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Abstract

The proliferation of social networks allowed creating a big quantity of data
about users and their relationships. Such data contain much private infor-
mation. Therefore, anonymization is required before publishing the data for
data mining purposes (scientific research, marketing, decision support, etc).
Most of the anonymization works in social networks focus on publishing one
instance while not considering the need for anonymizing sequential releases.
However, many cases show that sequential releases may infer private informa-
tion even though individual instances are anonymized. This paper studies
the privacy issues of sequential releases and proposes a privacy preserving
solution for this case. The proposed solution ensures three privacy require-
ments (users’ privacy, groups’ privacy and edges’ privacy), and it considers
the case where many users and groups may share the same profiles. Some
experiments over some complex queries show that the utility of the released
data is better preserved than other solutions, with regard to the privacy of
users, groups and edges.
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1. INTRODUCTION1

Nowadays, social networks are becoming an integral part of daily inter-2

actions of modern life. Facebook claims over 1.4 billion monthly and 9003

million daily active users [1]. By creating personal profiles, that contain de-4

mographic information, social networks allow users to create and join groups5

which have different interests across political, economic, and geographic bor-6

ders. The affiliation of users to groups is considered as rich information7

that can be used by network researchers, sociologists, application designers8

and others for data mining tasks. For example, authors in [2] propose new9

metrics, namely the dispersion and the monopoly coefficients to refining the10

study of bipartite structures, particularly, when there is a community neigh-11

borhood overlapping. These two metrics are used to capture the intricate12

patterns observed in real social networks.13

As a result, the full publication of this relationship information meets the14

need of data miners and allows them to perform good data mining tasks.15

Social networks include two types of data publishing:16

1. One release: when a single instance of the social network is published.17

2. Sequential releases: when several instances of the same social network18

are published over time to reflect its evolution.19

However, the full publication of these social network data violates the users’20

privacy because an adversary can infer the affiliation links that the victim21

would like to keep private. To overcome this problem, researchers have pro-22

posed several techniques [3] [9] [18][20] to anonymize the data before their23

publication so that the privacy of users is preserved and the needs of data24

miners are satisfied. These techniques deal with different privacy risks which25

are [26]:26

• Identity disclosure: the adversary can identify the victim from the pub-27

lished graph.28

• Content disclosure: the sensitive attributes are identified and associ-29

ated to the victim in the published graph.30

• Social link disclosure: a sensitive relationship between two users is31

revealed.32

• Affiliation link disclosure: the adversary can identify whether the vic-33

tim belongs to a particular group.34
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One drawback of these techniques is that they consider the ”one release35

case” only. However, to better answer the needs of data analyzers, it is36

recommended to publish sequential anonymized releases for the same social37

network to reflect its evolution in time. Applying directly these techniques38

to publishing sequential releases, by anonymizing each release independently,39

leads to privacy breaches because by comparing the different published re-40

leases, an attacker can infer private information and violate the user privacy.41

Thus, the sequential releases case is more challenging to ensure the privacy42

adequate level while preserving the data utility for the analysis tasks. In-43

deed, the proposed solution should consider the previous published releases44

when it tries to anonymize the current data.45

This paper designs a solution to the problem of privacy preserving sequen-46

tial releases of social networks based on a two-step methodology. First, ”one47

release case” is considered for a social network being represented as labeled48

bipartite graph, and it leads to identifying a safely partitioning condition,49

detected as insufficient for the sequential releases case. Indeed, the safely50

partitioning condition enables to anonymize the bipartite graph by grouping51

nodes (users and groups) into classes and masking the true mapping between52

nodes and attribute values. However, in ”the sequential releases case”, where53

nodes can change classes from one release to another, an attacker can still54

identify the targeted individual, and/or her/his affiliations by comparing in55

between various releases. Finally, the paper proposes a solution for the se-56

quential releases case, for which a safely permuting condition is introduced57

to guarantee both privacy and utility of the published bipartite graph.58

The rest of the paper is organized as follows: Section 2 reviews related works.59

Section 3 presents the data model, attacker’s knowledge, the privacy and60

the utility requirements and the social network privacy preserving (SNPP)61

problem of sequential releases. To well understand the SNPP problem for se-62

quential releases, Section 4 proposes a solution to anonymizing one instance63

of the social network and shows that this solution fails to give the required64

privacy level in the case of sequential releases. Section 5 proposes our sequen-65

tial releases SNPP solution. Section 6 reports experimental results. Section66

7 ends up this work with conclusions and future directions.67

2. RELATED WORKS68

There are several works dealing with privacy problem in the context of69

publishing social networks data. These works can be grouped into five cat-70
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egories, depending on the type of the published graph (output of the solu-71

tion): Anonymous graph, Disturbed graph, Clustered graph, Uncertain graph72

and Statistical results. Most of the existing works deal with the problem of73

privacy preserving in the context of one release publication. We give exam-74

ples of these works for each category:75

Anonymous graph: In this category, the published anonymous version of the76

original graph ensures that an attacker, with a certain background, cannot77

identify an individual with a probability greater than 1
k

in the anonymous78

graph. According to the attacker background, several techniques have been79

studied including:80

• k-degree anonymity [3]: to prevent an attacker, whose background is81

the victim node’s degree, to re-identify the victim node in the published82

graph.83

• k-neighborhood anonymity [4]: to prevent the risks of identity disclo-84

sure. It considers an attacker having the victim node’s neighborhood85

as background.86

• k -automorphism anonymity [5][6]: to prevent an attacker, whose back-87

ground is the subgraph constructed by the immediate neighbors of a88

victim node, to re-identify the victim node in the published graph. So,89

for any subgraph X, this technique is applied to construct an anony-90

mous graph that contains at least k subgraphs isomorphic to X.91

Other techniques have been proposed such as k-isomorphic graph [7], and
probabilistic indistinguishability [8]. Each technique considers an attacker
with a particular background.
Disturbed graph: The original graph is modified to produce the disturbed
one. Authors in [9] propose a solution to prevent the risk of the identity
and link disclosure. Their solution is based on a method that adds noise to
the data in the form of random additions, deletions or switching of edges.
So, the solution randomly deletes n edges from the graph and adds n fake
edges to the graph. Authors in [10] argue that the approach proposed in
[9] has impact on both real and spectral graph characteristics. Therefore,
they propose a solution which considers the possible impact that a randomly
selected edge will have on the graph’s spectrum, in order to maintain the
utility. Authors in [11] modify the original graph by using a method based
on a randomized perturbation matrix.
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Clustered graph: In this category, the graph is partitioned into clusters. First,
n clusters are created so that each cluster contains at least k similar nodes.
Then the nodes of each cluster are modified to become indistinguishable and
the edges are generalized. Authors in [12] propose a solution to prevent
the risk of identity disclosure for simple graphs. In [14], the case of labeled
nodes has been considered, so the clusters are created, based on attributes
and neighborhood similarity. Similar anonymization schemes are used in [18].
As said, authors in [18] propose a solution that first divides the graph of n
nodes into several clusters; and each (cluster) contains at least k nodes. Then
they replace the subgraph, which contains similar nodes into a cluster, by a
super node. Also, in [30], Yu et al. propose a clustering algorithm to preserve
privacy for social network. The proposed algorithm ensures the privacy of
nodes attributes values and community structures simultaneously.
Uncertain graph: The original deterministic graph is converted into an un-
certain graph by associating probabilities to edges (the probability repre-
sents the uncertainty level of the edge presence in the original graph). In
[19], Bonchi et al. propose the k-obfuscation principle which ensures that
an attacker cannot deduce the node identity in the published graph with a
probability greater than log2k. In [20] Boldi et al. propose the principle (k, ε)-
obfuscation which requires that the graph be k-obfuscated for at least (1-ε)n
nodes. Other techniques have been proposed such as the MaxVar approach
[21]. The MaxVar approach is an improvement over (k, ε)-obfuscation. It
mitigates the problem of low anonymity. Another uncertain graph approach
is proposed in [31].
Statistical results: In this category, both statistics and responses to queries
over the social network are published. To ensure that an attacker cannot
deduce the presence of an individual or a link, using these statistics and re-
sponses to queries, the differential privacy concept [28] needs to be satisfied.
In social networks, it is said that an algorithm A is ε-differentially private,
with ε < 1, if it satisfies the following equation:

Pr(A(G) = s) ≤ eεPr(A(G̃) = s) (1)

where G and G̃ are two neighboring graphs and s represents an outcome92

produced by A.93

According to the notion of neighboring graphs, we note two levels:94

• Node level differential privacy [22]: two graphs are neighbors if they95

differ by a single node and its adjacent edges; its objective is to en-96
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sure that an attacker cannot deduce the presence or the absence of a97

particular node.98

• Edge level differential privacy [23]: two graphs are neighbors if they99

differ by a single edge; its purpose is to ensure that an attacker cannot100

deduce the presence or the absence of a particular edge in the graph.101

The case of sequential releases is less considered than that of one release.102

Moreover, there is little work concerning solutions that enable publishing se-103

quential releases of social networks data while preserving the privacy. Hence,104

several privacy issues are still challenging in the case of sequential releases.105

In [24], Wang et al. study the problem of real-time spatio-temporal crowd-106

sourced social network data publishing over infinite streams. They propose a107

solution RescueDP ”REal-time Spatio-temporal Crowd-soUrcEd Data Pub-108

lishing with Differential Privacy” to protect any users’ mobility trace. So,109

they group regions with small statistics together by considering the similar-110

ity of data change, and then they add a Laplace noise to each group. Their111

solution considers a rather different privacy issue of user’s mobility than in112

our paper focusing on users’, groups’ and edges’ privacy preserving. Also,113

their solution does not publish the whole social network, it allows publishing114

only statistics (user mobility) over the social networks. In [13], Bhagat et al.115

propose a solution which allows publishing anonymized versions of the social116

network in the context of sequential releases. Authors in [13] consider the117

problem of privacy in social networks modeled as a bipartite graph; they hide118

the mapping between a node and the corresponding entity by partitioning119

the set of nodes into groups of size k. They provide methods which use link120

prediction algorithms to model the evolution of the social network and to121

predict the future structure. The prediction is used to choose an anonymiza-122

tion which is expected to remain safe and useful for future releases. Their123

solution provides methods to anonymize a dynamic social network when new124

nodes and edges are added to the published social network.125

In our work, we consider the problem of the identity and affiliation links126

privacy preserving in social networks sequential releases, and we propose a127

solution that produces a published bipartite graph which is both anonymous128

and clustered. Indeed, our solution uses techniques that group nodes into129

classes with size greater than or equal to k and achieves the k−anonymity130

principle. In our work we consider both cases, that of nodes/edges adding131

and that ofnodes/edges deleting; as well as the case where several nodes,132

users and groups, share the same attributes’ list values.133
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3. SOCIAL NETWORK PRIVACY PRESERVING PROBLEM134

STATEMENT135

This section defines the Social Network Privacy Preserving (SNPP) prob-136

lem in the context of publishing sequential releases of the same evolving social137

network.138

To represent the social network data, we use a labeled bipartite graph which139

has two types of nodes that represent users and groups. Each node has sev-140

eral attributes representing the node’s profile. These attributes are called, in141

this paper, ”the node attributes list”. The bipartite graph has also a set of142

edges, representing the affiliation links between users and groups.143

3.1. Bipartite graph model144

We represent a time varying social network as a labeled bipartite graph145

Gt = (Vt, Wt, Et, LV t, LWt), where:146

• Vt : is a set of nodes which represents the users who are present in the147

social network at time t.148

• Wt: is a set of nodes that represents the groups and other online con-149

tents of interest such as, photos, web pages. . . . These nodes are present150

in the social network at time t.151

• Et: is a set of edges. An edge e(ux,uy)t represents an affiliation link152

between a user ux and a group uy. Et is the set of edges that are present153

in the social network at time t.154

• LV t: is a set of attributes that describes a node ux ∈ Vt.155

• LWt: is a set of attributes that describes a group uy ∈ Wt.156

In practice, the data recipient is interested in a subset of the attributes of-157

fered by the data provider, for example: a pharmaceutical company needs158

only an attribute list with job, sex and age to find out, for example, a disease159

person [25], hence, the data provider publishes a tailored attribute list for160

each data recipient. So, as in the social network, there is a big number of161

nodes and the attributes list has a small number of possible values, we can162

find several nodes which share the same attributes list values. Indeed, for163

instance, if the data recipient is interested in an attributes list = (age, job,164

hobby), too many users are likely to share the same list (27, lawyer, reading)165
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in a real social network.166

Let G = (Ḡ1, Ḡ2, Ḡ3. . . ḠT ,. . . ) be a sequence of published anonymous bipar-167

tite graphs representing one social network at time 1,2,. . . T,. . . respectively.168

3.2. Considered actions169

From one bipartite graph, Gt−1 = (Vt−1, Wt−1, Et−1, LV t−1, LWt−1), to170

the next one, Gt = (Vt, Wt, Et, LV t, LWt), we consider the following actions:171

1. Act1 (Persisting nodes): when a node N (user or group) is present172

in the current and previous social network sequence i.e. N ∈ Gt and N173

∈ Gt−1.174

2. Act2 (Persisting edges): when an edge e(ux,uy)t is present in the175

current and previous social network sequence i.e. e(ux,uy)t ∈ Gt and176

e(ux,uy)t ∈ Gt−1.177

3. Act3 (Adding nodes): when a node N (user or group) is present in178

the current, but not in the previous, social network sequence i.e. N ∈179

Gt and N 6∈ Gt−1.180

4. Act4 (Deleting nodes): when a node N (user or group) is present in181

the previous, but not in the current, social network sequence i.e. N ∈182

Gt−1 and N 6∈ Gt.183

5. Act5 (Adding edges): when an edge e(ux,uy)t is present in the cur-184

rent, but not in the previous, social network sequence i.e. e(ux,uy)t 6∈185

Gt−1 and e(ux,uy)t ∈ Gt.186

6. Act6 (Deleting edges): when an edge e(ux,uy)t−1 is present in the187

previous, but not in the current, social network sequence i.e. e(ux,uy)t−1188

6∈ Gt and e(ux,uy)t−1 ∈ Gt−1.189

Note that in this paper, we do not consider the action of the modification of190

the node attribute lists values. But, it can be implemented, using deleting191

and then adding nodes i.e. Act4 and Act3.192

3.3. Attacker knowledge193

This paper focuses on the attacks in where the attacker aims to re-194

identifying a target node and its affiliation links from the published bipartite195

graph. Contrary to work [13], where the attacker has no knowledge, we as-196

sume that the attacker knows only the node’s (targeted individual or group)197

attributes list values and nothing else about the structure information (e.g.198

the node’s degree). For example, the attacker knows that the targeted indi-199

vidual, Alice (who can be her/his co-worker), has attributes list values (26200
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years old, engineer), or she/he knows that the targeted group has attributes201

list values (politics).202

3.4. SNPP Problem statement203

Definition 1. privacy level: k204

The constant k is the privacy level if: each node N, in the published social205

network, is indistinguishable from (λN ∗ k) − 1 other nodes, where λN − 1206

represents the number of nodes which:207

1. Have the same type as node N (group or user).208

2. Share the same attributes list values as node N.209

3. Are published at the same time as node N.210

Definition 2. SNPP problem:211

Let us consider G, the sequence of published bipartite graphs, representing212

the social network at times 1,2,. . . t− 1, Gt the bipartite graph, representing213

the social network at time t, k, the privacy level, Ḡt, the anonymous version214

of Gt, and an attacker with the background described in section 3.3 and who215

has access to all published bipartite graphs: i.e. G and Ḡt.216

The SNPP problem, denoted by:217

SNPP (G, Gt, k, attacker) → Ḡt218

consists in producing the anonymous bipartite graph Ḡt that ensures the fol-219

lowing requirements:220

• RQ1 (Users’ privacy): the attacker cannot re-identify the targeted221

individual (i.e. find which node is the targeted individual) with prob-222

ability greater than 1
λxk

, where (λx-1) represents the number of users’223

nodes which have the same attributes list values and which are published224

at the same time as the targeted individual.225

• RQ2 (Groups’ privacy): the attacker cannot re-identify the targeted226

group (find which node is the targeted group) with probability greater227

than 1
λyk

, where (λy-1) represents the number of groups’ nodes which228

have the same attributes list values and which are published at the same229

time as the targeted group.230

• RQ3 (Edges’ privacy): the attacker cannot determine the existence231

of a link between the targeted individual, ux, and the targeted group, uy,232

with probability greater than 1
k
.233
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• RQ4 (Utility requirement): using the anonymous bipartite graph,234

Ḡt, we should be able to answer different mining queries with high ac-235

curacy.236

We measure the utility of the published bipartite graph by computing the rel-
ative query error, as used in [15][16], for which some answers to queries are
obtained from the anonymous bipartite graph and compared to the original
bipartite graph. This error is defined as follows:

U: Q → R

q → |answer(qG)− answer(qḠ)|
answer(qG)

(2)

Where Q is the set of queries, q is a query, answer(qG) is the answer of the237

query q over the original bipartite graph and answer(qḠ) is the answer of the238

query q over the anonymous bipartite graph.239

In the following sections, we construct our privacy preserving sequential re-240

leases of social networks through anonymization techniques that group nodes241

into classes of size at least k, and we give formal proofs to ensure the require-242

ments RQ1, RQ2 and RQ3. We evaluate the utility accuracy of our solution243

in section 6.244

4. SNPP-1RELEASE AND LIMITATIONS245

To well understand the SNPP problem, in the case of sequential releases,246

we first study the case of only one release. First, we present an overview247

of an anonymization solution for a single bipartite graph, we define a safely248

partitioning condition, and we present the associated algorithm, before iden-249

tifying the solution limitations.250

In Table 1, we summarize the terminology and notations used in this paper.251

252

4.1. Overview253

To produce the published bipartite graph, we use anonymization tech-254

niques. So, we create classes for users and others for groups, where each class255

contains at least k nodes and we publish only the number of edges between256

classes. In order to keep the attributes lists values distribution unchanged,257

in the anonymous bipartite graph, we do not generalize all the attributes258
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Table 1: NOTATIONS AND TERMINOLOGY

Notations Meaning
N1.attributes list values The node N1 attributes list values
N1.attributes list values = The nodes N1 and N2 have the same
N2.attributes list values attributes list values
N1 = N2 N1 and N2 represent the same node
X The partition containing the users’ classes
Y The partition containing the groups’ classes

Ē The set of edges of the anonymous bipartite graph
C1.attributes lists values The set of attributes lists values of nodes belonging to C1
| C1.attributes lists values The number of nodes having the same
∩ C2.attributes lists values| attributes list values between C1 and C2
|Cx| The class Cx size
LCX The set of attributes lists that describe a class CX in X
LCY The set of attributes lists that describe a class CY in Y
C. PermutSet The set containing classes: B∈ C. PermutSet

if: |C.attributes list values ∩ B.attributes list values | ≥ k
2

CondidatG The set containing the nodes that can be added to the
current class without violating the safely partitioning
condition

CondC The set containing classes to which a given node u can be
added without violating the safely partitioning
condition

Bipartite graph A bipartite graph is a graph whose vertices can be divided
into two disjoint and independent sets V and W so that
every edge connects a vertex in V to one in W

λN The frequency of the node’s N attributes list values
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lists values to be the same for a class of nodes. Instead, for each class, we259

publish all the attributes lists values of the nodes without revealing the true260

mapping. This method has the same effect as the partitioning approach pro-261

posed by Cormode et al. [15].262

To ensure that this technique preserves the utility within classes, we group263

nodes into classes so that the utility cost would be lower. We measure the264

utility cost by quantifying the similarities between the nodes’ attributes lists265

values of each class. It is obvious that the higher the similarity, the lower266

the utility cost. So, we group nodes which have similar attributes list values267

in the same class. For example, grouping a node which has an attributes268

list values = (Engineer, 30) with another node which has an attributes list269

values = (Engineer, 25) is better than grouping it with a node which has an270

attributes list values = (Physician, 40). To measure this similarity, we use271

the cosine distance.272

Figure 1.b gives an example of the published bipartite graph, after anonymiz-273

ing the bipartite graph in Figure 1.a: by taking the privacy level, k = 2. In274

the original bipartite graph, we have four users and four groups: u1.attributes275

list values = (Engineer, 30) and she/he is member of the group g1 which has276

as topic ”Sport”, u2.attributes list values = (Engineer, 25) and she/he is277

member of the group g2 which has as topic ”Football”, u3.attributes list val-278

ues = (Physician, 30) and she/he is member of the group g3 which has as279

topic ”Art”, u4.attributes list values= (Physician, 25) and she/he is member280

of the group g4 which has as topic ”Music”. Note that the nodes’ identifiers281

i.e. u1,. . . , u4 and g1,. . . , g4, are not published in the anonymous bipartite282

graphs, they are only used for explanation. We anonymize this bipartite283

graph by creating users’ and groups’ classes such as the size of each class is284

greater than or equal to 2 and without revealing the true mapping between285

nodes and attributes lists values. We also ensure that the grouping of nodes286

into classes is with the minimum utility cost. Finally, we publish the number287

of edges between any two users’ class and groups’ class:288

To create the first users’ class C1, we put the node u1 and we search the node289

which engenders the minimum utility cost among u2, u3 and u4, we notice290

that the nodes u2 and u3 produce the same utility cost, as each node shares291

one value with u1 (the value ”Engineer” for u2 and the values 30 for u3 ). As292

in this anonymization technique, when there are several nodes which have293

the same utility cost, we select the first node. So, here the node to be added294

to the class C1 is u2. hence, C1.attributes lists values = {(Engineer, 30),295

(Engineer, 25)}. Similarly, we construct the second users’ class and the two296
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groups’ classes, such as C2.attributes lists values = {(physician, 30), (physi-297

cian, 25)}, B1.attributes lists values= {Football, Sport} and B2.attributes298

lists values= {Art, Music} respectively.299

Using the anonymous bipartite graph, an attacker cannot guess which node300

has which attributes list values, because the true mapping between nodes301

and attributes lists values is masked. Example: for C1, an attacker cannot302

identify the node, among u1 and u2, that has (Engineer, 25) as attributes303

list values. The attacker cannot also know how nodes connect to each other.304

For example, the attacker cannot know how u1 and u2 connect to g1 and g2,305

as in the anonymous bipartite graph, there is only the total number of edges306

between C1 and B1.307

Given an original bipartite graph, the problem of creating an anonymous308

bipartite graph Ḡt, which meets the SNPP privacy requirements with the309

minimum utility cost is NP-hard.310

Indeed, our problem can be reduced to a clustering problem. In fact, let us

(a) original bipartite graph (b) anonymous bipartite graph

Figure 1: Anonymization technique

311

consider that:312

• each data item should be clustered as the node’s attributes list values.313

• the utility cost of adding the node u to the class C as the utility cost314

of adding the corresponding data item to the corresponding cluster.315

• there are no affiliation relationships between users and groups.316

The SNPP problem, in this case, is exactly the clustering problem. So, the317

SNPP problem is NP-hard.318

This anonymization method enables creating only classes of size at least k.319

In what follows, we show that Property 1 is required to ensure the three320

SNPP privacy requirements (RQ1, RQ2 and RQ3).321
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4.2. Safely partitioning condition322

This subsection introduces the property safely partitioning condition, on323

which we build our SNPP1R algorithm (see algorithm 1) that preserves the324

three SNPP privacy requirements of the Definition 2 (RQ1, RQ2 and RQ3).325

Property 1. Safely partitioning condition326

Let us consider the SNPP problem:327

SNPP (G, Gt, k, attacker) → Ḡt328

with Gt = (Vt, Wt, Et, LV t, LWt), Ḡt=(Xt, Yt, Ēt, LCXt, LCY t) and G = ∅:329

i.e. the attacker has only access to Ḡt.330

Ḡt satisfies the three SNPP privacy requirements if:331

1. SPa1: ∀Cy1 , Cy2 ∈ Yt, ∀N1 ∈ Cy1 ,∀N2 ∈ Cy2 if N1.attributes list332

values=N2.attributes list values then Cy1 6= Cy2.333

2. SPa2: ∀Cx1 , Cx2 ∈ Xt,∀N1 ∈ Cx1 , ∀N2 ∈ Cx2 if N1.attributes list334

values=N2.attributes list values then Cx1 6= Cx2.335

3. SPa3: ∀Classes Cx ∈ Xt and Cy ∈ Yt, nb is the number of edges336

between Cx and Cy, nb ≤ k.337

4. SPa4:∀Classes Cx ∈ Xt ∪ Yt , |Cx| ≥ k.338

We call these conditions the safely partitioning condition �.339

We give justifications and explanations of the conditions SPa1, SPa2, which340

require that no two group nodes (respectively two user nodes) with the same341

attributes list values belong to the same class in the anonymous bipartite342

graph, in section 5.1.343

Proof:344

First, we prove the probability that an attacker can re-identify the node ux345

representing the targeted individual (the targeted group respectively) is less346

than or equal to 1
λxk

( 1
λyk

respectively). Let’s suppose that:347

• there are (λx− 1) other nodes published at the same time as ux having348

the same attributes list values like ux. ux and the other349

λx − 1 nodes belong to λx different classes (Cx,Cx1,. . ., Cxλx−1) ∈ Xt,350

as required by the condition SPa2.351

The probability an attacker knows that the node ux is the node representing352

the targeted individual353
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is: P (ux) = 1
|Cx|+|Cx1|+....+|Cxλx−1

| as the size of each Cxi ≥ k (the condition354

SPa4)355

Then P(ux)≤ 1
λxk

.356

So, the safely partitioning condition guarantees the users’ privacy require-357

ment (RQ1). Similarly, we prove that the groups’ privacy (RQ2) require-358

ment is guaranteed by the safely partitioning condition.359

Finally, we prove the probability that an attacker identifies that a link ex-

Figure 2: edges privacy

360

ists between a node ux, representing the targeted individual, and a node uy,361

representing the targeted group, is less than or equal to 1
k
. Let’s suppose362

that:363

• there are (λx − 1) other nodes published at the same time as ux and364

having the same attributes list values like ux. ux and the other365

λx − 1 nodes belong to λx different classes (Cx,Cx1,. . ., Cxλx−1) ∈ Xt,366

as required by the condition SPa2.367

• there are (λy − 1) other nodes published at the same time as uy and368

having the same attributes list values as uy. uy and the other369

λy− 1 nodes belong to λy different classes (Cy,Cy1,. . ., Cyλy−1) ∈ Yt, as370

required by the condition SPa1.371

• In the worst case, all nodes in Cx,Cx1,. . ., Cxλx−1 have links with nodes372

in Cy, Cy1,. . ., Cyλy−1 . As shown in Figure 2: by taking ux.attributes373

list =(engineer, 30) and uy.attributes list = Sport. Note that the nodes’374

identifiers i.e. ux, ux1,. . . , ux3 and uy, uy1,. . . , uy3, are not published in375

the anonymous bipartite graphs, they are used only for explanation.376

The probability an attacker knows that an edge e exists between ux and uy377

in the published bipartite graph is:378
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P(ux, uy,e) = 1
|Cx|+|Cx1|+....+|Cxλx−1

|*
1

|Cy |+|Cy1|+....+|Cyλy−1
|*nbedge379

As the size of each Ci ≥ k (the condition SPa4) then:380

P(ux, uy,e) ≤ 1
λxk
∗ 1
λyk
∗ nbedge381

where nbedge is the number of edges whose two endpoints might be ux and382

uy.383

• As the targeted group, uy, may belong to each λy classes (Cy,Cy1,. . .,384

Cyλy−1),385

• and the targeted individual, ux, may belong to each λx classes (Cx,Cx1,. . .,386

Cxλx−1),387

• and the number of edges between any two classes, Cxi and Cyi, is ≤ k388

(according to the condition SPa3).389

Then: nbedge ≤ k ∗ λx ∗ λy.390

So: P(ux, uy,e) ≤ 1
λxk
∗ 1
λyk
∗ λxλyk. Therefore P(ux, uy,e) ≤ 1

k
391

So, the safely partitioning condition guarantees the edges privacy requirement392

(RQ3).393

Figure 3 shows via examples, the violation of the requirements RQ1, RQ2394

and RQ3 due to the dissatisfaction of the conditions SPa1, SPa2 and SPa3.395

396

4.3. SNPP-1 Release (SNPP1R) algorithm397

We propose a greedy algorithm (algorithm 1) that creates classes with at398

least k nodes. The SNPP1R algorithm relies on the concept of greedy safe399

k-grouping, used in [15][16][17], while minimizing the utility cost and consid-400

ering the two types of nodes, user and group, and our new safely partitioning401

condition. It creates one groups’ class then one users’ class alternatively un-402

til all groups’ nodes and users’ nodes are grouped into classes. To partition403

nodes, the SNPP1R algorithm calls the procedure Safely partitioning(X, Y, Z, k),404

shown in algorithm 2, where X and Y are two partitions; Z is a set of nodes405

and k is the privacy level.406

The procedure Safely partitioning takes each time the first node, not yet407

grouped, in Z, and it creates a new class C containing this node, line 1.408

Then it repeatedly adds nodes to C under the safely partitioning condition409

and with the minimum utility cost until the size of C reaches k, lines 2-12. If410

the size of the created class, C, cannot reach k, the algorithm 2 removes this411

class and groups its nodes in suitable classes, under the safely partitioning412
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(a) nodes privacy violation (b) edges privacy violation

Figure 3.a shows an example of the violation of nodes privacy requirements due to the dissatis-

faction of the conditions SPa1 and SPa2. In fact, we notice that the probability to re-identify

the targeted individual (Engineer, 25) is equal to 1
2 which is greater than 1

λxk
= 1

4 . Where k is

the privacy level and λx − 1 is the number of users’ nodes which have the same attributes list

values and which are published at the same time as the targeted individual (Engineer, 25) (in this

example k = 2 and λx − 1 =1 i.e. λx = 2). Similarly, we also notice that there is a violation of

group privacy.

Figure 3.b shows an example of the violation of the edges privacy requirements due to the dis-

satisfaction of the condition SPa3. In fact, we notice that the probability to re-identify that the

targeted individual (Engineer, 25) is member of the targeted group (Sport) is equal to 1
2 ∗

1
2 ∗3 = 3

4

which is greater than 1
k = 1

2 .

Figure 3: Explanations of the Property 1 conditions
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Algorithm 1: SNPP1R algorithm

1 Set Wt =groups’ nodes ordered by creation time; Set Vt = users’ nodes ordered by
creation time; Xt = ∅ ;Yt = ∅ ;

2 repeat
3 if |Wt| > 0 then
4 Safely partitioning (Yt, Xt, Wt, k);
5 end
6 if |Vt| > 0 then
7 Safely partitioning (Xt, Yt, Vt, k);
8 end

9 until |Wt| = 0 and |Vt| = 0;

Algorithm 2: Safely partitioning (X: partition, Y: partition, Z: set of nodes,
k: privacy level)

1 U = the first node in Z; Z= Z- {U}; Class C = new class C {U}; X = X ∪ {C}; flag =
true;

2 while |C| < k and flag do
3 Set CondidatG =∅ ; flag = false;
4 for T ∈ Z do
5 if adding T to C is under the safely partitioning condition then
6 Flag=true; T.cost = the cost to add T to C; CondidatG = CondidatG ∪ {T};
7 end

8 end
9 if | CondidatG | > 0 then

10 Û=t ∈CondidatG | ∀t̂ ∈ CondidatG : t.cost< t̂.cost; C = C ∪ {Û }, Z = Z - {Û };
11 end

12 end
13 if |C| < k then
14 X = X - {C};
15 for u ∈ C do
16 Set CondC = ∅;
17 for L ∈ X do
18 if adding u to L is under the safely partitioning condition then
19 L.cost = the utility cost of adding u to L; CondC = CondC ∪ {L};
20 end

21 end

22 L̂=t∈ CondC | ∀t̂ ∈ CondC: t.cost < t̂.cost; L̂= L̂∪ {u}
23 end

24 end

Figure 4: SNPP-1 Release algorithms
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condition and with the minimum utility cost, lines 13-24.413

The procedure Safely partitioning is a greedy algorithm that creates classes414

with at least k nodes under the safely partitioning condition which depends415

on the sparse property of social networks [17]. In fact, the social networks416

graphs are relatively sparse [17], i.e. each user is typically member in only417

a small fraction of all groups, and each group holds only a few users. As a418

consequence, classes are easier to be found, based on the conditions in prop-419

erty 1, i.e. SPa1, SPa2, SPa3 and SPa4.420

421

4.4. Complexity of the algorithm SNPP1R422

The algorithm SNPP1R cost is in the worst case less than O(N2), where423

N (N =Nuser+Ngroup) is the number of nodes, Nuser is the number of user424

nodes, and Ngroup is the number of group nodes.425

Let’s consider adding a node to a class as an elementary operation.426

To create a user class, the algorithm SNPP1R has to browse all the user427

nodes not yet grouped to choose the node that satisfies the safely partition-428

ing condition with the minimum utility cost and adds it to the class to be429

created. So, to add the second user node to the first user class we have to do430

Nuser−2 operations (i.e. verify all user nodes not yet grouped), then Nuser−3431

for the third user node etc. To add the second user node to the second user432

class, we need Nuser− (k+ 2) operations etc (k is the class size). So, in total,433

we have (N2
user) operations. Similarly, we have (N2

group) operations to create434

groups’ classes. So, the complexity of the algorithm is O(N2
user + N2

group) ,435

which is less than O(N2).436

Note that, the algorithm SNPP1R complexity does not depend on the at-437

tributes lists values of nodes, as it does not generalize the attributes lists val-438

ues to anonymize the graph, and it only performs comparison between these439

attributes lists values to preserve the utility. The operation of ”comparison440

between attributes lists values” is dominated by the operation ”adding node441

to a class ”.442

The complexity of the algorithm SNPP1R can be enhanced to reach O(N),443

if at no substantial utility cost (section 4.1). In that case, the algorithm444

SNPP1R does not browse all the nodes not yet grouped, but instead, as soon445

as a node is found satisfying the safely partitioning condition, it is added446

directly to the class to be created.447

• In the best case, the first visited node satisfies the safely partitioning448

condition (it is the node that will be added to the created class). In449
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this case, we have in total O(k|X + Y |) operations (X: is the parti-450

tion containing the users’ classes and Y: is the partition containing the451

groups’ classes and k: is the size of class). We have k|X + Y | = N (all452

the nodes are grouped in classes, |X + Y | is the number of classes and453

k is the size of a class). As a result, in this case, the complexity of the454

algorithm SNPP1R is O(N).455

• In the worst case, the node that satisfies the safely partitioning con-456

dition is the last visited node. In this case, we must go through all457

the non-grouped nodes, so we come across the case of the algorithm458

SNPP1R with cost utility function. In this case, the complexity of the459

algorithm SNPP1R is O(N2).460

Since social networks satisfy ”the sparse property”, the safely partitioning461

condition has become easy to be satisfied, and the complexity of the SNPP1R462

algorithm without utility cost function is O(N).463

4.5. Inadequacy to sequential releases464

Using the SNPP1R algorithm to produce sequential anonymous versions,465

harvested at different times of the same social network, can lead to privacy466

violation. That is due to the generation of each anonymous version being467

made separately, thus leading to nodes changing classes from one release to468

another, and having their classes’ attributes lists values modified. Hence,469

an attacker making comparison of classes’ attributes lists values between470

releases, can violate the privacy.471

As we order the nodes in the SNPP1R algorithm in the same way ( by the472

creation time). So, there are three reasons that lead nodes changing their473

classes from one release to another:474

1. The violation of the condition SPa3 (Act5): adding new edges between475

old users, who belong to the same class; and old groups, which belong476

to the same class, can lead to a number of edges between two classes477

greater than k. As that does not satisfy the condition SPa3, then nodes478

must leave their classes until the condition SPa3 is satisfied again.479

2. Deleting nodes (Act4): deleting nodes can produce classes with less480

than k nodes; hence other nodes must be added to these classes until481

their size is greater than or equal to k.482

3. Adding new nodes (Act3): the old nodes can be grouped with the new483

ones if they better preserve the data utility.484
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(a) original bipartite graph (b) anonymous bipartite graph at T1 (c) anonymous bipartite graph at T2

Figure 5: Example of the SNPP1R algorithm’s privacy violation in the case of sequential releases

Example: Figure 5 gives an example of privacy violation with the privacy485

level k = 2, the targeted individual = u2 and her/his attributes list values486

= (Engineer, 25). At T1, there are four users and four groups, as depicted487

in Figure 5.a. Note that the nodes’ identifiers i.e. u1,. . . , u4 and g1, . . . , g4,488

are not published in the anonymous bipartite graphs, they are only used for489

explanation. The anonymous bipartite graph ḠT1, produced by the SNPP1R490

algorithm, is presented in Figure 5.b. At T2, the targeted individual, u2,491

joins the group g1 and the anonymous bipartite graph ḠT2, produced by the492

SNPP1R algorithm, is presented in Figure 5.c.493

the attacker is assumed to know that the nodes do not change classes unless494

there is a violation of the condition SPa3, or some nodes’s adding or deleting.495

Thus by comparing ḠT1 and ḠT2, the attacker notices that the targeted496

individual (Engineer, 25), has changed her/his class and that is due to the497

violation of the condition SPa3. Then the attacker can infer that the targeted498

individual, (Engineer, 25), is member of the groups with topics ”Sport” and499

”Football”, which violates privacy.500

5. SNPP-SEQUENTIAL RELEASES501

This section proposes a privacy preserving solution for publishing sequen-502

tial releases of the same social network, where addition or deletion of nodes503

or edges might happen from one release to another.504

As discussed in subsection 4.5, the privacy threats are coming from changes505

occurring among the classes’ attributes lists values, in particular, when one506

of the three following events occur:507

(i) the violation of the condition SPa3 due to newly added edges between508

old users’ classes and old groups’ classes (Act5). (ii) newly deleted nodes509
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(Act4). (iii) newly added nodes (Act3).510

To avoid these privacy threats, we need to keep the attributes lists values511

of each class invariant over time, so the attributes lists values of each class512

do not change from one release to another, and an attacker is unable to re-513

identify the targeted individual (group) and her/his affiliation links. This514

idea is inspired from the notion of m−invariance proposed by Xiao et al. [32]515

for dynamic databases. The m−invariance ensures that the sensitive values516

of each anonymized group (Quasi-Identifier) remain the same over publica-517

tions.518

Those three sensitive actions (i.e. the violation of the condition SPa3, newly519

deleted nodes and newly added nodes) are next provided with technical pri-520

vacy preserving solutions.521

5.1. Safe permutation522

Safely permuting condition, hereafter defined as property 2, removes the523

violation of the condition SPa3 issue identified in Section 4.5. A violation of524

the condition SPa3 between two classes can be removed by decreasing the525

number of edges between these two classes, and permuting nodes belonging526

to one of these classes with other nodes of the other class, but under the527

condition that the safely permuting condition is respected.528

Example: Figure 6 gives an example of a permutation that ensures the529

requirements RQ1, RQ2 and RQ3 with the privacy level k = 2, the targeted530

individual = u2 and her/his attributes list values = (Engineer, 25). At T1,531

there are four users and four groups: As depicted in Figure 6.a, note that the532

nodes identifier i.e. u1,. . . ,u4 and g1, . . . ,g4, are not published in the anony-533

mous bipartite graphs. They are only used for explanation. The anonymous534

bipartite graph ḠT1 is presented in Figure 6.b. It contains two users’ classes,535

C1.attributes lists = {(Engineer, 30), (Engineer, 25)} and C2.attributes lists536

= {(Engineer, 25), (Physician, 25)}, and two groups’ classes, B1.attributes537

lists = (Sport, Football), and B2 .attributes lists = (Art, Music). At T2, the538

user u2 joins the group g1, hence, there is a violation of the condition SPa3539

as the number of edges between C1 and B1 is 3 > k. To remove this violation540

of the condition SPa3 without violating the targeted individual privacy we541

should:542

• Search for two nodes of the same type that have the same attributes543

list values and belong to different classes.544
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• Permute these two nodes if that removes the violation of the condition545

SPa3 and does not create other ones.546

The two nodes that satisfy these requirements are u2 and u3. We permute547

between these two nodes and we produce the anonymous bipartite graph548

ḠT2, presented in the Figure 6.c. We assume that the attacker knows our549

strategy, then by comparing ḠT2 and ḠT1, the attacker assumes:550

• With probability equals to 1
2

that the difference between ḠT2 and ḠT1551

is due to the evolution of the social network, because users can join or552

leave groups over time. In this case, the requirements RQ1, RQ2 and553

RQ3 are satisfied.554

• With probability equals to 1
2

that the difference between ḠT2 and ḠT1555

is due to removing the violation of the condition SPa3 between C1 and556

B1. In this case, the groups’ privacy requirement is satisfied, we do557

not permute between groups. For the requirement RQ1, the attacker558

identifies that the two users’ nodes permuted are u2 and u3, so the559

probability that the targeted individual is u2 (respectively u3) is equal560

to 1
2

*1
2

= 1
λu2k

,561

1. where the first 1
2

is the probability that this difference between562

ḠT2 and ḠT1 is due to the suppression of the violation of the563

condition SPa3,564

2. the second 1
2

is the probability that the targeted individual is u2565

(respectively u3),566

3. k is the privacy level, in this case k=2,567

4. and λu2−1 is the number of nodes which have the same attributes568

list values and which are published at the same time as the tar-569

geted individual ,u2, in this case λu2 − 1 = 1 (u3).570

5. Hence the users’ privacy requirement is satisfied too.571

If the targeted individual is u2, the probability of affiliation link identi-572

fication is equal to 1
2

*1
2

*1
2
*2, where the first 1

2
is the probability that573

this difference between ḠT2 and ḠT1 is due to the suppression of the574

violation of the condition SPa3; the second 1
2

is the probability that the575

targeted individual is u2; the third 1
2

is the probability that the group576

selected is the targeted group and 2 is the number of edges between u2577

and B1.578
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If the targeted individual is u3, the probability of affiliation link iden-579

tification is equal to 1
2
*1

2
*1

2
*1. So, in both cases the probability of580

affiliation link identification is less than ( 1
k

= 1
2
). Hence, the edges’581

privacy requirement is also satisfied.582

Property 2. safely permuting condition583

A permutation between two nodes of the same type, N1 and N2, that belong584

to two different classes, Cx and Czi, does not violate the requirements RQ1,585

RQ2 and RQ3 and removes the violation of the condition SPa3 between Cx586

and Cy if:587

1. SPe1:N1 ∈ Cx, N2 ∈ Czi, |Cx.attributes list values ∩ Czi.attributes list588

values | ≥ k
2
, k is the privacy level.589

2. SPe2: N1.attributes list values = N2.attributes list values.590

3. SPe3: The permutation between N1 and N2 decreases the number of591

edges or removes the violation of the condition SPa3 between Cx and592

Cy and does not create other violations of the condition SPa3.593

We permute nodes under these three conditions (SPe1,SPe2, SPe3), until594

the violation of the condition SPa3 between Cx and Cy is removed.595

We call these conditions: safely permuting condition.�596

We justify SPa1 and SPa2 (see Property 1): The condition SPe1 requires597

that the two nodes which must be permuted, belong to two different classes,598

and the condition SPe2 requires that these two nodes should have the same599

attributes list values. So, to ensure that these two conditions (SPe1 and600

SPe2) are satisfied, we should not put the nodes that have the same attributes601

list values in the same class, when creating classes. That is why, conditions602

SPa1 and SPa2 have to be satisfied when grouping nodes into classes.603

The proof of this property is shown in Appendix A.604

5.2. Safely permuting algorithm605

Algorithm 3 permutes nodes, when the number of edges increases (with606

the arrival of new edges) between old classes, to remove the violation of the607

condition SPa3. It takes a group class C and for each user class T such608

as the number of edges between C and T is greater than (k). It permutes609

nodes so that this number of edges is less than or equal to (k). It calls610

the procedure safe class, line 3, which returns: a group class that verifies611

with the class C, the safely permuting condition, if such group class cannot612
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(a) original bipartite graph (b) anonymous bipartite graph at T1 (c) anonymous bipartite graph at T2

Figure 6: A permutation that preserves the privacy in the case of sequential releases

be found, it returns a user class that respects with T the safely permuting613

condition, if such user class cannot be found, it creates a new group class614

using the new group nodes as the created class and C comply with the safely615

permuting condition, if this class cannot be created, safe class creates a new616

user class using the new user nodes, such as the created class and T check617

the safely permuting condition. If this class cannot be created, it creates a618

noise group class, using noise nodes, that verifies with the class C, the safely619

permuting condition. Finally, algorithm 3 permutes nodes between C or T620

and the returned class, lines 4-10. The algorithm 3 repeats this procedure621

until the violation of the condition SPa3 is removed.622

Procedure of noise groups’ class creation: we create a noise group class, by623

using noise nodes, to remove the violation of the condition SPa3 between624

a group class C and a user class T. For the sake of simplicity, we create k625

noise nodes such as: k
2

noise nodes have the same attributes lists values as626

k
2

different nodes in C, and the attributes lists values of the other k
2

noise627

nodes are assigned randomly.628

5.3. Dynamic actions: deleting and adding nodes629

Deleting old nodes630

When a node N1 leaves the social network, we delay its suppression until a631

new node N2 arrives, such as N1.attributes list values = N2.attributes list632

values and N2 and N1 have the same type (user or group nodes), then we633

replace N1 with N2.634

Indeed, replacing the old node that should be deleted with a new one that635

has the same attributes list values and the same type, does not induce a636

change in the classes’ attributes lists values. So, an attacker will be unable637

to guess if the node is deleted or not.638
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Algorithm 3: Safely permuting (C: group’ class, X̂ : users’ partition, k : privacy level)

1 while C violate the condition SPa3 do

2 T = the first node in X̂ ;
3 B = safe class(C, T, C.PermutSet, T.PermutSet) ;
4 if B.type = C.type then
5 Let N1 ∈ C and N2 ∈ B | N1.attributes list values = N2.attributes list values;
6 C=C-{ N1} ; C=C ∪{ N2} ; B=B-{ N2} , B=B ∪{ N1};
7 else
8 Let N1 ∈ T and N2 ∈ B | N1.attributes list values = N2.attributes list values;
9 T=T-{ N1} ; T=T ∪{ N2} ; B=B-{ N2} , B=B ∪{ N1};

10 end

11 X̂= x ∈ Xt | the nbr of edges between x and C > k;

12 end

Algorithm 4: SNPP-Sequential Releases algorithm
1 Wti = set of groups’ nodes ordered by the frequency of the nodes attributes lists values; Vti = set of

users’ nodes ordered by the frequency of the nodes attributes lists values; Xti = Xti−1 ; Yti =Yti−1 ;

Ŵ := Wti - Wti−1 ; V̂ = Vti - Vti−1 ; AW := set of groups’ nodes that their deletion is delayed to
Ti−1; AV := set of users’ nodes that their deletion is delayed to Ti−1;

2 Safely deleting ( AW ,Wti−1, Wti) ;
3 Safely deleting (AV , Vti−1, Vti) ;
4 for C ∈ Yti do

5 set X̂ = x ∈ Xti | the nbr of edges between x and C > k;

6 Safely permuting (C, X̂, k);

7 end

8 if |Ŵ | < k then

9 Wti:= Wti- Ŵ ; Ŵ= ∅;
10 end

11 if |V̂ | < k then

12 Vti:= Vti- V̂ ; V̂= ∅;
13 end

14 if |Ŵ | ≥ k or |V̂ | ≥ k then
15 repeat

16 if |Ŵ | > 0 then

17 Safely partitioning (Yti, Xti, Ŵ , k);
18 end

19 if |V̂ | > 0 then

20 Safely partitioning (Xti, Yti, V̂ , k);
21 end

22 until |Ŵ | = 0 and |V̂ | = 0;

23 end

Figure 7: SNPP-Sequential Release algorithms
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We call this procedure the Safely deleting procedure.639

640

Adding new nodes641

Unless the new nodes replace the old ones, that must be suppressed, the new642

nodes are never grouped with the old ones:643

644

• If the number of new nodes is less than k, we delay the publication.645

• Else, we group the new nodes together in new classes, under the safely646

partitioning condition.647

We call this procedure the adding nodes procedure.648

649

5.4. SNPP solution650

This subsection, proposes a property (SNPP solution) that ensures the651

three SNPP privacy requirements of Definition 2 for the sequential releases652

case (i.e. where addition or deletion of nodes or edges might happen from653

one release to another).654

Property 3. SNPP solution:655

Let:656

SNPP (G, Gt, k, attacker) → Ḡt657

with Gt = (Vt , Wt , Et , LV t , LWt), Ḡt=(Xt, Yt, Ēt, LCXt, LCY t) and658

G =Ḡ1,. . . ,Ḡt−1. Assume that the attacker has access to G and Ḡt.659

Ḡt satisfies the requirements RQ1, RQ2 and RQ3 if:660

1. the grouping of new nodes together in classes of size at least k, satisfies661

the adding nodes procedure.662

2. the old nodes deletion satisfies the Safely deleting procedure.663

3. the removal of the violation of the condition SPa3 satisfies property 2.664

5.5. SNPP-Sequential Releases (SNPPnR) algorithm665

We propose a greedy algorithm (algorithm 4) that permits publishing se-666

quential releases of the same social network over time. This algorithm ensures667

that the requirements RQ1, RQ2 and RQ3 are preserved. In this algorithm,668

we need only to keep the last original and published bipartite graph and669
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the set of nodes that their deletion is delayed in the previous releases when670

preparing the current data to be published. First, this algorithm calls the671

Safely deleting procedure. This procedure permits deleting nodes form the672

published bipartite graph without causing privacy leak. For each old node673

u that should be deleted (u ∈ Gti−1 and u /∈ Gti), Safely deleting searches a674

new node, T (T ∈ Gti and T /∈ Gti−1), that has the same attributes list values675

and the same type as u. If such node is found, the Safely deleting algorithm676

deletes the old node and replaces it with the new one. In the opposite case677

(where the node T cannot be found), the Safely deleting algorithm delays678

the deletion of the old node, lines 2-3. Then, the algorithm SNPPnR calls679

repeatedly the procedure Safely permuting, see algorithm 3, to remove the680

violation of the condition SPa3, lines 4-7. Finally, the algorithm SNPPnR681

groups the new nodes. If the number of new nodes is less than k it delays682

their publication by suppressing them from the current set of nodes (Wti683

,Vti) in order to be considered in the next releases, lines 8-13. Else it calls684

the procedure Safely partitioning, see algorithm 2, to group these nodes in685

classes of size at least k under the safely partitioning condition. In order686

to create classes under the condition SPe1 i.e. classes that share at least 2
k

687

attributes lists values, we order the nodes by their attributes list values fre-688

quency. We then modify the utility cost in algorithm 2, by taking the node’s689

utility cost equals to the inverse of the frequency of this node’s attributes690

list value in the bipartite graph (i.e. N.cost = 1
N.freq+1

, where N.freq is the691

number of nodes that have the same attributes list values as N), lines 14-23.692

Indeed, this allows creating classes that share a large number of attributes693

lists values, as we take each time the node that has the greatest attributes694

list values frequency, not yet grouped, and we create a new class C containing695

this node. Then we add repeatedly nodes to C until its size reaches k, such696

as the next node that will be added to C is the node that has the great-697

est attributes list values frequency, among other ones, that satisfy the safely698

partitioning condition.699

5.6. Complexity of the algorithm SNPPnR700

The algorithm SNPPnR cost equals to the cost of deleting old nodes plus701

the cost of removing the violations of the safely partitioning condition to702

which we add the cost of grouping new nodes.703

The cost of grouping new nodes:704

The cost of grouping new nodes is O(N2
new), where Nnew is the number of705

new nodes. It can reach O(Nnew), if we remove the utility cost function (see706

28



section 4.4).707

The cost of deleting old nodes:708

Let’s consider ”deleting node as an elementary operation”. The cost of delet-709

ing old nodes is:710

• In the best case: the first new node tested has the same attributes711

lists values as the node that should be deleted. So, the cost of deleting712

nodes, in this case, is O(Nold); where Nold is the number of old nodes713

to be deleted.714

• In the worst case: there is no new node with the same attributes lists715

values as the node to be deleted. So, for each user node to be deleted,716

we should browse all new user nodes. So, we need Nuser−old ∗Nuser−new717

operations to delete user nodes; Where Nuser−old is the number of old718

user nodes to be deleted and Nuser−new is the number of new user nodes.719

Similarly, we need Ngroup−old ∗Nproup−new operations for deleting group720

nodes; Where Ngroup−old is the number of old group nodes to be deleted721

and Ngroup−new is the number of new group nodes. So, in total, we722

need Nuser−old ∗Nusernew + Ngroup−old ∗Ngroup−new operations to delete723

group and user nodes. In this case, the cost of deleting nodes is less724

than O(Nold ∗Nnew); where Nold = Nuser−old +Ngroup−old is the number725

of old nodes (user and group) to be deleted, and Nnew = Nuser−new +726

Ngroup−new is the number of new nodes.727

The cost of removing the violations of the safely partitioning con-728

dition :729

Let’s consider ”removing a safely partitioning condition violation” as an el-730

ementary operation.731

So as to suppress the violation of safely partitioning condition, the Safely per-732

muting algorithm tries: to find a group class, a user class, to create a group733

class, a user class or a noise group class (see algorithm 3), consequently the734

cost of removing the violations of the safely partitioning condition is:735

• In the best case, the first group class tested can remove the violation736

of the safely partitioning condition. So, in this case, the cost of remov-737

ing the violations of the safely partitioning condition is O(Nviolation).738

Where Nviolation is the number of violation of the safely partitioning739

condition.740
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• In the worst case, neither old nor new group/user classes can remove741

the violations of the safely partitioning condition. So, in this case, we742

create a noise group class. The cost of removing the violations of the743

safely partitioning condition is O(Nviolation∗(|Oldtest|+TCnew+TCnoise)).744

Where Nviolation is the number of violations of the safely partitioning745

condition, |Oldtest| is the number of old group or user classes that are746

tested but that cannot remove the violation of the safely partitioning747

condition, TCnew is the time to test if a new group or user class can748

be created to remove the violation of the safely partitioning condition,749

and TCnoise is the time for creating a noise group class that removes750

the violation of the safely partitioning condition.751

The results in appendix B show that the utility cost function has a low impact752

on the utility accuracy (because the utility accuracy depends more on the753

data itself). Thus, it is not aberrant to remove the utility cost function754

from the SNPPnR algorithm, which allows us to enhance its complexity.755

Indeed, this enhances the cost of grouping new nodes to be O(Nnew). So, the756

SNPPnR algorithm without utility cost function is better suited for large757

social networks as it is faster. In section 6.11, we study the utility of the758

algorithm SNPPnR without utility cost function using large social networks.759

6. EXPERIMENTS: DATA UTILITY AND PRIVACY MEASURE-760

MENTS761

While previous sections are focused on privacy preservation, Section 6762

proves the utility of the published data and gives practical measurement of763

the privacy.764

6.1. Utility evaluation765

For the labeled graphs, people use the change of certain queries’ results766

to measure the utility [15][16][17]. In this paper, two kinds of queries are767

used to evaluate the utility of our solution:768

• Attribute properties on one side only (Type 1): This kind of queries769

takes into account only the attributes properties of one type of nodes.770

E.g. find the average degree of lawyers’ users.771

• Attributes properties on both sides (Type 2): the second kind of queries772

takes into account the attributes properties of the two types of nodes,773
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user and group. E.g. find the number of lawyers’ users who are mem-774

bers of groups whose topic is politics.775

6.2. Querying anonymized data776

The result of our anonymization technique is a bipartite graph which777

masks the true mapping between nodes and attributes list values. It as-778

sociates to each node a set of possible attributes list values, and publishes779

only the number of edges between classes. Thus, to answer the two types of780

queries, introduced in section 6.1, we can use sampling consistent graph tech-781

niques [17] [15]. These techniques allow the data miner to randomly sample782

a graph which is consistent with the published data (i.e. assign attributes783

list values and edges to nodes for which the assignment is consistent with the784

anonymized graph). Then, we perform analysis. Therefore, the query can be785

evaluated over the sampled graph. An ”expected” answer can be evaluated786

by computing the average of query results on several consistent sampling787

graphs. The utility of the published data is measured using the equation 2788

(see Definition 2) and by taking the ”expected” answer as answer(qḠ).789

6.3. Experimental model790

To evaluate the utility of our SNPPnR algorithm, we adapt the solution791

proposed in [13] to our SNPP problem and then we compare our SNPPnR792

algorithm to the adapted solution. We also compare the SNPPnR algorithm793

with the SNPP1R algorithm.794

The solution proposed in [13] aims to preserve the privacy of the relationships795

between users (user-user). First, it uses the prediction links algorithms to796

predict the evolution of these relationships. Then, the solution proposed in797

[13] partitions new nodes together, using this prediction, such as this parti-798

tioning remains safe in the future releases. As our interest is for the affiliation799

relationship between users and groups, we cannot use these algorithms to pre-800

dict the affiliation relationship evolution. So, for the sake of simplicity, we801

group the new nodes together without using the prediction algorithm. We802

notice that this solution does not take into account the case where several803

nodes share the same attributes list values. To ensure the requirements RQ1,804

RQ2 and RQ3, we use our safely partitioning condition to group new nodes.805

We also notice that the case of deleting nodes is not considered, thus we use806

our Safely deleting procedure to remove the nodes from the social network.807

The algorithms SNPPnR, SNPP1R and the algorithm of the adapted solution808
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(A5), proposed in [13], were implemented in Python using NetworkX. Net-809

workX is a Python language software package for the creation, manipulation,810

and study of the structure, dynamics, and function of complex networks.811

We used the random data generator to generate data sets, i.e. bipartite812

graphs. In our experiments, we used the data that are generated randomly.813

Consequently, our results are valid for any given social network that satisfies814

the sparse property. The first original social network bipartite graph has 1000815

nodes, and 3660 edges. To generate the next bipartite graphs, we take the816

previous bipartite graph and we randomly remove and add nodes and edges,817

so that the number of nodes and edges raises from one release to another by818

rate between 10% and 20% (these rates are observed in the data set used in819

[29]).820

In the experiments, for the sake of simplicity, we consider two users’ at-821

tributes, i.e. user’s attributes list = (age, job), and two groups’ attributes,822

i.e. group’s attributes list = (topic, subtopic).823

We use the algorithm SNPPnR, the algorithm SNPP1R, and the adapted824

solution, A5, proposed in [13] to publish sequential releases based on the825

first original bipartite graph.826

827

6.4. The data set828

Table 2 presents the number of edges and nodes in each release.

Table 2: Bipartite Graphs in different releases

Releases Nodes’ number Edges’ number
R1 1000 3660
R3 1330 4700
R5 1710 6340

829

6.5. Utility accuracy830

Figures 8 and 9 show the average relative errors of type1 and type2 queries831

for releases R1, R3 and R5, respectively. Each point in the figures is the ex-832

pected answer of type1 and type2 queries, on the corresponding anonymous833

bipartite graph of 6 privacy levels using the algorithms SNPP1R, A5 and834

SNPPnR. For each anonymous bipartite graph and for each privacy level,835
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(a) R1 (b) R3

(c) R5

Figure 8: Relative error for type1. a: Average relative errors (type1) of the release R1, b:
Average relative errors (type1) of the release R3, c: Average relative errors (type1) of the
release R5.
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(a) R1 (b) R3

(c) R5

Figure 9: Relative error for type2. a: Average relative errors (type2) of the release R1, b:
Average relative errors (type2) of the release R3, c: Average relative errors (type2) of the
release R5.
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we generate 20 consistent sampling bipartite graphs to get the ”expected”836

result. We choose to use 20 consistent sampling bipartite graphs because this837

guarantees the reproducibility of the results . In fact, we calculated the mar-838

gin of error,of the 20 consistent bipartite graphs, using a confidence interval839

with 99% and we obtained a margin of error of 1.5% for type1 queries and840

3.7% for type2 queries. The average relative query error, type2, obtained by841

our solution, algorithm SNPPnR, ranging between 12% and 22% is in the842

same range as existing solutions based on the safe k-grouping concept [15].843

From the results, we can observe that there is no significant difference on the844

average relative error between the anonymous bipartite graphs, produced by845

the algorithm SNPPnR, and the corresponding anonymous bipartite graphs846

produced, by algorithm SNPP1R, and the ones, produced by adapted so-847

lution A5. One reason of the little variation between them is the random848

characteristics when sampling consistent bipartite graphs. Another reason is849

the effect of the noise nodes added by the algorithm SNPPnR. The algorithm850

SNPPnR preserves the utility because it adds noise nodes as the number of851

edges increases, therefore adding noise nodes may degrade the utility; while852

using a bipartite graph, which contains a large number of edges, allows an-853

swering queries with more accuracy. However we notice that (especially in854

Figure 8.c) the algorithm SNPPnR and A5 give an average relative error855

more important than the algorithm SNPP1R, one reason is that the utility856

cost function, used in the algorithm SNPP1R to group the nodes, preserves857

the utility better than the one used in the algorithm SNPPnR and A5. The858

other reason is that the algorithm SNPP1R anonymizes each release inde-859

pendently, unlike the algorithms A5 and SNPPnR that consider the previous860

releases, when anonymizing the current one.861

We also find that the average relative error increases with k, which satisfy862

the intuition, since sampling consistent bipartite graphs from an anonymous863

one with large k, leads to more significant error than the one with small k.864

However, at several points, such as the point k = 6 in Figure 9.b, the average865

relative error suddenly decreases a little. One reason is the algorithm random866

characteristics, used for sampling consistent bipartite graphs, which might867

give better result for a large k.868

Figures 10.a and 10.b show the average relative error of type1 and type2869

queries, respectively, over the different releases and by taking k = 10. The870

results show that the average relative error for algorithms A5 and SNPPnR871

increases with the number of releases. The reason is the algorithms A5 and872

SNPPnR produce the current release based on the previous one. The other873
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(a) Relative error for type1 (b) Relative error for type2

Figure 10: Relative error for different releases. a: Average relative error of type 1 queries
over the different releases (R1, R3 and R5), b: Average relative error of type 2 queries
over the different releases (R1, R3 and R5).

reason is the effect of the noise nodes created by the algorithm SNPPnR874

to ensure the privacy. However, we notice that the average relative error875

produced by the algorithm SNPP1R does not increase with the number of876

releases, because the algorithm SNPP1R anonymizes each release indepen-877

dently (without taking into consideration the previous releases).878

6.6. Privacy leakage evaluation879

We measure the amount of information that the attacker can obtain by
comparing the different releases (R1, R3,and R5), produced by the algorithm
SNPP1R and A5.
We measure the privacy leak, that the algorithm SNPP1R generates by cal-
culating the number of non safe operations: NSafe defined as follows:

Nsafe = NSafePermut+NSafeNew +NSafeDelet (3)

Where NSafePermut is the number of permutations carried out without re-
specting the safely permuting condition, NSafeNew represents the number
of classes at ḠT−1 that are modified in ḠT because of grouping new nodes
with the old ones and NSafeDelet is the number of removed nodes and
replaced by other ones that don’t have the same attributes list values.
We also measure the privacy leak engendered by the adapted solution pro-
posed in [13]. As in the adapted solution proposed in [13], we have used our
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(a) SNPP1R (b) A5

Figure 11: Privacy leak. a: Privacy leak engendered by the algorithm SNPP1R, b: Privacy
leak engendered by the algorithm A5.

Safely deleting procedure to remove the old nodes. Therefore the only pri-
vacy risk is the violation of the condition SPa3 between classes. We measure
the privacy leak named, Vleakage, as follows:

V leakage = V classes ∗ 2k (4)

Where V classes is the number of classes that violate the condition SPa3 in880

the published social network.881

Figures 11.a and 11.b show the privacy leakage engendered by algorithm882

SNPP1R and A5, respectively. The results show that the privacy leak, en-883

gendered by the adapted solution A5 and the algorithm SNPP1R, increases884

with releases which satisfy the intuition, since the bipartite graph evolves885

with time. So the bipartite graph at T5 is more different than the bipartite886

graph at T3. However, with k = 7 and k = 6, we notice that the privacy887

leakage engendered by the algorithm A5 decreases with releases. One reason,888

is that the grouping of nodes in classes in the release R4 resists better to the889

social networks evolution (the edges adding) in the R5. Unlike the grouping890

of nodes in the release R2 that does not resist well to the social networks891

evolution in the R3.892

Figure 11.a shows also that the privacy leak engendered by the algorithm893

SNPP1R decreases with k, because large k allows less non safe operations,894

especially less violation of the safely permuting condition, as large k allows895

large number of edges with no need of safe permutations.896

Figure 11.b shows that the privacy leak engendered by the adapted solution897
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A5 increases with k, because the privacy leakage measures the number of898

nodes (user and group) in each class their privacy is affected. As the size of899

classes increases with k, then the number of nodes their privacy is affected900

increases. However, at several points, such as the point k = 9, the privacy901

leakage decreases suddenly a little. The reason, is that the grouping of nodes902

in classes, in the previous releases, with large k resists better to the social903

networks evolution (the edges adding) than the nodes grouping with small904

k.905

Notice that the algorithm SNPPnR depicts no privacy leakage due to com-906

parison of different releases, as it proved in section 5.907

6.7. SNPPnR privacy evaluation measurement908

This subsection evaluates the privacy of the current anonymous data,
without considering the information leakage, obtained by examining the pre-
vious published data. So, we measure the resistance of the current anonymous
graph against the de-anonymization attacks by using the Discrimination Rate
(DR) metric proposed by Sondeck et.al in [27] and defined by:

DRX(Y ) = 1− H(X/Y )

H(X)
(5)

Where H(X) is the entropy of X and H(X/Y) is the conditional entropy.909

The DRX(Y) measures the capability of the attribute Y to identify the at-910

tribute X. It is scaled between 0 and 1. The greater the DRX(Y), the greater911

the identification, and lower the privacy. For example, if DRX(Y) equals to912

1, it means that the values of the attribute Y permits to completely identify913

the values of the attribute X; hence the privacy of X is completely disclosed.914

We use the DR metric to measure the real users’ privacy, groups’ privacy915

and edges’ privacy of the three solutions, SNPPnR, SNPP1R and A5. So, to916

measure the:917

• users’ privacy: we measure DRX(Y) where X is the user node identifier918

and Y is the attributes list of the user node. We measure the iden-919

tity user de-anonymization attack (as we measure the capability of the920

values of the attributes lists to identify the user node).921

• groups’ privacy: we measure DRX(Y) where X is the group node iden-922

tifier and Y is the attributes list of the group node. We measure the923

identity group de-anonymization attack (as we measure the capability924

of the values of the attributes lists to identify the group node).925
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(a) users’ privacy for R1 (b) users’ privacy for R3

(c) users’ privacy for R5

Figure 12: DR metric for users’ privacy. a: DR metric of the release R1, b: DR metric of
the release R3, c: DR metric of the release R5.

• edges’ privacy: we measure DRX(Y) where X is the attributes list of the926

group node and Y is the attributes list of the user node. We measure927

the link de-anonymization attack (as we measure the capability of the928

attributes lists values of the user nodes to identify the attributes lists929

values of the group nodes).930

Figures 12, 13 and 14 show the users’ privacy, the groups’ privacy and the931

edges’ privacy of the bipartite graphs R1, R3 and R5, produced by the algo-932

rithm SNPP1R, SNPPnR and A5 respectively. the DR metric of our solution,933

SNPPnR, which ranges between 41% and 86% is in the same range as the934

15-anonymity instantiation and 10-anonymity [27]. From the results, we no-935
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(a) groups’ privacy for R1 (b) groups’ privacy for R3

(c) groups’ privacy for R5

Figure 13: DR metric for groups’ privacy. a: DR metric of the release R1, b: DR metric
of the release R3, c: DR metric of the release R5.
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(a) edges’ privacy for R1 (b) edges’ privacy for R3

(c) edges’ privacy for R5

Figure 14: DR metric for edges’ privacy. a: DR metric of the release R1, b: DR metric of
the release R3, c: DR metric of the release R5.
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tice that the DR metric decreases with the increasing of k, which satisfies936

the intuition, as large k leads to more privacy. However, in Figures 12 and937

13, we notice that the DR metric for users’ and groups’ privacy knows little938

increase with k (e.g. Figure 13.b, k = 10). The reason is the grouping of939

nodes in classes with large k preserves better the utility which leads to less940

privacy. The other reason is with large k, the algorithm SNPPnR creates941

less noise groups which lead to less privacy.942

The results (Figures 12, 14, and 13.a) show also that there is no significant943

difference between the privacy level, offered by our solution, SNPPnR, and944

the others (SNPP1R and A5). The reason, is that we have used the same945

anonymization technique in the three algorithms. However in Figures 13.b946

and 13.c, that represent the groups’ privacy in the release R3 and R5, re-947

spectively, we notice that our solution the algorithm, SNPPnR, outperforms948

the algorithms SNPP1R and A5. The reason is that the algorithm SNPPnR949

creates a noise groups to ensure the privacy in sequential releases (see the950

algorithm 3). As the groups’ privacy is ≤ 1
λyk

(see RQ2 ) and as the created951

noise groups have the same attributes lists values like the real groups. Then,952

the average values of λy, in the anonymous bipartite graphs, created with953

the algorithm SNNPnR is larger than those created by the algorithm A5 and954

SNPP1R. So, we get a better groups’ privacy.955

Figures 15.a, 15.b and 15.c show the users’ privacy, the groups’ privacy and956

the edges’ privacy, over the different releases and by taking k = 10. Figures957

15.a and 15.b show also that the DR metric (for users’ privacy and groups’958

privacy), of the algorithms A5 and SNPP1R, does not vary a lot with the959

number of releases (R1, R3 and R5). One reason is that with the algorithm960

A5 and SNPP1R, we do not modify the number of nodes (groups and users).961

Figure 15.a shows also that the DR metric (for users’ privacy) of the al-962

gorithm SNPPnR increases a little across releases. The reason is that the963

algorithm SNPPnR, when creating classes, groups similar user nodes in the964

same class which leads to less privacy. The Figure 15.b shows that the DR965

metric (for groups privacy)of the algorithm SNPPnR decreases with releases966

(which lead to more privacy). One reason is the effect of the noise groups,967

created by the algorithm SNPPnR to remove the violation of the condition968

SPa3. Figure 15.c shows that the DR metric for edges’ privacy knows little969

increase with the number of releases. The reason is the evolution of the social970

networks, i.e. the bipartite graph in R5 contains more edges and nodes than971

the ones in R3 and R1. This leads to less privacy.972
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(a) users’ privacy for k=10 (b) groups’ privacy for k=10

(c) edges’ privacy for k=10

Figure 15: DR metric over the different releases. a: DR metric for users’ privacy over the
different releases (R1, R3 and R5), b: DR metric for groups’ privacy over the different
releases (R1, R3 and R5), c: DR metric for edges’ privacy over the different releases (R1,
R3 and R5).
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(a) R1 (b) SNPP1R

(c) A5 (d) SNPPnR

Figure 16: Running time: a: Running time to produce the release R1, b: Running time
of the algorithm SNPP1R, c: Running time of the algorithm A5, d: Running time of the
algorithm SNPPnR.

6.8. Run time973

Figure 16 shows the run time of the algorithms SNPP1R, SNPPnR and974

the adapted solution A5.975

Figure 16.a shows the running time to produce the anonymous bipartite976

graph R1. From the results, we can see that the algorithm SNPP1R needs977

less running time than the algorithm SNPPnR and the algorithm A5. That978

is because the algorithms SNPPnR and A5 need to save the produced anony-979

mous bipartite graph for the next releases. But in k = 10, we notice that980

the algorithm SNPPnR and A5 are faster than the algorithm SNPP1R. The981

reason is that the utility cost function used by the algorithm SNPP1R to982

group nodes needs more time than the one used by the algorithms SNPPnR983
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and A5. i.e. with large k, the algorithm SNPP1R needs to compare many984

nodes to choose the one which preserves well the utility. This needs more985

time.986

Figures 16.b, 16.c and 16.d show the run time to produce the anonymous987

bipartite graphs R1, R3 and R5, using the algorithms SNPP1R, A5 and988

SNPPnR, respectively. From the results, we can notice that the running989

time of the algorithm SNPP1R increases with the releases which satisfy the990

intuition as the size of bipartite graphs increases with releases. The results991

show also that the running time needed by the algorithm SNPPnR and the992

algorithm A5 to produce the bipartite graphs R3 and R5 is shorter than the993

running time needed by the algorithm SNPP1R. For example for the point994

(R3, k = 5) the algorithm SNPPnR needs only 9.4 seconds and the algorithm995

A5 needs 8.3 seconds while the algorithm SNPP1R needs 204 seconds. The996

reason is that the algorithm SNPPnR and the algorithm A5 group only the997

new nodes while the algorithm SNPP1R groups all the nodes. We notice also998

that the algorithm A5 needs less time than the algorithm SNPPnR. The jus-999

tification is that the algorithm A5 does not make any processing to remove1000

the violation of the condition SPa3.1001

6.9. λx and λy impact on utility1002

Recall that λx − 1 represents the number of users’ nodes that have the1003

same attributes list values and which are published at the same time as node1004

ux and λy − 1 is the number of groups’ nodes that share the same attributes1005

list values and published at the same time as node uy.1006

To study the impact of the values of parameters λx and λy on the utility, we1007

generate two bipartite graphs, G1 and G2, with different values of λx and λy.1008

We use the algorithm SNPPnR to produce the anonymous bipartite graphs.1009

Table 3 gives the number of nodes, edges and the average values of λx and1010

λy for each bipartite graph.1011

Figure 17 shows the average relative errors of type1 and type2 queries for1012

bipartite graphs G1, and G2. Each point in the figure is the expected answer1013

of type1 and type2 queries on the corresponding anonymous bipartite graph1014

of 6 privacy levels, using the algorithm SNPPnR. The results show that the1015

relative error in the bipartite graph G1 is larger than the one in the bipartite1016

graph G2. The reason is that in the bipartite graph G2, the average values1017

of λx and λy are larger than the ones in the bipartite graph G1, so, as we1018

have large average values of λx and λy, in G2, we get better utility because1019

we use a bipartite graph which contains several nodes that share the same1020
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Table 3: BIPARTITE GRAPHS CHARACTERISTICS

Bipartite Nodes’ Edges’ Average Average
graphs number number values of λx values of λy

G1 400 1670 1,05 1,1
G2 400 1670 3,29 3,30

Figure 17: λx and λy impact on utility.
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attributes list values.1021

1022

6.10. Nodes/edges addition/deletion impact on utility1023

Recall that the algorithm SNPPnR delays the publication of new nodes if1024

the number of these new nodes is less than the privacy level, k. The algorithm1025

SNPPnR delays the suppression of nodes if no new ones can replace them1026

(new nodes that have the same attributes list values as those to be deleted).1027

Also, the algorithm adds noise nodes to avoid the violation of the safely1028

partitioning condition (due to the edges addition between old classes).1029

As the number of new nodes in large social networks is usually greater than1030

k, this section studies the impact on the utility of the delayed deleted nodes1031

and that of the noise nodes due to the edges addition between old classes.1032

To study the impact of delayed deleted nodes, we generate a graph G1, and1033

we produce the graphs G2, G3, G4, and G5 by adding/deleting nodes/edges1034

from G1. 5% nodes are deleted from G1 to G2, 10% nodes from G1 to1035

G3, and 20% nodes from G1 to G4, and 50% nodes from G1 to G5. the1036

characteristics of graphs G1, G2, G3, G4, and G5 are shown in Table 4.1037

Figure 18 shows the average relative errors of type1 and type2 queries for1038

bipartite graphs G1, G2, G3, G4 and G5. Each point in the figure is the1039

expected answer of type1 and type2 queries on the corresponding anonymous1040

bipartite graph of 6 privacy levels using the algorithm SNPPnR. The results1041

show that the relative error type1 and type2 increases with the number of1042

deleted nodes (5% in G2, 10% in G3, 20% in G4, 50% in G5) which satisfy the1043

intuition. The nodes that should be deleted remain in the next graphs (G2,1044

G3, G4, G5), until the arrival of new nodes that can replace them. These1045

delayed deleted nodes are considered as noise data, thus leading to less utility.1046

Figure 18 shows that the relative error (type1 and type2) in graph G4 (where1047

there are 20% deleted nodes) ranges between 19% and 29%, which is in the1048

same range as existing solutions based on the safe k-grouping concept [15].1049

As a result, our solution can preserve the utility even though the number of1050

deleted nodes from one release to the next one is higher (20% deleted nodes).1051

To study the impact of noise nodes, due to adding new edges between old1052

classes), we generate a graph G1, and we produce the graphs G6, G7, G8, and1053

G9 by adding/deleting nodes/edges from G1 as follows: 5% edges are added1054

between old classes in G1 to produce G6, 10% edges between old classes in1055

G1 to produce G7, 20% edges between old classes in G1 to produce G8, and1056

50% edges between old classes in G1 to produce G9. The characteristics of1057
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(a) Relative error for type 1 (b) Relative error for type 2

Figure 18: The nodes deletion impact on the utility.

(a) Relative error for type 1 (b) Relative error for type 2

Figure 19: The edges addition impact on the utility

Table 4: BIPARTITE GRAPHS CHARACTERISTICS

Releases Nodes’ number Edges’ number
G1 1000 3660
G2 1170 3690
G3 1110 3280
G4 980 2620
G5 620 1020
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Table 5: BIPARTITE GRAPHS CHARACTERISTICS

Releases Nodes’ number Edges’ number
G1 1000 3660
G6 1180 4020
G7 1180 4200
G8 1180 4600
G9 1180 4980

graphs G1, G6, G7, G8, and G9 are shown in Table 5.1058

Figure 19 shows the average relative errors of type1 and type2 queries for1059

bipartite graphs G1, G6, G7, G8 and G9. Each point in the figure is the1060

expected answer of type1 and type2 queries on the corresponding anonymous1061

bipartite graph of 6 privacy levels, using the algorithm SNPPnR. The results1062

show that the relative error type1 and type2 (especially type 2)does not1063

vary between graphs (i.e. with the edges addition). The reason is that the1064

algorithm SNPPnR adds noise nodes proportionally to the number of added1065

edges (to suppress the violation of the safely partitioning condition). As a1066

consequence, although the addition of noise nodes may decrease the utility,1067

the use of graphs which contain a big number of edges leads to better utility1068

(i.e. the big number of edges hides the impact of noise nodes). As such,1069

our solution can preserve the utility even though the number of added edges1070

from one release to the next one is high.1071

As a consequence, the SNPPnR algorithm preserves the utility in the case of1072

high dynamic social networks.1073

6.11. Big social networks1074

Recall that the privacy preserving property of our solution, SNPPnR, is1075

proved in section 5.1076

This subsection studies the utility, offered by our solution in the case of large1077

social networks.1078

We used the random data generator to generate data sets. The first original1079

social network bipartite graph has 101770 nodes, and 309980 edges. To1080

generate the next bipartite graphs for the next releases, we take the previous1081

bipartite graph and we randomly remove and add nodes and edges, so that1082

the number of nodes and edges raises from one release to another by rate1083
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between 10% and 20% [29] (see Table 6).1084

As these graphs are large, to generate the anonymous bipartite graphs, we1085

use a modified version of the algorithm SNPPnR by removing the utility cost1086

function from the algorithm SNPPnR for the following reasons:1087

• Tests on social networks of reasonable sizes show that taking into ac-1088

count the utility cost function does not bring much for the utility ac-1089

curacy (see Appendix B).1090

• The running time of the algorithm SNPPnR without the utility cost1091

function is more efficient (see section 5.6). For example, the algorithm1092

SNPPnR without the utility cost function requires only 16 seconds to1093

anonymize a graph with 5000 nodes and 16900 edges while the algo-1094

rithm SNPPnR with the utility cost function requires 278 minutes.1095

Also, the algorithm SNPPnR without the utility cost function requires1096

only 131 minutes to anonymize a graph with 101770 nodes and 3099801097

edges (see Appendix C).1098

As such, for testing large social networks, we decide to remove the utility1099

cost function from the algorithm SNPPnR. We also use modified versions of1100

the algorithms A5 and SNPP1R (Without utility cost function) to evaluate1101

our solution (SNPPnR without utility cost function).1102

Table 6: BIPARTITE GRAPHS CHARACTERISTICS

Releases Nodes’ number Edges’ number
R1 101770 309980
R2 120410 368410
R3 145380 448670

1103

Figures 20 and 21 show the average relative errors of type1 and type2 queries1104

for releases R1, R2 and R3, respectively. Each point in the figures is the ex-1105

pected answer of type1 and type2 queries, on the corresponding anonymous1106

bipartite graph of 6 privacy levels using the modified versions of the algo-1107

rithms SNPP1R, A5 and SNPPnR (algorithms without the utility cost).1108

We can notice that the obtained results share the same logic with those ob-1109

tained in small social networks using the algorithms (SNPPnR, SNPP1, A5)1110
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(a) R1 (b) R2

(c) R3

Figure 20: Average relative error for type 1. a: for release R1, b: for release R2, c: for
release R3.
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(a) R1 (b) R2

(c) R3

captionAverage relative error for type 2. a: for release R1, b: for release
R2, c: for release R3.
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with utility cost see section 6.5. Indeed, the results (especially in figures 20.b,1111

20.c, 21.b and 21.c) show that the modified version of the algorithm SNPP1R1112

outperforms the modified versions of the algorithms A5 and SNPPnR. The1113

reason is that the modified version of the algorithm SNPP1R anonymizes1114

each release independently, unlike the modified versions of the algorithms1115

A5 and SNPPnR that consider the previous releases, when anonymizing the1116

current one. From the results, we notice also that the modified version of1117

the algorithm A5 outperforms a little bit the modified version of algorithm1118

SNPPnR. The reason is the effect of the noise nodes created by the modi-1119

fied algorithm SNPPnR to ensure the privacy. We notice that the effect of1120

noise nodes is more important in big social networks than in small social1121

networks, which can be explained by the high evolution (nodes/edges addi-1122

tion/deletion) in big social networks.1123

The results show that the relative error for type1 and type2, of the modified1124

version of the algorithm SNPPnR, ranges between 0.05% and 2%, against1125

the range 0.5% and 22% for small social networks using the SNPPnR with1126

utility cost (see section 6.5). We can conclude that the modified version of1127

the algorithm SNPPnR preserves well the utility in the case of large social1128

networks despite the removal of the utility cost function which was originally1129

introduced for preserving the utility within classes. The reason is that, in1130

large graphs, the massive number of edges leads to better utility, the other1131

reason is that the frequency of attributes lists values is higher in large social1132

networks, i.e. the high probability to find several nodes with same attributes1133

list values leads to fewer errors when sampling consistent bipartite graphs,1134

thus resulting in high utility. As a consequence, our solution provides high1135

utility accuracy in the case of big social networks, especially when the data1136

receivers are interested only in a small number of attributes list.1137

7. CONCLUSION1138

In this paper, we propose a privacy preserving technique for labeled bi-1139

partite social networks. This technique allows publishing sequential releases1140

of the same social network while ensuring that the published data meet the1141

privacy requirements and remain useful for data mining tasks. This technique1142

is based on anonymization method that groups nodes in classes and masks1143

the true mapping between nodes and attributes values. We prove the effec-1144

tiveness of the proposed technique through several experiments. The latter1145

demonstrated the privacy preserving of sequential releases while maintaining1146
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high utility of the published bipartite graphs and a reasonable overhead in1147

terms, of running time. We propose this solution to encourage social net-1148

work data publishing and helping new services useful for the whole society1149

to emerge, especially in health or education sectors.1150

Appendix A. safely permuting condition proof1151

We prove that the permutation between two nodes of the same type that1152

belong to two different classes, under the safely permuting condition, satisfies1153

the RQ1, RQ2 and RQ3.1154

Proof that the safely permuting condition satisfies the require-1155

ments RQ1 and RQ2:1156

We prove that the probability that an attacker can re-identify the node, ux,1157

in the published bipartite graph that represents the targeted individual (the1158

targeted group, respectively) is less than or equal to 1
λxk

( 1
λyk

respectively) .1159

Let suppose that:1160

At Ti, we have a published bipartite graph ḠT i =(XT i,YT i, Ē T i, LCXTi,1161

LCY Ti) such as:1162

• A node ux is in class Cx
T i ∈ XT i.1163

• Cy
T i ∈ YT i is class of groups.1164

At Ti+n, we have a published bipartite graph ḠT i+n such as:1165

• Cz1, Cz2,. . ., Czn ∈ XT i+n are classes that satisfy, with Cx
T i+n, the1166

condition SPe1.1167

• There are (λx-1) nodes published, at the same time as ux, having the1168

same attributes list values like ux, and belonging to (λx-1) different1169

classes, (Cx1,. . ., Cxλx−1) ∈ XT i+n, as required by the condition SPa2.1170

• There is a violation of the condition SPa3 between Cx
T i+n and Cy

T i+n,1171

so to remove this violation, we must permute, under the property 2,1172

between nodes belonging to Cx
T i+n and Czi.1173

We find two cases:1174

• The attacker assumes with probability 1
2

that, the difference between1175

ḠT i+n and ḠT i is due to the social network evolution, then in this case1176

the probability that an attacker knows that the node ux is the one1177
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representing the targeted individual is: P(ux)=
1
2
* 1

λx
* 1

|CTi+nx | as the1178

size of each1179

Cxi ≥ k then P(ux)≤1
2
* 1
λxk

< 1
λxk

1180

• The attacker assumes, with probability 1
2
, that the difference between1181

ḠT i+n and ḠT i is due to the suppression of the violation of the con-1182

dition SPa3 between Cx
T i+n and Cy

T i+n. So, she/he tries to find two1183

nodes, u1 and u2, belonging to Cx
T i+n and Czi, respectively, such as1184

permuting these two nodes, u1 and u2, violates the condition SPa3 be-1185

tween Cx
T i+n and Cy

T i+n (or increases the number of edges between1186

Cx
T i+n and Cy

T i+n): so1187

– If there is a node, uk: uk ∈ Czi, such as uk.attributes list values = ux.attributes1188

list values, and as:1189

| Cx
Ti+n.attributes lists values ∩ Czi.attributes lists values | ≥k2 , then the1190

probability that the permuted node u1 is the targeted individual node, ux, is1191

less than or equal to 2
k , so the probability that an attacker knows that the1192

node ux is the node representing the targeted individual is:1193

P(ux) ≤ 1
2* 1

λx
* 2
k≤

1
λxk

1194

– If there is not a node, uk: uk ∈Czi such as uk.attributes list values =1195

ux.attributes list values, then the probability that an attacker knows that1196

the node ux is the targeted individual node is:1197

P(ux) = 1
2* ( 1

λx
* 1
|CTi+n

x |−1 ).1198

as the size of each Cxi ≥ k then1199

P(ux)≤ 1
λx

* 1
2(k−1) <

1
λxk
∀k ≥ 2 then P(ux) < 1

λxk
1200

So the safely permuting condition guarantees that the requirement RQ1(users’1201

privacy) is satisfied while allowing nodes permutation.1202

Similarly, we prove that the requirement RQ2 (groups’ privacy) is guaran-1203

teed by the safely permuting condition.1204

1205

Proof that the safely permuting condition satisfies the requirement1206

RQ3:1207

We prove that the probability that an attacker re-identifies that a link exists1208

between a node ux, representing the targeted individual, and a node uy, rep-1209

resenting the targeted group, is less than or equal to 1
k
. Let suppose that:1210

At Ti, we have a published bipartite graph ḠT i =(XT i,YT i, ĒT i, LCXTi,1211

LCY Ti) such as:1212

• A node ux is in class Cx
T i ∈ XT i.1213

• A node uy is in class Cy
T i ∈ YT i.1214
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At Ti+n, we have a published bipartite graph ḠT i+n such as:1215

• Cz1, Cz2,. . ., Czn ∈ XT i+n are classes that satisfy, with Cx
T i+n, the1216

condition SPe1.1217

• There are (λx-1) nodes published, at the same time as ux, having the1218

same attributes list values like ux, and belonging to (λx-1) different1219

classes (Cx1,. . ., Cxλx−1) ∈ XT i+n, as required by the condition SPa2.1220

• There are (λy-1) other nodes published at the same time as uy, having1221

the same attributes list values like uy, belonging to (λy-1) different1222

classes (Cy1,. . ., Cyλy−1) ∈ YT i+n as required by the condition SPa1.1223

• all nodes in Cx
T i+n,Cx1,. . ., Cλx−1 have links with nodes in Cy

T i+n,1224

Cy1,. . ., Cλy−1 .1225

• There is a violation of the condition SPa3 between Cx
T i+n and Cy

T i+n,1226

so to remove this violation, we must permute, under the property 2,1227

between nodes belonging to Cx
T i+n and Czi.1228

We find two cases:1229

• The attacker assumes with probability 1
2

that, the difference between1230

ḠT i+n and ḠT i is due to the social network evolution, then in this case1231

the probability that an attacker knows that a link, e, exists between1232

node ux and uy is:1233

P(ux, uy, e)≤1
2

* 1
k
≤ 1

k
: because the anonymization of the bipartite1234

graph ḠT i+n is under the safely partitioning condition. So, the property1235

1 is verified i.e. the requirement RQ3 is satisfied (the probability of1236

edge’s identification is less than or equal to 1
k
).1237

• The attacker assumes, with probability 1
2
, that the difference between1238

ḠT i+n and ḠT i is due to the suppression of the violation of the condition1239

SPa3 between Cx
T i+n and Cy

T i+n, so she/he tries to find two nodes,1240

u1 and u2, belonging to Cx
T i+n and Czi, respectively, such as permut-1241

ing these two nodes, u1 and u2, violates the condition SPa3 between1242

Cx
T i+n and Cy

T i+n(or increases the number of edges between Cx
T i+n

1243

and Cy
T i+n). In this case, the probability that an attacker knows that1244

a link, e, exists between nodes ux and uy is:1245

P(ux, uy, e)= 1
2
*( 1

|CTi+nx |+|Cx1|+....+|Cxλx−1
|*

1

|CTi+ny |+|Cy1|+....+|Cyλy−1
|) *nbedge1246
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According to the condition SPa3, the number of edges between any two1247

classes,Cxi and Cyj, must be ≤ k and as we permute two nodes between1248

Cx
T i+n and Czi, then in the worst case the replaced node in Cx

T i+n has1249

k edges with Cy
T i+n. Hence the number of edges between Cx

T i+n and1250

Cy
T i+n ≤ 2k, so:1251

nbedge ≤ k(λx ∗ λy + 1)1252

Then: P(ux, uy, e)≤1
2
* 1
λxk
∗ 1
λyk
∗ k(λx ∗ λy + 1).1253

So: P(ux, uy, e)≤1
2
* ( 1

k
+ 1

λxλyk
), then P(ux, uy, e) ≤ 1

k
1254

So the safely permuting condition guarantees the requirement RQ3(edges’1255

privacy) while allowing nodes permutation.1256

Appendix B. The utility cost function impact on the utility1257

Figure B.21: The utility cost function impact on the utility accuracy

This section studies the impact of the utility cost function on the utility1258

accuracy. So, we generate randomly a bipartite graph (G1) that contains1259

1000 nodes and 3360 edges and we use the algorithm SNPPnR and the al-1260

gorithm SNPPnR without utility cost function (SNPPnR*) to produce the1261

anonymous bipartite graph.1262

Figure 22.B shows the average relative errors of type1 and type2 queries for1263

bipartite graph G1. Each point in the figure is the expected answer of type11264

and type2 queries on the corresponding anonymous bipartite graph of 6 pri-1265

vacy levels, using the algorithm SNPPnR and the algorithm SNPPnR*. The1266

results show that the utility cost function does not impact much on the utility1267

as the relative error for type1 and type2 obtained by the algorithm SNPPnR1268
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and SNPPnR*, is mainly similar (only a little variation). The reason is that1269

the utility accuracy depends much more on the nature of the data (attributes1270

lists values). Indeed, i) if in the graph, the attributes values frequency is high,1271

then, even without considering the utility cost function, the probability of1272

putting nodes that share a big number of attributes values in the same class1273

is high. So, the algorithm SNPPnR* reaches a high utility accuracy. ii) if,1274

in the graph, the attributes values frequency is low, then, even though the1275

utility cost function is used, the utility accuracy will not enhance a lot, as1276

finally, the algorithm SNPPnR can put small number of nodes that share1277

attributes values together (as the attributes values frequency is low).1278

Appendix C. Running time of the algorithm SNPPnR without1279

utility cost function1280

Figure C.22: the running time of the algorithm SNPPnR without utility cost function

This section studies the running time of the algorithm SNPPnR without1281

utility cost function. So, we calculate the running time needed by the al-1282

gorithm SNPPnR without utility cost function to produce the anonymous1283

bipartite graphs of the original ones, presented in the section 6.11 (see Table1284

6).1285

Figure 23.C shows that the algorithm SNPPnR without utility cost func-1286

tion produces an anonymous bipartite graph that contains 101770 nodes and1287

309980 edges in only 131 minutes. Figure 22.C shows also that the running1288

time increases with releases (R1, R2 and R3). The reason is that the bipar-1289

tite graphs in R2 and R3 contain a big number of new nodes that should1290

be grouped in new classes. The other reason is the running time needed1291
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to remove the old nodes (nodes that should be deleted) and the running1292

time to suppress the violation of the safely partitioning condition (i.e. in the1293

large social networks, we need to test a big number of classes to suppress the1294

violation of the safely partitioning condition).1295
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