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The vacuum-ultraviolet threshold photoelectron spectrum of methyl isocyanate CH3NCO has
been recorded from 10.4 to 12 eV using synchrotron radiation and a coincidence technique allowing
for a mass-discrimination of the photoelectron signal. A significant improvement is achieved over
previous investigations as this experimental setup leads to a much more resolved spectrum. Ten
sharp peaks and a broad feature spanning 1.2 eV were recorded. This spectrum consists of the
X̃+ 2A′′ ← X̃ 1A′ and Ã+ 2A′ ← X̃ 1A′ ionizing transitions. For the former, the adiabatic ionization
energy was determined experimentally to be 10.596(6) eV; for the latter its value was estimated to be

10.759(50) eV. Seven sharp peaks could be assigned to vibrational modes of the cation X̃+ 2A′′ and

neutral X̃ 1A′ ground electronic states involving only the NCO group atoms. Theoretical modeling
of the threshold photoelectron spectrum has proven difficult as methyl isocyanate is a non-rigid
molecule displaying large amplitude internal rotation of the methyl group and ∠CNC bending mode,
leading to the quasi-symmetry. With the help of ab initio calculations, a theoretical model in which
these two large amplitude motions are included in addition to the five small amplitude vibrational
modes involving NCO group atoms is proposed. Comparison with the experimental spectrum shows
that the broad feature and the strongest peaks line positions are well accounted for; their intensities
are also fairly well reproduced after adjusting a few parameters.

I. INTRODUCTION

Methyl isocyanate (CH3NCO) is a reactive chemical
compound1 which is an intermediate in the industrial
production of carbamate. It is widely used in the syn-
thesis of rubbers, adhesives and pesticides, and was the
main toxicant associated with the Bhopal disaster. Its
ground electronic state is spectroscopically well charac-
terized as it is a benchmark molecule for quasi-symmetric
species. Such species, of the WH3XYZ type, display two
large amplitude motions, the WH3 torsion and ∠WXY
bending mode, leading to a singularity at the symmetri-
cal C3v configuration. Dedicated theoretical treatments
developed to evaluate the rotation-bending-torsion en-
ergy levels of such species2–11 were applied to the analysis
of the microwave spectrum of methyl isothiocyanate3,12

(CH3NCS), silyl isocyanate5,7 (SiH3NCO), and methyl
isocyanate.8,12–14 For the latter species, nearly 400 tran-
sitions could be assigned leading to its detection in the
interstellar space medium.14,15 It was then believed to
be one of the most abundant molecules after water and
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formamide on the surface of the comet 67P/Churyumov-
Gerasimenko,16 but this was later disputed.17

In order to further investigate the effects of quasi-
symmetry, spectroscopic investigations of the infrared
spectrum of methyl isocyanate18,19 were carried out and
the two low energy vibrations corresponding to the large
amplitude methyl group torsion and ∠CNC bending
mode were observed. The photoabsorption cross sec-
tion and fluorescence excitation spectra were measured
by Tokue et al.20 in the 105–210 nm range, and three
Rydberg series were assigned with their vibrational pro-
gressions. This analysis provided a value of the ioniza-
tion energy of 10.674 eV. Above the ionization energy
(IE), fewer laboratory experiments have been performed
and little information is currently available on the cation
CH3NCO+. Photoelectron spectra were recorded21,22

with a He I lamp with a typical resolution of 15 meV.
From 10 to 18 eV, seven bands were observed and un-
ambiguously assigned in terms of NCO group orbitals.
The two lowest lying bands, in the 10.4 to 12 eV energy
range, display distinct spectroscopic features and the first
vertical ionization energy was measured22 at 10.63 eV.
No attempts were made to understand the photoelectron
spectrum in this energy range accounting for the quasi-
symmetry effects.
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In the present work, the experimental threshold pho-
toelectron spectrum (TPES) of methyl isocyanate has
been recorded from 10.4 to 12 eV using synchrotron
radiation. This spectrum, characterized by a better
resolution than those previously reported,21,22 displays
several sharp lines and a broad feature. It has been
modeled with two theoretical treatments accounting for
quasi-symmetry effects. In the first treatment, only the
two large amplitude motions are considered.2,3,5,7–11 In
the second one, making use of the harmonic adiabatic
approximation,23,24 the previous treatment is extended
to include small amplitude vibrational modes. In agree-
ment with Eland,25 only the five small amplitude vibra-
tional modes involving the NCO group are included be-
cause this group undergoes the largest structural changes
upon ionization.

The paper has four remaining sections. In Section II,
the experimental setup and results are described. Sec-
tion III reports on the calculation of the bending-torsion
and vibration-bending-torsion energy levels. Section IV
deals with the simulated TPES and comparisons with the
experimental one. Section V is the conclusion.

II. EXPERIMENTAL

A. CH3NCO TPES and photoion yield recording

Methyl isocyanate was prepared with a modified ver-
sion of the synthesis of Han et al.26 as reported in Maté
et al.27 A few grams of the sample were placed in a
vial attached to the experiment. The vial was plunged
into a chiller set at −40◦C to lower the vapor pressure
to around 10−1 mbar, which was otherwise 280 mbar
at 0◦C. This step was necessary to avoid too great a
build-up of the sample in the experiment which could
lead to polymerization or blockages, but also to limit
the consumption of the sample. Maintaining the sample
at a constant temperature also provided pressure stabil-
ity. The gaseous molecules were fed into the SAPHIRS
endstation28 through a nozzle 30 µm in diameter. The
beam was then doubly skimmed and irradiated at a right
angle by the tunable synchrotron VUV radiation from the
DESIRS beamline29 at the French national synchrotron
facility SOLEIL. The spectral purity of the photons was
ensured by a gas filter located upstream from the beam-
line monochromator and filled with argon.30 Argon ab-
sorption lines appearing in the ion yield were used to cal-
ibrate the photon energy scale. All experimental spectra
are corrected by the photon flux, which was monitored
as a function of the photon energy with an Si photodiode
(AXUV, IRD).

After the photoionization of the neutral species by
the monochromatized synchrotron radiation, the result-
ing photoelectrons and photoions were analyzed with
the DELICIOUS III spectrometer.31 The photoion yield
(PIY) of CH3NCO+ (m/q = 57 a.m.u) was recorded with
a photon resolution of 5 meV using a 177 V/cm extrac-

tion field to ensure that all ions associated with electrons
possessing a kinetic energy up to 7 eV were collected.

The TPES spectrum was obtained using the slow pho-
toelectron spectroscopy (SPES) technique,32 in which
electrons whose kinetic energy is less than 5 meV are
taken into account. The total resolution (electron + pho-
ton) was 8 meV (65 cm−1) and the absolute accuracy of
the energy scale was found to be 3.2 meV. Note that the
53 V/cm DC field used to extract the photoelectrons re-
sulted in a field-induced shift33 of the ionization energy
of about −5.4 meV. Hence all ionization energies given in
the following sections are corrected from the field-induced
shift. The final absolute accuracy on ionization threshold
measurements was about 6 meV.

B. Experimental results

Figure 1 displays the TPES of CH3NCO and the PIY
of CH3NCO+, recorded from 10.4 to 12 eV. The PIY dis-
plays a sharp rise around 10.6 eV followed by a smooth
increase. It then plateaus and even slightly decreases
from roughly 11.5 eV. This energy coincides with the ap-
pearance of other fragments in the mass spectrum. The
strongest signal appearing around 12 eV is the m/q =
56 a.m.u. fragment, which is assigned to CH2NCO+ pro-
duced via dissociative ionization of the parent molecule
through loss of H. The m/q = 57 a.m.u. ion yield does not
present any observable autoionization features, hence the
intensities of the TPES peaks are probably not affected
by resonant autoionization signals.

The TPES consists of the X̃+ 2A′′ ← X̃ 1A′ and
Ã+ 2A′ ← X̃ 1A′ ionizing transitions,21,22 where X̃ 1A′,
X̃+ 2A′′, and Ã+ 2A′ are the neutral ground electronic
state and the cation ground and first excited electronic
states, respectively. As shown in Fig. 1, the experimen-
tal TPES displays a broad feature, from 10.6 to 11.8 eV,
and 10 sharp peaks. Their Stark-shift corrected ioniza-
tion energies are given in Table I; peak # 2 at 10.596 eV
is the strongest. For this peak, the ionization energy
measured by Pasinszki et al.22 with conventional photo-
electron spectroscopy is 10.630(15) eV which is 34 meV
higher. Assuming that the remaining peaks are the
first members of a vibrational Franck-Condon progres-
sion, they were tentatively assigned to vibrational modes
of the neutral species and cation X̃+ 2A′′ ground elec-
tronic state. These assignments, given in Table I, are
corroborated by the calculated vibrational frequencies of
Section III C. We can see that observed and calculated
fundamental vibrational frequencies are at most within
93 cm−1. For ν′1, ν′2, and ν′3, Pasinszki et al.22 reported
experimental values of 2150, 1290, and 800 cm−1 which
differ from the present experimental values.
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Figure 1. The experimental TPES of the X̃+ 2A′′ ← X̃ 1A′

and Ã+ 2A′ ← X̃ 1A′ ionizing transitions of methyl isocyanate
and the PIY signal are plotted as function of the photon en-
ergy in the lower and upper panels, respectively. For the
TPES, vertical lines indicate the position of the 10 strongest
sharp peaks numbered from 1 to 10.

III. THE MODELS

In the present investigation, the harmonic adiabatic
approximation is used.23,24 The internal coordinates qi
consist of n active large amplitude coordinates with
1 ≤ i ≤ n and of m inactive small amplitude coordi-
nates with n + 1 ≤ i ≤ n + m. These coordinates are
chosen in this section and, with the help of ab initio cal-
culations, Eqs. (4a) and (4b) of Lauvergnat et al.23 are
solved allowing us to retrieve qeq

i (qj) the equilibrium val-
ues of the inactive coordinates as functions of the active
coordinates. The Hessian matrix, also retrieved from ab
initio calculations, is parameterized with the active coor-
dinates. This second step leads to the normal modes and
fundamental frequencies describing the harmonic oscilla-
tor energy levels associated with the inactive coordinates.
The anharmonic potential is then obtained, also from ab
initio results. These numerical results allow us to re-
trieve energy levels for the neutral and the cation using
two different theoretical approaches.

A. Ab initio calculation results

There are 15 internal coordinates in methyl isocyanate
which are defined in Table II. Coordinates qi, with 3 ≤
i ≤ 6 and 8 ≤ i ≤ 13, are expressed in terms of bond
lengths, bond angles, and dihedral angles using the atom
labeling of Fig. 2. Coordinate q7 = θ is the out-of-plane
bending angle of the NO direction with respect to the
CαNC plane.34,35 Coordinates q1 = τ , q2 = ρ, q14 = β1,

Table I. Peak energya and assignment

Peak # E/eV ∆E/cm−1 Assignmentb ν̃(Cal)/cm−1

1 10.521 −604 ν′′4 621c

2 10.596 0

3 10.648 420

4 10.665 555 ν′4 541

5 10.719 986 ν′3 920d

6 10.743 1186

7 10.767 1374 ν′2 1338d

8 10.846 2011 ν′1 2104d

9 10.898 2430 2ν′2 2658

10 11.015 3376

a The Stark-shift corrected ionization energy is given in the
column headed E; the relative energy with respect to the main
peak, peak # 2, is given in the column headed ∆E.

b Assignment in terms of the vibrational modes defined in
Section III C is given in this column; calculated frequency in the
column headed ν̃. A prime (double prime) denotes a vibrational
mode of the cation (neutral species) ground electronic state.

c This peak is a hot band originating from an excited vibrational
state of the neutral species.

d For ν′1, ν′2, and ν′3, the observed values reported in Ref.22 are
2150, 1290, and 800 cm−1, respectively.

and q15 = β2 are four angles:

τ = (α1 + α2 + α3 − π)/3, ρ = π − ∠CαNC,

β1 = 2α1 − α2 − α3, β2 = α2 − α3,
(1)

where αi is the dihedral angle ∠CNCαHi for hydrogen
atom Hi. Equations (1) emphasize that τ and ρ corre-
spond respectively to the internal rotation of the methyl
group and to the ∠CαNC bending mode. Irrespective
of τ , the angles β1 and β2 parameterize the distortion of
the methyl group from C3v symmetry. For an undistorted
methyl group β1 is 0 and β2 is either 120◦ or 240◦. Co-
ordinates q1 = τ and q2 = ρ are chosen as the active co-
ordinates; the remaining coordinates qi, with 3 ≤ i ≤ 15,
are the inactive coordinates.

The ab initio calculations were performed using the
CCSD(T) (Coupled-Cluster with Single and Double
and perturbative Triple excitations) method explicitly
correlated (RCCSD(T)-F12) using the MOLPRO 2012
package36 and the Dunning augmented triple zeta ba-
sis (AVTZ). Still using the same method, RCCSD(T)-
F12/AVTZ, various sets of calculations have been per-
formed to compute the potential energy surfaces (PES)

of X̃ 1A′, X̃+ 2A′′, and Ã+ 2A′ states in reduced coordi-
nates so as to determine the parameters needed to ana-
lyze the spectra. These PES are the bending potential
energy curves as a function of the CαNC bending angle,
where all other parameters were optimized, the vibra-
tional frequencies being calculated at each angle value.
For several values of this bending angle, the Hessian has
also been calculated to obtain Wilson’s F matrix.34 Fi-
nally, the bending-torsion potential of the CH3 group was
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Figure 2. Atom labeling in methyl isocyanate. The numbers
1, 2, and 3 identify the three hydrogen atoms of the methyl
group, its carbon atom being labeled Cα. τ and ρ are the
two active large amplitude coordinates corresponding to the
internal rotation of the methyl group and the ∠CαNC bending
mode. The molecule fixed xyz axis system is shown. For
clarity its origin is not drawn at the molecular center of mass.
The AB axis bisects the ∠CαNC angle and is parallel to the
x axis.

calculated again by optimizing all other parameters in-
cluding the Cα−H bonds.

1. Equilibrium structures

The equilibrium structures of the neutral and the
cationic species were determined in the first set of ab ini-
tio calculations. The 3 equilibrium structures are drawn
in Fig. 3. Equilibrium values for the internal coordinates
are given in Table II where, in the case of the neutral,
they are compared to those retrieved from the analysis of
the microwave spectrum.8 For the neutral species and the
cation electronic ground states, a Cs bent structure arises
with hydrogen atom H1 in the symmetry plane and point-
ing away from the NCO group. The value of β2 indicates
that the methyl group is distorted from C3v symmetry,
especially for the cation X̃+ 2A′′ state. For the neutral
ground state, the agreement with the experimental equi-
librium values8 is better than 1% except for the angles
q2 = ρ and q6 = ∠NCO. For the cation Ã+ 2A′ state, a
nearly linear structure with almost C3v symmetry arises.
The value of β2 indicates a more distorted methyl group
than in the two previous cases.

2. Determination of qeqi (τ, ρ)

The equilibrium values of the 13 inactive coordinates
are approximated with analytical expansions Fi(τ, ρ)
compatible with the symmetry of the molecule and de-
pending on the two active coordinates τ and ρ:

qeq
i (τ, ρ) ≈ Fi(τ, ρ) = q0

i +

n∑
j=1

gij(τ) ρj , (2)

where q0
i is the value of qeq

i for the ρ = 0, C3v con-
figuration and gij(τ) is a Fourier-type expansion. The

values of q0
i and the expansions gij(τ) can be found in

Figure 3. The equilibrium structures obtained in Sec-
tion III A 1 for the neutral X̃ 1A′ electronic ground state and
the cation X̃+ 2A′′ and Ã+ 2A′ lowest electronic states.

Eqs. (A1)–(A6). The Fi(τ, ρ) expansions were numeri-
cally retrieved from the second set of ab initio calcula-
tions in which ρ was constrained to several values ranging
from 0.1◦ to 80◦. Convergence, however, could only be
attained for one τ -value. For the neutral species and the
cation ground states, results are only available for τ = 0;
for the cation Ã+ 2A′ excited electronic state, only for
τ = 60◦. These two τ values being (within ±2π/3) those
characterizing the corresponding equilibrium configura-
tion in Table II. This prevents us from retrieving the τ -
dependence of the expansions in Eq. (2) and we were led
to use simplified expansions Fi(ρ) with no τ -dependence.
These expansions are expressed in terms of fitted param-
eters f ij . For the three bond lengths qi, with 3 ≤ i ≤ 5,
Fi(ρ) is an even function of ρ:

Fi(ρ) = q0
i +

n∑
j=1

f ij ρ
2j . (3)

For the bond angle q6 = ∠NCO and the angle q15 = β2,
there is no parity restriction:

Fi(ρ) = q0
i +

n∑
j=1

f ij ρ
j . (4)

For the angles q7 = θ and q14 = β1, there is no ρ-
dependence and Fi(ρ) = q0

i . For the 6 coordinates qi,
with 8 ≤ i ≤ 13, parameterizing the methyl group,
Eq. (4) can be used. For the three bond lengths qi, with
8 ≤ i ≤ 10, the relations f8

j = f9
j = f10

j , for j even, and

f8
j = −f9

j = −f10
j , for j odd, hold. Similar relations are

fulfilled by the three bond angles qi, with 11 ≤ i ≤ 13.
The fit of the ab initio data showed that the inactive

coordinates qi, with 8 ≤ i ≤ 15, describing the methyl
group, display little dependence on the angle ρ. A larger
dependence was observed for the inactive coordinates qi,
with 3 ≤ i ≤ 7, describing the NCO group. Figures 4 and
5 show the results of the fitting for two such coordinates,
q3 = r(CN) and q6 = ∠NCO. It can be seen that the
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Table II. Expressionsa and equilibrium valuesb of the internal
coordinates for the ground electronic state of the neutral and
the two lowest electronic states of the cationic species.

X̃ 1A′ X̃+ 2A′′ Ã+ 2A′

Coordinates This work Ref.8

q1 = τ 0.0 0.0 0.0 180.1

q2 = ρ 44.3 39.8 48.1 1.9

q3 = r(CN) 1.206 1.207 1.263 1.209

q4 = r(CO) 1.176 1.171 1.145 1.165

q5 = r(CαN) 1.447 1.434 1.436 1.417

q6 = ∠NCO 172.9 180.0 170.4 179.8

q7 = θ 0.0 0.0 0.0 0.0

q8 = r(CαH1) 1.088 1.091 1.085 1.107

q9 = r(CαH2) 1.091 1.091 1.102 1.091

q10 = r(CαH3) 1.091 1.091 1.102 1.091

q11 = ∠NCαH1 108.5 108.4 108.6 104.8

q12 = ∠NCαH2 110.6 110.0 108.4 109.6

q13 = ∠NCαH3 110.6 110.0 108.4 109.6

q14 = β1 0.0 0.0 0.0 0.0

q15 = β2 121.4 120.7 115.0 233.0

a Internal coordinates are defined with the atom labeling of
Fig. 2. τ , ρ, β1, and β2 are 4 angles defined in Eqs. (1); θ is the
out-of-plane bending angle of the oxygen atom.34,35

b Bond lengths are in Å and angles in degrees.

Figure 4. Variations with the active large amplitude coordi-
nate ρ of the bond length r(CN) for the neutral X̃ 1A′ ground

electronic state and the cation X̃+ 2A′′ and Ã+ 2A′ electronic
states. Ab initio values are indicated by dots. Solid lines are
fitted values calculated with Eq. (3).

ab initio results are well reproduced by the expansions in
Eqs. (3) and (4).

3. Normal modes and vibrational frequencies

The FG method34 was utilized to derive normal modes
and fundamental vibrational frequencies from the har-
monic expansion of the potential energy. Cartesian co-
ordinates of the Hessian matrix were extracted from the
third set of ab initio calculations allowing us to obtain
Wilson’s F matrix. Due to the limited set of data, its τ -
dependence was ignored and a cubic spline interpolation

Figure 5. Variations with the active large amplitude coordi-
nate ρ of the bond angle ∠NCO for the neutral X̃ 1A′ ground
electronic state and the cation X̃+ 2A′′ and Ã+ 2A′ electronic
states. Ab initio values are indicated by dots. Solid lines are
fitted values calculated with Eq. (4).

was used to obtain its ρ-dependence. Care was taken to
have the correct behavior near the ρ = 0, C3v configura-
tion.

As stressed in the introduction, the FG method was
applied to a reduced set of inactive coordinates. The
5 selected coordinates qi are those with 3 ≤ i ≤ 7, in-
volving NCO group atoms.25 A B(ρ) matrix34 was calcu-
lated using Section III A 2 leading to a 5×5 G(ρ) matrix.
Solving the vibrational problem leads to normal modes,
fundamental vibrational frequencies νn(ρ), and an L(ρ)
matrix. The latter relates the normal coordinates Qn to
the internal coordinates by qi − qeq

i (ρ) =
∑
n Li,n(ρ)Qn.

The wavefunction of the harmonic oscillators, depending
parametrically on the active coordinate ρ, is written:

Ψn(Q; ρ), (5)

where the subscripted n is a shorthand notation for the 5
vibrational quantum numbers n1, . . . , n5. For the cation
Ã+ 2A′ state, Fig. 6 shows the variations of the five funda-
mental frequencies with ρ. There are four A′ vibrational
modes νn, with 1 ≤ n ≤ 4, corresponding respectively
to νa(NCO) the antisymmetrical stretch, νs(NCO) the
symmetrical stretch, the Cα−N stretch, and the in-plane
∠NCO bend. The only A′′ vibrational mode ν5 corre-
sponds to the out-of-plane ∠NCO bend. Near ρ = 0,
Fig. 6 shows that ν̃4 and ν̃5 become close to each other
as they correlate to a doubly degenerate vibrational mode
in the C3v configuration.

4. Anharmonic potential

The anharmonic potential is the part of the poten-
tial depending only on the active coordinates. In agree-
ment with previous investigations of quasi-symmetric top
molecules,7–9 we take:

V0(τ, ρ) = Vb(ρ)− 1
2V

0
3 ρ cos 3τ, (6)

where Vb(ρ) is the pure bending potential and the term
1
2V

0
3 ρ cos 3τ , involving the parameter V 0

3 , is a 3-fold tor-

sional potential with a ρ-dependent barrier equal to ρV 0
3 .
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Figure 6. For the cation Ã+ 2A′ electronic state, variations
with ρ of the five fundamental frequencies ν̃n(ρ), with 1 ≤ n ≤
5. Each curve is identified by n. See text for a description of
the inactive coordinates used.

The pure bending potentials were determined in the last
set of ab initio calculations where the zero-point energy
was included. The ab initio energies were fitted to the
expansion in Eq. (3). Figure 7 shows the variations with
ρ of the bending potentials obtained for the neutral and
the cationic species. The bending potential retrieved for
the neutral from the analysis of the microwave spectrum8

is also shown. Figure 7 is consistent with the results in
Section III A 1 for the equilibrium ρ-values. In agree-
ment with Cradock et al.21 and Pasinszki et al.,22 this
figure also shows that the X̃+ 2A′′ and Ã+ 2A′ electronic
states of the cationic species become degenerate for the
ρ = 0, C3v configuration. The barriers to linearity ex-
tracted from this last set of ab initio calculations are 841
and 1181 cm−1 for the neutral and the cationic species,
respectively. For the neutral species, the barrier to lin-
earity is smaller than that obtained from the analysis of
the microwave spectrum,8 1048 cm−1. The mismatch be-
tween the experimental8 and the present ab initio poten-
tial might be due to model differences. Koput8 assumed
a rigid linear NCO group while its structure was opti-
mized in the present calculation as indicated by Figs. 4
and 5.

The bending-torsional parameter V 0
3 in Eq. (6), also

determined in this last set of ab initio calculations, is
10.3, 125.6, and −432.6 cm−1/rad for the neutral X̃ 1A′

state and the cation X̃+ 2A′′ and Ã+ 2A′ states, respec-
tively. These results are consistent with the equilib-
rium τ -values in Table II. For the neutral species, the
analysis of the microwave spectrum8 yielded a value of
20 cm−1/rad which is twice as large as that obtained in
this work.

B. Bending-torsion energy levels

The zeroth-order rotation-bending-torsion Hamilto-
nian Hrbt depends on the Eulerian-type angles, describ-
ing the overall rotation, and on the two active large am-
plitude coordinates. Following Wierzbicki et al.4 and
Koput,8 we choose a reference configuration represented
by atom positions ak(τ, ρ), with 1 ≤ k ≤ 7, depending

Figure 7. For the neutral species X̃ 1A′ ground state and the
cationic species X̃+ 2A′′ and Ã+ 2A′ states, variations with ρ
of the bending potential Vb(ρ) of Eq. (6). Ab initio values are
indicated by dots; solid lines are fitted values calculated with
Eq. (3). The dotted line is the bending potential retrieved by
Koput8 for the neutral ground state.

only on the two active coordinates. Such atom positions
are obtained using the coordinate system of Section III A
and setting the inactive coordinates to the equilibrium
values of Section III A 2. The molecule fixed xyz axis
system, shown in Fig. 2, is such that its origin is the
molecular center of mass; its xz plane is parallel to the
CαNC plane; and the AB axis, bisecting the ∠CαNC
angle, is parallel to the x axis.

In order to use previous theoretical results37–42 con-
cerning large amplitude bending modes, the angular co-
ordinate ρ is replaced by t = cos(π− ρ), where −1 ≤ t ≤
+1. The classical rotation-bending-torsion kinetic energy
T is expressed in terms of the angular velocities ωδ, with
δ = x, y, z, the time derivatives ωτ = τ̇ and ωt = ṫ, and
the 5× 5 generalized inertia tensor I(τ, t) as:

T = 1
2

∑
δ,γ

I(τ, t)δγωδωγ , (7)

where δ, γ = x, y, z, τ, t. As stressed in Section III A 2, the
equilibrium values of the inactive coordinates are only
available for τ = 0 or τ = 60◦. For this reason the τ -
dependence of the generalized inertia tensor in Eq. (7) is
ignored and this tensor is approximated by I(t). This ap-
proximated tensor is to be calculated for the τ = 0 config-
uration of the neutral and the cation ground states, and
for the τ = 60◦ configuration of the cation Ã+ 2A′ state.
The zeroth-order Hamiltonian Hrbt, written in terms of
the generalized inverse inertia tensor43,44 µ(t), takes the
form:

Hrbt = 1
2PτµττPτ + 1

2PtµttPt + 1
2

∑
δ=x,y,z

µδδJ
2
δ

+ 1
2µxz{Jx, Jz}+ 1

2{µxτ , Pτ}Jx
+ 1

2{µyt, Pt}Jy + 1
2{µzτ , Pτ}Jz + V0(τ, t),

(8)

where µδγ are t-dependent components of the general-
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ized inverse inertia tensor; {, } is the anticommutator;
Pτ and Pt are the momentum conjugated to τ and t, re-
spectively; Jδ, with δ = x, y, z, are molecule fixed compo-
nents of the rotational angular momentum J; and V0(τ, t)
is the anharmonic potential of Eq. (6). The volume el-
ement to be used is sin θdθdφdχdτdt. A term involving
the determinant of µ(t), giving rise to a mass-dependent
potential,43,44 has been omitted in Eq. (8). Because of
the Cs symmetry of the molecule, the generalized inverse
inertia tensor displays only 4 nonvanishing non-diagonal
components. Compared to the rotation-bending-torsion
Hamiltonian in Eq. (4) of Koput,8 the additional term
in µyt arising in this work is due to a different molecule
fixed axis system.

Although there are no analytical expressions for the
generalized inverse inertia tensor, it can be shown that
its µzz, µxτ , µzτ , and µττ components go to infinity for
the t = −1, C3v configuration. This is due to the quasi-
symmetry. Using Appendix B, it can be deduced that
these components and µtt, display the following limiting
behavior when t→ −1:

lim
t→−1


µzz(t) = B/z, µxτ (t) = −2A/

√
2z,

µzτ (t) = B/z, µττ (t) = B/z,

µtt(t) = 4Bz,

(9)

where z = 1 + t and the kinetic energy constants A and
B can be expressed in terms of atom masses and C3v

configuration geometrical parameters using Eqs. (B3).
In order to compute bending-torsion energies, the

zeroth-order Hamiltonian of Eq. (8) is diagonalized us-
ing the following basis set functions:

ψm,v(τ, t) = |m〉φmv (t), (10)

where |m〉 = exp(imτ)/
√

2π is a free internal rotation
function characterized by the quantum number m and
φmv (t) is a bending function characterized by the quan-
tum number v and depending on m. The bending func-
tions are the eigenfunctions of a bending Hamiltonian
Hm

b built retaining in Eq. (8) those terms having diago-
nal torsional matrix elements:

Hm
b = 1

2µττm
2 + 1

2PtµttPt + Vb(t), (11)

where Vb(t) is the pure bending potential of Eq. (6). The
results of Eq. (9) suggest that the bending eigenfunctions
and eigenvalues should be obtained using the results de-
rived for a large amplitude bending mode.37–42 We are
led to expand the bending eigenfunction φmv (t) as:

φmv (t) =

pMax∑
p=0

av,mp θα,βp (t), (12)

where av,mp are expansion coefficients and θα,βp (t) are the

basis set functions defined in Eq. (4) of Coudert.38 In
agreement with Eqs. (9), β is set to |m|. As the bend-
ing potentials, shown in Fig. 7, become strongly repulsive

when t increases, the bending functions should vanish in
this limiting case. This behavior is achieved by setting
α to a large enough positive value. Taking α = 30 en-
sures the correct behavior without accuracy loss. The
matrix of the bending Hamiltonian Hm

b can be set up
evaluating the matrix elements of the bending potential
Vb(t) with a Gauss-Jacobi quadrature. Matrix elements
of the operators PtµttPt and µττ can be evaluated with
the help of Eqs. (A1)–(A6) of Coudert et al.45 The bend-
ing energies obtained after diagonalization will be de-
noted Emb (v). The matrix element of the zeroth order
Hamiltonian in Eq. (8) can now be expressed as:

〈ψm′,v′ |Hrbt|ψm,v〉 = δm′,mδv′,vE
m
b (v)

− 1
4V

0
3 δ|m′−m|,3〈φm

′

v′ |ρ|φmv 〉,
(13)

where the last term, when evaluated with the help
of Eq. (12), leads to the bending matrix element

〈θα
′,β′

p′ |ρ|θα,βp 〉. Evaluation of this matrix element should
be carried out with care because the angle ρ cannot be
expanded as a polynomial-type expansion in terms of t.
The angle ρ varies like

√
1− t2 when t is close to −1

and its bending matrix element can be computed using
the same ideas as in Eqs. (A1)–(A6) of Coudert et al.45

Equation (13) emphasizes that the matrix of the zeroth
order Hamiltonian can be split into 3 submatrices. The
matrices with m = 3q ± 1 give rise to doubly degenerate
levels belonging to the E symmetry species of C3v. The
submatrix with m = 3q can be further split into 2 smaller
submatrices leading to nondegenerate levels belonging to
either the A1 or A2 symmetry species. Bending-torsion
energy levels obtained after diagonalization of the zeroth
order Hamiltonian are denoted E(vb,m,Γ) and labeled
using the bending vibrational quantum number vb, the
torsional quantum number m, and Γ their symmetry
species in C3v. The bending-torsion wavefunction takes
the following form:

|Ψvb,m,Γ〉 =
∑
q,v

bvb,m,Γq,v |ψq,v〉, (14)

where bvb,m,Γq,v are expansion coefficients and ψq,v is a ba-
sis function of Eq. (10). Table III gathers four sets of
calculated bending-torsion energies listed with respect to
that of the lowest vb = m = 0, A1 level. The first set
was calculated using the reference configuration and the
anharmonic potential of Koput,8 defined in Column I
of his Table III. The energy values are at most within
0.07 cm−1 from those reported by the author in his Ta-
ble II. The second, third, and fourth sets, for the neutral
molecule and the cationic species X̃+ 2A′′ and Ã+ 2A′

states, respectively, were calculated using the reference
configurations obtained in Section III A 2 and the anhar-
monic potential of Eq. (6). For the neutral molecule
and especially for vb = 1, the energy values obtained
in this work differ from those obtained with Koput’s
parameterization8 because, as emphasized by Fig. 7, the
bending potentials are very different. Calculating the
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Table III. Calculated bending-torsion energiesa

X̃ 1A′ X̃+ 2A′′ Ã+ 2A′

vb m Γ Ref.8 This work

0 1 E 8.70 8.69 6.63 190.57

0 −2 E 36.32 36.52 36.00 388.36

0 3 A2 80.16 80.30 72.97 593.57

0 3 A1 80.45 80.64 74.93 593.81

0 4 E 141.71 141.77 128.71 808.33

1 0 A1 191.28 168.34 183.06 339.90

1 1 E 200.74 177.98 190.32 534.12

a Bending-torsion levels are labeled with the quantum numbers
vb and m, and their symmetry species Γ. Their energies in
cm−1 are given with respect to the vb = m = 0, A1 lowest level.
The reference configuration of Koput8 and those retrieved in
Section III A 2 for the neutral and the cationic species were
considered.

fundamental frequency of the bending ∠CαNC mode for
the neutral species as the average of the energy differ-
ences E(vb = 1,m = 1, E) − E(vb = 0,m = 1, E) and
E(vb = 1,m = 0, A1) − E(vb = 0,m = 0, A1), we obtain
191.6 and 168.8 cm−1 with Koput’s parameterization8

and that of this work, respectively. Both values com-
pare favorably with the experimental gas-phase value of
172 cm−1 reported by Sullivan et al.19 Similarly, also for
the neutral, the fundamental frequency for the torsional
mode should be calculated as the average of the energy
difference E(vb = 0,m = 3, A2) − E(vb = 0,m = 0, A1)
and E(vb = 0,m = −2, E)−E(vb = 0,m = 1, E) leading
to 54 cm−1 with either Koput’s parameterization8 or that
of this work. This value is in very good agreement with
the experimental gas-phase value reported by Sullivan et
al.,19 50 cm−1.

C. Vibration-bending-torsion energy levels

Vibration-bending-torsion energy levels were calcu-
lated using the harmonic adiabatic approximation23

(HADA). Eigenvalues and eigenfunctions of the total
Hamiltonian are retrieved using basis set functions which
are the product of the harmonic oscillator wavefunction
of Eq. (5) and of the bending-torsion basis set functions
of Eq. (10):

Ψn(Q; t)ψm,v(τ, t). (15)

Within the HADA approximation,23 the t parametric de-
pendence of the harmonic oscillator wavefunction is ig-
nored leading to no additional kinetic energy term in the
zeroth-order Hamiltonian of Eq. (8). Also, matrix ele-
ments of the total Hamiltonian are only considered be-
tween two basis set functions of Eq. (15) characterized by
the same n1, . . . , n5 vibrational quantum numbers. We
are led to compute bending-torsion energy levels for each

Table IV. Calculated vibration-bending-torsion energiesa

n vb m Γ X̃ 1A′ X̃+ 2A′′ Ã+ 2A′

Ground 0 1 E 8.69 6.63 190.57

ν1 0 0 A1 2336.94 2104.05 2010.75

0 1 E 2345.31 2110.91 2203.06

ν2 0 0 A1 1483.62 1338.55 1518.59

0 1 E 1492.00 1344.74 1707.25

ν3 0 0 A1 990.17 920.18 753.84

0 1 E 999.15 927.02 950.18

ν4 0 0 A1 620.92 540.84 551.92

0 1 E 629.51 547.42 740.52

ν5 0 0 A1 587.78 455.54 583.77

0 1 E 596.51 462.30 782.97

a Vibration-bending-rotation levels are labeled with the small
amplitude vibrational quantum number n, the bending
quantum numbers vb, the torsional quantum number m, and
their torsional symmetry species Γ. Their energies in cm−1

with respect to the vb = m = 0, A1 ground vibrational state are
listed in the body of the table.

small amplitude vibrational state using the results in Sec-
tion III B and adding the following term to the potential
energy function:

Vn(t) =

5∑
i=1

ν̃i(t)ni, (16)

where n = n1, . . . , n5, as in Eq. (5), and ni appears,
instead of the familiar ni + 1

2 , because the zero-point
vibrational energy is already included in the anharmonic
potential of Eq. (6).

Table IV lists a few low-lying vibration-bending-
torsion energies for the neutral and the cationic species.
It can be seen that for the ground vibrational state of ei-
ther electronic states, the energies are the same as in
Table III. This is due to the fact that the contribu-
tion from the potential in Eq. (16) vanishes for that
state. An estimate of the fundamental frequencies of
the 5 small amplitude vibrational modes can be obtained
taking the average of the energy differences E(νi, vb =
0,m = 0, A1) − E(Ground, vb = 0,m = 0, A1) and
E(νi, vb = 0,m = 1, E) − E(Ground, vb = 0,m = 1, E).
For the neutral molecule this leads to 2337, 1483, 990,
621, and 588 cm−1. These frequencies should be com-
pared to the experimental values of Sullivan et al.,19

2230, 1434, 855, 619, and 583 cm−1. In many cases,
the frequencies retrieved in this work are in better agree-
ment with the experimental values than those calculated
by these authors. For the cation X̃+ 2A′′ state, the
fundamental frequencies are 2104, 1338, 920, 541, and
456 cm−1 and, as stressed in Section II, are consistent
with the observed values extracted from the experimen-
tal TPES.
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IV. CALCULATED TPES

For a transition with upper and lower levels denoted
v+ and v′′, respectively, belonging to either ionizing tran-
sitions, the transition probability is taken equal to the
Franck-Condon factor |〈Ψv+ |Ψv′′〉|2 involving Ψv+ the
wavefunction of the cation and Ψv′′ that of the neutral.

A. Bending-torsion approach

The expansion of the bending-torsion wavefunction in
Eq. (14) shows that computing Franck-Condon factors
requires evaluating the matrix elements of two basis set
functions of Eq. (10):

〈ψm+,v+ |ψm′′,v′′〉 = δm+,m′′〈φm
+

v+ |φ
m′′

v′′ 〉. (17)

The last term in this equation can be obtained from
Eq. (12) leading to bending matrix elements of the form

〈θα
+,β+

p+ |θα
′′,β′′

p′′ 〉. The latter reduces to δp+,p′′ because

m+ = m′′ in Eq. (17) dictates that α+ = α′′ and
β+ = β′′, in agreement with Section III B. For each elec-
tronic state, the lowest 81 bending-torsion energy levels
were calculated for the A1 and A2 torsional symmetry
species as well as for the E torsional symmetry species.
Franck-Condon factors were then computed for the re-
sulting transitions of either ionizing transitions. Sym-
metry requires that transitions connect bending-torsion
energy levels with the same torsional symmetry, reduc-
ing the number of allowed transitions. The TPES was
calculated for both ionizing transitions and for a tem-
perature of 300 K. The value of the adiabatic ioniza-
tion energy for the X̃+ 2A′′ ← X̃ 1A′ ionizing transition
calculated at 10.729 eV was found too high when first
comparing observed and calculated TPES. Matching the
position of the strongest peaks, this value was decreased
by 0.133 eV yielding 10.596(6) eV. As stressed in Sec-
tion II B, no spectroscopic feature could be assigned for
the Ã+ 2A′ ← X̃ 1A′ ionizing transition. For this rea-
son, the adiabatic ionization energy of this transition,
calculated at 10.892 eV, was also decreased by 0.133 eV
yielding 10.759(50) eV where the large 50 meV uncer-

tainty is an estimate of the Ã+ 2A′ and X̃+ 2A′′ states
relative energy ab initio error. Figure 8 depicts the re-
sulting TPES along with the experimental one. For the
X̃+ 2A′′ ← X̃ 1A′ ionizing transition, only 4 sharp peaks
arise and the short Franck-Condon progression is due to
the bending mode. For the Ã+ 2A′ ← X̃ 1A′ ionizing
transition, the larger number of peaks is due to the large
difference between the structure and the potential of the
neutral and of the cation Ã+ 2A′ state. The TPES includ-
ing both ionizing transitions was computed multiplying
the contribution from the Ã+ 2A′ ← X̃ 1A′ ionizing tran-
sition by 3 which ensures the best agreement with the ex-
perimental spectrum but has no theoretical justification.
An HWHM of 75 cm−1 was used to take into account

Figure 8. TPES calculated with the bending-torsion approach
plotted as a function of the photon energy. A Gaussian line
shape with an HWHM of 20 cm−1 was taken for clarity in a)

and b) for the X̃+ 2A′′ ← X̃ 1A′ and Ã+ 2A′ ← X̃ 1A′ ion-
izing transitions, respectively. In c), an HWHM of 75 cm−1

was adopted for the TPES calculated in accordance with Sec-
tion IV A and compared to the experimental spectrum in d).
Different y-axis scales were used for each panel.

both the experimental resolution and the rotational en-
velope. Although the agreement with the experimental
TPES is not really satisfactory, the present simplified cal-
culation is able to reproduce the broad feature spanning
the energy range from 10.6 to 11.8 eV.

B. Vibration-bending-torsion approach

Using the results in Section III C we can see that evalu-
ating the Franck-Condon factors leads to matrix elements
between two basis set functions of Eq. (15) expressed as:

〈ψm+,v+ |I(n+,n′′; t)|ψm′′,v′′〉 (18)

where I(n+,n′′; t) is the Franck-Condon overlap integral
between Ψn+(Q+; t) the vibrational wavefunctions of the
cation and Ψn′′(Q′′; t) that of the neutral, as defined in
Eq. (5). The Franck-Condon overlap integral takes the
form:46

I(n+,n′′; t) = [detJ(t)]−
1
2

×
∫

Ψn+(Q+; t)Ψn′′(Q′′; t)dQ′′,
(19)

where J(t) is defined below. The relation between both
sets of normal coordinates, required to evaluate this in-
tegral, is Duschinsky’s linear transformation:47

Q+ = J(t)Q′′ + k(t), (20)
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where J(t) is a matrix and k(t) is a column vector.
Denoting L+(t) and L′′(t) the Wilson-type matrices34

arising in Section III A 3 for the cation and the neutral
species, respectively, we obtain:48

J(t) = [L+(t)]−1L′′(t) (21)

and

k(t) = [L+(t)]−1[qeq′′
(t)− qeq+

(t)], (22)

where qeq+

(t) and qeq′′
(t) are the equilibrium values

arising in Section III A 2 for the cation and the neutral
species, respectively. Using Ruhoff and Ratner’s recur-
sive algorithm46 and Eqs. (20)–(22), the Franck-Condon
overlap integral were evaluated. For each set n+ and
n′′ of upper and lower vibrational quantum numbers, a
t-dependent function was obtained. Figure 9 shows the
variations of I(n+,n′′; t) for the Ã+ 2A′ ← X̃ 1A′ ionizing
transition and for 4 sets of vibrational quantum numbers.
The cation, n+ = νn was taken, with 1 ≤ n ≤ 4; while
for the neutral, n′′ corresponds to the ground vibrational
state.

Because the Franck-Condon overlap integral is not τ -
dependent, the matrix element in Eq. (18) reduces to:

δm+,m′′〈φm
+

v+ |I(n+,n′′; t)|φm
′′

v′′ 〉, (23)

an expression analogous to that in Eq. (17). As in the
case of this equation, the following bending matrix ele-
ment arises:

〈θα,βp+ |I(n+,n′′; t)|θα,βp′′ 〉, (24)

and can be calculated using a Gauss-Jacobi quadrature.
The TPES of each ionizing transition was simu-

lated considering small amplitude vibrational states with∑5
i=1 n

′′
i ≤ 2 for the neutral species and

∑5
i=1 n

+
i ≤ 4 for

the cation leading to 21 and 126 states, respectively. For
each state 162 bending-torsion energy levels were calcu-
lated including 81 levels with A1 and A2 torsional sym-
metry and 81 levels with E torsional symmetry. This led
to 3402 energy levels for the neutral molecule and 20412
for the cationic species. Total photoionization proba-
bilities were then computed for the resulting transitions
taking into account symmetry restrictions.

In addition to the experimental TPES, Fig. 10 shows
three TPES calculated for a vibrational temperature of
300 K including those of the X̃+ 2A′′ ← X̃ 1A′ and
Ã+ 2A′ ← X̃ 1A′ ionizing transitions, and a trial TPES
computed adding the contribution of both ionizing tran-
sitions. In order to have the best agreement with the ex-
perimental TPES, the contribution from the Ã+ 2A′ ←
X̃ 1A′ ionizing transition was multiplied by 2. This fac-
tor, as the one used in Section IV A, has no theoretical
significance. Comparing this trial TPES with the exper-
imental one confirms the line position agreement high-
lighted in Section II. It also shows that the broad fea-
ture of the experimental TPES, from 10.6 to 11.8 eV,

Figure 9. The dimensionless Franck-Condon overlap integral
I(n+,n′′; ρ) for the Ã+ 2A′ ← X̃ 1A′ ionizing transition is
plotted as a function of ρ for 4 sets of small amplitude vibra-
tional states. n+ = νn, with 1 ≤ n ≤ 4, and n′′ corresponding
to the neutral ground vibrational state. The value of n iden-
tifies each curve in the figure.

is fairly well reproduced. The line intensity agreement
is, however, less satisfactory. The sharp peaks in the
10.65 to 10.8 eV energy range, corresponding to the ν2,
ν3, and ν4 modes, are obviously too weak. Conversely,
the Franck-Condon progression due to the ∠CαNC bend-
ing mode at 191 cm−1 is quite prominent in the calcu-
lated TPES but not in the experimental one. Without
adjustment, the calculated adiabatic ionization energies
for the X̃+ 2A′′ ← X̃ 1A′ and Ã+ 2A′ ← X̃ 1A′ ioniz-
ing transitions are exactly the same as in Section IV A.
In this case too, the value for the former transition was
decreased being too large. Within the experimental un-
certainty, the energy shift was the same as in this section
leading to an adjusted value of 10.596(6) eV. Similarly

for the Ã+ 2A′ ← X̃ 1A′ ionizing transition, this leads to
the same estimated value of 10.759(50) eV.

Although line intensities may be affected by resonant
autoionization in threshold photoelectron spectroscopy,49

the intensity discrepancies in the 10.65 to 10.8 eV energy
range can also be understood noticing that the Franck-
Condon factors are extremely sensitive to the equilibrium
value differences in Eq. (22). The X̃+ 2A′′ ← X̃ 1A′ ion-
izing transition was recalculated changing slightly the pa-
rameters retrieved whilst fitting the ab initio values of the
cationic species X̃+ 2A′′ ground state in Section III A 2.
For the two bond length coordinates q3 = r(CN) and
q4 = r(CO), the values of q0

3 and q0
4 in Eq. (3) were in-

creased by 1.721 and 0.904 %, respectively. For the bond
angle q6 = ∠NCO, the parameters f6

j in Eq. (4) were in-
creased by 20%. The vibration-bending-torsion energies
of the cationic species X̃+ 2A′′ ground state underwent
small changes on the order of a few cm−1 but line in-
tensities were drastically changed. Figure 11 shows the
TPES obtained adding the contribution of both ionizing
transitions with no multiplicative factors. The Franck-
Condon progressions due to the ν1 and ν2 modes and the
fundamentals of the ν3 and ν4 modes can now clearly
be seen in panel a) of this figure where vibrational as-
signments are given. These assignments are consistent
with Table I and a more satisfactory agreement with
the experimental TPES arises. However, we are still un-
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Figure 10. TPES calculated with the vibration-bending-
torsion approach plotted as a function of the photon energy.
The X̃+ 2A′′ ← X̃ 1A′ and Ã+ 2A′ ← X̃ 1A′ ionizing transi-
tions are drawn in a) and b), respectively, using the same line
shape as for a) in Fig. 8. The TPES calculated in accordance
with Section IV B is plotted in c) using the same line shape as
for c) in Fig. 8 and compared to the experimental spectrum
in d). Different y-axis scales were used for each panel.

able to assign peak # 3. Likewise, the band calculated
at 10.61 eV, corresponding to the short Franck-Condon
progression along the bending molde as described in Sec-
tion IV A, still does not have a counterpart in the ex-
perimental TPES. No effort was made to recalculate the
Ã+ 2A′ ← X̃ 1A′ ionizing transition. This transition is
dominated by Franck-Condon progressions due to the two
large amplitude modes and altering the parameterization
of the small amplitude vibrational modes did not allow
us to observe Franck-Condon progressions due to these
modes.

V. CONCLUSION

The photoelectron spectrum of methyl isocyanate in
the 10.4 to 12 eV region is attributable to ionization
from the nonbonding π2(a′′, a′) orbitals of the NCO
group leading to two ionizing transitions from the neu-
tral ground X̃ 1A′ state to the cation ground X̃+ 2A′′

and first excited Ã+ 2A′ electronic states. The TPES of
these two photoionizing transitions has been recorded in
this work using synchrotron radiation and theoretically
modeled.

Although methyl isocyanate has only 7 atoms, it is the-
oretically challenging as it displays two large amplitude
motions consistent with its quasi-symmetry.2–11 The cou-
pling between these two large amplitude motions must
be treated exactly to properly model its energy level dia-

Figure 11. TPES calculated with the vibration-bending-
torsion approach plotted in a) as a function of the photon
energy. The line shape is the same as for c) in Fig. 8. This
adjusted spectrum was obtained by changing slightly param-
eters describing the equilibrium values of the inactive coordi-
nates q3, q4, and q6 for the cationic species X̃+ 2A′′ ground
state. The vibrational bands of the X̃+ 2A′′ ← X̃ 1A′ ioniz-
ing transition are labeled with the small amplitude vibrational
mode number of Section III C and upper and lower vibrational
quantum numbers. The experimental spectrum is shown in b)
and the 10 strongest sharp peaks are numbered as in Fig. 1.

gram and, for instance, to account for its high-resolution
spectroscopic data.8,13,14 As the TPES recorded in this
work displays well-resolved vibrational structures, the 13
small amplitude vibrational modes should also be in-
cluded in the theoretical model.

Even though theoretical models accounting for one
large amplitude motion have already been proposed for
modeling photoelectronic spectra,50 the model developed
in this work goes one step further since it takes into ac-
count two large amplitude motions and the small am-
plitude vibrational modes. Several approximations, how-
ever, were made. Only a few small amplitude modes were
considered. The selected ones are those closely related to
the change in equilibrium structure upon ionization. This
principle, applied by Eland25 in the case of the parent
species HNCO, means in the case of methyl isocyanate
that only the 5 small amplitude vibrational modes in-
volving NCO group atoms should be retained. Indeed,
the orbital from which ionization occurs belongs to this
group and, as confirmed by Table II, the internal coordi-
nates involving these atoms undergo the largest changes
when going from the neutral molecule to either states
of the cationic species. The second adopted approxi-
mation involves neglecting the dependence on the large
amplitude torsional motion of the generalized inverse in-
ertia tensor43,44 and of the matrices involved in the FG
method.34 The third approximation involves omitting the
vibronic couplings between the two electronic states of
the cationic species.

In this work, ab initio calculations were performed
to obtain the equilibrium geometries of the neutral and
cationic species, the equilibrium values of the small am-
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plitude inactive coordinates as functions of the two ac-
tive large amplitude coordinates,23,24 and the Hessian
matrix. These results allowed us to obtain bending-
torsion and vibration-bending-torsion energy levels for
the neutral and the cationic species. For the neutral
molecule, these results, given in Tables III and IV are in
good agreement with those obtained in previous spectro-
scopic investigations.8,19 For the cation X̃+ 2A′′ ground
electronic state, the vibrational energies could only be
compared to those reported by Pasinszki et al.22 and
those extracted from the present experimental TPES.
Table I, where experimental and calculated values are
compared, emphasizes that the discrepancies are smaller
than 100 cm−1 for fundamental frequencies.

The main results of the paper are the calculated TPES
presented in Sections IV A and IV B. With the model in
which only the two large amplitude coordinates are con-
sidered, a qualitative agreement with the experimental
spectrum is achieved as the theoretical TPES displays a
sharp line and a broad feature spanning a large energy
range, Fig. 8. With the more sophisticated treatment ac-
counting also for the small amplitude vibrational modes,
there is a good agreement between the line positions of
the strongest sharp peaks, but their intensities are not
fully reproduced by the model. A better agreement could
be obtained for the line intensity of these peaks by ad-
justing several parameters retrieved from the fit of the ab
initio calculations results.

The present investigation provided an accurate value
of 10.596(6) eV for the adiabatic ionization energy of

the X̃+ 2A′′ ← X̃ 1A′ photoionizing transition, with ei-
ther the bending-torsion or the vibration-bending-torsion
models. The value obtained directly from the ab ini-
tio calculations turned out to be 0.133 eV too high.
Although no spectroscopic patterns could be assigned
for the Ã+ 2A′ ← X̃ 1A′ ionizing transition, a value of
10.759(50) eV was deduced for its adiabatic ionization en-

ergy using the relative energy of the Ã+ 2A′ and X̃+ 2A′′

electronic states obtained from the ab initio calculations.
The present investigation also offers an estimate of the
oscillator strength ratio between the Ã+ 2A′ ← X̃ 1A′

and X̃+ 2A′′ ← X̃ 1A′ ionizing transitions. Depending
on the model, the value ranges from 1 to 3.
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Appendix A: Fitting expansion to obtain qeqi (τ, ρ)

The value of q0
i to be used in Eq. (2) are:

q0
i =



r0
i , 3 ≤ i ≤ 5,

0 or π, 6 ≤ i ≤ 7,

r(CαH), 8 ≤ i ≤ 10,

∠NCαH, 11 ≤ i ≤ 13,

0, i = 14,

±2π/3, i = 15,

(A1)

where r0
i , r(CαH), and ∠NCαH are the bond lengths

and bond angles for the C3v configuration. The Fourier-
type expansions gij(τ) in Eq. (2) are given below and are

written with parameters denoted f i,jk . For 3 ≤ i ≤ 6, the
expansion gij(τ) is given by:

gij(τ) =

m∑
k=0

f i,jk cos 3(2k + l)τ, (A2)

where f i,jk are fitted parameters and l is 0 or 1 depending
on the coordinate i and on the parity of j. For 3 ≤ i ≤ 5,
l is 0 (1) for j even (odd); for i = 6, l is 1 (0) for j even
(odd). For i = 7, gij(τ) is given by:

gij(τ) =

m∑
k=0

f i,jk sin 3(2k + l)τ, (A3)

where l is 0 (1) for j even (odd). For the three bond
lengths with 8 ≤ i ≤ 10 and the three bond angles with
11 ≤ i ≤ 13, gij(τ) is given by:

gij(τ) =

m∑
k=0

f i,jk cos[(2k + l)(τ − li 4π/3)], (A4)

where f i,jk are fitted parameters, l is 1 (0) when j is even
(odd), and li is i−8 for the three bond lengths and i−11
for the three bond angles. For the angle q14 = β1, gij(τ)
is given by:

gij(τ) =

m∑
k=1

f i,jk sin(2k + l)τ, (A5)

where f i,jk are fitted parameters and l is −1 (0) when j
is even (odd). At last, for the angle q15 = β2, gij(τ) is
given by:

gij(τ) =

m∑
k=0

f i,jk cos(2k + l)τ, (A6)
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where f i,jk are fitted parameters and l is 1 (0) when j is
even (odd).

Appendix B: Exact bending-torsion-rotation
Hamiltonian

When using a reference configuration characterized by
rigid linear NCO group and C3v methyl group, the fol-
lowing expressions can be obtained for the nonvanishing
inverse inertia tensor components:

µtt = 4(c− p0t)(1− t2)/Dt,

µyy = (c+ p0t)/Dt,

µty = 2d
√

1− t2/Dt,

µττ = [(c2 − d2 − p2
0 − 2I2

zd)(1− t2)/I2
z

+ 2c(1 + t2)− 4tp0]/Dτ ,

µxτ =
√

2(1 + t)[d− c+ p0 − t(d+ c− p0)]/Dτ ,

µzτ =
√

2(1− t)[d− c− p0 + t(d+ c+ p0)]/Dτ ,

µxx = 2(1 + t)(c− p0)/Dτ ,

µxz = −2
√

1− t2d/Dτ ,

µzz = 2(1− t)(c+ p0)/Dτ ,

(B1)

where:

Dt = c2 − d2 − p2
0t

2,

Dτ = (c2 − d2 − p2
0)(1− t2),

c = I1 + I2
x + [(m1 +m2)(m3 +m4 + 3mH)r2

1

+ (m1 +m2 +m3)(m4 + 3mH)r2
2]/M,

d = I1 − I2
x + [(m1 +m2)(m3 +m4 + 3mH)r2

1

− (m1 +m2 +m3)(m4 + 3mH)r2
2]/M,

p0 = 2(m1 +m2)(m4 + 3mH)r1r2/M,

r1 = [m1ra +m2r(CαN)]/(m1 +m2),

r2 = [m4r(CN) + 3mHrd]/(m4 + 3mH),

ra = r(CO) + r(CαN),

rd = r(CN) + r(CH) cosβ,

I1 = m1m2/(m1 +m2)r(CO)2,

I2
x = 3mHr(CH)2[ 1

2 sin2 β +m4/(m4 + 3mH) cos2 β],

I2
z = 3mHr(CH)2 sin2 β,

(B2)

with β = ∠NCαH and m1, m2, m3, and m4 being short-
hand notations for mO, mC, mN, and mCα

, respectively.
Equations (B1) and (B2) lead to the following values for
A and B in Eqs. (9):

A =
−d

c2 − d2 − p2
0

,

B =
2(c+ p0)

c2 − d2 − p2
0

.
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