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Abstract—Competitive gaming, or esports, is now well-
established and brought the game industry in a novel era. It
comes with many challenges among which evaluating the level
of a player, given the strategies and skills she masters. We are
interested in automatically identifying the so called skillshots
from game traces of Rocket League, a “soccer with rocket-
powered cars” game. From a pure data point of view, each
skill execution is unique and standard pattern matching may
be insufficient. We propose a non trivial data-centric approach
based on pattern mining and supervised learning techniques. We
show through an extensive set of experiments that most of Rocket
League skillshots can be efficiently detected and used for player
modelling. It unveils applications for match making, supporting
game commentators and learning systems among others.

Index Terms—Rocket League; Esports; Analytics and Player
Modelling; Pattern mining; Supervised Classification

I. INTRODUCTION

Competitive gaming, or esports, is now a well-established
phenomena [1]. Online and offline tournaments flourish for
hundreds of video games, at any level of player expertise.
The most prestigious offer cash prizes up to several US$ mil-
lions, and are widely followed on video game live streaming
platforms [2], [3]. For the game industry, designing games
that can be played as an esport comes with a difficult trade-
off between game difficulty and reward/fun. Indeed, a game
shall be difficult enough so that professional gamers exhibit
extraordinary skills that casual players will enjoy to watch
on live streaming platforms. However, the game should also
provide an attractive learning curve and clear segments of
skills. One should play with/against players of approximately
the same level of skills. They finally should also feel a progress
in the learning of the game. As popularized by the famous
board game Othello’s slogan, many esports take “A minute
to learn, a lifetime to master”. When the trade-off between
game difficulty and reward is well handled, a game has better
chances to see its life time extended, a major goal for the
industry, especially for games with staggering budgets.

Consequently, a major challenge is to understand the level of
a player and to evaluate its progression. Match making systems
rank players, generally, following an ELO-like scoring [4], and
depending only on previous victories and losses of the player.
It suffers from the cold-start problem, but most importantly, it

does not bring any factual elements such as a player profile of
skills and mastered strategies. Furthermore, skills and strate-
gies are not given beforehand - and this is probably one of the
reasons why such games are so attractive - but are discovered
with time. Fortunately, several games provide access to game
logs storing enough information to replay the game. Analyzing
these logs enables one to exhibit behavioral patterns, that is,
discovering patterns that correspond to strategies and skills.
Logs are generated not only for competitive match, but also
training sessions, so a profile can be updated with any match.

In this article, we focus on the game Rocket League played
as an esport, which can be described as “soccer, but with
rocket-powered cars”. Released in 2015, it now counts more
than 10 millions sales and tens of thousands active players [5].
The game should be played competitively at an international
event for the next Olympic Games in Tokyo [6]. Each player
controls a car on a soccer field, and has to score just like
for classical soccer. The rules are simple, however the control
of the car is very precise and requires thousands of hours
of play to master. Actually, even years after the release of
the game, the community discovers new ways of playing, and
new skills that impact the way professionals play. Those skills
are recognizable by commentators when games are streamed.
Adding a system that can detect them automatically could
enhance players ranking, help commentators recognize skills
among the spectrum of available ones, or create new game
modes based on skills execution (rewarding players given
difficulty of skills they executed during the game).

Identifying skillshots from game traces is challenging as
each occurrence is unique from a pure data point of view.
Therefore, advanced data analysis techniques must be in-
volved. Our contributions are as follows: (i) we provide an
original dataset, composed of sequences of Rocket League
game states (replay), manually labeled with skillshots, and
augmented with player actions thanks to a self-made capture
program, (ii) we design a non trivial data-centric approach for
the automatic detection of skillshots involving discriminant
pattern mining and supervised classification, (iii) we support
our claims with an extensive set of experiments.

The paper is organised as follows. Section II describes our
data and methodology. Section III provides related works. Sec-
tion IV presents experimental results supporting our claims,
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and Section V discusses them.

II. DATA AND METHODOLOGY

We focus here on building an interpretable prediction model
taking a game log in real-time and outputting each time a
skillshot is detected. To the best of our knowledge, there
exists no dataset of Rocket League game logs labeled with
skillshots. Thus, we first build a dataset, perform a number
of transformations and manually annotate it with skillshots.
Then, the resulting dataset is mined and behavioral patterns
that strongly characterize skillshots are extracted. Finally, such
patterns are used to re-encode the initial dataset, and a model
is trained to predict skillshots given unseen player’s trace
segments. The fact that patterns are used in training enable
to produce an interpretable model (in contrast to black box
models) which is required to build an interpretable player skill
profile. The general workflow is given in Fig. 1.

Skill inventory Data collec-
tion/selection

Data augmenta-
tion/labelling

Pattern MiningData
re-encoding

Supervised
Classification

Fig. 1: Methodology (domain expert interventions in red).

A. Skill inventory

This expert knowledge can be found on community web-
sites, e.g., [7]. We focus on the most popular skillshots, namely
Ceiling Shot, Power Shot, Waving Dash, Air Dribbling, Front
Flick, and Musty Flick. Fig. 2 illustrates the Musty Flick: first,
the player accelerates and boosts to make the ball roll on top
of the car (1, 2), then she jumps making both the car and the
ball go up (3). Next, she orientates the car towards the floor
(4), jumps again, orientating the car backward (5), resulting
in lobbing the ball (6).

Fig. 2: Decomposition of the “Musty Flick”

B. Data collection and Feature Selection

After a match of Rocket League, the game client stores a
replay file. It is composed of contextual information about
the cars and the ball for every frame of the game. It allows to
replay the game with the game engine at any moment. Replays
can be parsed1 to extract dozens of variables on the ball
and players such as a speed vector, positions vector, rotations
vector, rotation speed, each composed of 3 dimensions, and
this for each actor on the field (players and balls), several
times per second. It results in a large sequence of game
states, each containing values for a set of variables, e.g.,
〈{time : 1.256, Px : 578, Py : 5768, Pz : 2245, Pvx :
22425, Pvy : 15848, Pvz : 354, Prx : 0, Pry : 589, Prz :
23, Ballx : 5588, Bally : 789, Ballz : 22, ...}, {time :
1.298, Px : 7578, Py : 254, Pz : 4678, Pvx : 511, Pvy :
555, Pvz : 7863, Prx : 6365, Pry : 5665, Prz : 6, Ballx :
568, Bally : 8663, Ballz : 665, ...}, {...}, ...〉, with Pi being
a position of the car in dimension i, Psi its velocity, Pri its
rotation, etc.

In order to deal with such a number of features, we
can reduce it with feature selection/engineering, using expert
knowledge. As an example, using the information of the
position of a static boost pad (an item on the field giving boost
to players) will not help to classify the action the player is
performing. The list of relevant information is given in Table
I. The wall distance, ceiling distance and ball distance can
easily be computed using positions of the ball and players
by retro-engineering the positions of the walls and ceiling in
replays of games already played.

Contextual information Data type
Wall distance (not backboard) Numeric

Ceiling distance Numeric
Ball distance Numeric

Ball speed Numeric
Ball acceleration Numeric

Car speed Numeric
Goal Scored Boolean

TABLE I: Contextual information selected by the expert

C. Data augmentation

Unfortunately, Rocket League replay files contain only
contextual information on the cars and the ball (position,
speed, ...), but do not contain player inputs (turn left,
accelerate, ...). To overcome this limitation, during each
game, we also gathered player inputs. To do so, we ex-
ecuted a program listening to the game controller (joy-
stick) to detect sequences of buttons, say inputs, a player
presses. It then generates a sequence of inputs, for example:
〈{accelerate, boost, time : 1.2}, {accelerate, right, boost,
time : 1.25}, {jump, time : 1.34}, {accelerate, up,
left, time : 1.6}, {accelerate, jump, down, boost, time :
1.7}, ...〉.

This sequence is then merged with the contextual sequence.
Indeed, the sequence of player inputs alone is not enough

1https://github.com/jjbott/RocketLeagueReplayParser
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to tell if a skill has been executed. For example, entering
the sequence of inputs for a “Power shot” when the ball is
far away will just result in flipping the player. On the other
hand, contextual information alone does not provide player
inputs, which are required to produce interpretable behavioral
patterns.

The workflow of the data augmentation process is given in
Fig. 3. The sequence of contextual information (obtained from
the game replay on which feature selection is operated) and
the sequence of player inputs are merged. Then, for improving
the computational efficiency of the next steps, we filter out
a sequence state Xi (built in the previous subsection) if its
previous state Xi−1 has the same inputs. Indeed, behavioral
patterns will be built only on states resulting from player’s
actions.

An expert then labels sequences with skillshots performed
using the in-game replay viewer: she defines the beginning
and the end of sequences corresponding to a particular skill,
leading to the creation of our labelled dataset. Sequences
are then split according to the beginning and the end cho-
sen by the expert (the end is often set when a goal is
scored). A simplified example of a labeled sequence is the
following (a for accelerate, DW for DistanceWall etc.):
〈({a, b}, {Time : 1.2, DW : 2131, ...}), ({{a, r, b}, {Time :
1.25, DW : 1801, ...}), ({j}, {Time : 1.34, DW : 1325, ...}),
({a, u, l}, {Time : 1.6, DW : 600, ...}), ({a, j, d, b}, {Time :
1.7, DW : 233, ...})〉, figure :MustyF lick.

Note that those steps that may appear straightforward as
described here are in fact technically complex. As replays are
meant to be replayed and not to extract data, a lot of retro
engineering is necessary to adjust x, y, z orientations, and to
synchronize sequences from replays and players actions inputs.
Note also that when visualizing the replay for labelling, the
time is a bit faster than the real play, leading to difficulties
of synchronization with timing of inputs that we corrected
thanks to a linear regression. Details can be found in the
supplementary materials, see Section V.

One large sequence of
inputs-context

Labeled Sequences of 
inputs-context

Raw
Game Data

Game 
Replay

One large 
sequence
of inputs

Player game

Inputs  detector Decompile

Timing sync +
Feature selection/engineering

Sequence labelization
(replay viewer)

Fig. 3: Data augmentation (expert intervention in blue)

D. Discriminative pattern mining

Using discriminative pattern mining [8] for sequences has
shown to give relevant patterns in the case of game analytics
(e.g., [9]). In this subsection, we first formally introduce
an original behavioral pattern mining technique, put then in
practice with an adaptation of an existing algorithm.

Definition 1 (Complex Event Sequence): Let I be a set of
items. Each subset I ⊆ I is called an itemset. A complex
event sequence is an ordered list of states s = 〈X1...Xn〉
where each state Xi = (ti, I,N) is composed of a timestamp
ti, an itemset I and a list of numerical valued variables N×R.
Note that each state is composed of a list of the same numerical
variables.

Each labeled sequence produced in the previous step can be
represented as a complex event sequence (Table II).

Definition 2 (Behavioral pattern): A behavioral pattern is a
complex event sequence generalization and can be written as
an ordered list of states s = 〈X1...Xm〉 where each state Xi =
(I,N) is composed of an itemset I of player actions and a list
of numerical interval valued variables N× [a, b] with a, b ∈ R
denoting the contextual information ranges of the event.

It is precisely the ranges of contextual variables (intervals)
that enable behavioral patterns to grasp slight variations of
the different executions of a skillshot, along with common
subsets of player actions. Patterns thus represent skillshot
generalizations, resistant to noise and variations of execution.

Definition 3 (Behavioral pattern extent and support): Given
a behavioral pattern p = 〈X1...Xm〉, and a database D of
complex events sequences, the extent of a pattern p in D is
ext(p) = {s ∈ D | p v s} that is, the set of sequences that p
generalizes. The support of a pattern p is supp(p) = |ext(p)|.

Definition 4 (Subsequence): A behavioral pattern p =
〈X1...Xmp

〉 is a subsequence, or a generalization, of complex
event sequence s = 〈X ′1...X ′ms

〉, denoted p v s, if and
only if there exists 1 ≤ j1 < ... < jmp

≤ ms such that
X1 ⊆ X ′j1 , ..., Xmp ⊆ X ′jmp

. Here, Xi ⊆ Xj means that
Ai ⊆ Aj and that ∀[ai, bi]k ∈ Ni, njk ∈ Nj , aik ≤ njk ≤ bik

The pattern 〈({a}, 〈[1, 3], [2, 5]〉), ({b}, 〈[2, 3], [4, 5]〉)〉
is a generalization of the complex event sequence
〈({a, b}, 〈2, 2〉), ({c}, 〈7, 0〉), ({b}, 〈3, 5〉)〉.

As the number of patterns grows exponentially w.r.t. the
number of complex event sequences, we focus on patterns
that discriminate skillshots, that is, whose support sequence
are strongly correlated to a skillshot. This is done thanks to a
popular score for discriminative pattern mining [8].

Definition 5 (Weighted Relative Accuracy (WRAcc)): Given
a pattern p, we have:

WRAcc(p, c) =
supp(p,D)
|D|

×
(
supp(p,Dc)

supp(p,D)
− |Dc|
|D|

)
with D being a dataset of complex event sequences labeled
with a class in {+,−} and Dc being the subset of D composed
of complex event sequences labeled by +. The higher the
WRAcc, the better.

Given the arbitrary pattern, using only player inputs for
simplification, p = 〈({a, b}), ({j, d})〉 and the data D given in



Table II, we have extent(p) = {1, 3}, support(p) = 2, and
WRAcc(p,+) = 2

4 × ( 22 −
2
4 ) = 0.25. Roughly speaking, the

WRAcc favors patterns that mostly cover the positive class
and not the negative one. Notice that we have more than two
labels for our skillshot classification task. We consider a one
versus all scheme, i.e., we will focus on a target class, say the
positive class while all the others will be merged to build the
negative one.

TABLE II: Toy dataset. “+” means the sequence is a “Musty
Flick”. We only included player inputs for readability.

id Sequences class
1 {a,b}, {a,r,b},{j}, {a,u,l}, {a,j,d,b} +
2 {a,r}, {j}, {j}, {l} -
3 {a,b}, {a,b},{a,j}, {a,u}, {r}, {j,d} +
4 {a,b}, {a,b},{a,j}, {j,u} -

There exists no mining algorithm for behavioral patterns
as defined in this article. However, we recently introduced
the SeqScout algorithm [10] that can mine discriminative
patterns in sequences of itemsets. In the following, we first
present the original version of SeqScout and then its slight
adaptation to mine behavioral patterns.

a) SeqScout: The principle of SeqScout is explained
on Fig. 4. The root of the search space, at the top, is the most
general pattern, meaning that it is the pattern that covers, i.e.
is a subsequence of, all sequences of the dataset. The more we
go down in the search space, the more specific patterns are,
covering less elements. When reaching the bottom, patterns
are in fact so specific that they are, for most of them, directly
a sequence of the dataset. The idea of SeqScout is to
iteratively select a sequence of the dataset following a trade-
off between exploration and exploitation, using UCB [11], and
then to generalize this element (“going up” in the search space)
creating a new pattern. The quality of this pattern, i.e., its
discriminating power, is then computed with the chosen quality
measure, the WRAcc in our case. Once the time budget has
been reached, patterns are filtered to make sure they are non-
redundant following Jaccard index, using a parameter θ (see
[10], and the top-k are returned. To adapt this algorithm to
our problem, we need to reconsider the generalisation step as
complex event sequences also contain vectors of intervals.

b) Sequence generalisation: The sequence generalisation
consists of two steps. In the first, each itemset of inputs I
is considered, for the selected sequence. Each item in I is
removed following the rule:{

remain, if z < 0.5
remove, if z ≥ 0.5

, where z ∼ U(0, 1).

If I is empty, the entire corresponding state X is removed.
Then in the second step, each numerical variable is considered.
Each n ∈ N is mutated following the rule, given nleft ∈
Dom(n) s.t. nleft ≤ n, nright ∈ Dom(n) s.t nright ≥ n and
α ∈ [0, 1], where Dom(v) represents the set of values taken
by variable v in the dataset:{

[−∞,∞], if z < α
[nleft, nrigth], if z ≥ α where z ∼ U(0, 1)

Fig. 4: Seqscout principle

For example, considering the sequence:

〈(1, {jump}, {speed = 158, DistanceBall = 10}),
(2, {right, slide}, {speed = 102, DistanceBall = 29}〉

One possible generalisation is:

〈(2, {slide}, {speed = [88, 107], DistanceBall = [−∞,∞]}〉

Removing constraints of random variables leads to the creation
of patterns with restrictions only on a subset of variables from
the state. It helps to find more interesting patterns faster.

E. Dataset re-encoding

Once a set of patterns has been extracted, we re-encode the
dataset, in the same way as authors in [12], [13]. We create
a feature for each pattern, putting a Boolean "1" value if the
pattern appears in the sequence, "0" otherwise, as illustrated
in Table III. As explained in [13], “The binary feature con-
struction process is certainly the most straightforward but has
also shown good predictive performance”. As we know that
those features are discriminative, they will give good insights
about the class we need to predict. Note that we need to mine
discriminative patterns of each class to classify all of them.

TABLE III: Toy dataset re-encoded with 3 patterns

id Pattern 1 Pattern 2 Pattern 3 class
1 1 1 0 +
2 0 0 1 -
3 1 1 0 +
4 1 0 1 -

F. Classification

Once the dataset in transformed into a binary transaction
labeled dataset, classical machine learning algorithms can be
used to predict the skillshot the player is performing.

III. RELATED WORK

Understanding and analyzing players behavior is an im-
portant subject. For unlabeled data, time series clustering
approaches were applied to different games, on free-to-play



game data to find relevant patterns in [14], or to discover
seasonal patterns in [15].

Concerning labeled data, we take interest in the identifi-
cation of "skills", or "moves". In games, it is most of the
time done with expert knowledge and ad-hoc techniques. For
example, in fighting games, multiple precise combinations of
controller inputs lead to the execution of particular attacks
or combos. To do so, exact pattern matching is used [16].
However in a game like Rocket League, such an approach
cannot be used. Indeed, each player has a full and precise
control of her car, in a 3D space, including all possible
rotations, speed, acceleration, even the reaction of bumping
other cars. Having such a huge space of possible configurations
leads to the fact that each performance of a skill is unique:
positions, speeds, rotations of the car and the ball will not
be the same, and even inputs pressed by the player can vary
a lot (many micro-adjustments of trajectory). This makes the
problem of automatically classifying (or detecting) the action
of the player difficult. Rocket League seems to implement a
system that uses ad-hoc rules such as "if the ball touched
the back of the car and then scored, it is a backward goal".
However, this approach is limited to simple rules, based purely
on expert knowledge, that would not work on more complex
skills.

In our context, we need to take into account inputs of the
player, to know what she wanted to perform, but we also need
the contextual information of the game. For instance, perform-
ing a "front flip" in its own goal without touching the ball and
doing it to hit the ball will impact the game differently. We are
then in the presence of the so called complex event sequences
[17]. Here is an example of the kind of sequence we are talking
about: S = 〈X1...Xm〉, X1 = (t1, {a, b}, 〈1000, 22, 58〉),
X2 = (t2, {c}, 〈125, 27, 101〉).

In fact, we can transform the event part of the sequence in
booleans taking 0 values by default, and 1 when the event fires.
It reduces the problem to a multivariate timeseries classifica-
tion problem [18]. Most of the recommended methods require
timeseries to have the same length, whether it is BOSS [19],
COTE [20], Shapelet Transform [21], or Time Series Forest
[22]. In our case here, timeseries have different lengths. The 1-
Nearest Neighbor Dynamic Time Warping (1-NN DTW) [23]
is said to be a good baseline [18]. However, the prediction
step in KNN can take a long time, even more because the
DTW distance has a complexity of O(n2) for sequences of
size n. It would make a good candidate to compare to in our
experiments though.

Finally, it should be highlighted that we were not able to find
any data analytics article on Rocket League in the literature. It
strengthens our first contribution: it appears useful to provide
a dataset mixing contextual information and player actions,
along with the needed tools to create new datasets.

IV. EXPERIMENTS

The whole methodology has been fully implemented and
a thorough experimental study has been carried out. All
materials are publicly available as detailed in Section V,

including our original dataset, scripts, algorithms, and our self-
made program for capturing inputs from joysticks. In this
section, we discuss a number of experiments that indicate
to which extent our methodology can automatically detect
skillshot from previously unseen games.

A. Dataset

Following the presented workflow, we generated data with
the help of experienced players of the game. We describe the
resulting dataset in Table IV. The max. size corresponds to
the maximum number of states in a sequence. We recall that
each state is composed of 7 variables and between 1 and 11
events, creating long sequences nearly impossible to read for a
human. Note that during labelling step we added failed skills,
i.e., missing goals, or not hitting the ball while performing
the skill, and random non-skill sequences in games as "noise".
Indeed, to train our classifier to perform in real conditions, we
need to be able do detect when player fails. We also added
classes distribution in Table V. The min and max values of
the variables are given in Fig. 10.

B. Experimental setup

We ran the first series of experiments not reported here to
determine the best default parameters for building a reasonable
classifier: we will study how each parameter affects the results
when other parameter are fixed to their default value. As such,
when not specified, the default parameters in experiments are
the following. We used 5-fold stratified cross validation to
assess the robustness of our classifier. We took the top-5 best
patterns given by SeqScout, on each class of the dataset,
as features for the classifier. We gave 1,000 iterations for
SeqScout, which seemed a reasonable trade-off between
pattern quality and time taken by the algorithm. The non-
redundancy parameter θ is set to 0.8. The parameter α,
controlling the sequence generalisation, is set to 0.9, and the
Decision Tree (from [24]) is chosen for the final classification
step, for its simplicity and interpretability. Section V gives
details on access to supplementary materials.

With this experimental setup, we provide answer elements
to the following questions.
• How many patterns are required to maximize the accuracy

of our classifier?
• How does the α parameter affect patterns quality?
• How does the qualities of computed patterns affect the

quality of the classification and how many iterations does
SeqScout need to perform well?

• How does the non-redundancy of patterns affect the
classification?

TABLE IV: Dataset

# Sequences # Inputs # Variables Max. size # Classes
298 11 7 64 7

TABLE V: Class Distribution

Noise Ceiling Power Waving Air Flick Musty
43 30 60 38 45 46 36



• What is the best classification method to use?
• What is the performance of our method compared to a

state-of-the-art algorithm like 1-NN DTW?
• Using only sequences of variables (and not player inputs),

can we still accurately predict performed skills?
• How can we use our classifier in real-time to detect

performed skills?

C. Influence of the number of mined patterns

We evaluated how the number of mined patterns influences
the mean accuracy of our method. Note that the pattern number
corresponds to the number of mined patterns for each class
with SeqScout. For example, this means that for 20 mined
patterns, having 8 classes in our dataset, we re-encode our
dataset with 160 features. Results are given in Fig. 5. Here
we can see that the predictive power of our method quickly
increases with the number of patterns, and then tends to
decrease a bit. Setting this parameter between 10 and 30 seems
to be a reasonable choice.

D. Influence of α parameter

In Fig. 6, we tested the influence of the parameter α from
the generalisation step on the quality of patterns. Note that the
WRAcc takes its values in [−0.25, 0.25] (see [10] for more
information). Here we can see that we have an optimum for
α = 0.8. This means that the method gives better results when
we remove restrictions on a numeric with the probability 0.8.

E. Pattern quality w.r.t. accuracy

Increasing the time budget leads to an increase of the mean
pattern quality [10]. We then propose to evaluate the impact
of the time we give to SeqScout. As we can see in Fig. 7,
the more iterations we give (and equivalently, time), the better
are the predictions. Finding good discrimative patterns leads
to the design of good discriminative features.

F. Impact of diversity on accuracy

In Fig. 8, we show the impact of the θ parameter. We recall
that θ is the threshold above which patterns are considered
similar when filtering resulting pattern. Having a low θ means
we want SeqScout to give us patterns which have few
or no sequences in common, and a high θ that we accept
similar patterns as the output. Interestingly, this parameter
does not seem to have an impact on the accuracy. It is
important if we want to filter patterns to an end-user, to show
non-redundant results, but in the case of classification, we
can choose to remove this costly step without impacting the
prediction quality.

G. Predictive performance of the method

We evaluated the performance of different state-of-the-art
classification methods on the re-encoded dataset. In light of
preceding results, we chose here the best found parameters:
α = 0.8, θ = 1, 20 extracted patterns, and a number of
iteration of 10,000. We tested Decision Tree (DT), Random
Forest (RF), SVM, Naive Bayes from sk-learn [24] and
XGBoost (XGB) from [25], all with default parameters values.

TABLE VI: Comparaison of 1-NN DTW vs our method

Acc Train Acc Test Time Train Time Test

Best Approach 94.1 84.9 14 min -
1-NN DTW - 71.5 - 7 min

As we can see in Fig. 9, RF, XGboost and SVM seem to give
the best results.

H. Comparison to 1-NN DTW

If we transform events to booleans taking 1 values when
event fires, and 0 otherwise, we can reduce the problem
to a multivariate timeseries classification. We then compare
ourselves to 1-NN DTW, without forgetting to z-normalize
timeseries as specified in [18]. We used a DTW implementa-
tion2. Results are shown in Table VI. Our method improves
significantly the accuracy. Moreover, we have the strong
advantage of being able to classify in nearly-real time, contrary
to 1-NN DTW. This is important to create a system that could
classify directly in game what players are doing. Note also
that there is a trade-off between the duration of the training
and the accuracy of our method, as we can tune the number
of iterations we give to SeqScout.

I. Using numerical variables only

We tried the approach on sequences of purely numerical
variables, meaning that we removed the player inputs in-
formation. In a 5-fold stratified cross-validation, we found
a mean accuracy of 73.9%. We can then deduce that the
information of players inputs leads to a clear increase of
accuracy of the system. It supports the need for the proposed
data augmentation step.

J. Classify goals

An example of confusion matrix given in the stratified 5-
fold cross-validation is given in Table VII. True classes are on
the left, predicted are on the top. As we can see, the classifier

TABLE VII: Confusion matrix of our classifier
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Noise 12 38 0 0 0 38 12
Ceiling shot 0 100 0 0 0 0 0
Power shot 0 0 100 0 0 0 0

Waving Dash 0 0 0 100 0 0 0
Air Dribble 0 0 0 0 100 0 0

Flick 10 0 0 0 0 90 0
Musty Flick 0 0 12 0 0 0 88

has difficulties to classify the "noise" class, composed of failed
goals, and random part of games. Using sliding windows to
detect skills in real time in a game would then probably give
poor results. However, in real setting, the vast majority of

2https://github.com/pierre-rouanet/dtw
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BallAcceleration -319123 294344

Time 0 13.4
DistanceWall 0 4043
DistanceCeil 0.07 2020
DistanceBall 115 9509
PlayerSpeed 27 229999
BallSpeed 0 329814

Fig. 10: variables min and max values

figures are ways of scoring goals. To deal with the previous
issue and to increase the accuracy of our system, we can
introduce a bit more of expert knowledge: we classify the
sequence only if a goal has been scored. This way, our system
could be directly used in real settings, extracting the sequence
of actions before a goal, and feeding it to our classifier. After
filtering sequences of our dataset by keeping only those having
a "goal" in it, and using our method, we have a mean accuracy
of 87.6%.

K. Pattern interpretability

One of the interest of using a pattern mining approach is
its interpretability. The two following patterns are the top-1
patterns extracted respectively for the "Musty Flick" and the
"Ceiling Shot" by SeqScout. Note that here for simplicity of
notation we removed variables whose intervals were [−∞,∞].

〈{accelerate}, {down jump}, {goal}〉 (WRAcc = 0.0863)

〈{accelerate, jump,DistanceCeil = [1.52, 1233.51]}}〉
(WRAcc = 0.0755)

Interestingly here, the pattern corresponding to the "Musty
Flick" only takes into account the inputs of the user, with
no restrictions on variables. The sequence of inputs is indeed
a part of the required inputs to perform the "Musty Flick".
The pattern is only a "part of" the required inputs because in

fact the beginning of the sequence of inputs for the "Musty
Flick" is common to the "Front Flick": SeqScout returns
only the discriminative part, i.e., the part that is present in
"Musty Flick" figures, and not in others. That is why this
method gives good results: the more discriminative patterns
are, the better are the feature for the classification step.

Moreover, the best found pattern discriminative of the
"Ceiling Shot" is in fact composed of only one state, which is
enough to discriminate the skill here: if the player jumps when
she is near the ceiling (1,200 corresponds approximately to the
medium position between ceiling and floor), it often leads to
a goal, in our dataset.

V. DISCUSSION

We introduced an original dataset collected by our means,
and a method to classify skillshots of players in Rocket League.
This methodology could be applied to other games, as the type
of required data is generic enough. We obtained good results
with a mean accuracy of 87.6%, a high score for a multi-class
classification problem.

The classifier training can take some time, depending on the
time budget the user want to allocate, but the classification can
be performed in real-time, contrary to 1-NN DTW.

However, there also exists some drawbacks that could be
addressed in future works. The biggest one is the noise
problem, as it is difficult to discern failed skills from well



executed ones. We dealt with this issue by filtering only
sequences finishing with a goal. This approach would not work
in the case of classifying skills that do not finish with a goal.
Moreover, all existing skills are not present in this dataset, as
it would require a lot of additional work with several different
experts to increase the diversity of performed and labeled
skills.

One may notice when looking at the confusion matrix that
many examples of noise are considered as other figures by
the classifier. This is due to the fact that noise is composed
of different "failed" figures. As they are similar to correctly
performed figures, they are difficult to discern. To deal with
that, a possibility would be to add a new label for each
figure corresponding to its failed or succeeded execution, and
to reserve the "noise" class to random moves. Our classifier
would then give the intention of the player, and another
classifier would give the success or not of this intention.

Note also that this project is a proof-of-concept, that used
some "hacks" in the data collection process. A production-
ready system would require inputs data directly recorded by
the game. In the case of new skill appearing in-game, the
system would need to be trained again with new data, to keep
being up-to-date with the new meta game.

Some skillshots are also not present in the dataset because
our expert players cannot perform them consistently. Indeed,
the better the player, the more consistent she is at performing
skills, as already showed in [9], and so the easier it is
to classify (professional players have less variability when
repeating strategies). Moreover, at very high level, it is not
only one skill at a time that is performed, but more a sequence
of skills. Using a system like presented in this paper would be
beneficial to several actors. For players, a histogram of skills
detected during games could be used for player profiling. For
game editor, such a system may help to better rank them,
or to detect "smurfing", i.e., playing with another account
to improve her ranking [26]. It could also improve analytics
for esport structures to better know their future opponents
by better understanding their play-style. It would also be
interesting to create new game modes where the goal is to
perform skills on increasing difficulty (like the game of "horse"
in basketball). Finally, this type of analytics could help to
study the evolution of the meta-game during seasons, as Rocket
League is already a game with a history, and is probably going
to keep growing over the next years.

SUPPLEMENTARY MATERIALS

All our experiments, data collection workflow and data are
provided with the code of our solution online: https://github.
com/Romathonat/RocketLeagueSkillsDetection.
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