we set f; = \/_ : Take g,€” > 0 such that

e3<e<eg—er— (r+2+2y)e anda”gs —e—¢ey— (r+2+2v)e; and By < B < e L.
We set

Ve =B )
( 0 B etberet(O+)er oc[o,+2+57]

and X; = V(S? and Xj(ﬂ = VIS;) with

" "
9

€
=k|14+-—7— d b = —_—
ag ( + (r+3)51> and O ak+2(r+3)51

Assumption (A)[r]|(2) follows from Lemma A.7 and from our assumptions on ¢, 1, £ setting
q(§) = 2+, q(¥) = 2 + v and using the fact that e3 < e +¢” and that e < g —e — (r+
2)81 - 8”.

Assumptions (A)[r](3,4) and (B) come from Proposition 6.5.

For Assumption (C'), we proceed exactly as in the proof of Theorem 6.1 since ¢ € Bz
with By = A and By = LP'(v) with p; € (1,22). Indeed ||hk7$7§||L%) < ||§||L%g < oo and

'€

€9 + € < gp and the estimate on 1 has already been proved (see again (A.19) and (A.20)).
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7. RANDOM MATRIX PRODUCTS

As the last example, we describe briefly how our results apply to random matrix products,
and more generally, to random walks on split semisimple Lie groups. The ideas we use are
from [0, 25, 36]. We refer the readers to those references and the references therein for the
historical development of the subject as well as for the complete statements of the results
we use and their proofs.

Let V be a d-dimensional R-vector space with d > 1. Fix a scalar product on V and let
the associated norm be || - ||. Write X := PV for the projective space of V' with a suitable
Riemannian distance d(-,-) (as introduced in [0, Chapter II]). Given x € V and a sequence
(gn)n>1 of i.i.d. random variables with common distribution p and with values in G := GL(V)
the group of d x d invertible matrices over V', we are interested in the long term behaviour
of (gn ... g1 T)n>1, and more precisely of (S, (z)),>1 with

g 01 - 2
Sy, = Jlog —~——~— .
(w) = log =

A local limit theorem has been established in [25] under the following assumptions.

e Suppose p has an exponential moment, i.e., there exists § > 0 such that

/ max(lg]), g~ )? dp(g) < oo.
G

This implies, among other things, the existence of the two following quantities: the first
Lyapunov exponent defined by

1
(7.1) A= lim ~Eflogllgs ... gull]

and the asymptotic variance

1
0 = lim ~E[(log lgn .- o] = n)7].

e Suppose the semigroup generated by supppu, I',,, is strongly irreducible, i.e., no finite union
of proper subspaces is I',-invariant, and contains a proximal element i.e., g € G such that
g has a simple dominant eigenvalue.

Recall that the quantity A; given by (7.1) is the long term average behaviour of the
norm-cocyle in the following sense: For all x € PV, lim,_, %Sn(x) = )\; almost surely
(This convergence happens also in L' uniformly in ). Therefore, in order to consider a(n)
(asymptotically) centered observable, we need to replace ¢ by ¢ — A;.

Under the assumptions o2 > 0, the non-degenerate CLT takes the form:

(72)  lmP (%[sn@) “an] < z) _ mi? /_ Oo exp (-%) dy = M, (2)

uniformly in x € PV.

Our next result provides more precise estimates.

Theorem 7.1. Suppose {gn}tn>0 is a sequence of i.i.d. random matrices in GL(V') where
V' is a d—dimensional R—uvector space with d > 1. Suppose the common distribution pu of
the g, has an exponential moment and that the semigroup generated by suppu s strongly
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wrreducible and contains a proximal element. Let x € PV. Then there exists a polynomial Py
(which depends on both x and p) such that

P <% [Sn(x) — n)\l} < z) =N, (2) + mil(z)% + O(n—1/2)

uniformly in z.

If moreover p is supported and Zariski dense in a connected algebraic subgroup of GL(V)
and if € + X — R is Hélder continuous, then there exist polynomials Py (which depend on
both x and 1) such that

Sn(x) —nAy N D) -
P (T < Z) =N,(2) —i—’ﬁ#(z)z ;k/2 +o(n"/?)

j=1
uniformly in z, for all v > 0 and there exist polynomials Ry and Q) such that

B (0(50(e) ~ nA)E0u 00 0) = D 1 [ Vi) BT d= 4 O ) ol ),

for all g € & where ¢ > 0 and

/2
VIE (g(Sa(@) = M) €(gn - g1 2) = 3 % /R 9(2)Q;(2) d= + Gl (g) - o(n™"?)

for all g € F1+3 where ¢ > 0.

Proof. Observe that
E (5 @mme(g, gy - 1)) = L1(6)(x)
with
Luh(a) = [ 00 2h(g - 2) duly)
G

with ¢(g,2) = lg-z

]l

This is enough to follow the proofs of our main theorems up to checking Assumptions
(a) — (6) with a single space. This combined with lim,, o ~E[S, — n)A] = 0 and the
definition of o2 which will lead to the asymptotic expansion of the dominated eigenvalue.

We study the action of the family of operators (L;s)seg on the space (B.(X),|| - ||-) of
e-Holder continuous functions endowed with the norm || - || = || - ||oc +| - | Where

h —h
’h’a ;= sup ‘ (y1> (y2)|
Y17£Y2 d<ylay2>€

is the the Holder constant of h. This Banach space is compactly embedded in C(X) —
L*>*(X). In particular,

(7.3) |E (e"Cn@meg (g, g @) | < ILLINIED-

From the results in [25, Section 2], we have that s — L, is analytic and that there exists
d > 0 such that for any |s| < 9,

Ll = N211s + R},
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with, for all j, supj s [A"(R:)Y)||. vanishing at an exponential rate, with \;; O with
Xis = 1 — 252 + 0(s?) with 0® > 0. In particular

(ALE (5 ¢ (g, gy - 2))P = TPE ()| < sup [[(AF"R)D €]l

|s|<o

sup
|s|<é

This ensures («) with B; = (H%) (€))(z) up to decrease if necessary the value of § to get
the second bound. Morever (f) is also proved in [25] via the aperiodicity of ¢ ensuring that
SUDscs< i || L] vanishes at exponential rate for any 0 < § < K. This gives us the first part
of the theorem.

The recent work [30] obtains an estimate that imply our Assumptions () and (9) using the
techniques introduced by Dolgopyat in [13]. More precisely, let K < G = GL(V') be algebraic
and connected, and suppose that p is supported and Zariski dense on K. Then [36, Theorem
4.19] yields that, for ¢ small enough, there exists C,c, K > 0 such that for all |s| > K,
L% < Cls|**e~" which gives (§)[r] for all r and also, due to Lemma 4.8, Assumption ()

holds true with a = 2¢ and a7 = 1. To conclude, take € such that ¢ > 2¢ (1 + %) O

In fact, one can replace ¢ by any non-arithmetic continuous function on X, and obtain
the first order Edgewroth expansion for its Birkhoff sum. More generally, one can consider
any p—contracting, strongly irreducible and measurable action of a Polish semigroup G
on a complete separable compact metric space (X,d). Then the assumptions («)[r| for
= ¢ =1 for all r and Assumption () hold. See [25]. Hence, the first result Theorem 7.1
can be further generalized. It should be noted that the recent work [32] proves first order
Edgeworth expansions in the case of GL(V') while relaxing the assumption of exponential
moments but they do not discuss the more general setting of Polish semigroups.

Higher order expansions cannot be extended in this manner because the results of [36] hold
only for the specific choice of the norm cocyle ¢. Yet, the results on higher order expansions
can be generalised in a different direction to include group actions groups of real points of
connected semisimple algebraic groups defined and split over R. See [5] and [36] for details in
this direction. In order to keep the exposition elementary, we decided to present the results
for subgroups of GL(V).

APPENDIX A. ADDITIONAL PROOFS FOR YOUNG TOWERS

This appendix contains the technical results and proofs for Young towers. It completes
Section 6.

A.1. Assumption (A)(3,4) for expanding Young towers. Here, we focus on the (quo-
tient) expanding Young tower (F,A,7) as in Section 6.1 along with the notations therein.
Our goal is to study the family of operators (L5 = L(€"*?:)),cr when ¢ € B, ., ., is a real
valued centered observable. In particular, we will prove the quasi-compactness of these oper-
ators on appropriate Banach spaces thanks to a Doeblin-Fortet inequality (Lemma A.4) and
a compact inclusion (Lemma A.5). We will, moreover, prove the C” smoothness of s +— L,
as a function with values on some spaces of the form £(Yy, V1), with Yy # V) (Lemma A.3).
We end this section with the proof of Proposition 6.5.

Let By € (0,1) and &g be as in Section 6.1. Recall that Bs. o is the set of h : A — C such
that ||h]|ge < 0o where || - ||gze is defined by ||h||ge = |hleoo + |Plger Lip- (See (6.2), (6.5)
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and (6.1)). Let 8; € (0,1) and &1, €] € [0,00). We consider a real-valued centered observable
¢ € B ey ey Weset S, := 33" ¢o F¥ and L;, 1= L(e** ) for every s € R.

Observe that the multiplication by ¢*? does not preserve Bg, ., .-. We will see in the next
lemma that this multiplication defines a continuous operator from Bﬁl et 80 Bg, oy ey 4e and

also from By .. to Bgy . .4 for any v € (0,1] (since eisd ¢ B, 0.2, C Bgyoer)-
Lemma A.1. Let 3 € (0,1) and ¢,€',62,65 > 0 If g € Bgoer and h € B, ., o, then

gh € BmaX(B,Bz),6+62,maX(€+€’276’+€2)
and

th||maX(,8ﬂ2),€+52,max(6+€’2,a’+a2) < ||9||6,a,a’”h|’62,52,5’2 .
Proof. First, observe that

|97)e ez 00 = sUP €™ )| (gh) sl < sup e lallglAllloosupe 2215, lloo < 19le0olBlea,oc

Next, observe that for every [, j and every y,y' € Ay,

[(gh)(y) — (gh) ()| < 19| 1h(y) = ()| + g(y) — 9(&")| | (y)]
< |g|e,oo€l€|h|52,eg,LipB§(y’y )615/2 + |g|ﬂ y Lipﬁé(y»y/) l€/|h|€2 ooelez

e Lip| P les,o0) (ax (3, Bp) ) ") el max(retsctes)

< (|g|6700|h|62,€’2,Lip

from which we conclude. 0

Lemma A.2. Let f € (0,1) and e,&" € [0,&0]. £ acts continuously on B ..

Proof. Assume first that [ # 0. On A;, F~!is well defined by F~Y(z,l) = (z,l — 1) and
L(h)(z,l) = h(xz,l — 1). Therefore

(A1) 018 < e hls e < e

and

[y) — ()l v _ 5. -
A2 |LWlsl,. <Besp  sp PO e gy
- Z|BE e Uy ey j: 8(yy)>1 AR e

Now, we study the case [ = 0. It follows from (6.2) combined with (6.4) that

1

‘ (h )|A0 coo = < sup Z |69 (z) ﬁ—1(x))|
ZEAO i
1
< sup eg(Fi (x))‘h‘g,ooes(mfl)
=0
(A-3) < |h Z e / a(F (w) do(y)esr
. < oo SUP — cI(F; 5 (y)etr
€ J;EAO p ]/(Ao) _

where F; stands for the restriction of F to p(A; x {r; — 1}). But

/A D dnty) = / C(Lpr5,) () dily) = D(F ().

A (3
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Combining this with (A.3), we obtain

eCa eCa

- Ffl A e(r;—1) — el .
D(AO)XZ:V< i (A()))e |h|E7OOﬂ(A >H€ HL ()

Note that ||e*||11() is finite since ¢ < g¢. Finally,

(Ad)  [LD)]aglece < [Pless

I WDR(F ) — e h(y)|
B3E @) )1

sup Z sup

‘L(hﬂﬁo,j }676’»”? = INY, 7;61'571(A )
g J 0

< 5 sup Z (eg )|h|ﬁ g’ Llpe (n ) -+ eg( m) Cg’hls 1))
IEAO i
<p <‘£(68’€)|AO e Lip + ecg}ﬁ(edﬂ&)‘a,oo |h|57oo>
6é§ el el
(A.5) < 5@ (He 1) [Plgernip +€ gﬂe 1) |P]e, oo)

where we used (A.4) with both € and &’ together with the fact that ¢,&’ < ;. We conclude
the proof of the lemma by gathering (A.1), (A.2), (A.4)and (A.5). O

Lemma A.3. Let v € (0,1) and € > 0 be such that Sy < ] and ¢ + ve} < &9. Then
(Lis)ser 18 a family of bounded linear operators on Bgy ceqner - Moreover, for any nonnegative
integer v and any " > 0 such that € + rey + ve| + " < gy, s = Lis is C" from R to

‘C(B,Bl EE+vED Bﬁ?,€+T€1+E//,E+T81+’y€/1+€//) with (‘Czs)(m) = ‘Cw((“g)m : )

Proof. Since we proved in Lemma A.2 that £ is a bounded linear operator on Bgy . ./ for any

g,e' € [0,gq), it is enough to prove that, for any €, > 0 and ¢” > 0, the linear map s —

(€9 x-) acts continuously on l?’ﬁgvaﬁg_/ and is C" from R to L(Bgy ¢ cirel s Bay e+ etrer 4 +)
with the multiplication by (i¢)"e®*? as the r'® derivative. This follows from the points given

below.

e for every s € R, the multiplication by ¢*% is a bounded linear operator on By cetret;

® 5> eisdi x - is a continuous from R to L(Bgy . o, By oo max(e! e4vel )+ );

o 5 — ¢? x - is differentiable from R to L(Bgy .o, Bgy cie,+e max(e e4ne 1oy +e0) With the

derivative ige? x -

To prove the C" smoothness of s +— (eisa’ X -), we proceed by induction on r. Let us
write X = Bgy cyre; ctre, 442, Lhe step r = 0 follows from the second point above applied
with & = e + 7&]. Let r > 0. By induction hypothesis, s > €9 x . is C" from R to
L(X. g, Xeyonys,) with 7 derivative e*(ig)" x -. But due to the third point above, s ~ ¢/
is differentiable from R to L(X. 1 /3, Bepoerys, ,.+1) with derivative ige™? x -. So s ¢'5? x -
is (r+ 1) times differentiable from R to £(X. g, X yomr /3,41y With €#?(i@)™! x - as the order
(r 4+ 1) derivative. In particular, ((i¢)" ™ x -) € L(X.o, Xeyoer/zry1). It follows from the
second point above that s — €5 x - is continuous from R to L( X200 /3741, Xeterr p41). Thus
s+ €9(i)™ x - is continuous from R to L(X.0,Xererri1), and s0 s > ei5® x . is CT+!
from R to L£(X. o, Xeter ri1) With 59 (i)+! x - as the order (r 4 1) derivative, which ends
the proof by induction of the C"-smoothness of €is? x -,
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To complete the proofs, let us prove the three points above. For the first point, we observe
that ¢/ € By 0.4e; since ||| = 1 and

¥y € (0,1], [ — W] < min(2, |s| [6(z) — (y)]) < 2(Js||¢(z) — B(y)])”

and since ¢ € Bg, ey ;- Thus, the fact that the multiplication by ¢'*? is a bounded linear

operator on Bgy . .y, comes from Lemma A.1.

For the second point, due to Lemma A.l, it is enough to prove that eis? — i ig in
By e et 4o With norm going to 0 as |s — ¢| — 0. To see this, we first observe that

659 — €)1 < supe min(2, s — 16151
< sup e min(2, |s — t| |z, 00€)
I
n min I,S—H
<2 (Js = #]Bley 00) ™"
and second that, for all [,j and y,y’ € A;; and for 7/ € (0,€”) such that v/ <1 —~,
|e#500W) _itoly) _ cisdly) 4 citd)|
< min <| ci5o) _ eitq?(y)| + | ei50) _ pitdly | | eis0() _ is&(y’)| + | citev) _ eit&(y')o
< min (4,5 = 1] [8le, o™, (5] + D165, 1ip 84!
_ / —_ ’ s 7/ Y
< 4 (Is = 10lerne™)" ((Us] + 1)1l o4 10 57
For the third point, using again Lemma A.1, it is enough to prove that

cilt+h) _ eitq?(l + zhé)
h € Bﬁ?,a—l—s”,el—ws’l—&-s”

with norm going to 0 as A — 0. To this end, we observe that, for every [,j and every
v,y € Ay,

| HRIW) _ itdW) (1 1 ihg(y))| = |e™mO® — 1—z’h<z3( )

mm m1n21+ "
< AR < o G e

and that, for all € (0,1]

|/ THMOW) _ itoW) (1 4 jhg(y)) — ' THMOW) L o0W) (1 4 ihg(y')]

< min (4o ()|", 196 (6(1)) — gean(@(y))1)
with g, (2) = e/*M? — ¢2(1 + ihz). Since
gin(2) = (it + h)(e™* — 1) + thz)e'™,

we have |g; ()] < (2[t[ + [h])[h]|2|, and hence,
|61(t+h)¢>(y) _ eito) (1 +iho(y)) — elltth)o o) 4 6zt¢(y)<1 +iho(y))]

< min (4117 (G120, 2t] () BBl o™ [0, 4 ip B )

<4‘h‘1+71 (1-) ’¢| (1471)(1=7) pler (1471) (1) (2|t + |h])" |¢’€17 stwﬁl o Lip 178(yy) byl

£1,00
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We conclude by taking 71 € (0, 1] such that 0 < e171(1 — ) < £”. O

The Doeblin Fortet inequality given by the next result is a key estimate in the proof of
the quasicompacity of L;; on Bgy . ..

Lemma A.4 (Doeblin-Fortet inequality). Assume max(f5y,31) < e 1. Let T > 1,0 < 7y <
1 < 1 be such that By < B < et and vo < €o/c}. Then, for every e € (0,g0 — 271€}],
for every 6 € (0,1), there exist N and K. such that for every s € [=T,T], v € [0, 1] with
el < e and for every € € [}, g0 — 27€!],

“Ef\s[ h”ﬁ?,a,a’ i=etyel] = eHh”ﬁl &l + </>o||hH —=0 7Vh € Bﬁf,a,a"
LE0—7E] (I?)

€0

Observe that, for any h € Bgy ./, |h| < |h|c €™ € L0771 (7) since & < g9 — 7.
Proof. Note that the condition on v implies that 8y < . Let T,v,¢p,¢,€’,s,h,0 be as in
the statement of the Lemma.
e Assume first that [ > N. On A;, F~V is well defined by F(z,l) = (z,l — N) and

LY(h) = (e"*9h) o F~N. Thus

(L3 (h)1a,leco < LY (A1) A oo < MLV (RD)a oo™
—Ne —(I=N)e —Ne v

(A6 < Nl < N bl < Sl

if NV is large enough so that e=*0" < §/2. Moreover,

(L) 13,5700 = (LY (€°5VR)) 5, |57 Lip
isS‘N(y)h _ iSSN(y/)h /
o e y)—e Y
< BYNe Vsup _ Sup | ( >’Y§(y y') Wl
l?j y,y/eAl,j: é(yvy/)>N 1 7

el

But, for any [ > N, any j and any y,y’ € A;; such that 3(y,y’) > N, we have
S5 Wh(y) — SN (y))
< [h(y) = h(@)] + )] e h(y) = 5 On(y)|

N-1
< ‘h|ﬂl e/Llpﬁ'YS vy') ’+’h’5700615min <2,‘3‘Z‘¢ (Fk(y ))’)
3 . _ Sy —k ,
< |h|5 o LipB7 3wy e’ + |A)e 0o min (27 15| Z |¢|51753’Lipﬁl(yy) 6(l+k)sl>
k=0

A , _ N 51
k] : /8
< |h|ﬂ;f’§’7Lip Ys(y Y )elgl + ’h’&mels min <27 ’8‘ |¢|,81723,Lipﬁ1 v,y )l—ela’1

51 ! et — 1
oy B Ne N
< |h|/5'y ’Llp/BWS(yy o +2|h|eooels| |7|¢|61,€ ,Lip WS(yy)mewal
1
/81_ Nellny A(?’)l/
(|h’67 /L1p+2|h’|600| |7|¢|B1€1’Llpm ?Syy 68
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Therefore, for [ > N,

G_EN|T|’Y|¢|181 51 Lip

(A7) |(£g<h))ﬁl|ﬁy,a’,Lip S ﬁ¥N€_€/N|h|,@¥,E’,Lip +2 —1 ¢t |h|soo = “h”,B1 g,e’ )
(B et = 1) 2

NI B )
. . Yo . —e'\N < Q ,Lip
if IV is large enough so that (5;°e™%)" < 5 and 2 (L1 1)”1)

e Assume from now on that [ < N. We will use (6.2). Then
(L ()4, )00 < sUp Z |57 () gisSN () ()|l

TER 2PN ({a})

(A.8) <sup Y SO n(z)le

TERL e PN ({a))

IN
IS

Note that for any € A; and any z € FN({z}), F'(z) € Ay and S%(2) = S%_,(2).
Moreover, due to (6.4), for all z,y € A; and 2 € F~V({z}),

Bé(zw)*—l

(A.9) SNt =S L (Fn 1 (FT1 ) < oCo S5 8"V (09 gy

where Fii!, _is the inverse branch of FN~! sending z to F~!(x). So for any y' € Fy!, (7o),

_ _ C=
eszgvfl(z) S 6519\771(9/)617%0 .

Thus,
eS;_]\’fl(Z)ﬂ(Ao) — / eSg]—l(’z) dﬂ(y/) S 6157?30 / eS?V Z(Flgllz(y )) dﬂ(y/)
Ao A
< [ (Mg )0 d)
_ _ Cy
(A.10) < D(FQILZ(AO))eW )
Moreover,
— —— A — — —— A N*l EJ z
(A11)  ((FyL, . (A0))|h(=)] — /F Ly | < (B0 bl i e,
N—-1l,z 0

Combining this with (A.8) and (A.10), we obtain
(L2 (h))jay, leos

Cg

el=fo o - -
S — (& le sup E / hl dv +v F i B A hl 2 o Li ﬁ’Y( e° (2)
I/(AO) A < it AO) ’ ’ ( N-l, ( 0))‘ |ﬂ1’ ,Lip/~'1

TR PN ({a)) \7 =1

IA

—le Y(N=1)|| "¢
h v h e/, Li 5)
7(A) " (” 1) + [Py o Lip lle= [ 1o
(A.12)

IN

L e
() (thlu(a)+|h|m,af,mpmm<612 Lo ) |e ||L1<9>)
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Indeed, either N < 2/ and then ﬁf(Nfl)e_la < et <e ¥ or N > 2] and then Blv(Nfl)e_ls <

aN / . o
BI/(NJ) < B, . Note that HGEZHLl(D) is finite since ¢’ < gy. Thus

N elfigo 0
(A.13) [(Lis (M)A, leco < mHhHLl(a) + §||h||5;,s,sw
g N /
NG IR L TR 0
if N is large enough so that By min(B, > ,e” 7z )| < 5.

It remains to estimate the Young Lipschitz constant in the case [ < N.
N
(L35 (R)1a,,4 167 e 1ip

esjg\](z)eisgl\f(z)h(z) J— esjg\f(y)eisgN(y)h(y)
<e ¥ su E
> p sup

TEA 2€F—N({z}) yeﬁ'ﬁil’z(ﬁo) 18(y,2)=N

Blv(ﬁ(y,Z)—N)

<e BN sup Z GS?V(Z)|h|5¥75’,Lip6€,é(Z) +wn(z) sup A

1
TEAL) e F-N({z}) Fy=1,.(Bo)

(A.14) < 517N|h|ﬁy,s’,Lip|£N(ealé)|€’,oo + e_ZSIBI/N Sup Z wn (2) SUp 7]

TEA; zeF-N({z}) Fﬁil,Z(AO)
where 7 7
5% (2) pisSn(z) _ esmy)eisSN(y)’
wn(z) = sup o :
yeFgt, (Bo):3(y2) =N pe)
Observe first that the first term of the right hand side of (A.14) can be dominated by
Cg_ 9
N el=Fo /
(A.15) { |h|5;,5',LipmH6eEHLl(,;) < ZHhH@’a’a,,
Cv,
thanks to (A.13) taking N large enough so that 57° %HGEOE”LI(D) < %, Note that
5%,(2)| pisSn(2) _ ,isSn(y)
(A16)  wn(z) < sup < l T ‘ |
yeFyY, (Bo):3(y,2)>N 1
|eSN(Z) — esjgv(y)l
T Sup 78(y,2)
yEF}Gil’Z(AO) : §(y,z)2N 1

But, due to (A.9),

- B ﬁé(y,z)fN
< SV [~

_ ~ 3(y,z)—N
(A.17) < SRl
1 — fo

15K () _ ShW)| — (Sk(2)
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Moreover,
i i N-1
‘eisSN(Z) _ eisSN(y)| < min ( E : |5¢|51751’Llp51 (y,2 (e(= )+k)>

k=0
_ ﬁl y7 61 f(z)+N)
S min 27 ’S¢‘,81,6/1,L1p B 1 o'
N _

END )
e 1y
Combining this with (A.16) and (A.17) and using the fact that 8y < 7, we obtain
g g 1

B
1 — fo
and so the last term of (A.14) is less than

cele sup Z eSh(2) <1 + eall(w(z)Jr”N)) sup |h|

TEA; 2€F—N({z}) Fyt 1,-(Bo)

TEA ZEF_N({CE}) F}Giz’z(AO)

< 215¢\gl,53,mp

B N &1 (v8(2)+vN)
(Bl — 1y

_ CV, _
wn(z) < e&’&(z)JrﬁCg 4 2¢5% |T¢]617517L1p

where ¢ is some positive constant depending on 7,71, 7. To control this term, we will
proceed as for (A.13). Recall that (A.10) says that

— /=1 X _
oShe) < P(Fy.(Bo)) G

>~ —— el-Fo
v(Ao)
and note that, analogously to (A.11),
B S
F]G lz(

Nl / P
< <FN%z<Ao>>|h|ﬁl BN e @)

Since €' = ¢ + ¢!, we obtain a domination of the last term of (A.14) by
cg

2e e e C (I o) 4 [l i 51 g )

(A)<

Q

g

el=%o /
< 2 _ el YN h .
CS A ( I8l e

I'N
|| 2+ Ry ornip max(e™ >, (ﬁlesi)m;v)|I6(€'+€'1”‘||L1<D>>

71 (D) L7 (v

Indeed, since &’ = e+rye}, eEN=DBINTD — (8, 1 Y10 (N=De—2l with B¢t < 1and e~ < 1
and either N —1 > N/2 or | > N/2. Now &' + €}y < g, ensures that || 51711,

We conclude by combining this with (A.6), (A.7), (A.13), (A.15) (for the first term of
the right hand side of (A.14)).

O
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Lemma A.5 (Compact inclusion). Let vy, > 0 such that € + v} < ey. Then the unit ball

(0]
0f Bgy e erimcyner i relatively compact in Leo—=1 ().

Proof. Let 1 > 0. Let us prove that the unit ball B(0,1) of Bgy .. admits a finite n-cover

for || - || ro(z) With po := 805%8/1_

We consider an increasing sequence (3j)r>o of subsets of A such that X consists of a
finite union of distinct elements (Q;);=1,.. n, of the family {(, ., F " (A, j.), lo < k} and
such that -

lim E; (e"°1ay5,) = 0.

We consider the projector Py given by Pyh(x) = Ey[h|Q;] if v € Q; and Pyh(x) = 0if x & Xy
Set po := - 7075’1' Observe that

€ e’ k
I = Pty < 2B (1505, + 1 B (c750%)

< [|nl . B (eego (1A\Ek n ﬁ{w)) 7

which converges to 0 as k — +oo. Let n > 0 and let us take k large enough so that
HId — Pk”ﬁ(Bﬁ?,s,s“LpO(D)) < 77/3.

e Observe first that, for every h € B(0,1), Pyh has the form P.h = j.vz’“l ajed(')le with
laj| < 1. Let us consider a finite covering A of the closed unit complex disk D made
of balls of diameter n/(3| e Hi/fzfl ). We observe that for any h € B(0, 1) there exists
Ay, Ay, C Assuch that Poh € Y0 Ay e?O1g .

e Now if hy, hy € B(0,1) are such that Pk(hl) Py(hy) € ZN’“ A eV, then

1Pe(ha) = Pelho) [0 5y < (n/ Blle™ [ 400 )P 1€ ooy < (1/3)7°
since epy < €p.
e Moreover for all Ay, hy in the unit ball B(0,1) of Bgy . such that || Py (k1) — P (h2) || Lee ) <
n/3, we also have
2

|h1 — hollzroy < || Pr(h1) — Pe(h2)|lLeo o) + Z |hi — Pr(hi)llzro@y <.

i=1
e Thus the sets P, (A e‘U14) realize a finite covering of B(0,1) in sets of diameter less
than 7 for || - ||Lpo

O

Proof of Proposition 6.5. Recall that X; = VC(L? and ?C'»(Jr) = V(é) with VG(E) 1= By ey ey et0e147¢)
ﬁ) and b, = a; + 2(7’+;>) c. Observe that for

every 0 <0 <0 <r+2+ i—lll the following sequence of continuous inclusions hold true

for any 6 € [0,r+2+§—:], ak:k<1+
VO(—>V9%V9/%V+2+E/,

and for every j € {0,...,r + 2}, the map s — L;, is C? from R to E(VQ,V@) as soon as
0’ — 6 > j. This ensures Assumption (A)(3). The fact that Vy «— L1 ] (7) comes from
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et € LY(v) and € + fe; < gy9. Moreover, the Doeblin Fortet inequalities of Assumption
(A)(4) follow from Lemma A .4.
Since £1 = 1, the quasicompacity of £ on B .,x as soon as € + 2ye] < g follows
from Proposition 4.3 combined with Lemmas A.4 (ensuring the Doeblin Fortet inequality)
0

and A.5 (ensuring the compact inclusion of B.cier in L0771 (7)). The fact that 1 is the
unique eigenvalue of modulus 1 of £ on these spaces and is simple follows from the assumption
that ged(r;) and [17, Lemma 5]. This ends the proof of Assumption (B)(1).

Let us prove that »_ 1£7(¢)]|2 < co. We have already noticed that ¢ € L?(). More-
over,

L(g) = —iLy’(1) e V72,

3eq

Since L is quasicompact on Vi +/ » with single dominating eigenvalue 1 which has multiplicity
3e1

1, we conclude that > -, [[£L"(¢ )||Lz(p) <ed s 1L )||V(g/2) < 00. Since

3eq
"

€ 3 1
Stea(l+-—)< §(€+(T+2)€1+7€/1+8/)§

<o
2 381 2

we conclude that

__f0
VE2), o Livrs (7) = L(9),

3eq
and hence, > |£7(#)]|2 < oo which ends the proof of Assumption (B)(3).

The Doeblin Fortet inequality coming from Lemma A.4 combined with the compact in-
clusion property stated in Lemma A.5 ensures, by Proposition 4.3 that the spectral radius
of L;, is strictly smaller than 1 and that the spectral radius of L;, is smaller than or equal
to 1. Hence Assumption (B)(2) follows from Lemma 4.5. O

A.2. Proofs for hyperbolic Young towers and unbounded observables. Assume p =
Id, i.e., (f,M,n) = (F,A,v). For any 8 € (0,1) and £ > 0, we recall that Vg?g is the space

of functions h : A — C such that he = belongs to the space By defined in (4.1), where £(x)
is the level of the tower A to which = belongs.

Lemma A.6. Let € (0,1) ande > 0. Ifp €V 56, then there exist ¢ € B sz, and x € V(O)
such that

¢=¢op+x—xoF.
Proof. Applying Lemma 4.1, with the notations of that section, we know that, for any

o€ Vﬂ there exists ¢ € B,z =B /50 and xo € B\f such that ¢e‘£€ Goop+xo—xooF.
We end the proof of the lemma by setting ¢ := ¢oe’® and y := xoe’ 0

The next lemma will be the key step to prove Assumption (A4)(2). Recall S,, = Zz;é doF*.
Given H : A — C, as in Assumption (A)(2) and as in Lemma 4.1, we set
h,(j — Ho Fk( (X o Fk _ gk op))j eisonkefisSkoﬁj
and

W) (@) = e SOR, [H o F* (i(x 0 F* — S(x))) e | 3(-,x) > 2k] .
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Recall that in Proposition 6.5 and in its proof, we have set 5, = /3 and taken ¢,¢” > 0 and
v € (0, 1) such that e + (r + 2+ 2v)e; + " < g and Sy < ] < e 1. Moreover, we have set
(e)

Po = W and considered the family of Banach spaces (V,” := Bﬁgygwahﬁwﬂ)al)@e[o P42+
9 51

with

g" g”
ar =k (1 + —(r n 3)51> and by = ai + —2(7* Py
Furthermore, in view of Assumption (A)[r](Q), we have set X; = Véi) and X]-(Jr) = Véj).
Observe that VHE) — LE+951( ) and so that L=o—=- 951( ) = (Vea ) :

Lemma A.7. Let ¢ > 0,e" > 0,7 € (0,1),8 € (0,1) such that e + (r +2 4 27y)e; + " < &p.
Let ¢ € V) and H € V)
: 7,

o Ifey <eg— (r+2+7)e, and if ezt < 1) then
(A.18) B op =D 0Bl ez < Cot*(1+ sk with o= 2 —2.

P ARGy ) &1
o [feg < eg—e— (bryaj+ j)e1 (this holds true if o < g —e — (r + 2)e; — " and so if
g9 < 27e1), then for all j =0, ....,7 + 2,
0 < Co(1+ k).

[ e2tieq (17)

(A.19) thi

<[,

(©) e Hh
/ £ & r 1>

(Vbr+2_J) 0 +2—3 1

[ ]f{fg +j€1 S €0, then

(A.20) (£ R0, < Co(1+ [s)W

BY ea+ic1,e0+ie1

In particular, if eo < € +¢€", then H(ﬁ?fﬁhs)(j)HV(E) < Co(1+ |s|)k?
@j

Proof. Observe first that, for any p > 1, ||B’i{i||LP(p) < ||h,(€{i||Lp(V). For x € A,

B) 0 p(a)—hY)(x)]
j .
J Q j—m m 1S m 1S
5523( )wkomj p[(HX"E)(FH(x)) — (Hy™e™)(F*(y)]
o \I7 yeA, j, 3(z,y)>2k
But, for all z,y € v* C Ay; or z,y € v* C Ay, such that §(z,y) > 2k, using the fact that

XE Vi [0l = (Zr 0651r> = O (e=%) and

(Y6 (F(2)) — (Hy™e™)(FH ()] = O (14 [sf)eler e gk
and so, in view of (A.18),

<0 (1 MG ( QY pe2+(F+7)er quV q(e2+(3+7)e1)l
oy SO+ 155 JE, (c ) .

th(c],?e 7ks Op‘
is in O(1 + |s]7)? since Byes2T+e < 1 and g(ey + (j +7)e1) < o, so that

< o B T0+2
T et (jt+v)a J+r+ 2
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In view of (A.19), set ¢ = 54—, i = 5271;]51 > 1and s, = 623?—_]2)61 > such that

L1 —1 wehave
Ty S5

7
1R ooy < 30> HIXE ™™ | zasm (o) 1Sl ™l o o)

J
. 0 0 i—m i—m a |m
< U NG (XG0 o )| Sl B

m=0
J
. 0 0 i—m ﬁ mi| Z|Im
< U NG (X5, Y Bs () 7 K™ 18] i
m=0

_1
< .]' Z ||H||5W o |X||,6’1,51)]_mkjﬂ’b||661€||7[7,L"“1T77L(17)IE’7 (eaoe) e

which is in O(1 + |k|?) since e;mqr,, = &o.
To investigate (A.20), we observe that, for every z € A,

(L) (@) = L2H)) (), with  Hy(x) = 5T @ By [H o Frei T (z) .
where we used the notation Fox[G|(z) := E,[G| §(-, z) > 2k]. Observe that
E2k(ﬁ(]))
gl — ok [ isSioR TT (7 . i +k k ky\j—m jisxoFk
- s Y o (SR e P Bl P P e

kl, km=0 u=1

R
m=1kq,....,km=0

J
=0 Z Z Ek_k?m (ealéﬁkm—km_l (eaw . _Ekz—kl (661££k1 (e(a2+(j—m)£1)££k(1)))>)>

m=10<k; <...<kpm<k—1

) i Z £k‘7km (e€1££km*km—1 ( el | £k2 k1 ( slfﬁkl (e(€2+(jm)€1)€))))) )

m=10<k; <...<km<k—1

Il
©

Set Wy := Bgy 9,94+, - Recall the following facts:

e the function e®2H0=meDl is in W_ i,

e Lemma A.1 ensures that the multiplication by e is a continuous linear map from
West(j—mtw)er 10 Weyt(j—mus1)e, for every u =0, ..., 5 — 1 since g3 + je; < &,

e Lemma A.2 ensures that £ is a continuous linear operator on Wjy for any 6§ > 0 such
that 0 + ve; < gp.

From which we conclude that |£2k(]5[,§2)]52+j51,oo = O(k7).

Recall that (4.4) holds true and so, for any x,y € A such that_A( y) > 1, there exists a
bijection L, ,, : F~"({z}) = F~"({y}) such that for all z € F~ ({x}) (z L,y (2) >
r, with L,,, being defined inductively on » > 1 by L,,1 = W,, and L, ,,4+1(2) =

W) Ly (F(2) (2)-
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Recall also that, for all z € F"({z}), s(2) = Ex[H o F* - "] is invariant by

i8Sk (z)

composition by L, , o,. Let us write ¢ () =€ we have

(L2 )9 () — (L2 Ry )9 (y) = L2(HD) (2) — L2(HD) (y)

J
<Y Y Y ek~ Ar Lawar ()] (2]

m=00<k <<k <k zeF-2F({z})
with Ag gy g = eSiR ) (Vr,s(2) [T, o F¥+) o F*. Observe that
o) < 0 (srsimarr)

Also, as seen in (4.1) and using (A.9)

1— By 1
T S ) (wﬁ 3o F) o F(2) - (wks L F) O F¥ (L >>‘
Moreover - -
(wﬁwv) 0 FH(2) - <wﬁ¢F> oFk<ny2k<z>>|

s (F(2)) — s (F* (L o ( \H\aﬁoF’“*’“ )|

m
- m fkov+k s s k—kny, . 1 8 ) k—
< H¢Hg;1,51’51 el 2 pey LoF <§ :Bf(x y)+ + § :mln <2’ S“¢"Bﬁl,sl,sl 5;(9@ y)+ w)>

u=1 w=0

3(z,y)

< (L JOIDEE, (4 s B Pt A
Hence, for every z,y € A
(L3 his) V(@) = (L3 D)D) (y)
=0 ( PEN (1 4+ )s)) mex, c* <e(€2+(j’m)€1)£°pk+€1 Z“mzlg(’Fk”k) (2)> :

To conclude, we prove that

‘EQk (6(52+(j—m)a1)£oﬁk+al Sy Koﬁ‘kv+k>

=0(1),

g2+je1,00

as we did in the proof of \£2k(ﬁ,§j))|gmsm = O(k7). O

S
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