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Abstract

We present an experimental and numerical investigation of the Darrieus-

Landau instability in a quasi two-dimensional Hele-Shaw cell. Experiments

and Lattice-Boltzmann numerical simulations are compared with Darrieus-

Landau analytical theory, showing an excellent agreement for the exponential

growth rate of the instability in the linear regime. The negative growth rate

– second solution of the dispersion relation – was also measured numerically

for the first time to the authors’ knowledge. Experiments and numerical

simulations were then carried out beyond the cutoff wavelength, providing

good agreement even in the unexplored regime where Darrieus-Landau is

supplanted by diffusive stabilization. Lastly, the non-linear evolution involv-

ing the merging of crests on the experimental flame front is also successfully

recovered using both the Michelson-Sivashinsky equation integration and the

Lattice-Boltzmann simulation.

Keywords: Darrieus-Landau; Lattice Boltzmann; flame instabilities;

premixed flames
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1. Introduction

Lattice-Boltzmann (LB) methods have been proven very efficient in the

field of low-Mach external aerodynamics and aeroacoustics [1, 2]. However,

although the first attempt of using LB methods for low Mach number com-

bustion has been published twenty years ago [3], a lot of interest in LB

methods for reactive flows has been observed only recently [4–6]. We pro-

posed in [6, 7] a hybrid LB framework (Lattice-Boltzmann / finite differences)

able to study combustion for low-Mach flows. Among the tests in [6] was a

preliminary study of the Darrieus-Landau instability of premixed flames, a

very challenging test case for LB methods since it couples temperature and

species fields to the velocity field. The underlying coupling between the

Lattice-Boltzmann and finite differences solvers was further improved in [8],

significantly improving the method stability.

Other numerical methods have been able to compute an important character-

istic of the Darrieus-Landau instability, the growth rate of small amplitude

perturbations as a function of wavenumber, for one-step chemistry [9, 10] or

for hydrogen-air flames [11], but it will be the first time that a LB method

is able to describe this phenomenon. The comparison will not be limited to

linear properties of the instability, but we will also show that the LB method

also describes correctly the non linear evolution of the flame.

In this paper, we compare two-dimensional simulations with our hybrid LB

method to quasi-2D experiments performed in a Hele-Shaw burner. Com-

pared to [6] we will be able to obtain the full dispersion relation giving the

growth rate as a function of wavenumber: it will be shown that this dis-
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persion relation has the same form as that obtained in experiments, even

beyond the cutoff wave number. Furthermore, we extend the comparison up

to times where non-linearities play a significant role in the flame dynamics

thereby demonstrating the ability of the method to correctly predict these

complex phenomena.

2. Numerical set-up

The numerical simulations are carried out with the ProLB software using

a pressure-based hybrid regularized thermal Lattice Boltzmann (LB) model

coupled with a Finite Differences (FD) solver. The probability density func-

tion fi (of finding gas particles at x with velocity ci) is solved using hybrid

regularized collision model [6]. The streaming and collision process can be

expressed under discrete form as

fi(t+ δt,x) = f col
i (t,x− ciδt),

f col
i (t,x) = f eq

i +

(

1−
δt

τ

)

fneq
i +

δt

2
FE
i

(1)

where τ̄ is a non-dimensional relaxation time, δt is the time-step, ci is the

ith discrete velocity of the D3Q19 lattice set, and f eq
i and fneq

i the equilib-

rium and non-equilibrium segments of the distribution function and FE
i is

the forcing term required to correctly recover the stress tensor [6, 12]. Full

expressions for f eq
i , fneq

i , FE
i and their relation with the macroscopic vari-

ables are provided in AppendixA. Note that the expressions correspond to

those presented in [6], with the addition of the recent developments presented

in [8].

It can be shown via the Chapman-Enskog expansion [6, 8] that the above

system of equations is equivalent to solving the mass and momentum con-
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servation equations

∂ρ

∂t
+

∂

∂xα
(ρuα) = 0,

∂ρuα

∂t
+

∂

∂xβ
(ρuαuβ) = −

∂p

∂xα
+

∂Tαβ

∂xβ
,

(2)

at second-order in time and space, where notations follow [13].

The FD solver consists of mass conservation of species k and enthalpy

conservation equations solved through classical central difference approach.

Temporal integration of the FD equations is explicit first-order in time, but

the global order of the method is close to second-order [6, 8, 12]. Further

details on the coupling between the two solvers are available in our recent

publications [6–8, 12]. The species conservation equation reads

ρ
∂Yk

∂t
+ ρuα

∂Yk

∂xα
=

∂

∂xα
(−ρYkVk,α) + ω̇k , (3)

where ω̇k is the net chemical production rate of species k, and Vk,α is its

diffusion velocity [13]. The energy conservation can be expressed in different

ways, in this work we decide to consider the enthalpy conservation of a gas

mixture with multi-component ideal gas thermodynamic closure :

h =
N
∑

k=1

hkYk , hk =

∫ T

T0

Cp,k(T )dT +∆h0
f,k, (4)

where T and h are linked through NASA polynomials leading to the following

enthalpy equation

ρ
∂h

∂t
+ ρuα

∂h

∂xα
=

Dp

Dt
−

∂qα
∂xα

. (5)

where Dp
Dt

= ∂p
∂t

+ uα
∂p
∂xα

is neglected. The heat flux qα reads

qα = −λ
∂T

∂xα

+ ρ
N
∑

k=1

hkYkVk,α, (6)
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with λ the thermal conductivity. Diffusion velocities are defined as in [6],

using constant Schmidt number for each species (See Table B.1), and a cor-

rection velocity to ensure mass conservation [13].

3. Experimental set-up

The experiments are carried out in a Hele-Shaw burner [14–20]. The ap-

paratus used here is made of two borosilicate glass plates (1500×500×5mm)

vertically oriented and separated by a ∆ = 5mm gap, shown in Fig. 1. The

burner is opened at the top, and closed at the bottom and on the two vertical

sides. At the bottom of the facility a flow line controlled by two Bronkhorst

EL-Flow series mass-flow regulators allows to fill the burner with a propane-

air mixture with desired equivalence ratio ϕ. For all the experiments pre-

sented hereafter, the Hele-shaw burner is filled with a propane-air mixture

ϕ = 0.8 with a flow rate such that the mixture velocity at the top of the

burner is in excess to the flame speed, allowing the flame to remain anchored

as a Bunsen flame at the top of the two glass plates. Then the mixture flow

is stopped (in a repeatable manner thanks to a solenoid valve) and the flame

starts its downwards propagation. The initial flat front is rapidly destabi-

lized due to Darrieus-Landau effect. Initial perturbations are either magni-

fied or damped according to their respective growth rate, leading to typical

Darrieus-Landau wrinkled flame fronts. In order to measure the growth rate

associated with perturbation of different wavelengths we make use of a forc-

ing method to select the desired wavelength. For this purpose, a steel plate,

laser-cut with a sinusoidal profile, is positioned at top of the burner next to

the anchored flame (see [21] for details about the experimental technique).

This technique allows to print an initial perturbation on the flame front. The
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Figure 1: Experimental Set-up

flame front dynamics is then recorded using a high speed camera (Photron

FASTCAM Mini AX200) and analyzed using an image processing python

code (based on the scikit-image opensource library [22]).

4. Comparison and validation

4.1. Numerical setup

The equations solved with the Lattice-Boltzmann method correspond to

two dimensional flames interacting with the velocity field and will be com-

pared to quasi-2D experiments in the Hele-Shaw burner. However these

equations do not correspond to the narrow-channel approximation [16] as

the 5mm gap used in the experiments is not sufficiently small.
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Propane-air thermochemical properties are as follow:

• NASA polynomial coefficients for the thermodynamic closure (p, T ) =

f(ρ, h) required in closing the governing equations (2, 3 and 5),

• Power-law for the viscosity, yielding transport properties via constant

Prandtl and component-specific Schmidt numbers,

• One-step chemistry, where the pre-exponential parameter was chosen

so the flame velocity and thickness would be in agreement with the

dispersion relation. In particular, this leads to a laminar flame velocity

lower than usual, to account for heat losses.

A detailed account on these thermo-chemical parameters is available in AppendixB.

In the following, we consider a two-dimensional rectangular computa-

tional domain uniformly discretized with δx = 10−4m. The domain width

corresponds exactly to one wave length 2π
k

for the Linear regime analysis (Sec.

4.2). In the non-linear regime study Sec. 4.3 the domain width is 160mm,

corresponding to one third of the size of the Hele-Shaw cell represented in

Fig. 1: in the experiment, the same initial profile is reproduced three times in

the span-wise direction to improve periodicity. The time-step is maintained

at δt = 7.217× 10−8 s, corresponding to an acoustic CFL of 0.63.

The right and left boundaries conditions are periodic, while a fixed wall

is set at the bottom, and an open boundary conditions is considered at the

top, letting the burnt gases escape.

The domain is initialized by computing first the one-dimensional pre-

mixed flame structure, e.g. T1D(y) for the temperature. That profile is then
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extended to the two-dimensional domain as T (x, y, t = 0) = T1D(y − f(x)),

where f(x) is the desired geometrical perturbation:

• a single sine wave for the linear regime analysis (Sec. 4.2)

• a periodic experimental solution for the non-linear dynamics analysis

(Sec. 4.3)

Buoyancy forces are not taken into account in the Lattice Boltzmann nu-

merical scheme. For downward propagating flames such as those observed

experimentally in the Hele-Shaw cell, the gravity term leads to slightly lower

growth rates, and does not have a large influence on the non linear evolution

for short times. Interesting papers on the role of gravity on the dispersion

relation are [23] for two-dimensional flames and [24] in the narrow-channel

approximation.

4.2. Linear Regime Analysis

The linear dynamics is analyzed by perturbing the flame front using sinu-

soidal waves. Initially, the amplitude of the waves are small and are expected

to grow because of the Darrieus-Landau instability.

Considering that the thermal diffusive properties of the mixture depends

on the temperature as ρDth ∝ T β (with β = 0.69), the theoretical dispersion

relation is then given by [23] (see also [25]) :

A(k)σ2 +B(k)σ + C(k) = 0, (7)

where σ is the growth rate of the perturbation with wavenumber k. A(k),

B(k), C(k) are coefficients depending on gas expansion E = ρu/ρb, Mark-

stein number M, laminar flame speed uL, flame thickness d = Dth/uL , and
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Prandtl number Pr as

A(k) =
E + 1

E
+

E − 1

E
kd

(

M− J
E

E − 1

)

,

B(k) = uLk
(

2 + 2Ekd(M− J)
)

,

C(k) = u2
Lk

2
(

(E − 1)
k

kc
− (E − 1)

)

,

(8)

where the cutoff wavenumber kc verifies k−1
c = d

(

Eβ + 3E−1
E−1

M − 2E
E−1

J +

(2Pr− 1)H
)

. The integrals J and H can be found in [23, 25]. The positive

root σ+ (the positive growth rate, leading to an exponential amplification of

the perturbations) of the quadratic equation (7) verifies approximately

σ+ = ak − bk2 +O(k3). (9)

A straightforward development (see [17]) leads to

a =
E

E + 1

[

S − 1
]

uL, (10)

where S =
√

1 + E − 1
E

, the relation σ = ak is the known Darrieus-Landau

result without Markstein number effect, and

b = −duL

[

(

− a2
E − 1

E
− 2aE

)

M

+ J(a2 + 2aE)−
E − 1

kcd

]

/2S.
(11)

This dispersion relation has also been obtained by Matalon and coworkers

for temperature dependent diffusivities (see [26, 27]).
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It has been possible to measure experimentally the dispersion relation corre-

sponding to Eq. (9) for 2D Bunsen flames [25] and recently some of the au-

thors have measured the dispersion relation in a Hele-Shaw cell [17, 21]. Nu-

merically some measurements of growth rates have been performed, first for

one-step chemistry [9, 10, 28] and recently for hydrogen-air flames [11, 27, 29].

Note that a negative root σ
−

of the quadratic equation (7) also exists, we

will show later that we are able to measure this negative growth rate in the

numerical simulations. Anyway, as the precision in the calculation decreases

when the damping increases, we will refer to the approximate formula, only

valid for low wavenumbers:

σ
−
=

E

E + 1

[

− S − 1
]

uLk +O(k2). (12)

This mode attenuates fast and the positive mode associated to σ+ becomes

dominant. This phenomenon is observed in the simulation results and is

presented in Fig. 2. The initial instances of the growth are exponential and

are defined in terms of both modes as:

A = A0e
σ+t + A1e

σ
−
t, (13)

where σ+ and σ
−

correspond to the growth rates of the positive and negative

mode respectively.

Our initial condition is a front slightly harmonically perturbed compared

to the plane front, imposed following the strategy presented in Sec. 4.1.

Let us note however that the velocity field could not be chosen in order to

only have the growing mode of the instability, so that we have a transient.

However, the precise transient does not change our estimate for the negative

growth rate.
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10
0

10
1
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b) 0 0.005 0.01 0.015 0.02
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-1

10
0

t(s)

A

Figure 2: Linear stage dynamics. a) Evolution of normalized amplitude (A) calculated
from numerical simulation (red dashed line) and gradient fit related to σ+ (black solid
line) presented over time where development of non-linear stage is observed. b) Gradient
fit related to σ

−
(black dash-dotted line), gradient fit related to σ+ (black dotted line),

evolution of A (red dashed line) and sum of both fits related to σ
−

and σ+ (black solid
line, indistinguishable from the red dashed line) presented at the initial instances where
both modes ( σ+, σ

−
) are present.

The Amplitude (A), computed using Fourier Transform, is reported in

Fig. 2, for an initial sinusoidal perturbation at k = 0.52mm−1 . The fit of

the positive mode (σ+), A = A0e
σ+t from Eq. (13) is represented in Fig. 2a.

Furthermore, the initial presence of two modes is underlined in Fig. 2b, along

with the fit of the negative mode (σ
−
). We clearly see that fitting the solution

as the linear combination mentioned in Eq. (13) is accurate for all times,

provided the linear regime is valid, until the amplitude of the mode saturates

due to nonlinear effect.

As seen from Eq. (9), the positive mode of the growth is of the form

σ ∝ |k|−k2. The initial growth is measured and compared to the theoretical

dispersion relation, written in the following way

σ =
4σM

kc

(

|k| −
k2

kc

)

, (14)

where σM is the growth rate of the most amplified wavelength and kc the
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Figure 3: Observation of growth and decay with wavenumbers higher and lower than kc.
Propagation of the flame is from top to bottom. Left: Growth at wavenumber lower than
kc. Right: Decay with wavenumber higher than kc. Experimental (Black), and Numerical
(blue) results.

cutoff wavenumber. This dispersion relation is then fitted on the computed

results. In order to have a quantitative agreement with the experimental

results (we will only show propane-air flames with equivalence ratio ϕ = 0.8),

we choose in the numerical simulations the following parameters: uL = 0.177

m/s, E = 7.12, d = 0.53 mm. Indeed the heat losses in the Hele-Shaw

burner are large and lead to a weaker hydrodynamic instability than what is

observed in a tube. uL and d have been chosen to have an agreement with

the experimental dispersion relation, in particular we have taken a value for

uL lower than the laminar flame speed for equivalence ratio ϕ = 0.8. Further

details are given in AppendixB.

Figure 3 qualitatively shows the growth of perturbations at low wavenum-
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ber and decay for a wavenumber larger than kc. The figure in black corre-

sponds to an experiment (propane, ϕ = 0.8), and is compared to a numerical

simulation for an unstable wavenumber. The figure on the right is a numer-

ical simulation for a stable wavenumber (larger than kc)

a) 0 0.5 1

-50

0

50

k(mm−1)

σ
(s

−
1
)

b) 0 0.1 0.2 0.3 0.4
-200

-150

-100

-50

0

k(mm−1)

σ
(s

−
1
)

Figure 4: Quantification and comparison of σ+ and σ
−

. a) Growth rate (σ+) measurement
obtained from the experimental (blue triangles) and numerical (red circles) investigations.
The theoretical dispersion relation (black dashed line) is then fitted with σm = 60s−1 and
kc = 0.9mm−1. b) Growth rates (σ

−
) computed from simulations (red error bars) and

theoretical solution from Eq. (12) (black dashed line) .

Quantitative agreement between numerical and experimental results is

shown in Fig. 4a, where the numerical results (red circles) are compared

to experiments (blue triangles) and to a fit of the dispersion relation (Eq.

14). Note that we have also been able to measure the negative growth rate

(Fig. 4b), which is compared to Eq. (12). The negative growth rates are pre-

sented as error bars, given the difficulty of measuring accurately the quantity

due to initial pressure perturbations present in the computational domain.

Although the Lattice-Boltzmann measurements are slightly below the the-

oretical curve, the agreement is relatively good. To the knowledge of the

authors, this is the first time in the literature that this negative growth rate
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is measured.

We thus have evidenced that our hybrid LBM method is able to correctly

describe the linear premixed flame dynamics. It will be demonstrated in the

next subsection that an agreement is also possible for the non linear evolution

of the flame.

4.3. Non-Linear Dynamics

A very unstable premixed flame (a flame in a large domain, often called

a self-turbulent flame [30]) leads to a complex non linear evolution involving

merging and creation of new crests on the flame front. We have to show that

our numerical simulations are able to describe correctly these effects. The LB

simulations will thus be compared to experiments (see also [31]) and to the

results of the Sivashinsky equation (or Michelson Sivashinsky : MS equation)

[32]. This equation, solved with periodic boundary conditions, includes the

linear dispersion relation (Eq. 14), and a quadratic non-linearity and writes

as:

φt +
uA

2
φ2
x =

4σM

kc

(

φxx

kc
+ I(φ, x)

)

, (15)

where φ stands for the vertical position of the front, x is the transverse co-

ordinate and t the time. σM and kc are the parameters given in Eq. (14),

kc is the cut-off wavenumber, I(φ, x) is the Landau operator corresponding

to a multiplication by |k| in Fourier space. The curvature term φxx comes

from the thermal diffusive restabilization and is responsible for the damping

of disturbances at small scales. Finally, φ2
x is a non linear term responsible

for the formation of cusps. For low expansion E, uA is close to the laminar

flame speed, this is no longer the case for large E [33, 34]. This parameter
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uA is fitted to obtain amplitudes of the flame comparable to experiments.

In order, to compare the evolution given by the LBM integration and the

MS model with an experiment, a flame is ignited at the top of the Hele-Shaw

as a forced inverted V-flame. After a few instants of propagation, when the

cusps start to be visible on the flame front, we extract the flame contour

(y = f(x)) from the recorded images using an image processing algorithm.

The obtained flame contour is then used as an initial condition for numerical

integration (MS : φ(x, t = 0) = f(x) LBM : T (x, y, t = 0) = T1D(y − f(x))).

In Fig. 5, we show the comparison between the evolution of experimental

propane-air fronts (ϕ = 0.8), (Top figure, in black), the LB simulations, in

blue, and the MS equation (Bottom figure, green lines). In each case, the

positions of the cusps are highlighted, in order to better compare the three

different evolutions.

As can be seen in the figure, the crest merging process is correctly described

for short times by both the LB simulations and the Sivashinsky equation.

The LB simulations are actually closer to experiments, which may be caused

by the fact that the LB dispersion relation is slightly larger compared to

the MS one close to kc (see Fig. 4) or by the fact that flow non-linearities

(neglected at the first order in gas expansion in the MS model) play a sig-

nificant role. A difference between the experiments and the other figures is

the creation of new cusps. This effect, which is not observed in the LB or

MS simulations, could be caused by effects that we have neglected, such as

additional noise, or gravity (the experimental premixed flames are actually

propagating downwards).
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Figure 5: Darrieus-Landau non linear evolution: (a) Experimental, (b) Numerical results
and (c) MS equation starting from the same initial condition extracted from the experi-
ment.
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5. Conclusion

Simulations performed with an hybrid Lattice-Boltzmann model for low-

Mach reactive flows were presented in this paper for premixed flames unstable

relative to the Darrieus-Landau instability. We were able to compare quanti-

tatively the numerical results with quasi 2D experiments in a Hele-Shaw cell.

The growth rates of the instability were measured by studying the develop-

ment of small amplitude perturbations, and it was even possible to measure

the decaying mode of the instability, showing the precision of the method.

A correct agreement with experiments was also observed for the non linear

evolution of the flame front.
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AppendixA. Expressions for the LBM solver

In the low-Mach number approximation, the equilibrium function can be

truncated at second-order as

f eq
i = wi

[

ρθ +
ρciαuα

c2s
+

H
(2)
i,αβa

(2),eq
αβ

2c4s

]

,

fneq
i =

ωi

2c4s
H

(2)
i,αβa

neq
αβ ,

(A.1)

where,

H
(2)
i,αβ = ciαciβ − c2sδαβ , a

(2),eq
αβ = ρuαuβ,

aneqαβ = H
(2)
i,αβ (fi − f eq

i ) ,
(A.2)

θ is the normalized temperature linked with pressure as p = ρc2sθ, using ideal

gas law, wi is the weight coefficient related to the discrete velocity ci and cs

is the lattice sound speed. Note that the equilibrium function differs from
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[6], and was adapted from [8], enhancing numerical stability. In particular,

the pressure contribution θ is now inserted in the zero-th moment of (A.2)

rather than higher moments as in [6].

Consequently [8], the reconstruction of macroscopic variables now read

ρ(t+ δt,x) =
∑

f col
i + ρ(t,x)(1− θ(t,x))

(ρuα)(t+ δt,x) =
∑

ciαf
col
i .

(A.3)

Finally, the required forcing term is obtained as

FE
i =

ωi

2c4s
H

(2)
i,αβ

[

c2suαρ,β + c2suβρ,α + δαβρc
2
s

(

2

3
−

ηB
µ

)

uγ,γ

+∆(ρuαuβ)− δαβc
2
s∆[ρ(1 − θ)]

]

,

(A.4)

with ηB is the bulk viscosity, and

∆(ρuαuβ) = (ρuαuβ)(t+ δt,x)− (ρuαuβ)(t,x),

∆[ρ(1 − θ)] = ρ(t+ δt,x)(1− θ(t + δt,x))− ρ(t,x)(1− θ(t,x)).
(A.5)

AppendixB. Numerical simulation parameters

In this article we consider one-step propane/air mixture with 5 species:

C3H8,O2,H2O,CO2,N2. The thermal and species diffusion coefficients are

calculated using Schmidt and Prandtl numbers, detailed in Table B.1. Along

with the use of viscosity’s power law,

µ = µ0

(

T

T0

)β

, (B.1)
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Table B.1: Prandtl number and Schmidt numbers for each specie.

Pr 0.682
SC3H8

1.241
SO2

0.728
SCO2

0.941
SH2O 0.537
SN2

0.690

where reference viscosity µ0 = 1.782×10−5 , reference Temperature T0 = 300

K and coefficient β = 0.69. Furthermore, classical NASA polynomials for

each species k are used to define the thermodynamic properties.

In order to define the chemical source term a one-step Arrhenius kinetic

model is used, following global reaction C3H8+5 O2 −→ 3 CO2+4 H2O, as-

sociated with the kinetic rate ω = kchem.CC3H8
.CO2

.e−Ea/RT , where kchem =

8.77 × 1013cm3 mol−1 s−1, Ea = 30kcal/mol, and Ci are the molar concen-

trations for species i. The initial conditions used in order to compute 1-D

premixed profiles at equivalence ratio (φ = 0.8) are detailed in Table B.2.

Table B.2: Initial conditions: 1-D domain is initialized with fresh gases corresponding to
(0 : L/2) and burnt gases (L/2 : L)

Variables fresh gases burnt gases
T 300 K 2069.98 K
p 1 atm 1 atm
YC3H8

4.88× 10−2 6.76× 10−15

YO2
2.21× 10−1 4.39× 10−2

YCO2
9.74× 10−18 1.46× 10−1

YH2O 1.54× 10−13 8.02× 10−2

YN2
7.29× 10−1 7.29× 10−1

Given that the model presented in Sec. 2 does not account for heat

losses, experimental results can not be compared to the simulated result.
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In order to overcome this problem, we used Eq. (10) and relation σ = ak

to compute the flame speed Sexp
L = 0.177 m/s which corresponds to growth

obtained experimentally at lower wave-numbers. Furthermore, the original

value kchem = 9.9× 1013cm3 mol−1 s−1 [7] associated to the chemical reaction

rate is modified to kchem = 8.77 × 1013cm3mol−1 s−1 in order to recover

Sexp
L in our simulations. Lastly, to assure that we recover comparable σm,

flame thickening model [35] with a factor of 1.48 is used to recover the flame

thickness. These adjustments allow us to compare the growth rates with the

experimental results.
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