Active transport: a new challenge for indoor navigation

Valérie Renaudin GEOLOC Lab IFSTTAR

October 30, 2013 IPIN Conference – Montbéliard France

Valérie Renaudin©- IPIN 2013 – Montbéliard, 28-31 October 2013

French institute of science and technology for transport, development and networks

Governance and organization

Scientific Strategy for the Decade

Research in GEOLOC Lab

Few Words About IFSTTAR

Valérie Renaudin©- IPIN 2013 – Montbéliard, 28-31 October 2013

Background and Motivation

- The economic crisis around the globe & Europe raised new challenges: Next EU Framework Program for Research and Innovation (2014-2020) of targeting some of them
 - Tackle demographic trends: ageing phenomena
 - Propose an Inclusive Society
 - Develop Green Cities: promote sustainable transport, reduce energy consumption and low carbon emission
 - Improved safety in personal mobility: avoid car/bike/pedestrian collision

Invent solutions to get people moving

Definition

- Active Transport: transport modes implying physical activity performed by foot, bicycle and other non-motorized vehicles
- It includes Public Transport

some walking/cycling to pick-up destinations & from drop-off points is needed

Active Transport: a solution?

- The benefits of active transport are both for the individual and the city Reduce environmental congestion friendly Improved health money-saving
- The soft modes of transport

Geolocalization for Active Transport

Indoor positioning and navigation is a driving force for promoting active transport

- Encourage walking for a better health
 - Better life quality
 - Less noise and air pollution
 - Being less stressed
- Provide true complementarity between all modes of transport
 - Walk, bike, public transit and private cars
 - Secure the parts of traveling on foot
 - Improve public space sharing

Support Travelers

- Support Multimodal Exchange Terminal
 - Switch from one person in a private car to a wide range of transport services
 - Assist the pedestrian beyond signposting
- Manage individual mobility at personal level
 - Relieve the pressure on the roads
 - Encourage active transport with smart charging for the use of infrastructure and public transit at the scale of individuals

Geolocated Information

- Support Advanced Traveler Information System (ATIS)
 - Customize the information: too much info kills the info!
 - Contribute to data filtering from crowdsourcing: one location = one feature

Privacy Issues?

Few Words About IFSTTAR

Research for Sustainable Transport

Handheld Sensor Based Pedestrian Dead Reckoning

Conclusion

Valérie Renaudin©- IPIN 2013 – Montbéliard, 28-31 October 2013

Location & Ethics

- European Parliament (LIBE commission) reforms General Data Protection Regulation to protect individual from personal identification through data processing
 - "personal data means any information relating to an identified or identifiable natural person (...) in particular by reference to (...)
 location data (...)"
 - >3000 amendments
 - LIBE committee vote planned in this month
- Scientific challenges
 - Different if technological or juridical solution: autonomous data processing or anonymous by software
 - Data provided by a "Trusted" Party

Source: www.europarl.europa.eu/committees/en/libe/home.htm

Inclusive Society

- Social Inclusion means:
 - People have access to needed services and facilities in their local area or via affordable transport services which meet the needs of those who do not drive
 - 20% drop of 19 years old drivers 1987 and 2010 - Ref [1]
 - Location Based Services for all including handicap people, senior, etc.
- Scientific challenges
 - Adaptive to wide range of behavior: **ubiquitous in time**
 - Inertial Pedestrian Dead Reckoning processing working also for "non-standard" walking
 - Platform independent: different information sources

A Single Device?

• An everyday device user-friendly for all ages

Cost effective

- Affordable solution for general public and the city
 - Less infrastructure based localization
 - Toward zero maintenance & service cost
- Scientific challenges
 - Ubiquitous in space (measurements): signals of opportunities, Maps, Inertial Mobile Unit, GNSS
 - Right balance between accuracy, reliability and availability

Autonomous solution: Inertial Pedestrian Dead Reckoning with Handheld Sensors

Few Words About IFSTTAR

Research for Sustainable Transport

General Public Navigation

Valérie Renaudin©- IPIN 2013 - Montbéliard, 28-31 October 2013

Pedestrian Dead Reckoning (PDR)

- Dead Reckoning (DR) based on traditional 'strapdown' mechanization equations for attitude estimation
- Changing misalignment between Attitude and Walking Direction with handheld sensor

Human Walking Gait

- PDR strategy exploits human walking gait features
- The closest to the foot the better: Waist, on foot: a mature technology
- Sensor calibration during stance phase: Zero Velocity Update (ZUPT), Zero Angular Rate Update (ZARU), Principal Building Directions, Trunk Roll Constraint

Biomechanics with Handheld Sensor

- Hand motion can hide the global pedestrian motion 'body fixed' methods can not be applied
- Handheld based PDR algorithms for freely carried devices can take several forms depending on the sensors and the context
- Common Assumption

The user is watching the screen while walking ~ 'body fixed' like case

Motion and Carrying Mode Recognition

- Adapt the navigation algorithms to the user context to bound the pedestrian position
- A classification Problem

 $Pre-processing \rightarrow Feature extraction \rightarrow Decision Making$

• Motion States

User: Standing, Running, Walking, Up/Down Stairs IMU/Hand: Phoning, Texting, Bag Carrying, Swinging, Irregular Motion

Frequency/Time Analysis

- Feature selection: energy, variance, standard deviation, frequencies in subbands
- Faster Motion modes migrate the signal energy toward highest frequencies (acc. signal)
- Periodic arm rotation induce frequency peaks (gyro signals)

Step Frequency Extraction

- Needed for the PDR mechanization and step length estimation
- Estimated independently from step detection: remove correlation in the filter, more robust
- Extraction of dominant frequencies with Short Time Fourier Transform (STFT) over 2 sec. sliding window → Three peaks
- Coupling problem of strongest hand frequency with step or stride even
 → Binary Detector based on biomechanics feature of walking gait

Step Length Estimation in 3 phases

Step Length Model

- Step length model performance depend on the sensor fixation point
- Experimental approach with controlled walking pace

Step Length Model Assessment

Universal Solution				% Distance Travelled		
	Subject	%P _{det} (motion)	%P _{det} (steps)	Universal Model	Fitted Model	Covergence Iterations
Fitted Solution	M1	100	99	5.8	5	4
	M2	100	100	4.8	4.3	3
GNSS Solution	M3	99	100	5	4.5	3
	M4	100	99	8	4.2	6
	M5	100	100	9	3.8	7
	W1	98	97	5.2	4.3	4
	W2	100	100	3.2	2.5	3
	W3	98	99	4.5	4	3
	W4	100	98	5.6	5	3
	W5	100	100	5.8	5	4
© 2011 Google Source: Ref [4]	Mean	99.6	99.2	5.7	4.2	4

- Reference path and estimated trajectories for the test subject with the worst performance (M5)
- Mean error of 5.7% over 600 m distance travelled

Ubiquitous in time

• Walking Gait influenced by varying physiological conditions tiredness, injuries, carrying a bag, ...

→ Frequent calibration is needed

- Several approaches are possible depending on the application
 - Walking along a known footpath
 - Use departure / destination info
 - Hybridization with opportune signal

GNSS Doppler Update

- PDR/GPS Doppler EKF designed for handheld device
 - Pseudorange measurements strongly perturbed indoors (multipath, echo only)
 - Doppler (phase rate) errors depend on pedestrian velocity in the presence of multipath
 - Direct Vector GNSS Receiver architecture proposed with discriminator implemented in the position/velocity domain

Adaptive to Physiological Variations

- 10 sec. PDR/GPS Doppler calibration prior to penetrating indoors
- Free inertial PDR trajectory estimated with $s = h \cdot (a \cdot f_{step} + b) + c$ $K = \{a, b, c\} \in \mathbb{R}$
- 700 m with freely carried device (texting, swinging): 2% mean error over traveled distance

Walking Direction Estimation

- PDR performance is limited by
 - azimuth which can be controlled by GNSS updates, Map constraints and Magnetic Field
 - IMU misalignment which requires dynamic estimation

Use perturbed magnetic field to mitigate gyroscope's errors

Valérie Renaudin©- IPIN 2013 – Montbéliard, 28-31 October 2013

Magnetic Angular Rate Update

Valérie Renaudin©- IPIN 2013 – Montbéliard, 28-31 October 2013

Few Words About IFSTTAR

Research for Sustainable Transport

General Public Navigation

Handheld Sensor Based Pedestrian Dead Reckoning

Valérie Renaudin©- IPIN 2013 - Montbéliard, 28-31 October 2013

Is reliable Pedestrian Dead Reckoning the next revolution for Sustainable Transport?

References

- 1. Sivak, M. and Schoettle, B. *Update: Percentage of young persons with a driver's license continues to drop.* Traffic Injury Prevention, 13, 341, 2012
- 2. Jakel, T. and Gebre-Egziabher, B. *Trunk Roll Constraint to Improve Heading Estimation in Pedestrian Dead Reckoning Navigation Systems,* ION-GNSS, Nashville, TN, Sep. 2013
- 3. Susi, M., Renaudin, V., Lachapelle, G. *Motion Mode Recognition and Step Detection Algorithms for Mobile Phone Users*. Sensors 2013, 13, 1539-1562.
- 4. Renaudin, V., Susi, M., Lachapelle, G. Step Length Estimation Using Handheld Inertial Sensors. Sensors 2012, 12, 8507-8525.
- 5. Z. He, V. Renaudin, M. G. Petovello, and G. Lachapelle, "Use of High Sensitivity GNSS Receiver Doppler Measurements for Indoor Pedestrian Dead Reckoning," Sensors 2013, 4303-4326.
- 6. M. H. Afzal, V. Renaudin, and G. Lachapelle, "Use of earth's magnetic field for mitigating gyroscope errors regardless of magnetic perturbation," Sensors 2011, 11390-11414.

