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Experimental and numerical Lattice-Boltzmann investigation of the Darrieus-Landau instability
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We present an experimental and numerical investigation of the Darrieus-Landau instability in a quasi two-dimensional Hele-Shaw cell. Experiments and Lattice-Boltzmann numerical simulations are compared with Darrieus-Landau analytical theory, showing an excellent agreement for the exponential growth rate of the instability in the linear regime. The negative growth rate -second solution of the dispersion relation -was also measured numerically for the first time to the authors' knowledge. Experiments and numerical simulations were then carried out beyond the cutoff wavelength, providing good agreement even in the unexplored regime where Darrieus-Landau is supplanted by diffusive stabilization. Lastly, the non-linear evolution involving the merging of crests on the experimental flame front is also successfully recovered using both the Michelson-Sivashinsky equation integration and the Lattice-Boltzmann simulation.

Introduction

Lattice-Boltzmann (LB) methods have been proven very efficient in the field of low-Mach external aerodynamics and aeroacoustics [START_REF] Chen | Lattice Boltzmann method for fluid flows[END_REF][START_REF] Sengissen | Simulations of lagoon landing-gear noise using Lattice Boltzmann solver[END_REF]. However, although the first attempt of using LB methods for low Mach number combustion has been published twenty years ago [START_REF] Filippova | A novel lattice BGK approach for low mach number combustion[END_REF], a lot of interest in LB methods for reactive flows has been observed only recently [START_REF] Lin | Mesoscopic simulation of nonequilibrium detonation with discrete Boltzmann method[END_REF][START_REF] Hosseini | Hybrid Lattice Boltzmann-finite difference model for low mach number combustion simulation[END_REF][START_REF] Tayyab | Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes[END_REF]. We proposed in [START_REF] Tayyab | Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes[END_REF][START_REF] Feng | A Lattice-Boltzmann model for lowmach reactive flows[END_REF] a hybrid LB framework (Lattice-Boltzmann / finite differences) able to study combustion for low-Mach flows. Among the tests in [START_REF] Tayyab | Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes[END_REF] was a preliminary study of the Darrieus-Landau instability of premixed flames, a very challenging test case for LB methods since it couples temperature and species fields to the velocity field. The underlying coupling between the Lattice-Boltzmann and finite differences solvers was further improved in [START_REF] Farag | A pressure-based regularized lattice-boltzmann method for the simulation of compressible flows[END_REF], significantly improving the method stability.

Other numerical methods have been able to compute an important characteristic of the Darrieus-Landau instability, the growth rate of small amplitude perturbations as a function of wavenumber, for one-step chemistry [START_REF] Denet | A numerical study of premixed flames Darrieus-Landau instability[END_REF][START_REF] Kadowaki | Numerical simulation of dynamics of premixed flames: flame instability and vortex-flame interaction[END_REF] or for hydrogen-air flames [START_REF] Frouzakis | Numerical study of unstable hydrogen/air flames: Shape and propagation speed[END_REF], but it will be the first time that a LB method is able to describe this phenomenon. The comparison will not be limited to linear properties of the instability, but we will also show that the LB method also describes correctly the non linear evolution of the flame.

In this paper, we compare two-dimensional simulations with our hybrid LB method to quasi-2D experiments performed in a Hele-Shaw burner. Compared to [START_REF] Tayyab | Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes[END_REF] we will be able to obtain the full dispersion relation giving the growth rate as a function of wavenumber: it will be shown that this dis-persion relation has the same form as that obtained in experiments, even beyond the cutoff wave number. Furthermore, we extend the comparison up to times where non-linearities play a significant role in the flame dynamics thereby demonstrating the ability of the method to correctly predict these complex phenomena.

Numerical set-up

The numerical simulations are carried out with the ProLB software using a pressure-based hybrid regularized thermal Lattice Boltzmann (LB) model coupled with a Finite Differences (FD) solver. The probability density function f i (of finding gas particles at x with velocity c i ) is solved using hybrid regularized collision model [START_REF] Tayyab | Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes[END_REF]. The streaming and collision process can be expressed under discrete form as

f i (t + δt, x) = f col i (t, x -c i δt), f col i (t, x) = f eq i + 1 - δt τ f neq i + δt 2 F E i ( 1 
)
where τ is a non-dimensional relaxation time, δt is the time-step, c i is the i th discrete velocity of the D3Q19 lattice set, and f eq i and f neq i the equilibrium and non-equilibrium segments of the distribution function and F E i is the forcing term required to correctly recover the stress tensor [START_REF] Tayyab | Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes[END_REF][START_REF] Feng | Hybrid recursive regularized thermal lattice boltzmann model for high subsonic compressible flows[END_REF]. Full expressions for f eq i , f neq i , F E i and their relation with the macroscopic variables are provided in AppendixA. Note that the expressions correspond to those presented in [START_REF] Tayyab | Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes[END_REF], with the addition of the recent developments presented in [START_REF] Farag | A pressure-based regularized lattice-boltzmann method for the simulation of compressible flows[END_REF].

It can be shown via the Chapman-Enskog expansion [START_REF] Tayyab | Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes[END_REF][START_REF] Farag | A pressure-based regularized lattice-boltzmann method for the simulation of compressible flows[END_REF] that the above system of equations is equivalent to solving the mass and momentum con-servation equations

∂ρ ∂t + ∂ ∂x α (ρu α ) = 0, ∂ρu α ∂t + ∂ ∂x β (ρu α u β ) = - ∂p ∂x α + ∂T αβ ∂x β , (2) 
at second-order in time and space, where notations follow [START_REF] Poinsot | Theoretical and numerical combustion[END_REF].

The FD solver consists of mass conservation of species k and enthalpy conservation equations solved through classical central difference approach.

Temporal integration of the FD equations is explicit first-order in time, but the global order of the method is close to second-order [START_REF] Tayyab | Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes[END_REF][START_REF] Farag | A pressure-based regularized lattice-boltzmann method for the simulation of compressible flows[END_REF][START_REF] Feng | Hybrid recursive regularized thermal lattice boltzmann model for high subsonic compressible flows[END_REF]. Further details on the coupling between the two solvers are available in our recent publications [START_REF] Tayyab | Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes[END_REF][START_REF] Feng | A Lattice-Boltzmann model for lowmach reactive flows[END_REF][START_REF] Farag | A pressure-based regularized lattice-boltzmann method for the simulation of compressible flows[END_REF][START_REF] Feng | Hybrid recursive regularized thermal lattice boltzmann model for high subsonic compressible flows[END_REF]. The species conservation equation reads

ρ ∂Y k ∂t + ρu α ∂Y k ∂x α = ∂ ∂x α (-ρY k V k,α ) + ωk , (3) 
where ωk is the net chemical production rate of species k, and V k,α is its diffusion velocity [START_REF] Poinsot | Theoretical and numerical combustion[END_REF]. The energy conservation can be expressed in different ways, in this work we decide to consider the enthalpy conservation of a gas mixture with multi-component ideal gas thermodynamic closure :

h = N k=1 h k Y k , h k = T T 0 C p,k (T )dT + ∆h 0 f,k , (4) 
where T and h are linked through NASA polynomials leading to the following enthalpy equation

ρ ∂h ∂t + ρu α ∂h ∂x α = Dp Dt - ∂q α ∂x α . ( 5 
)
where Dp Dt = ∂p ∂t + u α ∂p ∂xα is neglected. The heat flux q α reads

q α = -λ ∂T ∂x α + ρ N k=1 h k Y k V k,α , (6) 
with λ the thermal conductivity. Diffusion velocities are defined as in [START_REF] Tayyab | Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes[END_REF],

using constant Schmidt number for each species (See Table B.1), and a correction velocity to ensure mass conservation [START_REF] Poinsot | Theoretical and numerical combustion[END_REF].

Experimental set-up

The experiments are carried out in a Hele-Shaw burner [START_REF] Joulin | Influence of momentum and heat losses on the large-scale stability of quasi-2D premixed flames[END_REF][START_REF] Sharif | Premixed-gas flame propagation in Hele-Shaw cells[END_REF][START_REF] Fernández-Galisteo | Analysis of premixed flame propagation between two closely-spaced parallel plates[END_REF][START_REF] Sarraf | Darrieus-Landau instability and Markstein numbers of premixed flames in a hele-shaw cell[END_REF][START_REF] Jang | Unsteady propagation of premixed methane/propane flames in a mesoscale disk burner of variable-gaps[END_REF][START_REF] Alexeev | Experimental Study on Cellular Premixed Propane Flames in a Narrow Gap between Parallel Plates[END_REF][START_REF] Veiga-López | Experimental analysis of oscillatory premixed flames in a Hele-Shaw cell propagating towards a closed end[END_REF]. The apparatus used here is made of two borosilicate glass plates (1500 ×500 ×5mm)

vertically oriented and separated by a ∆ = 5mm gap, shown in Fig. 1. The burner is opened at the top, and closed at the bottom and on the two vertical sides. At the bottom of the facility a flow line controlled by two Bronkhorst EL-Flow series mass-flow regulators allows to fill the burner with a propaneair mixture with desired equivalence ratio ϕ. For all the experiments presented hereafter, the Hele-shaw burner is filled with a propane-air mixture ϕ = 0.8 with a flow rate such that the mixture velocity at the top of the burner is in excess to the flame speed, allowing the flame to remain anchored as a Bunsen flame at the top of the two glass plates. Then the mixture flow is stopped (in a repeatable manner thanks to a solenoid valve) and the flame starts its downwards propagation. The initial flat front is rapidly destabilized due to Darrieus-Landau effect. Initial perturbations are either magnified or damped according to their respective growth rate, leading to typical Darrieus-Landau wrinkled flame fronts. In order to measure the growth rate associated with perturbation of different wavelengths we make use of a forcing method to select the desired wavelength. For this purpose, a steel plate, laser-cut with a sinusoidal profile, is positioned at top of the burner next to the anchored flame (see [START_REF] Sarraf | Quantitative Analysis of Flame Instabilities in a Hele-Shaw Burner[END_REF] for details about the experimental technique).

This technique allows to print an initial perturbation on the flame front. The flame front dynamics is then recorded using a high speed camera (Photron FASTCAM Mini AX200) and analyzed using an image processing python code (based on the scikit-image opensource library [START_REF] Van Der Walt | the scikit-image contributors, scikit-image: image processing in Python[END_REF]).

Comparison and validation

Numerical setup

The equations solved with the Lattice-Boltzmann method correspond to two dimensional flames interacting with the velocity field and will be compared to quasi-2D experiments in the Hele-Shaw burner. However these equations do not correspond to the narrow-channel approximation [START_REF] Fernández-Galisteo | Analysis of premixed flame propagation between two closely-spaced parallel plates[END_REF] as the 5mm gap used in the experiments is not sufficiently small.

Propane-air thermochemical properties are as follow:

• NASA polynomial coefficients for the thermodynamic closure (p, T ) = f (ρ, h) required in closing the governing equations (2, 3 and 5),

• Power-law for the viscosity, yielding transport properties via constant Prandtl and component-specific Schmidt numbers,

• One-step chemistry, where the pre-exponential parameter was chosen so the flame velocity and thickness would be in agreement with the dispersion relation. In particular, this leads to a laminar flame velocity lower than usual, to account for heat losses.

A detailed account on these thermo-chemical parameters is available in AppendixB.

In the following, we consider a two-dimensional rectangular computational domain uniformly discretized with δ x = 10 -4 m. The domain width corresponds exactly to one wave length 2π k for the Linear regime analysis (Sec. 4.2). In the non-linear regime study Sec. 4.3 the domain width is 160mm, corresponding to one third of the size of the Hele-Shaw cell represented in Fig. 1: in the experiment, the same initial profile is reproduced three times in the span-wise direction to improve periodicity. The time-step is maintained at δ t = 7.217 × 10 -8 s, corresponding to an acoustic CFL of 0.63.

The right and left boundaries conditions are periodic, while a fixed wall is set at the bottom, and an open boundary conditions is considered at the top, letting the burnt gases escape.

The domain is initialized by computing first the one-dimensional premixed flame structure, e.g. T 1D (y) for the temperature. That profile is then extended to the two-dimensional domain as T (x, y, t = 0) = T 1D (y -f (x)), where f (x) is the desired geometrical perturbation:

• a single sine wave for the linear regime analysis (Sec. 4.2)

• a periodic experimental solution for the non-linear dynamics analysis (Sec. 4.3) Buoyancy forces are not taken into account in the Lattice Boltzmann numerical scheme. For downward propagating flames such as those observed experimentally in the Hele-Shaw cell, the gravity term leads to slightly lower growth rates, and does not have a large influence on the non linear evolution for short times. Interesting papers on the role of gravity on the dispersion relation are [START_REF] Clavin | The influence of the temperature dependence of diffusivities on the dynamics[END_REF] for two-dimensional flames and [START_REF] Fernández-Galisteo | Impact of the gravity field on stability of premixed flames propagating between two closely spaced parallel plates[END_REF] in the narrow-channel approximation.

Linear Regime Analysis

The linear dynamics is analyzed by perturbing the flame front using sinusoidal waves. Initially, the amplitude of the waves are small and are expected to grow because of the Darrieus-Landau instability.

Considering that the thermal diffusive properties of the mixture depends on the temperature as ρD th ∝ T β (with β = 0.69), the theoretical dispersion relation is then given by [START_REF] Clavin | The influence of the temperature dependence of diffusivities on the dynamics[END_REF] (see also [START_REF] Truffaut | Experimental study of the Darrieus-Landau instability on an inverted-V flame, and measurement of the Markstein number[END_REF]) :

A(k)σ 2 + B(k)σ + C(k) = 0, ( 7 
)
where σ is the growth rate of the perturbation with wavenumber k. A(k), 

A(k) = E + 1 E + E -1 E kd M -J E E -1 , B(k) = u L k 2 + 2Ekd(M -J) , C(k) = u 2 L k 2 (E -1) k k c -(E -1) , (8) 
where the cutoff wavenumber

k c verifies k -1 c = d E β + 3E-1 E-1 M -2E E-1 J + (2P r -1)
H . The integrals J and H can be found in [START_REF] Clavin | The influence of the temperature dependence of diffusivities on the dynamics[END_REF][START_REF] Truffaut | Experimental study of the Darrieus-Landau instability on an inverted-V flame, and measurement of the Markstein number[END_REF]. The positive root σ + (the positive growth rate, leading to an exponential amplification of the perturbations) of the quadratic equation ( 7) verifies approximately

σ + = ak -bk 2 + O(k 3 ). (9) 
A straightforward development (see [START_REF] Sarraf | Darrieus-Landau instability and Markstein numbers of premixed flames in a hele-shaw cell[END_REF]) leads to

a = E E + 1 S -1 u L , (10) 
where S = 1 + E -1 E , the relation σ = ak is the known Darrieus-Landau result without Markstein number effect, and

b = -du L -a 2 E -1 E -2aE M + J(a 2 + 2aE) - E -1 k c d /2S. (11) 
This dispersion relation has also been obtained by Matalon and coworkers for temperature dependent diffusivities (see [START_REF] Matalon | Hydrodynamic theory of premixed flames: effects of stoichiometry, variable transport coefficients and arbitrary reaction orders[END_REF][START_REF] Altantzis | Hydrodynamic and thermodiffusive instability effects on the evolution of laminar planar lean premixed hydrogen flames[END_REF]).

It has been possible to measure experimentally the dispersion relation corresponding to Eq. ( 9) for 2D Bunsen flames [START_REF] Truffaut | Experimental study of the Darrieus-Landau instability on an inverted-V flame, and measurement of the Markstein number[END_REF] and recently some of the authors have measured the dispersion relation in a Hele-Shaw cell [START_REF] Sarraf | Darrieus-Landau instability and Markstein numbers of premixed flames in a hele-shaw cell[END_REF][START_REF] Sarraf | Quantitative Analysis of Flame Instabilities in a Hele-Shaw Burner[END_REF]. Numerically some measurements of growth rates have been performed, first for one-step chemistry [START_REF] Denet | A numerical study of premixed flames Darrieus-Landau instability[END_REF][START_REF] Kadowaki | Numerical simulation of dynamics of premixed flames: flame instability and vortex-flame interaction[END_REF][START_REF] Lapenna | Large scale effects in weakly turbulent premixed flames[END_REF] and recently for hydrogen-air flames [START_REF] Frouzakis | Numerical study of unstable hydrogen/air flames: Shape and propagation speed[END_REF][START_REF] Altantzis | Hydrodynamic and thermodiffusive instability effects on the evolution of laminar planar lean premixed hydrogen flames[END_REF][START_REF] Berger | Characteristic patterns of thermodiffusively unstable premixed lean hydrogen flames[END_REF].

Note that a negative root σ -of the quadratic equation ( 7) also exists, we will show later that we are able to measure this negative growth rate in the numerical simulations. Anyway, as the precision in the calculation decreases when the damping increases, we will refer to the approximate formula, only valid for low wavenumbers:

σ -= E E + 1 -S -1 u L k + O(k 2 ). (12) 
This mode attenuates fast and the positive mode associated to σ + becomes dominant. This phenomenon is observed in the simulation results and is presented in Fig. 2. The initial instances of the growth are exponential and are defined in terms of both modes as:

A = A 0 e σ + t + A 1 e σ -t , (13) 
where σ + and σ -correspond to the growth rates of the positive and negative mode respectively.

Our initial condition is a front slightly harmonically perturbed compared to the plane front, imposed following the strategy presented in Sec. 4.1.

Let us note however that the velocity field could not be chosen in order to only have the growing mode of the instability, so that we have a transient. The Amplitude (A), computed using Fourier Transform, is reported in Fig. 2, for an initial sinusoidal perturbation at k = 0.52mm -1 . The fit of the positive mode (σ + ), A = A 0 e σ + t from Eq. ( 13) is represented in Fig. 2a. Furthermore, the initial presence of two modes is underlined in Fig. 2b, along with the fit of the negative mode (σ -). We clearly see that fitting the solution as the linear combination mentioned in Eq. ( 13) is accurate for all times, provided the linear regime is valid, until the amplitude of the mode saturates due to nonlinear effect.

As seen from Eq. ( 9), the positive mode of the growth is of the form σ ∝ |k| -k 2 . The initial growth is measured and compared to the theoretical dispersion relation, written in the following way

σ = 4σ M k c |k| - k 2 k c , (14) 
where σ M is the growth rate of the most amplified wavelength and k c the 

Quantitative agreement between numerical and experimental results is

shown in Fig. 4a, where the numerical results (red circles) are compared to experiments (blue triangles) and to a fit of the dispersion relation (Eq. [START_REF] Joulin | Influence of momentum and heat losses on the large-scale stability of quasi-2D premixed flames[END_REF]. Note that we have also been able to measure the negative growth rate (Fig. 4b), which is compared to Eq. ( 12). The negative growth rates are presented as error bars, given the difficulty of measuring accurately the quantity due to initial pressure perturbations present in the computational domain.

Although the Lattice-Boltzmann measurements are slightly below the theoretical curve, the agreement is relatively good. To the knowledge of the authors, this is the first time in the literature that this negative growth rate is measured.

We thus have evidenced that our hybrid LBM method is able to correctly describe the linear premixed flame dynamics. It will be demonstrated in the next subsection that an agreement is also possible for the non linear evolution of the flame.

Non-Linear Dynamics

A very unstable premixed flame (a flame in a large domain, often called a self-turbulent flame [START_REF] Almarcha | Experimental two dimensional cellular flames[END_REF]) leads to a complex non linear evolution involving merging and creation of new crests on the flame front. We have to show that our numerical simulations are able to describe correctly these effects. The LB simulations will thus be compared to experiments (see also [START_REF] Almarcha | Interface dynamics, pole trajectories, and cell size statistics[END_REF]) and to the results of the Sivashinsky equation (or Michelson Sivashinsky : MS equation) [START_REF] Sivashinsky | Nonlinear analysis of hydrodynamic instability in laminar flames-i. derivation of basic equations[END_REF]. This equation, solved with periodic boundary conditions, includes the linear dispersion relation (Eq. 14), and a quadratic non-linearity and writes as:

φ t + u A 2 φ 2 x = 4σ M k c φ xx k c + I(φ, x) , (15) 
where φ stands for the vertical position of the front, x is the transverse coordinate and t the time. σ M and k c are the parameters given in Eq. ( 14), k c is the cut-off wavenumber, I(φ, x) is the Landau operator corresponding to a multiplication by |k| in Fourier space. The curvature term φ xx comes from the thermal diffusive restabilization and is responsible for the damping of disturbances at small scales. Finally, φ 2

x is a non linear term responsible for the formation of cusps. For low expansion E, u A is close to the laminar flame speed, this is no longer the case for large E [START_REF] Sivashinsky | On the nonlinear theory of hydrodynamic instability in flames[END_REF][START_REF] Kazakov | On-shell description of stationary flames[END_REF]. This parameter u A is fitted to obtain amplitudes of the flame comparable to experiments.

In order, to compare the evolution given by the LBM integration and the MS model with an experiment, a flame is ignited at the top of the Hele-Shaw as a forced inverted V-flame. After a few instants of propagation, when the cusps start to be visible on the flame front, we extract the flame contour (y = f (x)) from the recorded images using an image processing algorithm.

The obtained flame contour is then used as an initial condition for numerical integration (MS : φ(x, t = 0) = f (x) LBM : T (x, y, t = 0) = T 1D (y -f (x))).

In Fig. 5, we show the comparison between the evolution of experimental propane-air fronts (ϕ = 0.8), (Top figure, in black), the LB simulations, in blue, and the MS equation (Bottom figure, green lines). In each case, the positions of the cusps are highlighted, in order to better compare the three different evolutions.

As can be seen in the figure, the crest merging process is correctly described for short times by both the LB simulations and the Sivashinsky equation.

The LB simulations are actually closer to experiments, which may be caused by the fact that the LB dispersion relation is slightly larger compared to the MS one close to k c (see Fig. 4) or by the fact that flow non-linearities (neglected at the first order in gas expansion in the MS model) play a significant role. A difference between the experiments and the other figures is the creation of new cusps. This effect, which is not observed in the LB or MS simulations, could be caused by effects that we have neglected, such as additional noise, or gravity (the experimental premixed flames are actually propagating downwards). 

Conclusion

Simulations performed with an hybrid Lattice-Boltzmann model for low-Mach reactive flows were presented in this paper for premixed flames unstable relative to the Darrieus-Landau instability. We were able to compare quantitatively the numerical results with quasi 2D experiments in a Hele-Shaw cell.

The growth rates of the instability were measured by studying the development of small amplitude perturbations, and it was even possible to measure the decaying mode of the instability, showing the precision of the method.

A correct agreement with experiments was also observed for the non linear evolution of the flame front. 

AppendixA. Expressions for the LBM solver

In the low-Mach number approximation, the equilibrium function can be truncated at second-order as

f eq i = w i ρθ + ρc iα u α c 2 s + H (2) 
i,αβ a

(2),eq αβ 2c 4

s ,

f neq i = ω i 2c 4 s H (2) 
i,αβ a neq αβ ,

(A.1)
where, H

i,αβ = c iα c iβ -c 2 s δ αβ , a (2) 
,eq αβ = ρu α u β , a neq αβ = H (2) i,αβ (f i -f eq i ) , (A.2) (2) 
θ is the normalized temperature linked with pressure as p = ρc 2 s θ, using ideal gas law, w i is the weight coefficient related to the discrete velocity c i and c s is the lattice sound speed. Note that the equilibrium function differs from [START_REF] Tayyab | Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes[END_REF], and was adapted from [START_REF] Farag | A pressure-based regularized lattice-boltzmann method for the simulation of compressible flows[END_REF], enhancing numerical stability. In particular, the pressure contribution θ is now inserted in the zero-th moment of (A.2) rather than higher moments as in [START_REF] Tayyab | Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes[END_REF].

Consequently [START_REF] Farag | A pressure-based regularized lattice-boltzmann method for the simulation of compressible flows[END_REF], the reconstruction of macroscopic variables now read

ρ(t + δt, x) = f col i + ρ(t, x)(1 -θ(t, x)) (ρu α )(t + δt, x) = c iα f col i . (A.3)
Finally, the required forcing term is obtained as

F E i = ω i 2c 4 s H (2) i,αβ c 2 s u α ρ ,β + c 2 s u β ρ ,α + δ αβ ρc 2 s 2 3 - η B µ u γ,γ + ∆(ρu α u β ) -δ αβ c 2 s ∆[ρ(1 -θ)] , (A.4) 
with η B is the bulk viscosity, and

∆(ρu α u β ) = (ρu α u β )(t + δt, x) -(ρu α u β )(t, x), ∆[ρ(1 -θ)] = ρ(t + δt, x)(1 -θ(t + δt, x)) -ρ(t, x)(1 -θ(t, x)).
(A.5)

AppendixB. Numerical simulation parameters

In this article we consider one-step propane/air mixture with 5 species: Given that the model presented in Sec. 2 does not account for heat losses, experimental results can not be compared to the simulated result.

C 3 H 8 , O 2 , H 2 O, CO 2 , N 2 
In order to overcome this problem, we used Eq. ( 10) and relation σ = ak to compute the flame speed S exp L = 0.177 m/s which corresponds to growth obtained experimentally at lower wave-numbers. Furthermore, the original value k chem = 9.9 × 10 13 cm 3 mol -1 s -1 [START_REF] Feng | A Lattice-Boltzmann model for lowmach reactive flows[END_REF] associated to the chemical reaction rate is modified to k chem = 8.77 × 10 13 cm 3 mol -1 s -1 in order to recover S exp L in our simulations. Lastly, to assure that we recover comparable σ m , flame thickening model [35] with a factor of 1.48 is used to recover the flame thickness. These adjustments allow us to compare the growth rates with the experimental results.
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 1 Figure 1: Experimental Set-up

B

  (k), C(k) are coefficients depending on gas expansion E = ρ u /ρ b , Markstein number M, laminar flame speed u L , flame thickness d = D th /u L , and Prandtl number P r as

However, the precise transient does not change our estimate for theFigure 2 :

 2 Figure 2: Linear stage dynamics. a) Evolution of normalized amplitude (A) calculated from numerical simulation (red dashed line) and gradient fit related to σ + (black solid line) presented over time where development of non-linear stage is observed. b) Gradient fit related to σ -(black dash-dotted line), gradient fit related to σ + (black dotted line), evolution of A (red dashed line) and sum of both fits related to σ -and σ + (black solid line, indistinguishable from the red dashed line) presented at the initial instances where both modes ( σ + , σ -) are present.

Figure 3 :

 3 Figure 3: Observation of growth and decay with wavenumbers higher and lower than k c . Propagation of the flame is from top to bottom. Left: Growth at wavenumber lower than k c . Right: Decay with wavenumber higher than k c . Experimental (Black), and Numerical (blue) results.

Figure 3 1 )Figure 4 :

 314 Figure 3 qualitatively shows the growth of perturbations at low wavenum-

Figure 5 :

 5 Figure 5: Darrieus-Landau non linear evolution: (a) Experimental, (b) Numerical results and (c) MS equation starting from the same initial condition extracted from the experiment.

  [35] O. Colin, F. Ducros, D. Veynante, T. Poinsot, A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids 12 (2000) 1843.
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  The thermal and species diffusion coefficients are calculated using Schmidt and Prandtl numbers, detailed in TableB.1. Along with the use of viscosity's power law,

  Table B.1: Prandtl number and Schmidt numbers for each specie. CO 2 0.941 S H 2 O 0.537 S N 2 0.690 where reference viscosity µ 0 = 1.782×10 -5 , reference Temperature T 0 = 300 K and coefficient β = 0.69. Furthermore, classical NASA polynomials for each species k are used to define the thermodynamic properties. In order to define the chemical source term a one-step Arrhenius kinetic model is used, following global reaction C 3 H 8 + 5 O 2 -→ 3 CO 2 + 4 H 2 O, associated with the kinetic rate ω = k chem .C C 3 H 8 .C O 2 .e -Ea/RT , where k chem = 8.77 × 10 13 cm 3 mol -1 s -1 , E a = 30kcal/mol, and C i are the molar concentrations for species i. The initial conditions used in order to compute 1-D premixed profiles at equivalence ratio (φ = 0.8) are detailed in Table B.2. C 3 H 8 4.88 × 10 -2 6.76 × 10 -15 Y O 2 2.21 × 10 -1 4.39 × 10 -2 Y CO 2 9.74 × 10 -18 1.46 × 10 -1 Y H 2 O 1.54 × 10 -13 8.02 × 10 -2 Y N 2 7.29 × 10 -1 7.29 × 10 -1

		P r	0.682
		S C 3 H 8 1.241
		S O 2	0.728
	S Variables fresh gases	burnt gases
	T	300 K		2069.98 K
	p	1 atm		1 atm
	Y		

Table B.2: Initial conditions: 1-D domain is initialized with fresh gases corresponding to (0 : L/2) and burnt gases (L/2 : L)
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