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Abstract–Deep learning is one of the advanced approaches of machine learning, and has attracted a growing attention in
the recent years. It is used nowadays in different domains and applications such as pattern recognition, medical prediction,
and speech recognition. Differently from traditional learning algorithms, deep learning can overcome the dependency on
hand-designed features. Deep learning experience is particularly improved by leveraging powerful infrastructures such as
clouds and adopting collaborative learning for model training. However, this comes at the expense of privacy, especially
when sensitive data are processed during the training and the prediction phases, as well as when training model is shared.
In this paper, we provide a review of the existing privacy-preserving deep learning techniques, and propose a novel multi-
level taxonomy, which categorizes the current state-of-the-art privacy-preserving deep learning techniques on the basis of
privacy-preserving tasks at the top level, and key technological concepts at the base level. This survey further summarizes
evaluation results of the reviewed solutions with respect to defined performance metrics. In addition, it derives a set of
learned  lessons  from  each  privacy-preserving  task.  Finally,  it  highlights  open  research  challenges  and  provides  some
recommendations as future research directions.
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1. Introduction

Deep learning, one of the most advanced approaches of machine learning, has attracted a lot of attention in
research as it provides the ability to overcome the dependency on hand-designed features that is faced by
traditional learning algorithms. Deep learning or usually Deep Neural Networks (DNNs) typically comprises
two phases: a training step to optimize the accuracy of the model and an inference phase where model is used
for analysis as classification or prediction (see the next section for more details). Nowadays, deep learning is
being  used  in  different  domains  including  big  data  analytics  and  different  applications  such  as  pattern
recognition, speech recognition, computer vision, natural language processing, intrusion detection, and medical
predictions [1]. 

Deep learning experience is particularly improved by leveraging powerful infrastructures such as clouds and
adopting  collaborative  learning for  model  training.  As user  devices  are  limited  in terms of  resources,  the
solution is to offload resource-demanding operations to an external infrastructure with high-power computation
and massive  storage  such  as  a  cloud.  On the other  hand,  collaborative  learning  is  applied  on large  and
diversified datasets that are originated from different sources, e.g., medical organizations or patients, which
results in achieving better learning accuracy. However, privacy concerns, which are related to sensitive data for
both model training and its use for inference, are raised. Such concerns include identification of individuals,
unauthorized commercial sharing of confidential information, illegitimate use of private data, and the disclosure
of sensitive data or inferred private information like disease risks from health records.  Additionally,  other
privacy concerns related to sharing a deep learning model need to be considered. In fact, it has been shown
that if training private data are not well protected, they are subject to leakage through model parameters or
predictions [2-8].

To tackle the above mentioned concerns, various approaches have been proposed. This survey aims to present
a state-of-the-art of recent deep learning techniques and approaches addressing potential privacy concerns, and
particularly related to input data which is the focus of this work, along with potential interesting directions
and learned lessons.

In the literature, there are two related surveys [9,  10]  that deal with privacy-preserving in deep learning.
However,  these  surveys  are  short,  and  no  discussion  regarding  research  challenges  and  practical  future



directions is provided. Zhang et al. [9] reviewed privacy-preserving in deep learning by focusing on collaborative
learning,  and considering  two phases:  training  and using.  As  for  training,  authors  considered  both  direct
collaborative learning where local data is directly uploaded to the central server, and indirect learning where
local models updates are uploaded to the central server for aggregation. Chang et Li [10] focused on privacy
issues  during  the  training  and  the  prediction  phases  of  the  neural  network  learning,  along  with  their
corresponding threats and countermeasures including attacks on trained models. Noting that both centralized
and distributed training, equivalent to direct and indirect training presented in [9], were considered.

Differently from [9] and [10], the main contributions of this paper are the following points:

• Reviews more than 45 recent solutions papers,  and more than 40 different privacy-preserving deep
learning techniques.

• Proposes a multi-level taxonomy that classifies the privacy-preserving deep learning techniques with
respect to four levels:

◦ The first level distinguishes between three privacy-preserving (PP) tasks, namely: (1) PP Model
learning, (2) PP Analysis, and (3) PP model releasing, as will be described in Sections 3, 4, and 5.

◦ The second level distinguishes between collaborative and individual model learning.

◦ The third level differentiates between server-based and server-assisted solutions of the PP model
learning and PP analysis.

◦ The  fourth  level  classifies  the  privacy-preserving  techniques  with  respect  to  the  used  key
technological concepts.

• Summarizes evaluation results of the reviewed solutions with respect to performance metrics.

• Discusses and outlines a number of learned lessons of each privacy-preserving task.

• Highlights open research challenges and provides some recommendations for future research.

The rest of this paper is organized as follows: Section 2 gives background on deep learning, privacy concerns,
main technologies, and performance metrics. It also describes the proposed multi-level classification for privacy-
preserving  techniques.  Sections  3,  4,  and 5,  each  of  which  reviews  the existing  solutions  of  one  privacy-
preserving task. The solutions are discussed within their respective tasks along with a summary of evaluation
results. Each task is concluded with a number of learned lessons. Section 6 highlights open challenges and
provides some recommendations for future research. Finally, Section 7 concludes the paper.

2. Privacy-preservation in deep learning

2.1 Background

The deep learning architectures, as shown in Figure 1,  are built as multi-layer neural networks that are
composed of different layers: input, output, and one or multiple hidden layers that connect the input and the
output  layer.  In  a  typical  neural  network,  layers  are  connected  through  neurons,  which  mathematically
transform the data. They compute the total input, i.e., weighted average of its inputs, add a bias signal, and
apply a nonlinear activation function like sigmoid, rectifier or hyperbolic tangent to produce the neuron’s
output [3, 11]. 

Fig. 1. A typical neural network with two hidden layers. xi are the inputs, yi are the outputs, black circles are biases
and Wi are the weight vectors for computing the weighted averages of inputs [3]



Deep learning consists of the following two phases [2, 6, 12]: 

• Training phase, in which each layer of data is assigned initially some random weights and the deep
learning classifier caries out a forward pass through the data to predict the class labels and scores. The
class scores are compared against the actual labels and an error is computed, i.e., loss function. This
error is then back propagated through the network and weights are updated accordingly. The weights
are updated after each sample or after a batch of samples.

• Inference phase: a trained model is used to infer/predict testing and real-world data by performing a
similar forward pass as the training phase. Since the goal is not to learn the model, the inference phase
does not include a back-propagation step to compute the error and update the weights.

In the literature, we can find different deep learning architectures such as:

• MLP (Multi-Layer Perceptron): is a feed-forward neural network with many hidden layers (multi-
layer). Hidden layers in MLP are fully connected, i.e., each node in each layer is connected to every
node of the following layer with a certain weight [13, 14].

• CNN (Convolutional Neural Network): The neuro-biological model of the visual cortex largely inspired
the CNN concept. In this network, the input is convolved using several small filters then sub-sampled
repeatedly  until  high level  features  are  extracted.  After  the last  sub-sampling layer,  several  fully-
connected layers are used to achieve final classification [15].

• RBM-based (Restricted Boltzmann Machines) techniques particularly DBN (Deep Belief Network): are
a  variant  of  Boltzmann  machines  (BMs)  where  BMs can be  considered  as  Neural  networks  with
bidirectionally connected stochastic processing units. DBN is a composition of RBMs connected via
hidden layers. DBN initialization is performed using efficient layer-by-layer greedy learning strategy
then fine-tuned based on target outputs [1, 15].

• DAE (Deep Auto Encoder): An Autoencoder is a Neural network that has the same number of input
and output nodes, and designed to recreate the input vector instead of assigning a class label to it.
Under high dimensional input data, an Autoencoder with a single hidden layer may not be enough for
representing  all  data.  To  deal  with  this  issue,  a  DAE architecture  is  created  by  stacking  many
Autoencoders on top of each other and is often pretrained with DBN. DAE, considered as a non-linear
feature extraction method, is usually used for dimensionality reduction and efficient encoding learning.
[13, 15]

• RNN (Recurrent Neural Network): It is designed to work with sequential  information. RNN is an
important neural network for cases where the output depends on previous computations, like speech,
text or DNA sequences analysis. In RNN, which has memory to store previous information, the output
of new data is provided by exploiting the current and the recent past inputs. As for applications with
longtime lags  of  unknown sizes  between  important  events,  LSTM (Long  Short-Term Memory),  a
variant of RNN, is particularly suitable. This variant was proposed to address the problem triggered
by long input sequences called vanishing gradient problem, and which prevents the parameters of the
models to be updated at a certain time during training [14, 15].

More information regarding deep learning, its basics, algorithms, architectures, and applications can be found
in [1], [3], [13], [14], [15], and [16].

2.2 Privacy concerns in deep learning

The use of deep learning raises some privacy concerns especially (1) when a powerful infrastructure such as a
cloud is involved, and (2) when collaborative model is used. The privacy concerns are particularly related to
sensitive input data either during training or inference and to the sharing of the trained model with others.

• The use of a powerful remote server or a cloud can be helpful at improving the back-propagation
efficiency [2, 17]. However, privacy concerns can occur at both sides, i.e., the users and the server. In
[6],  it  is  mentioned  that  neither  the  server  should  obtain  information  regarding  users  data,  nor
information about training model should be revealed through inferences. 

• It has been reported in [18] and [19] that it is possible to approximately reconstruct a part of the
training data by only observing the predictions, such as recovering images from a facial recognition
system through model inversion attack. The access to model parameters by an adversary with full



knowledge of the training mechanism may also lead to privacy risks [18], which shifts the problem
from data privacy-preserving to model privacy-preserving. 

• In the case of collaborative learning [3], the leakage of sensitive data among participants should also
be considered due to information sharing and potential interaction among users [9].

Moreover, the leakage of sensitive data during transmission between the users and the external infrastructure
particularly over Internet should also be considered [8].

2.3 Design and evaluation of privacy-preserving techniques

In this section, we briefly introduce the different aspects that are considered in the design and evaluation of
the  privacy-preserving  techniques,  including  main  technologies,  target  applications,  deep  learning  models,
adversary models, and performance metrics.

Different technologies are being used in order to preserve privacy. Differential privacy mechanisms [71, 72, 4]
and homomorphic encryption [73, 37] which is generally coupled with polynomial approximation [37] are from
the  top  of  the  list.  Model  splitting  [8],  partial  parameters  sharing  [21],  mimic  learning  [35]  and  other
technologies are also interesting for enabling privacy as will be described later.

As for deep learning architectures, a number of models are proposed in the literature to evaluate privacy-
preserving deep learning techniques. Multi-layer perceptron MLP [3, 13, 14] and Convolutional neural network
CNN [3, 15] are the most widely used in experimentation, followed by the different variants of deep Auto
Encoder (like Stacked Auto Encoder [2] or Tensor Auto Encoder [30] models). Combinations of models are also
possible like CNN with Deep Belief Network to produce Convolutional Deep Belief Network (CDBN) [34], and
CNN with Long Short-Term Memory (LSTM) to produce LSTM-CNN [20].

Privacy-preserving deep learning techniques are also used in various applications, and evaluated with different
datasets. Image recognition like  gender classification are popular. They are used with different datasets like
MNIST [3] (Handwritten digits),  CIFAR-10 [2] (Classified color images), or SVHN [3] (Street View House
Numbers). Popular applications also include e-health like activity recognition over WISDM [32] or HAR [22]
datasets.  Other applications and related datasets include for instance, income prediction using ADULT [4]
dataset, climate prediction applications using Climate [5] dataset, or traffic flow prediction with PeMS [30]
dataset.

Performance metrics

To assess the merit of the privacy preserving deep learning techniques,  we consider in this survey the
following performance metrics: 

(a) Effectiveness: It is defined in general as the degree to which the desired objectives/results are achieved.
In our context, it represents the capability of the deep learning model to resolve the classification or prediction
tasks. Accuracy is one of the major metrics that are used to measure effectiveness. The objective is to produce
high accuracy in case privacy is involved or not, or make a trade-of between effectiveness and privacy [6,20,21].

(b) Efficiency: It generally measures the required time or overhead to perform a specific task. It may include
for example running time to get an inference [6], training time [2] or network traffic [22]. 

(c) Privacy: It is evaluated theoretically or formally through properties, or empirically through measures in
order to analyze or prove privacy preservation.

Adversary models

Honest-but-curious  (HbC) adversary  model  is  considered as a standard security model  [12],  and is  the
mostly assumed when evaluating privacy-preserving techniques. HbC is also called semi-honest and known as
passive adversary model. It considers that any assumed semi-honest entity (cloud, data owners, ...) follows
honestly the security protocol without performing malicious actions towards protocol or participants, but it
could try to learn or infer sensitive information from private data, potentially colluding with some participants
[3, 20, 23]. However, some reviewed works also adopted some scenarios of active adversary model [29, 56] where
an adversary could deviate from the protocol in an arbitrary way. It is worth noting that in case of some
scenarios, adversaries may have additional capabilities and knowledge than others.



2.4 Taxonomy of privacy-preserving deep learning techniques

Privacy risks might arise during the different phases of the deep learning process, i.e., (1) training a model,
(2) inference through a model, and (3) releasing a model.

Fig. 2. Privacy-preserving techniques in Deep learning: Taxonomy overview

Based on the above mentioned phases,  we propose a multi-level  taxonomy, as shown in Figure 2,  which
classifies the state of the art of privacy-preserving deep learning techniques with respect to the following levels
(see Figures 8, 10 and 13):

• The 1st level categorizes the reviewed works as : (1)  privacy-preserving learning (see Section 3), (2)
privacy-preserving inference (see Section 4), and (3) releasing a privacy-preserving model (see Section
5).

• The 2nd level, is built under the privacy-preserving model learning class, and distinguishes between (1)
collaborative  learning where  multiple  participants  are  involved  and  jointly  take  part  in  the  deep
learning process, and (2) individual learning where a single participant is involved.

• The 3rd level, is considered in both privacy-preserving model learning and privacy-preserving inference,
and differentiates between (1) server-based where the inference and the model learning processes are
performed  exclusively on an external-to-participants infrastructure such as a cloud or remote server,
and  (2)  server-assisted where  the  inference  and  the  model  learning  are performed  cooperatively
between participants and the external infrastructure.

• The 4th and last  level  represents  the key concepts  used for  designing  different  techniques  such as
encryption or model splitting as it will be detailed later.

Fig. 3. Relationship between privacy-preserving deep learning techniques



In Figure 3, we show the relationship between reviewed techniques as a directional graph. In the upper part,
a link (A,B) denotes that technique A was compared to technique B, while in the bottom part, a link (A,B)
denotes that technique A reviewed, discussed, and sometimes criticized the limitations of technique B. It has
been observed that [3], [19], [24], and [25] are the most reviewed works by others, i.e., considered as the most
popular techniques within the three main classes of the proposed taxonomy. Specifically, [3], [25], and [19, 24]
are the most popular techniques among PP Model Learning, for PP Analysis (inference), and Releasing a PP
Model, respectively.

3. Privacy-preserving (PP) model learning

Deep learning experience is particularly improved by leveraging powerful infrastructures such as clouds and
adopting collaborative learning. However, this comes at the expense of privacy, especially when sensitive data
are processed during the training. In this section, we present the multi-level classification that is related to the
privacy-preserving model learning. Then, we give a summary description of the relevant techniques, and finally
we discuss them and derive some learned lessons. 

3.1 Classification

In  the  literature,  a  number  of  techniques  have  been  proposed,  as  shown  in  Figure  4.  They  consider
collaborative  training,  i.e.,  the  training  is  performed  collaboratively  between  different  participants  or,
individual training where the training is performed by a single participant, such as a client that wants to take
advantage of a cloud to train its own model. In the latter case, some techniques ([8], [52], and [31]) might allow
a cloud model to be trained by successive participants. Noting that some collaborative learning techniques ([20]
and [23]), can also be applied for individual training.

As depicted below, reviewed techniques  are based on different  key concepts  such as encryption,  model
splitting,  or partial parameters sharing, with which a number of technologies are being employed, as will be
described later.

Fig. 4. Taxonomy of PP Model learning techniques

3.2 Solutions review

Based on the classification presented in 3.1, we describe in this section the reviewed solutions (see Tables 2
to 5) along with a summary of evaluation results with respect to the performance metrics (see the below Table
1).



Table 1. Main measures and properties to evaluate PP model learning techniques

Performance metrics Measures and properties

Effectiveness Accuracy, Reconstruction rate, F-score, Area Under Curve (AUC), Mean Relative Error (MRE)

Efficiency
Training time, Communication overhead, Computational overhead
Support of unreliable networks, participants dropouts and resource-constrained devices, ...

Privacy
(Direct leakage) privacy of training data, (Indirect leakage) privacy of parameters, Privacy budget
consumption, Resistance to ICA or MAP estimation attacks, ...

 a) Collaborative PP model training: It can be either (1) “server-based” where the learning process is
performed exclusively on an external-to-participants  infrastructure  such as a cloud,  or (2) “server-assisted”
where the learning process is performed cooperatively between the participants and the infrastructure. In both
cases, mechanisms to enable privacy-preserving such as encryption are used by one or both sides, or even by a
third party.

a.1) Server-based collaborative PP model learning

Table 2. Reviewed solutions for PP server-based collaborative model learning

Reference
Target task

Key concept
Main techniques & technologies

Adversary & Experimentation

Lyu et al. (2017) [20]
Learning on cloud service a DL model
on the union of data contributed by a

large number of participants

 Transformation
- Repeated Gompertz (RG) for data perturbation
- Row-orthogonal random projection (RP) matrix for 
projecting high-dimensional data to lower dimension

- Cloud service semi-honest 
- Synthetic and real datasets (Adult, HAR, MH, …)
- LSTM-CNN model (authors proposal)
Comparison : Privacy > RP, tanh+RP, DL+RT 
schemes | Model accuracy > LSTM, CNN, DBN

Li et al. (2017) [23]
Allow multiple participants with

different datasets to learn
collaboratively a Neural Network

model through a cloud 

 Encryption
- Multi-key Fully Homomorphic Encryption (MK-FHE)
- Polynomial approximation of activation function – 
Taylor series
- Secure Multi-party Computation (SMC)
- Double decryption mechanism (BCP scheme)

- All participants honest-but-curious
- Cloud and authorized center not colluding
- Face recognition application (theoretical analysis)

Lyu et al. [20] proposed a two-stage privacy-preserving scheme called RG-RP, based on randomization and
perturbation. First, repeated Gompertz (RG) nonlinear perturbation is applied on training data to mitigate
maximum a  posteriori  (MAP)  estimation  attacks.  Second,  high-dimensional  data  is  projected  to  a  lower
dimension, using a row-orthogonal random projection (RP) matrix, in order to resist Independent Component
Analysis (ICA) attacks, maintain accuracy, and reduce transmission energy. Using transformed data of the
participants, the cloud builds a deep learning model.  Evaluation results showed that combining the proposed
LSTM-CNN model with RG+RP privacy scheme provides a good trade-off between accuracy and privacy. As
for effectiveness, LSTM-CNN outperforms comparison models with and without privacy, although LSTM-CNN
privacy version achieved slightly  less  accuracy  in comparison  to  the  non-privacy version.  As for  privacy,
resistance to ICA attack and recovery resistance to MAP estimation attack were theoretically proved. Besides,
LSTM-CNN was shown as potentially useful for automated health monitoring.

Differently from [20], Li et al. [23] proposed a solution with two schemes, based on homomorphic encryption
and coupled with polynomial approximation. In the basic scheme, the cloud performs the learning process on
encrypted  datasets  received  from  the  participants,  which  jointly  perform  SMC  (Secure  Multi-party
Computation) protocol to decrypt and extract the results.  In the advanced scheme, the interaction among
participants is avoided by using a non-colluding authorized center, double decryption mechanism (BCP), and
Fully Homomorphic Encryption (FHE). The theoretical analysis of privacy and security against polynomially
indistinguishable chosen-plaintext attack (IND-CPA) showed that that learning results remain private for the
cloud and authorized center,  and that the solution is resilient against  corrupt  data owners.  However,  the
challenge of reducing computing and communication costs was set as a future work.

a.2) Server-assisted collaborative PP model learning

Table 3. Reviewed solutions for PP Server-assisted Collaborative Model Learning

Reference
Target task

Key concept
Main techniques & technologies

Adversary & Experimentation

Shorki et al. (2015) [3]
Allow multiple participants to jointly

Partial sharing
- Partial sharing [21] - Selection of parameters to 

- Passive adversary model
- MNIST, SVHN datasets - MLP, CNN models



learn an accurate model over their
private datasets

train and share
- Differential privacy - Laplace mechanism
- Sparse vector technique (SVT)

Comparison : Centralized SGD on entire dataset, 

privacy-violating model, Non-collaborative models 

learned by participants individually

Liu et al. (2016) [22]
Enable multiple participants to

collaboratively learn a model in a
distributed mobile environment

Partial sharing
- Partial sharing - Selection of parameters to train
and share

- HAR, Human Activity Recognition datasets 

- MLP and CNN models

Comparison : Centralized deep learning trained by mini-

batch SGD on entire dataset

Phong et al (2017/2018) [21, 26, 27]
Allow many learning participants to

collaboratively learn a Deep NN over a
combined dataset of all

 Encryption
- Additively Homomorphic Encryption schemes – 
LWE-based and Paillier
- TLS/SSL secure channels

- Cloud server honest-but-curious & Participants honest
- MNIST, SVHN datasets - MLP and CNN models

Comparison : Ordinary ASGD  / [3] for CNN

Zhang et al. (2017) [28]
Train accurate deep neural network

models jointly by participants

 Encryption
- Lightweight HE – El Gamal
- Threshold secret sharing - Shamir’s SS [ρ(rho)-ρ(rho)-rho)-
visibility]
- Local differential privacy (DP) - DP 
randomization, sampled from symmetric 
distributions e.g., Laplace and Gaussian

- Semi-honest attack model
- MNIST and SVHN datasets (respectively simple and 

hard DL tasks)

- MLP and CNN (resp. weak and strong DL models)

Hao et al. (2019) [57]
Train a cloud deep model through
privacy-preserving federated deep

learning

 Encryption
- Additively homomorphic encryption
- Differential privacy - Laplace mechanism

- Honest-but-curious server, cloud server colluding with 
multiple users
- MNIST dataset - CNN model

Comparison :  Non-private model > accuracy, [27] > 

communication overhead and computational cost

Phong et al. (2018) [58]
Learn a deep model over the datasets

of multiple data owners

 Encryption
- Symmetric encryption
- TLS/SSL secure channels
- Optional enhancements : Differential privacy, 
dropout, ...

- Server assumed to be honest-but-curious
- 5 UCI (Pima, breasts, ...), MNIST, CIFAR-10/100 

datasets

- Different DNN models, MLP & CNN, and CNN & ResNet

Bonawitz et al. (2017) [29]
Aggregate in a federated learning

setting, user-learned model updates of
a DNN model

 Multi-party computation
- One time pad
- Threshold secret sharing - Shamir’s secret 
sharing protocol
- Diffie-Hellman key exchange
- Double-Masking structure
- UF-CMA secure signature scheme

- Honest-but-curious and malicious settings
- Focused on mobile devices setting i.e. communication 
is extremely expensive and dropouts are common
- Deep neural network (DNN) model

Zhao et al. (2018) [56]
Collaboratively build a deep model, (rho)-i)

with the overall data, (rho)-ii) without a
central data storage, and (rho)-iii) reducing

the impact of participants with low
quality data

 Transformation
- Functional exponential mechanism
- Polynomial approximation for objective 
function
- Cryptography and hashing against eavesdrop 
attacks

- Passive and active adversaries
- Integrated Public Use Microdata Series (US), MNIST 

datasets 

- MLP (prediction), compact CNN (classification) models

Comparison :  [3], centralized and standalone schemes

Hartmann et al. (2019) [55]
Train a model on data spread over

different clients

 Transformation
- Cancelable noise (differential privacy)
- Anonymization network (such as Tor)

- At least two honest clients
- Malicious server possibly colluding with a maximum of 
2 clients

Fu et al. (2019) [54]
Train a deep model on a distributed

data

 Transformation
- Mixup data augmentation

- White and black-box settings
- CIFAR 10/100 datasets - DNN model

Comparison :  Vanilla-learning

Shokri et al. [3] and Liu et al. [22] adopted a “partial parameter sharing”-based approach for collaborative
model learning.

In [3], each participant trains a chosen fraction of parameters, then shares resulting gradients with others
directly or via a central  server,  so that they update their  local models.  This process is repeated until  an
approximate minimum is obtained. Instead of random selection of shared parameters, a smarter strategy is to
choose parameters far from local optima, i.e., with a larger gradient. Besides, a stochastic vector technique
(SVT) with Laplace mechanism is proposed to prevent potential  leakage regarding gradients selection and
actual values. The assessment of the solution presented good results beside comparison models, even with small
fraction sharing, when using differential privacy. As for efficiency, unreliable networks can be supported by the
solution. Regarding privacy, a trade-off between accuracy and privacy is noted, but accuracy could also be
increased with a larger number of participants. Besides, [23] noted that global/local optimal might be difficult
to achieve in partial sharing technique, while [21] theoretically demonstrated that even a small fraction of
gradients stored on the cloud could be exploited to leak useful information. [33] and [34] reported that this
solution might consume large portion of unnecessary privacy budget to ensure accuracy, while [35] stated that
large number of parameters prevents meaningful privacy guarantee as bounded per-parameter.



Similarly to [3], Liu et al. [22] proposed sharing only very small fraction of parameters to preserve privacy.
Starting  from the  most  updated  parameters  retrieved from global  server,  each  participant  performs  local
training, then uploads resulting parameters with the largest gradients. Two protocols for parameters exchange
are  proposed,  namely  round-robin,  and  blocking  asynchronous  scenario  where  each  participant  works
independently without any order. In the latter, the global server defines its status through a flag variable. The
authors evaluated the effectiveness through reconstruction rate as they argue that accuracy cannot reflect how
performance  is  affected  by  decentralized  architecture  and  parameter  selection.  The  results  showed  that
reconstruction rate can stay around 90% for sharing fraction up to 0.01, while it slightly decreases as the
sharing fraction decreases. As for efficiency, it was shown that network traffic depends on mini-batch size, as
well as on the network architecture like the number of model parameters. Network traffic can be however
reduced though parameter selection. As for privacy, the analysis of potential leakage risks using small fraction
of gradients presented by [21] and described above might be also valid for this solution.

Encryption-based  approach  as  in  [21]  and  [28]  is  another  interesting  concept for  collaborative  model
learning.

Phong et al. [21, 26, 27] proposed a solution where, starting from the initial weights downloaded from the
cloud, participants send after each iteration of local training, the computed encrypted local gradients to the
cloud.  Each  participant  uses  a  different  TLS/SSL  secure  channel  in  order  to  protect  the  integrity  of
homomorphic ciphertexts. The cloud then updates the encrypted global weights vector, which is downloaded
by the participants. The solution achieves theoretically the same accuracy as conventional asynchronous SGD,
while through evaluations, 97% and 99% of accuracy were achieved for MLP and CNN respectively. As for
efficiency, an overhead in communication and computation was noted, although the authors considered it as
small. However, the trade-off accuracy/privacy could be shifted to efficiency/privacy, which allows to keep the
accuracy  intact,  while  it  can  be  furthermore  solved  by  involving  more  processing  units  or  dedicated
programming codes. As for privacy, encrypting gradients theoretically ensure that no information is leaked to
the cloud.

Zhang et  al.  [28]  proposed a solution with two variants ( MDLc and MDLd) under  loose  and tight∝MDLc and ∝MDLd) under loose and tight ∝MDLc and ∝MDLd) under loose and tight
coordination  respectively  were  proposed.  In  MDLc,  participants  locally  train  their  model,  and  apply∝MDLc and ∝MDLd) under loose and tight
differential privacy on computed gradients of each parameter. A participant registers a request for a set of
parameters with the Manager M. If the minimum of registered participants for a parameter is reached, M
invokes participants, which encrypt their gradients, and upload them to M. The global model is updated and
participants are notified to download it to update their  local models.  In MDLd, there is no registration∝MDLc and ∝MDLd) under loose and tight
process, and the global gradient is immediately updated once the threshold of participants is reached. Less
coordination  is  therefore  required  for  higher  execution  efficiency  and  fault  tolerance,  but  with  more
communication  complexity.  Evaluation results  showed desirable  model  utility  close  to  standalone  privacy-
violating model, as the negative impact of LDP on utility can be mitigated using ρ-visibility. However, as
larger ρ implies higher training cost per epoch, a decision for balancing utility and training efficiency should be
made in low-end systems and large-scale training. While encryption implies fairly limited system overhead in
comparison to training the local models, proposing two variants further allows to control communication and
computational  costs.  As  for  privacy,  presented  analysis  showed  that  combining  LDP  and  ρ-visibility
mechanisms ensures both global and local gradients privacy.

A recent solution based on encryption was proposed by Hao et al. [57]. The process is simple, users perform
local training over their private datasets, perturb and encrypt the resulting local gradients, then upload them
to  the  cloud  which  computes  the  global  encrypted  gradients.  On  that  basis,  users  update  their  model
parameters with the global gradients after decryption. The above process is repeated until loss function reaches
minimum. The authors of [57] presented a theoretical security analysis and considered the solution as secure
against server cloud and compromised users. Besides, performance evaluations described by authors showed
better results in terms of communication overhead and computing cost compared to [27], and high accuracy
compared to a non-private model.

Phong et al. [58] recently proposed a solution where the trainers share the model weights instead of the
gradients, arguing that it is more robust against information leakage. In Server-aided Network Topology (SNT)
version, a trainer retrieves from the central server the latest weights,  and performs local training. It then
uploads to the server computed weights vector encrypted with a key shared by trainers. Once the process is
repeated by all  the trainers,  the best  weights  vector stored at trainers  is shared among others.  In Fully-
connected Network Topology (FNT) version, the same process is followed except that the weights are directly



transmitted over trainers randomly or following an agreed order. The authors theoretically proved a certain
degree of privacy and performance guarantees through a series of theorems, but they pointed out that although
exactly inverting input data from the weights was hard, some information might however be leaked. In this
context, techniques like differential privacy, dropouts, and anonymous transmission were proposed. Besides,
through experiments conducted over different datasets and using different architectures, the authors considered
their solution as both effective in terms of accuracy and efficient in terms of communication and computation.

A different approach is proposed by Bonawitz et al. [29] on the basis of Secure Multi-party Computing
(SMC). After that the participants evaluate their local models, a third party (not necessarily trusted) securely
aggregates updates, and the aggregated model is shared with the server. Two variants are proposed in order to
guarantee privacy against both honest-but-curious and malicious adversaries. Secure aggregation uses masking
with one time pad through addition and subtraction of random masking vectors method in order to ensure that
inputs are not revealed. Pseudo-random generator is used in order to mitigate communication overhead of
random vectors exchange, while threshold secret sharing is used to better handle dropouts of participants. In
case the server could reconstruct masks, double masking structure is used to protect users data. For malicious
adversaries,  a public-key infrastructure  (PKI) is  assumed,  and a consistency check round is  added before
unmasking, in order to prevent the server from reconstructing more secrets that it is allowed to.  Evaluation of
the approach showed a low overhead in terms of client runtime and communication, as well as tolerance to
large number of failing devices, which might make the solution ideal for mobile applications. However, unlike
bandwidth and client runtime, the server running time significantly increases with the fraction of dropouts. As
for privacy, security against honest-but-curious and malicious adversaries was theoretically proved. However,
no protection is provided against malicious clients trying to prevent the server from learning any sum at all.

Another interesting concept for local models parameters aggregation approach with privacy preservation is
the introduction of transformations to input data [54], models parameters [55], or loss function |56]. In the
following three techniques, the participants locally train private models over their local datasets, then share the
resulting model parameters with a central server for aggregation. Once obtained, the new parameters vector is
distributed over the participants.

Zhao et al. [56] proposed a solution where objective functions of local models are perturbed in the training
process using functional exponential mechanism, in order to prevent leakage from local shared parameters. To
perform perturbation, the polynomial approximation of the objective function is derived with two different loss
functions, then noise is injected to the coefficients. Besides, the solution considered the potential existence of
“irregular participants” having low-quality data. In order to reduce the impact of such participants, an accuracy
score for participants is calculated by running the model with each participant’s weights over an auxiliary data
set, then decide whether one model parameters are accepted for aggregation or not. A theoretical security
analysis of the solution concluded that  ε-differential privacy is guaranteed, while cryptography and hashing
were proposed in case of eavesdropping attacks of malicious adversaries. Besides, experimental resultsshowed
that the solution could ensure rigorous privacy, high accuracy (measured using MRE, Mean Relative Error),
while being robust to irregular participants. However, a trade-off between accuracy and privacy is noted.

Hartmann et al. [55] recently proposed a technique based on differential privacy noise-based transformation.
The idea is to add cancelable noise to local gradients before uploading them to the server. Local gradients
become useful again after that users send negative value vectors of added noises to the server. To guarantee
that negative values are not linkable to a specific gradient, they are sent through an anonymization network
such as Tor. The server adds them then to the sum of the gradients, gets the global gradients, and update the
model parameters. For malicious adversaries, some solutions are proposed such as how to detect server protocol
violation through iterating requests and examining responses, or using hashes which reduces communication
costs. A theoretical analysis was presented to demonstrate the provided privacy guarantees. A computation
and  communication  analysis  showed  that,  in  comparison  to  standard  distributed  gradient  descent,
communication increases by only a logarithmic factor in the number of users and parameters.  However, a
training round needs to be restarted whether a client drops out. The solution was considered therefore more
suited for cases where clients/server connection is stable.

Differently from the other solutions, Fu et al. [54] proposed a solution based on mixup data augmentation.
In this approach, each client processes its local data using mixup, then it trains its local model on the new
data. The resulting local models parameters are uploaded to the server for aggregation. The aggregated model
parameters are then distributed to each client, which iterates the training process until the model converges.
Experimentation results showed that the approach is suitable for image classification, and that the model has



better  generalization  ability  with  mixup,  when  compared  to  distributed  vanilla-learning  (VL).  Over  text
classification, the solution achieves a high AUC, which is slightly better than VL. As for privacy, through an
analytical experiment on the facial recognition task under white-box settings, the solution achieved good visual
and quantitative results using hamming distance. However, a privacy/accuracy trade-off was noted.

 b) Individual PP model training, similarly to collaborative training, it can be classified as: “server-based”
or “server-assisted”, but there is only a single participant, which trains its own model or the server model.

b.1) Server-based individual PP model learning

Table 4. Reviewed solutions for PP Server-based Individual Model learning

Reference
Target task

Key concept
Main techniques & technologies

Adversary & Experimentation

Bu et al. (2015) [2]
Train a local model on cloud

 Encryption
- Full Homomorphic encryption - BGV
- Polynomial approximation for activation 
function - Maclaulin formula

- STL-10, CIFAR-10 Image classification datasets

- Stacked Auto-Encoder model

Comparison : Conventional stacked auto-encoder (high-order 

back-propagation)

Zhang et al. (2016) [30]
Training a model for big data
feature learning by offloading

expensive operations to the cloud

 Encryption    
- Full Homomorphic encryption – BGV
- Polynomial approximation for activation 
function - Taylor theorem

- STL-10 and NUS-WIDE, PeMS and DleMP datasets

- Several stacked Tensor auto-encoders

Comparison: (Accuracy) Conventional Deep model / (Training) 

Conventional high-order back-propagation algorithm

Zhang et al. (2018) [52]
Contribute in the training of a

server-based deep neural network
model

 Encryption
- Paillier partially homomorphic cryptosystem
- Outsourcing non-linear encrypted 
computation to client

- Semi-honest model
- Iris, Diabetes, kr-vs-kp and MNIST datasets

- DNN, CNN models

Comparison :  Cryptonets [25] and BGN-Net

Based on encryption, the privacy-preserving back-propagation algorithm proposed by Bu et al. [2], relies on
BGV fully homomorphic encryption and Maclaulin polynomial approximation of sigmoid activation function.
Input data and initialized parameters are encrypted by the client and uploaded to the cloud, which runs one
iteration. The client downloads and decrypts the results, and updates its local model once. It then encrypts and
sends the updated parameters again to the cloud, which performs another iteration. This process continues
until  the  maximum  error  threshold  or  the  maximum  number  of  iterations  is  reached.  Although  BGV
encryption  allows  to  protect  private  data  during  learning  process,  it  however  requires  approximation  of
activation function. This might lead to accuracy reduction as evaluation results showed a loss of 2%. As for
efficiency,  although  the  solution  could  achieve  a  2  times  higher  efficiency,  i.e.,  45% training  time of  the
conventional model, it incurred however computation and communication overhead because of the encryption-
related steps over each iteration.

Similarly to [2],  the technique proposed  by Zhang et  al.  [30]  follows the same steps  but  using Taylor
theorem in order  to polynomially approximate the sigmoid activation function.  Evaluation results  showed
accuracy loss for both classification and prediction tasks. However, the authors mentioned adding more Taylor
series in order to reduce the loss in classification, but this increases BGV encryption level and, thus leads to
low performance. As for efficiency, the solution could achieve over classification 2.5 times, and 2 times higher
efficiency in terms of learning time for one iteration, and overall time respectively. Over prediction, the overall
training time is almost the same as non-privacy-preserving model, while efficiency could be improved by almost
2 times when data size is  larger.  It  is  also reported that the scheme performance  could be improved by
introducing more cloud servers, which makes it particularly suitable for big data feature learning. However, [5]
criticized the overall solution for its very high communication complexity.

A more  recent  solution  based  on encryption  was  described  by  Zhang  et  al.  [52].  A client,  willing  to
contribute to the training of the model, sends its data encrypted using Paillier scheme to the server, which
performs all possible neural network computations except of non-linear activation functions. In order to resume
the execution, the encrypted weighted sums before each activation function are sent back to the client, who
will be responsible of performing the computation. The result is then re-encrypted and sent again to the server.
The authors of [52], on the basis of conducted experiments, considered the training as stable, and without
accuracy loss. Moreover, the solution achieved a speed-up of 14 to 35 times in computation speed compared to
CryptoNet.  However,  computation and communication overheads on the client side need to be evaluated,
especially for deeper models as the communication between client and server is required in order to locally
compute each activation function, which can be costly.



b.2) Server-assisted individual PP model learning

Table 5. Reviewed solutions for PP Server-assisted Individual Model Learning

Reference
Target task

Key concept
Main techniques & technologies

Adversary & Experimentation

Dong et al. (2017) [8]
Model provider to train a NN for

user

 Model splitting
- 1st layer at local-side
- Dropping connections and activation outputs 
(Hadamard product)
- Dropout and Dropconnect

- MNIST, CIFAR10 (more challenging) datasets

- DNN and CNN models

Li et al. (2017) [31]
DNN model training based on cloud

 Model splitting
- Local feature extractor
- Channel pruning and selection

- Worst-case evaluation : attackers have representations, 
labels and original data but not the transformation 
induced by the FEN
- CIFAR-10/100

- VGG16 pre-trained on Imagenet dataset (CNN)

Yu e al. (2019) [59]
Train deep learning models on cloud

 Model splitting
- Step-wise activation functions

- Even in case weights are compromised by the adversary
- MNIST, CIFAR-10 datasets

- CNN (MobileNetV2)  

Servia-Rodriguez et al. (2017) [32]
Train a personalized model built

from a shared model learned from a
relatively small set of others parties

 Shared model
- Tuning shared model with personal data - Start 
from the weights and bias of the shared model
- Differential privacy for training shared model - 
Optional

- WISDM / Activity recognition (accelerometer traces)

- MLP with 2 layers / 1 hidden layer 

Comparison : Shared model : trained using (N − 1) 

subjects data & tested using remaining subject data / 

Local : trained and tested using 1 subject data

Dong et al. [8] proposed a technique where the model layers are split among the client’s local device and the
server. The  first layer of the model is migrated to the local device where its activation function is applied
locally. During the feed-forward stage, a method for dropping activation output encrypts input data and make
the output of invertible activation functions non-invertible. The method randomly sets some activation outputs
to  zero  using  hadamard  product  between  activation  function  outputs  and  a binary  vector.  During  back-
propagation stage, dropout and dropconnect methods are used in order to prevent over-fitting. Non-invertible
functions were discussed and a mathematical proof of possible encryption was presented. The presented results
showed that the input data can be encrypted by only dropping a few activation outputs without leading to
noticeable degradation of performance, noting that the same result can also be achieved by adding small noise
values to few activation outputs. 

Similarly, Li et al. [31] used the concept of model splitting, but with a more advanced local part compared
to [8]. The local NN represents the feature extractor network (FEN), and the cloud NN targets the learning
task based on locally extracted intermediate representations. The solution focused on the FEN topology, which
is determined by the three factors, number of layers, depth of output channels, and subset of channels selected
as the output. The FEN is selected from a pre-trained NN pool. The number of input and output layers is
determined using pre-characterization flow, which considers local and cloud constraints, i.e., performance and
storage  profile  of  local  platform,  and  cloud-based  privacy  characterization.  The  selection  of  FEN output
channels  is  subsequently  conducted  using  supervised  pruning  of  output  channels  with  the  worst  utility.
Moreover,  in  order  to  protect  anonymity of  the FEN,  pre-trained NN pool  can be  enlarged and channel
selection applied on both intermediate and output channels, which make it harder to guess how FEN is derived
and  which  channels  form  it.  Good  accuracy  could  be  achieved  through  evaluation  using  useful  features
embedded  in  the  released  representations.  Privacy  was  evaluated  in  terms  of  distance  between  the
reconstructed and original images. The authors described how selecting the local NN topology allows to protect
privacy through controlling the specific features to release. Moreover, even if the pre-trained NN is known, it
still remains very hard to determine the number of FEN layers an channels. Besides, it was noted that the
accuracy/privacy trade-off can be controlled by the number of FEN layers, and the output channel depth and
selection. However, Sharma et al. [36] reported that intermediate representations are still identifiable visually.

A recent solution based on model splitting is proposed by Yu et al. [59]. At the local part comprising the
first layer, the private data is processed into an irreversible transformed data (called metadata). On their basis,
the cloud part, comprising the rest of the neural network layers, continues model’s training. In order to make
the metadata irreversible, the authors described how to modify the activation function at the local side to be
step-wise  by dividing the input  domain into intervals.  Experimental  evaluation of [59]  showed a trade-off
between accuracy and privacy, which is controlled by interval value. In fact, as the interval value decreases,
reversed inputs become more unrecognizable, which increases privacy but decreases accuracy. However, the



solution  could  achieve  good  accuracy  while  creating  considerable  difficulties  to  recover  original  data.
Consequently, proper interval parameter value could be investigated to be set according to the target settings
requirements.

From a reverse perspective, Servia-Rodriguez et al. [32] proposed to start from a model learned and shared
by the cloud, to produce a local personal model through fine tuning. The weights of the shared cloud model are
initialized to random small values, with bias set to zero, and the training is done using sets of voluntarily users
data. Differential privacy can also be optionally used to ensure confidentiality of such data. The shared model
once distributed to a user, can be use it directly, or locally tuned (i.e. re-trained) with private user data in
order to obtain a personalized model.  Evaluation showed that fine-tuned models could perform with higher
accuracy than comparison models, but if enough local samples are available. In fact, it was noted that during
local retraining, performance slightly drops while the model is adapting to the new scenario, but with more
local samples, the accuracy exceeds the one obtained with the shared model. Besides, the solution was shown as
robust against poisoning attacks in both dumb and smart scenarios, whereas privacy is guaranteed for non
compromised devices since personal data and personal model never leave the devices.

3.3 Discussion and learned lessons

We present a summary table of comparison (Table 6) of the privacy-preserving-learning techniques that are
reviewed in this section, then we discuss them, and identify a number of learned lessons and insights with
respect to the key concepts.

Table 6. Comparison of reviewed PP Model learning solutions

IND : Individual training 
COL : Collaborative training 
SUC : Training by successive participants 
+ : Alternative use of the technique

SE: Exclusively on external server(s) 
SC: On both client and server(s)

TR : Transformation* 
EN : Encryption 
PS : Partial sharing 
MC : Multi-party computation 
MS : Model splitting
SM : Shared model 
IO : Irreversible layer output** 
op : Optional technique

TD: Training data
LG: Local trained model gradients
LW: Local trained model weights
LO: Final output of the model local part

CBC : Communication required between clients
ECS : Extra communications*** required between clients and server(s)
LTI : After each iteration**** of local model training
STI : After each iteration of server-based model training
AFI : At each activation function computation of each training iteration
LSI : After model layer separation (last local layer) of each training iteration 

* Including differential privacy, randomization, mixup, ...etc. It can be applied on input data, model parameters, ...etc.
** Including dropping connections, step-wise activation functions, ...etc.
*** Apart from initialization, input, and end of training
**** Can be by sample or mini-batch. If the entire dataset is used at once, there will be no iteration

* Indicates the main exposed information to be prevented from leaking information related to training data

Reference
Clients

collaboration

Training
location

Main privacy-enabling techniques Information
protected*

Additional
server(s)

CBC ECS

SE SC TR EN PS MC MS SM IO

Lyu et al. (2017) [20] COL, +IND · · TD

Li et al. (2017) [23] COL, +IND · · · TD · ·

Shorki et al. (2015) [3] COL · · · LG · ·

Liu et al. (2016) [22] COL · · LG ·
Phong et al. (2017/18)

[21, 26, 27]
COL · · LG ·

Zhang et al. (2017) [28] COL · · · · LG ·

Hao et al. (2019) [57] COL · · · LG ·

Phong et al. (2018) [58] COL · op · op LW · ·

Bonawitz et al. (2017) [29] COL · · · LG · ·

Zhao et al. (2018) [56] COL · · · LW ·

Basic scheme

If no server - LTI LTI

LTI

LTI

LTI

Adv. scheme

LTIIf no server - LTI

LTI

LTI

LTI

aderhab
Highlight
why is it highlighted in yellow?



Hartmann et al. (2019) [55] COL · · LG ·

Fu et al. (2019) [54] COL · · LW ·

Bu et al. (2015) [2] IND · · TD ·

Zhang et al. (2016) [30] IND · · TD ·

Zhang et al. (2018) [52] IND, +SUC · · TD ·

Dong et al. (2017) [8] IND, +SUC · · · LO ·

Li et al. (2017) [31] IND, +SUC · · LO ·

Yu e al. (2019) [59] IND · · · LO ·
Servia-Rodriguez et al.

(2017) [32]
IND · op · No information

exposed

Six typical key concepts are used for privacy-preserving learning of a deep model, namely: shared model,
multi-party computation, transformation, partial sharing, model splitting, and encryption.
Some researchers pointed out that using encryption concept in the training stage prevents data scientists from
manually tuning the model, inspecting data and trained models for potential corrections of mislabeled items,
and adding features [25]. Nevertheless, if manual tweaking is not considered and encryption is adopted, two
main techniques  can be used namely,  Homomorphic  encryption and Yao’s garbled circuit.  However,  some
observations need to be considered:

• Yao’s garbled circuit technique might not be the best choice or at least might need more investigation.
In fact, it was reported in [9] that Yao’s garbled circuit is not suitable for model training because of
the large cost of nonlinear activation functions, and its deployment in collaborative environment which
is not easy.

• The  choice  of  activation  function  with  appropriate  polynomial  approximation  when  opting  for
homomorphic  encryption  might  still  need more investigation.  In fact,  it  is  observed that different
results were obtained using different functions and approximations methods. In [23], sigmoid function
was approximated using Taylor series, while in [2], Maclaulin formula is used for approximation, which
leads to accuracy loss.  In this context, [30] proposed adding more Taylor series terms in order to
reduce accuracy loss implied by polynomial approximation. However, this also leads to increasing the
encryption  scheme  levels  and  degrading  the  privacy-preservation  back-propagation  algorithm
performance.

• Still  in  case  of  homomorphic  encryption,  both  [2]  and  [30]  adopt  a  transmission  method
(download/upload) of updated weights to parties for decryption and re-encryption after each iteration
[2,  30].  This  allows  to  avoid  too  big  multiplicative  depth,  but,  it  also  incurs  computation  and
communication overhead [2, 5].

• Hao et al. [57] reported that symmetric additively homomorphic encryption has excellent efficiency and
could  address  computational  and  communication  overhead  faced  by  other  public-key  encryption
schemes.

The partial-sharing concept has a positive impact on privacy (indirect leakage) and network traffic load, and it
shows good results in terms of accuracy [3, 22]. However, because data is not fully utilized in partial sharing,
global/local optimal might be more difficult to achieve [23]. Consequently, it could be interesting to investigate
more this concept with differential privacy and other relevant techniques like homomorphic encryption. An
appropriate trade-off involving accuracy and privacy should accordingly be explored, taking into consideration
potential controlling parameters, like the fraction of sharing and the number of participants, which have a
positive impact on accuracy [3].

As for model splitting concept, dropping few activation outputs at local side can protect input data without
noticeable  performance  decrease  [8].  Besides,  using  step-wise  activation functions  [59]  and exploring other
similar  methods  in order  to  make  data fed  into  cloud side  irreversible,  is  an  interesting  path  to  further
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investigate.

The approach described in [29] based on Secure Multi-party Computation concept using data masking could
fairly deal  with common dropouts.  However,  efficiency in terms of server running time needs to be more
investigated as it is significantly impacted by the fraction of dropouts [29].

For data transformation concept, it is noted that applying Repeated Gompertz (RG) nonlinear perturbation
function on training data allows to mitigate Maximum A Posteriori (MAP) estimation attacks [20]. Besides,
mixup data augmentation technique is interesting to investigate. Mixup could : be used for regularization, help
enhancing  models  against  adversarial  samples,  help  models  to  better  generalize,  as  well  as  enhance  the
protection of models against inversion attacks [54].

In addition, the following general observations can also be considered:

• Round-robin parameter exchange strategy achieves better accuracy than asynchronous strategy when
aggregating local trainings in collaborative model learning. However, the speed of learning in this case
is  determined  by  the  slowest  participant,  which  is  suitable  in  case  of  participants  with  similar
computation capacity [3].

• ρ-visibility, enforcing a generalized abstraction of secure aggregation (of local trainings), can be used as
another privacy protection layer in the post-processing stage of Local Differential Privacy (LDP). It is
also used to mitigate the negative impact of LDP on utility. However, although larger ρ implies higher
but not prohibitive training cost, it is advised for low-resource configuration (like limited bandwidth)
and large-scale training tasks to consider a trade-off between training efficiency and model accuracy
[28].

• Accuracy score calculation of individual trainers could be an interesting approach to explore in order to
increase the global training efficiency. In [56], the approach was proposed to reduce the impact of
participants with low-quality data on the training process.

• Adaptive redistribution of noise is an interesting technique for accuracy improvement. In [33], better
accuracies were achieved in comparison to [19] for both small and large privacy budgets. This was
achieved by using noise redistribution on the basis of features relevance to the model output.

• In [58], local models weights are shared instead of gradients for local models aggregation. The authors
argued that this method is more robust against information leakage, in the sense that inverting input
data from the weights can be considered as a problem of solving a system of nonlinear equations, with
a smaller number of equations than variables. However, the authors pointed out that some information
might still be leaked.

• Given the importance of the accuracy, a trade-off between accuracy/privacy could make a privacy-
preserving model less attractive. Therefore,  exploring an efficiency/privacy trade-off can be a more
interesting approach. In fact, such a trade-off, besides being without accuracy loss, can be solved by
involving more processing units and dedicated programming code, as it is reported in [26].

• Reconstruction  rate  measure  and  its  utility  might  need  to  be  more  investigated  with  respect  to
accuracy. In fact, it was reported in [22] that reconstruction rate could reflect some specific properties
such as how performance is affected by decentralized architecture and parameter selection.

• LSTM-CNN outperforms LSTM, DBN and CNN models in [20] and might be a potential adapted deep
model  for health monitoring as experimental  results  indicated that it  was useful  in distinguishing
activities performed by multiple participants.

• Low overhead of runtime and communication, and tolerance to a large number of failing devices are
among the concerns to be considered for the support of mobile applications [29].

• Dropout and Dropconnect methods are interesting to be used for preventing over-fitting during back-
propagation stage [8].

• Transmission  energy  can  be  saved  by  projecting  high-dimensional  data  to  lower  dimension
(compressing data) using row-orthogonal random projection (RP) matrix on input data, knowing that
RP does not have any impact on accuracy degradation [20].

• It is interesting to establish TLS/SSL secure channel for communication between user and external



infrastructure in order to protect data integrity [21].

Lastly,  in  order  to inherit  the advantages  of  different  key  concepts  such as  strong privacy guarantees  of
encryption  or  transmission  energy  saving  through  RP  data  compression,  investigating  the  possibility  of
combining multiple concepts and their underlying technologies might come with interesting ideas. However,
given the impact and drawbacks of different concepts and technologies,  such an investigation should take
carefully  into  consideration  the  performance  outcomes  of  any  potential  promising  solution  in  terms  of
effectiveness,  efficiency  and  privacy  in  order  to  keep  an  adequate  trade-off matching  target  applications
requirements.  Case-based combination where one or another  technology is used according to the available
resources or network reliability for instance might also be interesting, like exploring the extent of effectiveness
of  switching  between  encryption  and  partial  sharing  concepts  in  case  of  varying  network  reliability  and
communication costs.

4. Privacy-preserving (PP) analysis (inference)

Similarly to the model training, involving powerful infrastructures for deep learning analysis phase comes at
the expense  of  privacy,  especially  for  users  private  data to  be processed.  In this  section,  we present  the
classification that is related to the privacy-preserving inference. Then, we give a summary description of the
relevant techniques, and finally we discuss them and derive some learned lessons. 

4.1 Classification

PP analysis can be either “server-based” where inference process is performed exclusively on an external
infrastructure  like  a  cloud  or  remote  server,  or  “server-assisted”  where  inference  process  is  performed
cooperatively between the user and infrastructure (see Figure 5). In both cases, mechanisms used for enabling
privacy-preserving such as encryption can involve one or both sides depending on the technique.

As depicted below, reviewed techniques are based on different key concepts mainly encryption, multi-party
computation, transformation, and model splitting, with which a number of technologies are being employed, as
will be described later.

Fig. 5. Taxonomy of PP Analysis techniques

4.2 Solutions review

Based on the classification presented in 4.1, we describe in this section the reviewed solutions (see Tables 8
and 9) along with a summary of evaluation results with respect  to the performance metrics (see the below
Table 7).
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Table 7. Main measures and properties to evaluate PP analysis techniques

Performance metrics Measures and properties

Effectiveness Accuracy

Efficiency Execution time, Communication/Computational overhead, Number of predictions per 
hour, Number of non-linear layers supported, Independence from dataset, ...

Privacy (Direct leakage) Protection of clients data, (Indirect leakage) Protection of predictions, 
Protection against various attacks involving different parties, ...

 a) Server-based PP analysis

Table 8. Reviewed solutions for PP Server-based Analysis

Reference
Target task

Key concept
Main technologies

Adversary & Experimentation

Xie et al. (2014) [37], Gilad-Bachrach
et al. (2016) [25]

Applying cloud-based NN

 Encryption - Homomorphic
- LHE (Leveled homomorphic encryption, a weaker
but faster variant of HE) - YASHE’ scheme
- Polynomial approximation of activation function

- Cloud model trained on unencrypted data
- MNIST dataset
- DNN model - Trained network has 9 layers, and the 
simplified version (rho)-for prediction) has 5 layers

Baryalai et al. (2016) [17]
Neural network based classification

 Encryption - Homomorphic
- Homomorphic encrypting - Paillier cryptosystem
- Non-colluding dual clouds
- Key exchange based on Diffie and Hellman
- Random salt

- Honest-but-curious (passive) adversaries
- Clouds non-colluding

Chabanne et al. (2017) [6]
Classification on cloud with focus on
CNN model and depth greater than 2

 Encryption - Homomorphic
- Fully homomorphic encryption -  BGV scheme 
Low degree polynomial approximation of 
activation function
- Batch normalization principle

- MNIST dataset
- Model with non-linear layers > 2, (Training) DNN with 
6 activation layers
Comparison : Cryptonets [25]

Hesamifard et al. (2017) [5, 38]
Classification on cloud with focus on

CNN model

 Encryption - Homomorphic
- Homomorphic encryption - leveled HE (rho)-LHE)
- Polynomial approximation of activation function :
approach based on the derivative of ReLU, Sigmoid
and Tanh, over a symmetric interval

- MNIST, CIFAR-10, UC Irvine (Crab, Fertility, and 
Climate Model) datasets
- CNN, DNN models
- Comparison : Over plain text > [25], [6] / Over 
encrypted data > [25], [6], [12], [40]

Zhu et al. (2018) [64]
Machine Learning as a Service

(rho)-MLaaS)

 Encryption - Homomorphic
- Paillier homomorphic cryptosystem
- Interactive protocol between client and server 
for ReLU computation

- Model trained in plain-text
- MNIST dataset
- LeNet-5 (CNN) model
Comparison : Model in plain-text, [25]

Vizitiu et al. (2019) [65]
Process client data on an external
deep learning-based computing

service

 Encryption - Homomorphic
- Fully Homomorphic Encryption - MORE scheme 

- MNIST, Coronary angiographies datasets
- CNN model
Comparison : Unencrypted version

Rouhani et al. (2017) [12]
Analyze data of distributed clients by

a cloud 

 Encryption – Garbled circuits
- Garbled circuits protocol – Yao’s GC
- Data and network preprocessing techniques – 
Data projection and DL network distillation

- Honest-but-curious adversary model
- (Visual) MNIST, (Audio) Speech of speakers, (Activities)
Smart-sensing datasets
- (Visual) CNN, Classical feed-forward NN, (Audio & 
Activites) fully-connected DNN models
Comparison : [25]

Huang et al. (2018) [62]
Edge computing-based CNN feature

extraction for mobile sensing

 Secure Multi-party Computation
- Additive secret-sharing encryption
- Edge computing - non-colluding dual edge 
servers
- Secure communication channels

- Honest-but-curious model
- Edge servers independent and non-colluding
- Third party honest and can be trusted
- CNN model
Comparison : [25], MiniONN, Chameleon

Ma et al. (2019) [63]
Online Neural-network-based

prediction

 Secure Multi-party Computation
- Secure two-party comparison
- Additively homomorphic encryption - ElGamal
- Non-colluding dual servers
- Low degree polynomial approximation of 
activation function

- Honest-but-curious model
- Cloud servers non-colluding

Leroux et al. (2018) [60]
Offloading deep neural networks to

the cloud

 Transformation
- Generative Adversarial Networks (GANs)
- Neural-network-based obfuscation

- CIFAR-10 dataset
- ResNets, GoogleNet, VGG (Classifier models) / 
MobileNet-like (Obfuscator model)

Raval et al. (2018) [61]
Offloading sensors personal data

through mobile applications to the
cloud for analysis

 Transformation
- Generative Adversarial Networks (GANs)
- Neural-network-based obfuscation

- Honest-but-curious adversary model
- Handwriting Recognition (case study), KTH, HAR, 
Opportunity, StateFarm, CIFAR-10
- CNN, DNN



Comparison : (Images) obfuscation vs blur, mosaic, ad 
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Gilad-Bachrach et al. [25] and Xie et al. [37] proposed a technique based on YASHE LHE scheme. The user
sends its data encrypted to the cloud, which runs the model and return an encrypted prediction. To make the
network compatible with homomorphic encryption, max-pooling is replaced by scaled-mean pool function, and
activation functions are approximated with the lowest-degree  non-linear  polynomial  function,  which is the
square  function.  The  authors  noted  these  modifications  should  be  preferably  considered  during  training,
although  it  is  performed  over  plain-text  data.  The  solution  could  achieve  99%  of  accuracy  and  59000
predictions per hour on a single PC, without the need to keep constant presence of users during the model
running. However, LHE if producing too much noise may decrease accuracy [12, 17], while for models with
more than two non-linear  layers,  it  becomes very low [6].  The communication cost  is also relatively high
compared to [5]. Moreover, because of the high and constant computational cost overhead, practicability in
resource-limited settings like smartphones is bounded, and the technique is better suited for large batches
processing  [12].  Besides,  the  authors  suggested  that  throughput  and  latency  might  be  improved  through
accelerating  computation  using  GPU (Graphical  Processing  Units)  and FPGA (Field  Programmable  Gate
Array), while finding faster homomorphic computation schemes with smaller parameters and more efficient
encoding may enhance the computational overhead.

Baryalai et al. [17], in order to address heavy computation overhead of HE, introduced non-colluding dual
cloud model, where two clouds A and B collaborate to produce the classification results in a secure way. The
cloud A runs the neural network over private data encrypted by the client, but delegates activation functions
computations to the cloud B as it holds a shared key with the client. The process is repeated until the last
layer. The client A then protects the last output using random salt from cloud B, which applies softmax
function and send the encrypted final result to the client. A theoretical scenarios-based security and correctness
analysis was presented, explaining how the technique can successfully defend against possible attacks. The
studied scenarios comprise attacks : on communication between client and cloud A to obtain input data, on
cloud A, on cloud B, on communication between cloud A and cloud B (man in the middle) to intercept data
exchanged between them, and on communication between cloud B and client to intercept final result.

Chabanne et al. [6] proposed a solution based on BGV FHE scheme for classification task over CNN model.
The key technical innovation is the combination of polynomial approximation with batch normalization. For
the training phase,  a  batch normalization layer  is  added before  each ReLU layer  avoiding high accuracy
degradation, and max-pooling is replaced by average-pooling which is more FHE-friendly, and has a small
impact on accuracy. After training and before the model is ready for classification, ReLU function is replaced
with low-degree (2) polynomial approximation, and a batch normalization layer is added before each ReLU
layer. Once the model is ready, the user simply needs to encrypt its private data and send it to the model,
which performs requested analysis. Evaluation results showed that the solution can achieve low running time
with close performance as without privacy. Compared to [25], the solution is furthermore scalable, but for
deeper CNN models,  a high degradation of the accuracy due to the polynomial approximation of ReLU is
noted. For this, the authors proposed to build a new polynomial approximation learned from a distribution
closer to the output distribution of the batch normalization, which allowed to achieve 99.30% accuracy.

Hesamifard et al. [5, 38], focused on CNN model, and used LHE scheme instead of FHE for efficiency and
practicality of computations. The model is simply run on data encrypted by the user. The authors investigated
methods for approximating common activation functions for CNN and the trade-off between polynomial degree
and  model  performance.  A  method  based  on  the  derivative  of  ReLU  function  was  proposed,  and
approximations of sigmoid and Tanh over a symmetric interval were studied. In a next work [38], the authors
addressed the problem of HE growing noise during computations, and proposed an approach based on noise
level threshold and the collaboration between the server and the client. Evaluation over plain-text showed that
the achieved accuracy outperforms [6] and [25], and that the behavior of ReLU approximation is robust against
structure changes. Using encryption, the achieved accuracy outperforms comparison models over MNIST, and
is very close to best non-private version, while over CIFAR-10 dataset, the accuracy is close to the version with
original  activation function.  As for  efficiency,  the solution  is  much  faster  than [25],  and can make more
predictions per hour, with relatively small communication cost than [12] and [25]. Moreover, the solution is
independent from the dataset, and the number of communications and batch size are independent. However,
some large datasets like ImageNet require very long time for training and usually need GPU for efficient
implementation which was left by authors for future work.



A recent  homomorphic  encryption-based solution is  proposed by Zhu et al.  [64].  The user  encrypts  its
private data and sends it to the server for prediction. Linear, convolutional, and pooling transformations are
improved on the basis of Paillier algorithm. As for the activation function, the authors choose ReLU, and
proposed, instead of using polynomial approximation, an interactive protocol between the client and the server
for  its  computation.  The  user  receives  the  input  data of  ReLU,  decrypts  it  and sends  to  the  server  the
positivity or negativity of this input, so that the server can compute the output. Evaluation results showed
that  the  solution  could  achieve  accuracy  close  to  model  in  plain-text,  and  similar  to  Cryptonet.  As  for
efficiency, the solution provides a much lower time cost than Cryptonet. However, communication overhead
needs to be evaluated especially that an interaction between the client and the server is required for every
ReLU computation.

Vizitiu et al. [65] proposed a recent solution based on FHE encryption. The standard steps are followed, i.e.,
the input data is encrypted and then sent to the server for prediction. The approach uses a variant of the
MORE scheme that can directly work on floating point values,  this allows to practically perform privacy-
preserving computations, without prior decryption or the introduction of polynomial approximations. However,
the MORE encryption variant was criticized for its weaker security. Evaluation was conducted on a digit
recognition  problem  (MNIST  dataset)  and  a  medical  application.  Results  showed  that  the  solution,  in
comparison  to the unencrypted  version,  could achieve almost  similar accuracy  over  MNIST and identical
accuracy over the medical dataset. As for efficiency, it was noted that the encrypted solution increases runtime
in comparison to unencrypted version although it is still faster than classic homomorphic encryption schemes.
As for privacy, the authors pointed out that although the MORE scheme offers a certain degree of privacy, it is
however vulnerable to chosen plaintext attacks.

Rouhani et al. [12], proposed a different technique based on Yao’s Garbled Circuit (GC) protocol. The client
garbles the boolean circuit of the DL architecture and sends computed garbled tables and input wire label to
the cloud. Both client and cloud engage in an oblivious transfer protocol to obliviously transfer the wire labels
associated with cloud inputs. The cloud evaluates the garbled circuit and computes encrypted data inference.
Encrypted result is sent to the client, which decrypts it using the garbled keys. Besides, transforming input
data to a lower-dimensional  subspaces  ensemble,  and DL network distillation are two novel  low-overhead
preprocessing techniques proposed for optimizing computational and communication overhead of the GC, and
reduce the overall runtime. In case of constraint embedded settings like wearables devices, secure mechanisms
based on secret sharing to outsource GC protocol to a third party are proposed. Evaluation showed that data
and network preprocessing allows to reduce computation and processing times per sample, with no accuracy
drop. In comparison to [25], the overall execution time is improved even without preprocessing steps. However,
the  communication  cost  is  relatively  huge  (722GB  vs  336.7MB  in  [5]).  As  for  privacy,  there  is  no
utility/privacy trade-off, and GC protocol is proven to be secure in honest-but-curious model. The privacy
outside GC was demonstrated via formal proof. Besides, the solution is considered ideal for scenarios with small
batches in order to have inference with minimal delay, while it is also well-suited to scenarios where data is
collected over time and need to be dynamically analyzed without having to queue samples as batches.

Another interesting concept for privacy-preserving inference is the Secure Multi-party Computation (SMC),
an interactive paradigm allowing multiple parties to collaboratively compute a function over their input data
while keeping them private [62].

In [62], Huang et al. proposed a privacy-preserving CNN feature extractor. The user encrypts input data by
randomly splitting it into two secret shares. Each edge server obtains the trained model and one of the data
secret shares. A trusted third party generates random values for secure computations, and the edge servers run
the CNN feature extractor through secure interaction protocols, to output the encrypted features and send
them to the user.  A series  of  secure protocols are proposed for the required operations to run the model
collaboratively between the edge servers, including addition, multiplication, ...etc. On their basis, CNN layers
adapted  to  secure  computation  (called  building  blocks)  are  designed  to  compose  the  secure  CNN feature
extractor. The designed building blocks can be used to support a full privacy-preserving inference. Noting that
during interactive computations, biases are considered in only one of the edge servers, and set to 0 in the other.
Theoretical analysis and empirical experiments of the solution were conducted. Results showed that the output
can be recovered correctly as it preserves the additive property, and that the solution can be used with any
CNN architecture without accuracy loss, as no approximation is required. Moreover, the client-side latency and
network overhead are low, and the solution is secure in the honest-but-curious model. 

Ma et al. [63] proposed a recent solution using non-colluding dual servers. Unlike [62], in the solution [63]



each server  holds  a share of the neural  network,  split  by the network owner,  including weights  and bias
matrices. The client requesting an inference encrypts its data and divides it into two secret shares distributed
to  the  two  non-colluding  servers.  Because  of  the  homomorphic  encryption,  activation  functions  are
approximated into piece-wise continuous low-degree polynomials. The servers interactively run the model and
output the encrypted predictions,  which are decrypted by the client to compute the final  prediction.  The
authors presented a theoretical analysis showing that the solution satisfies model and data privacy. As for
efficiency,  the  authors’  analysis  showed  that  their  solution  outperforms  comparison  solutions  in  terms  of
communication and computation complexity.

A last interesting concept for server-based deep learning analysis is data transformation, particularly data
obfuscation techniques.

Leroux et al. [60] presented a solution in order to safely offload deep computations to the cloud on private
local data. The approach uses Generative Adversarial Networks (GANs) but for the opposite of its original
purpose. To that end, two auto-encoder-like networks, an obfuscator and a deobfuscator, are used along with
the  trained  model.  The  obfuscator  transforms  the  input  to  an  obfuscated  version  to  be  fed  into  the
classification  network.  The  deobfuscator  tries  to  recover  the  original  input  using  the  obfuscated  version.
Training the two new networks at the same time aims to release an obfuscator that produces a transformed
image recognizable by the classifier but non-recoverable by the deobfuscator. As the aim is to offload costly
computations to the cloud, the obfuscation network need to be as small as possible. In this context, MobileNet
inspired  architecture  was  used.  Experimental  results  showed  a  ~5%  accuracy  loss  between  original  and
obfuscated classification, as well as an overhead due to the obfuscation network. As for privacy, tests showed
that it was impossible to reconstruct original images after obfuscation. However, as back-propagation through
the classification network is required, the network parameters should be available. To address this issue, the
authors tried to train the obfuscator on one classifier and apply it on another. Results showed a large accuracy
loss but not to a random level, which suggests more investigation. Besides, the classification network should be
assumed static, which might be a problem in case of constant training like publicly available models [70].
However, the obfuscator could recover quickly if retrained with the latest classifier [70].

Raval et al. [61] recently proposed an obfuscation-based solution to prevent disclosing private information
when offloading sensors personal data through mobile applications to the cloud. Similarly to [60], two networks
are  trained  competitively,  i.e.,  one  to  obfuscate  input  data  against  a  second  (the  attacker)  to  undo  the
obfuscation. Unlike [60], the approach in [61] allows to specify the utility requirements through a parameter λ
used in the privacy loss computation. Moreover, so that the obfuscation covers protection against a class of
attackers like DNN, SVM, ...etc., the maximum privacy loss is minimized across all the attackers of this target
class. The authors proposed to further extend the computation of the maximum privacy loss across all the
private  attributes  to  minimize  the  maximum  expected  leakage  across  all  the  private  attributes.
Experimentation was conducted on an android app for  handwriting recognition,  as well  as on benchmark
datasets.  Results showed that the solution could reduce the risk of  private information disclosure  with a
maximum accuracy of inferring private information less than 17%, and an accuracy with a maximum drop of
17%.  However,  for  multiple  sensors  datasets  (multimodal  data),  more  investigation  is  required.  As  for
efficiency, the obfuscation introduces a time overhead proportional to the input size, considered by the authors
as acceptable for real-time processing.

 b) Server-assisted PP analysis

Table 9. Reviewed solutions for PP Server-assisted Analysis

Reference
Target task

Key concept
Main technologies

Adversary & Experimentation

Osia et al. (2017/2018/2019) [39, 67, 68]
Inference task completed collaboratively
between local device and cloud system

(rho)-Hybrid architecture)

 Model splitting
- DNN model splitting - 1st layer local
- Siamese architecture
- Dimensionality reduction - Principle Component 
Analysis (rho)-PCA) and auto-encoder features 
- Multi-dimensional symmetric Gaussian noise

- IMDB and Labeled Face in the Wild (LFW) datasets
- CNN - two common deep models : VGG-16 and 
VGG-S_RGB based on VGG-S architecture

Dong et al. (2017) [8]
Model provider to serve a user

(rho)-inference)

 Model splitting
- DNN model splitting
- Dropping activation outputs - Hadamard product 
and Dropping connections
- Dropout and Dropconnect

- MNIST, CIFAR10 (more challenging) datasets
- DNN, CNN models



Chi et al. (2018) [66, 66’]
Inference phase of deep learning on a

bipartite topology

 Model splitting
- DNN model splitting (rho)-Bipartite)
- Interactive adversarial deep networks

- Adversary has access to complete remote 
computing context
- MNIST, LFW, CIFAR-10 datasets
- Feed-forward NN (MNIST) / CNN (LFW, CIFAR-10)

Yu et al. (2019) [59]
Inference over a cloud-based deep

learning model

 Model splitting
- DNN model splitting
- Step-wise activation functions

- Even in case weights are compromised by the 
adversary
- MNIST, CIFAR-10 datasets
- CNN model - MobileNetV2

Osia et al. [39, 67, 68] described a hybrid architecture for inference based on model splitting concept. The
layers are split between local device and the cloud, and the process into feature extraction, performed by the local
primary layers, and analysis, performed by secondary layers on the cloud. At training stage, fine tuning using
Siamese architecture is performed in order to specialize the model for primary information and make sensitive
information unpredictable. At inference stage, the local feature extractor outputs rich feature vector, on which
dimensionality reduction is performed. Adding random multidimensional noise to features is also possible in order
to increase privacy. The cloud analyzer takes the resulting features as input and performs analysis. Evaluation of
the solution was conducted on image processing where gender and emotion are the primary tasks, and face
recognition is the privacy one. Results showed that high accuracy could be achieved for primary tasks while
decreasing potential sensitive inference. Moreover, using Siamese fine-tuning could make the trade-off between
privacy and accuracy significantly better, while dimensionality reduction allows to improve privacy and highly
reduces  communication  overhead,  without  accuracy  loss.  Privacy  analysis  of  the  feature  extractor  was
performed using the three methods transfer learning, deep visualization and probabilistic modeling.

On the basis of the same concept, Dong et al. [8] proposed a technique where the first layer of the model
including its activation function are migrated and applied on the local device. For the inference, the feed-
forward propagation stage is performed as described in Section 3.2.b.2. Regarding evaluation, as presented in
Section 3.2.b.2,  98.87% accuracy was achieved for non-invertible functions.  More rectifying layers leads to
better encryption but it could imply higher local computation. For invertible functions, the input data can be
encrypted without noticeable degradation of performance, by only dropping a few activation outputs or adding
small noise values to few activation outputs.

Another  model  splitting  or  bipartite  based  solution  is  proposed  by  Chi  et  al.  [66]  using  interactive
adversarial deep networks. The idea is make local output irreversible to prevent the recovery of input data. To
that end, a defender network is introduced in order to simulate attackers. The training of the two networks is
performed concurrently, where the model takes advantage of the recovery performance of the defender as a side
information in order to optimize its parameters for a better privacy partitioning efficacy. The authors suggested
to extend the defender to a defender suite in order to address different attacker models and provide more
robust privacy. Besides, as only a portion of the model is locally-based, which is less-resource requiring, the
solution can be deployed on mobiles devices and IoT devices.  Experimentation showed that the approach
hardens inputs recovery, as well as learning sensitive attributes from recovered inputs like emotion from face
recognition. Besides, adding more defenders may allow to harden inputs recovery task, but leads also to more
computing resources, rising therefore a trade-off. The number of local layers leads also to another trade-off
between model privacy and data privacy.

A more recent solution based on model splitting is the previously described approach proposed by Yu et al.
[59]. The first layer is migrated to the local side, where the private data is processed into an irreversible
transformed data (called metadata), which is sent to the cloud for analysis (see Section 3.2.b.2). The solution
was designed for training, and also tested on prediction.  As previously presented, evaluation results showed
that good accuracy could be achieved while creating considerable difficulties to recover original data. However,
a trade-off between accuracy and privacy, controlled by interval value of step-wise activation function,  is
noted.

4.3 Discussion and learned lessons

We present a summary table of comparison (Table 10) of  the privacy-preserving-analysis techniques that
are reviewed in this section, then we discuss them, and identify a number of learned lessons and insights with
respect to the key concepts.



Table 10. Comparison of reviewed PP analysis solutions

SE: Exclusively on external server(s) 
SC: On both client and server(s)

TR : Transformation* 
EN : Encryption 
SA : Siamese architecture
MC : Multi-party computation 
MS : Model splitting
AN : Adversarial networks
IO : Irreversible layer output** 

ID: Input data
PR: Prediction

ECS : Extra communications*** required between clients and server(s)
AFI : At each activation function computation
THN: Every time the amount of homomorphic noise reaches a defined threshold

* Including obfuscation, randomization, ...etc. It can be applied on input data, features, ...etc.
** Including dropping connections, step-wise activation functions, ...etc.
*** Apart from initialization, input, and end of training

* Indicates the information that are protected

Reference
DL’s run location Main privacy-enabling techniques Privacy* Additional

server(s)
Training phase ECS

SE SC TR EN SA MC MS AN IO ID PR

Xie et al. (2014) [37]
Gilad-Bachrach et al. (2016) [25] · · · · Preferably train after

network modifications

Baryalai et al. (2016) [17] · · · · ·

Chabanne et al. (2017) [6] · · · · Train after network
modifications

Hesamifard et al. (2017) [5, 38] · · · · Train after activation
functions approximation ·

Zhu et al. (2018) [64] · · · · ·

Vizitiu et al. (2019) [65] · · · · Train over encrypted
data

Rouhani et al. (2017) [12] · · · ·
Retrain for data pre-
processing and after

network pre-processing

Huang et al. (2018) [62] · · · · · ·

Ma et al. (2019) [63] · · · · · ·

Leroux et al. (2018) [60] · · · ·

Raval et al. (2018) [61] · · · ·
Osia et al. (2017/2018/2019) [39,

67, 68] · · · · · Fine tune the model
using Siamese

Dong et al. (2017) [8] · · · · Apply Dropconnect and
Dropout during training

Chi et al. (2018) [66, 66’] · · · ·
Train the bipartite model

concurrently with the
defender

Yu et al. (2019) [59] · · · · Train using the step-wise
approach

Four typical key concepts are used for privacy-preserving inference over a non-local deep model namely:
model splitting, multi-party computation, data transformation, and encryption. Below, we discuss the privacy-
preserving-learning techniques that are presented in this section, and we identify a number of learned lessons
and insights.

Regarding encryption concept, although Homomorphic encryption (HE) is the mostly used technique compared
to Garbled circuits (GC), the latter is also an interesting alternative to HE as it was reported to not imply
privacy/utility trade-off, nor high computational overhead. However, it might need more exploration as it was
noted in [5] that the approach based on GC and described in [12] has a relatively huge communication cost
(722GB vs 336.7MB in [5] for the same network). As for homomorphic encryption, a number of notes and
observations need to be pointed out :

• It was noted in [25] that modifications performed on the neural network in order to be compatible with
homomorphic  encryption  (like  polynomial  approximations)  should  be  preferably  taken  into
consideration in the training stage, even if the latter is run over plain-text. 

AFI

Optional

THN



• Similarly  to  PP  model  learning,  the  choice  of  activation  function  with  appropriate  polynomial
approximation might still need more investigation, as different results were obtained using different
functions and approximations methods. 

◦ In [25], the lowest-degree non-linear polynomial function, which is the square activation function
was used instead of approximating sigmoid and ReLU activation functions.

◦ In [6], polynomial approximation was combined with batch normalization to obtain a good low-
degree polynomial approximation of ReLU function. This combination seems to be interesting as it
helps limiting the need of accurate approximation to a small part of R around the point 0. Besides,
it  is  noted  that  batch  normalization  layers  were  also  added  to  the  CNN  for  training  and
classification in order to avoid high accuracy degradation between the two phases due to many
modifications into the CNN.

◦ [5]  studied polynomial approximations of Sigmoid and Tanh functions over a symmetric interval
using two different orthogonal system of polynomials, and proposed an approach based on the
derivative of ReLU function. The latter proposition seems interesting to explore as it was reported
that its behavior is robust against structure changes.

• In  [25], it was proposed that max-pooling is replaced by scaled-mean pooling  for easier computation
over encrypted data, while in [6], average-pooling, considered as more FHE-friendly and having a small
impact on accuracy, was proposed as a replacement to max-pooling.

• It  might  be interesting  to  explore  the use  of  the  approach proposed  in [38]  based  on noise  level
threshold and collaboration between server and client, in order to address the problem of HE growing
noise during computations. 

• It  was reported that feasibility of HE in resource-limited settings is bounded because of the high
computational overhead [12] (particularly in FHE [5]), and the introduced noise reducing the inference
accuracy [12, 23].

◦ As stated in [5], LHE is faster than FHE and it can be improved using Single-Instruction-Multiple-
Data (SIMD) techniques.

◦ In  [25],  it  was  suggested  in  this  context  that  more  efficient  encoding  schemes  with  smaller
parameters and faster homomorphic encryption should be sought.

• It might be interesting to investigate the non-colluding dual cloud model introduced in [17] where two
clouds  collaborate to produce the classification  results  in a secure  way in order  to address  heavy
computation overhead of HE.

• Investigating  security  improvements  of  the MORE scheme variant  might  be  interesting  as  it  can
directly  work  on  floating  point  values,  and  thus  allows  to  practically  perform  privacy-preserving
computations, without prior decryption or the introduction of polynomial approximations [65].

As for model splitting concept, dropping few activation outputs at local side can protect input data without
noticeable  performance  decrease  [8].  Besides,  using  step-wise  activation functions  [59]  and exploring other
similar  methods  in order  to  make  data fed  into  cloud side  irreversible,  is  an  interesting  path  to  further
investigate.

Besides, the following general observations can also be made :

• Data and neural network preprocessing methods introduced in [12] are interesting to be explored as
they allowed reducing computation and processing time per sample, without accuracy drop.

• Experiments  showed that  performing  dimensionality  reduction  with  Principle  Component  Analysis
(PCA)  or  auto-encoder  on  intermediate  features,  allows  to  improve  privacy  and  highly  reduce
communication overhead without reducing accuracy [39].

Lastly, the possibility of combining multiple key concepts and their underlying technologies might be worth to
be explored in order to inherit their advantages such as data and network preprocessing methods.



5. Releasing a privacy-preserving (PP) model

Sharing a trained model, either as a service (black-box) or as a model with its internals (white-box), exposes
its original training data to leakage risks. Membership inference [18] and model inversion [19] are examples of
popular attacks used in this context. In this section, we present the classification that is related to the release
of a privacy-preserving model. Then, we give a summary description of the relevant techniques, and finally we
discuss them and derive some learned lessons. 

5.1 Classification

According to the differential privacy mechanism, reviewed existing techniques for releasing a PP model can
be categorized into three key concepts namely : (a) differentially private model parameters, (b) differentially
private input data, and (c) differentially private mimic learning (see the below Figure 13).

Fig. 13. Taxonomy of Releasing a PP model techniques

5.2 Solutions review

Based on the classification presented in 5.1,  reviewed solutions  (see Tables 12, 13, and 14) are further
described below along with their main evaluation results according to the performance metrics (see the below
Table 11).

Table 11. Main measures and properties to evaluate techniques to release a PP model 

Performance metrics Measures and properties

Effectiveness Accuracy, F-measure

Efficiency Independence of privacy budget consumption to number of training epochs, 
Extendability/applicability to different deep learning models/activation functions

Privacy Privacy budget ε value, Privacy parameters (ε, δ) values, Robustness to privacy budget ) values, Robustness to privacy budget 
change, (Indirect leakage) Protection of potential sources (parameters, ...)

 a) Differentially private model parameters

In order to come up with differential private model parameters that protect original training data, two main
ways are possible, namely (i) directly perturbing model parameters [4,19], and (ii)perturbing objective functions
instead of results [24, 34], which might also be coupled with affine transformations perturbation [33, 69].



Table 12. Reviewed solutions for Releasing a PP model through differential private model parameters

Reference
Target task

Key concept
Main technologies

Adversary & Experimentation

Sei et al. (2016) [4]
Share a trained model (rho)-DNN

parameters) with other organizations

Differentially private model parameters : Direct 
perturbing model parameters
- Differential privacy - Laplace mechanism

- ADULT, Salary estimation datasets
- DNN model
Comparison : (Baseline method) adding Laplace random
variable to each of the trained model parameters

Abadi et al. (2016) [19]
Training neural networks within a

modest (rho)-“single-digit”) privacy budget

Differentially private model parameters : Direct 
perturbing model parameters
- Differential privacy – Normal (rho)-Gaussian) 
distribution noise

- MNIST, CIFAR-10 datasets
- DNN model
Comparison : Non-private baseline model designed and 
trained by the authors

Phan et al. (2016) [24]
Create a privacy-preserving deep

auto-encoder with focus on binomial
classification and prediction tasks

Differentially private model parameters : 
perturbing objective functions
- Polynomial approximation - Taylor expansion
- Differential privacy - Functional mechanism

- Real health social network, Human behavior prediction
datasets
- Deep Auto-Encoder model
Comparison : Models non enforcing ε-differential 
privacy , methods for regression analysis under ε-
differential privacy

Phan et al. (2017) [34]
Release a CDBN model under privacy
protection - Technique to be applied
on typical energy-based deep neural

networks

Differentially private model parameters : 
perturbing objective functions
- Differential privacy – Functional mechanism 
- Polynomial approximation – Chebyshev 
expansion, Taylor expansion

- YesiWell, MNIST datasets
- CDBN model
Comparison : Prediction: DL models for non enforcing ε-
differential privacy, [24] / Classification : state-of-the-art
polynomial approximation approaches / [19]

Phan et al. (2017) [33]
Release a privacy-preserving deep
neural network model - Should be
applicable in different deep neural
networks with different activation

functions

Differentially private model parameters : 
perturbing objective functions and affine 
transformations
- Differential privacy – Laplace mechanism 
adapted to feature relevance
- Layer-wise Relevance Propagation
- Polynomial approximation - Taylor Expansion

- MNIST, CIFAR-10 datasets
- CNN model
Comparison : [19]

Adesuyi et al. (2019) [69]
Deliver deep neural network models
preserving privacy of personal data

Differentially private model parameters : 
perturbing objective functions and affine 
transformations
- Differential privacy – Laplace mechanism
- Layer-wise Relevance Propagation
- Polynomial approximation - Maclaurin series

- Winsconsin Diagnosis Breast Cancer (WDBC) dataset
- DNN model
Comparison : State-of-the-art classification for WDBC, 
and non privacy-preserving DNN

Sei et al. [4] proposed three approaches in order to create a privacy-preserved DNN. Two of them named
“Learningfirst” and “AnonymizedLearning” are related to direct perturbation of model parameters. In the first
approach,  the  model  is  trained on the  original  dataset,  then anonymized by  adding  Laplace  noise  to  its
parameters (both weights and bias). Besides, the global sensitivity is also reduced by adding limitations to the
model parameters. In the second approach, each value of the model parameters is anonymized in the training
stage.  The evaluation results showed that the two approaches could achieve high estimation accuracy. For a
small privacy budget, accuracy and f-measure of “AnonymizedLearning” approach outperform “LearningFirst”,
while for a large privacy budget, “LearningFirst” outperforms “AnonymizedLearning”. Regarding privacy, using
differential  privacy  ensures  that  the  risk  of  sensitive  information  leakage  is  smaller  than  the  predefined
threshold. Authors reported that their approaches outperform the baseline method for most values of privacy
budget ε.

Abadi et al. [19] proposed a differential private stochastic gradient descent (SGD) that controls training
data influence during the training stage. At each step of the SGD, the gradient of a random subset of examples
(called a lot) is computed, and l2 norm of each gradient is clipped. The average of gradients is then computed,
and noise is added.  Finally, the model is output and the overall  privacy loss is computed by the privacy
accountant, which accumulates cost at each access to the training data. Besides, tuning the hyper-parameters
of the model is proposed in order to balance privacy, accuracy and performance. Its was observed that the
model accuracy is less sensitive to the network structure, than the training parameters like noise level and
batch size. Evaluation results showed that only a modest total privacy loss is incurred for training the network
with (ε, δ)-differential privacy. Accuracy could reach 97% which is 1.3%-less compared to the non-private)-differential  privacy. Accuracy could reach 97% which is 1.3%-less compared to the non-private
baseline over MNIST, but for CIFAR-10, the difference was much larger (about 7%). Besides, introducing the
moments accountant allows tight automated analysis of the privacy loss. However, adding noise into gradients
at every training step leads to dependence on the number of training epochs [33, 34], which needs to be large in
order to guarantee accuracy. However, only a small number can be used for a small privacy budget.

Phan  et  al.  [24]  proposed  a  privacy-preserving  Deep  Auto-encoder,  where  the  objective  functions  are



perturbed instead of results in order to obtain perturbed parameters and enforce ε-differential privacy. The
data  reconstruction  function  is  approximated  using  Taylor  expansion  then  perturbed  using  Functional
mechanism by injecting Laplace noise into its coefficients. After that, the model parameter that minimizes the
perturbed function is derived. Gradient descent is used to obtain optimal perturbed parameters by training the
perturbed model, resulting in a private auto-encoder (PA). Deep private auto-encoder (dPA) is obtained by
stacking multiple instances of PAs where a normalization layer is added on top of the hidden layer of each PA.
Moreover, cross-entropy in the softmax layer for classification or prediction is approximated and perturbed
using Functional mechanism and back-propagation algorithm is lastly used in order to fine-tune all parameters
of the dPA.  Evaluation results  showed that dPA achieved accurate  results,  and outperformed comparison
solutions. The privacy is preserved through enforcing ε-differential privacy at every layer and training step, and
dPA was shown to be robust against privacy budget change. Besides, the authors claimed that their solution
could be extended to other deep models, but in [41], it was criticized for lacking the ability for generalization
and that no meaningful privacy guarantee is provided. The solution was also considered to be designed for a
specific model [33, 34].

Based on the same idea of perturbing objective functions, Phan et al. [34] described another approach for
releasing  a  private  Convolutional  Deep  Belief  Network  (CDBN).  The  key  idea  is  the  use  of  Chebyshev
expansion  for  deriving polynomial  approximations  of  non-linear  objective  functions.  In order  to  satisfy  ε-
differential privacy in training stages, approximation function is perturbed by injecting Laplace noise into its
coefficients. The model is then trained using gradient descent in order to obtain optimal perturbed parameters,
which results into private hidden layers. The private CDBN (pCDBN) is consequently obtained by stacking
multiple pairs of private hidden layers, and a max-pooling layer. In addition, an output layer is added on top
of the pCDBN, and differential privacy is enforced in softmax in the same way as in [24].  The evaluation of
accuracy on different settings showed that the pCDBN could outperform all comparison techniques including
[19] and [24] in almost all cases and under different dataset cardinalities and different privacy budget values.
Privacy is  ensured  through satisfying ε-differential  privacy and using  Chebyshev  approximation,  incurring
fewer errors than Taylor and Piecewise approximations, and being more effective in preserving differential
privacy in CDBNs. It was shown that pCDBN is robust against privacy budget change, and that large datasets
are supported since the budget in pCDBN, unlike [19], is independent from the number of training epochs.

A different  approach combining perturbation of objective  functions as well  as affine transformations of
neurons was proposed by Phan et al. [33]. Differentially private relevances of input features are first obtained
by injecting  Laplace  noise  into  the  average  relevances  computed  using  Layer-wise  Relevance  Propagation
(LRP)  algorithm.  LRP  can  be  applied  on  a  simple  but  accurate  pre-trained  model.  Perturbed  affine
transformation layer is obtained by injecting adaptive Laplace noise into affine transformation of each of its
hidden neurons. The features that are less relevant are injected more noise. The private DNN is then built by
stacking hidden layers on differentially private hidden layer where a normalization layer is applied before each
stacking for bounding non linear activation functions.  Lastly, the labels at the output layer are protected
through  polynomially  approximating  loss  function  and  perturbing  it  by  injecting  Laplace  noise  to  its
coefficients.  Evaluation results showed that the solution outperforms [19] for both small  and large privacy
budget. Although differential privacy is enforced, it was reported in [42] that data after applying noise remains
recognizable for human. As for efficiency,  even if adding noise adaptively signifies an extra computational
overhead requirement [42], evaluation however, showed that average relevances computation is efficient as it
only needs 12 extra epochs, and that computational efficiency is also not much affected by noise injection
computations. The solution is also reported to be applicable on different deep learning networks with different
activation functions, and allows the support of large datasets as privacy budget consumption is independent
from number of training epochs.

Adesuyi et al. [69] recently proposed a solution using the same techniques as [33]. The idea is to combine
differential  privacy with LRP with the aim to strengthen accuracy.  LRP is used in order  to classify  the
relevance of neurons into high or low. Laplace noise is then injected to neurons according to their relevance
category using corresponding privacy budget. The smaller is the privacy budget, the larger is the produced
noise. Moreover, the target value is perturbed at every batch via the loss function, so that each point of data
access is protected to offer a reliable privacy preserving model.  For this,  the loss function is polynomially
approximated  using  Maclaurin  series  and  perturbed  using  Laplace  mechanism.  Evaluation  results  of  the
solution  showed  an  achieved  accuracy  close  to  the  non-privacy-preserving  version  even  with  large  noise
injection. The worst case, with heavily dense noise, presented a loss of less than 5% of accuracy. Besides, the



authors pointed out that as neuron relevancy is not considered in the loss function perturbation, the total
budget is calculated only from the two privacy budgets corresponding to high and low relevance categories.

 b) Differentially private input data

Table 13. Reviewed solutions for Releasing a PP model through differential private input data

Reference
Target task

Key concept
Main technologies

Adversary & Experimentation

Sei et al. (2016) [4]
Share a trained model (rho)-DNN

parameters) with other
organizations

Differentially private model parameters : 
perturbing model parameters
- Differential privacy - Laplace mechanism

- ADULT, Salary estimation datasets
- DNN model
Comparison : (Baseline method) adding Laplace random variable 
to each of the trained model parameters

A third method proposed by Sei et al. [4] named “AnonymizingFirst” consists of anonymizing the original
dataset so that it satisfies ε-differential privacy, then applying the model on resulting anonymized data. The
authors further proposed using a literature technique to mitigate noise impact through adding noise to each set
of records, instead of each record. Evaluation results showed that the proposed approach could achieve high
estimation accuracy. For a small privacy budget, accuracy and f-measure of “AnonymizingFirst” is higher than
the  previously  described  “LearningFirst”  approach,  while  for  a  large  privacy  budget,  “LearningFirst”
outperforms both “AnonymizingFirst” and “AnonymizedLearning” previously described. As for privacy, using
differential privacy ensures that the risk of sensitive information leakage is smaller than a predefined threshold.

 c) Differentially private mimic learning

Table 14. Reviewed solutions for Releasing a PP model through differentially private mimic learning

Reference
Target task

Key concept
Main technologies

Adversary & Experimentation

Papernot et al. (2016) [35]
Train a student model (rho)-released model)
using aggregated predictions of teacher

models trained on disjoint data

Differentially private mimic learning
- Mimic learning - Teacher/student
- Differential privacy – Laplace mechanism
- Semi-supervised learning with GANs

- MNIST, SVHN datasets
- CNN model
Comparison : [3], [19]

Dehghani et al. (2017) [18]
Learn a student model (rho)-released model)
using aggregated predictions of privacy-

preserving trained teacher models, instead
of original sensitive training data

Differentially private mimic learning
- Mimic learning - Teacher/student
- Differential privacy – Laplace mechanism

- Experimentation on document re-ranking as one of 
the core Information Retrieval tasks

Mimic  learning  (teacher/student  model)  concept  introduced  in [35]  and [18]  allows  to  protect  original
training data after releasing a deep model. The general idea of mimic learning is to train a first efficient model,
called teacher model,  on the original training data. Then the teacher annotates a large unlabeled dataset,
which will be used to train another model called student model. In case of many applications, the student
model was able to make similar predictions as the teacher with similar or better performance [18].

Papernot et al. [35]  proposed an approach with no assumption on model details, or constraints for data
partitioning or selection. A group of teachers are first trained on different subsets of original sensitive data,
then used as an ensemble to annotate unlabeled non-sensitive data. The student, will then learn to accurately
mimic the teachers  ensemble.  To ensure privacy during annotation, the teachers deployed as an ensemble
aggregate their distinct predictions into a single prediction,  and Laplace noise is added in vote counts  to
introduce  ambiguity.  This  noisy  aggregation-based  annotation  of  student’s  training  data,  implies  that  its
training is determined by the number of queries to teachers. This leads to a trade-off with student’s model
quality. This trade-off is addressed using semi-supervised knowledge transfer described as the most successful
technique among others, and which allows to reduce privacy budget. The solution achieved good results in
terms of (ε, δ)-differential privacy. Accuracy could reach 97% which is 1.3%-less compared to the non-private)-differential privacy bound and accuracy of students compared to [3] and [19], as well as in terms
of accuracy compared to a model trained with the entire dataset. The private student model also achieved
better accuracy than aggregation’s output with and without noise. However, the student may not learn as good
from data where categories are not designed to be salient in the input space (eg. medical data). As for privacy,
noisy aggregation with limited teachers vote allow to protect training data even if the internal parameters of
the student model are observed by an attacker. Besides, larger ensembles of teachers allow potentially larger
noise and stronger privacy but implies smaller training datasets and thus less accuracy. Appropriate value of
number of teachers might therefore need to be found empirically.

Based on the same idea as [35], Dehghani et al. [18] proposed a solution to share a privacy-preserving model



instead of sensitive data in Information Retrieval (IR) applications. Teachers are trained individually using
subsets of sensitive training data, and Laplace noise is added to each teacher’s prediction, then aggregation is
performed using majority voting to obtain a single global prediction. Privacy-preserving transfer knowledge
from teacher to student can be thus performed by annotating unlabeled public data using aggregated teacher.
The solution was experimented on document re-ranking (one of the core Information Retrieval tasks), and
achieved acceptable performance with low privacy risk guarantee. Besides, it was pointed out that the teacher/
student mimic learning concept can be used to overcome the lack of large datasets in IR task.

5.3 Discussion and learned lessons

We present a summary table of comparison (Table 15) of the techniques for releasing a privacy-preserving
model that are reviewed in this section, then we discuss them, and identify a number of learned lessons and
insights with respect to the key concepts.

Table 15. Comparison of reviewed solutions to release a PP model

MP : Model parameters
OF : Objective functions
AT : Affine transformations
TD : Training data

AP : Aggregated predictions of ensemble teachers
VC : Vote counts of teachers
TP: Teachers predictions

* Indicates the main information to be prevented from leaking information related to training data

Reference
Main privacy-enabling techniques Perturbation - differential privacy Information protected*

Differential privacy Mimic learning MP OF AT TD VC TP TD MP AP

Sei et al. (2016) [4] ·
· ·

· ·

Abadi et al. (2016) [19] · · ·

Phan et al. (2016) [24] · · ·

Phan et al. (2017) [34] · · ·

Phan et al. (2017) [33] · · · ·

Adesuyi et al. (2019) [69] · · · ·

Papernot et al. (2016) [35] · · · ·

Dehghani et al. (2017) [18] · · · ·

Three typical key concepts are used for privacy-preserving release of a deep model,  namely: differential
private input data, differential private mimic learning, and differential private model parameters. Below, we
discuss the privacy-preserving-learning techniques that are presented in this section, and we identify a number
of learned lessons and insights.

Regarding differential private model parameters :

• Adaptive redistribution of noise [33, 69] is an interesting technique for accuracy improvement. In [33],
better accuracies were achieved in comparison to [19] for both small and large privacy budgets. This
was achieved by using noise redistribution on the basis of features relevance to the model output.

• Independence of privacy budget consumption from the number  of training epochs is an important
property  allowing  to  keep  training  without  accumulating  privacy  budget  as  to  guarantee  model
accuracy in practice and to work with large-scale datasets [33, 34].

• It  is  noted  in  [34]  that  Chebyshev  approximation  incurs  fewer  errors  than Taylor  and  Piecewise
approximations, and is more effective in preserving differential privacy in CDBNs.

Regarding differential private mimic learning :

• Using mimic learning allows to (1) protect training data even if attackers observe internal parameters
of student’s model as described in [35], and (2) overcome the lack of large datasets as noted in [18] for



ad-hoc IR task, .

• It  is  described in [35]  how the appropriate  number  of teachers  in mimic learning could be found
empirically,  as a larger number  could imply stronger  privacy (due to potentially larger noise) but
potentially less accuracy (due to smaller training datasets).

• Semi-supervised knowledge transfer is described in [35] as the most successful technique to address the
trade-off between privacy budget and accuracy of the student controlled by the number of queries to
teachers for labeling its training dataset.

Besides, it should be noted that introducing moments accountant like in [19, 35, 43] might be useful as it
allows tight automated analysis of the privacy loss.

6. Challenges and future directions

Although various solutions were proposed in the literature in order to ensure privacy preservation in deep
learning, a certain number of challenging concerns might still deserve to be more explored and investigated
whether  for  privacy-preserving model  learning,  analysis,  or release  of  a model  tasks.  Below, we present  a
summary of the main existing challenges, with respect to the privacy-preserving tasks and performance metrics,
and  identify  some  solutions  derived  from  reviewed  techniques.  We  conclude  this  section  with  some
recommendations and promising future directions.

6.1 PP model learning

a) Effectiveness. Keeping accuracy at an acceptable level seems to be the main challenge to meet when
designing a privacy-preserving model  learning solution,  as applying some techniques  might reduce model’s
accuracy such as activation functions approximation or partial sharing. In this context, the different directions
taken by reviewed solutions,  such as controlling fraction of gradients  in partial  sharing or introducing  ρ-
visibility to enhance differential privacy,  or accuracy score calculation used to reduce impact of low-quality
data, are worth to be more investigated separately or in combination given the reported promising results,
either to maintain accuracy or mitigate its lost, mostly through an accuracy/privacy trade-off.

b) Efficiency.  Training and running times, as well as computation and communication costs are of the
main concerns to be considered. Most reviewed works that are based on homomorphic encryption result in
increased costs overhead, which suggests that efficiency of homomorphic encryption needs more investigation.
The selection and exploration of appropriate encryption schemes like symmetric additively homomorphic, or
the possible involvement in combination with other techniques as partial sharing are examples of potential
directions to take. However, it is required to study the advantages and drawbacks of each introduced technique
and direction taken to build an efficient  solution.  Employing partial  sharing for example is an interesting
technique for reducing network traffic. However, it should be kept in mind that partial sharing can make the
global optimal more difficult to achieve as data is not fully utilized. Other concerns related to efficiency were
also successfully addressed by some reviewed works, particularly, dealing with unreliable networks and saving
energy transmission, which are important in case of applications where mobility is a requirement.

c) Privacy. Protection against direct leakage, i.e., privacy of training data, as well as indirect leakage, i.e.,
privacy of  parameters  are of  the main challenges  to be addressed.  For  techniques  where  training data is
exposed (direct leakage), homomorphic encryption seems to be successful in protecting private data during
both collaborative and individual  learning process.  However,  potential  efficiency-related issues  as described
above  should  be  handled.  A  solution  based  on  combination  of  data  perturbation  and  projection  seems
promising and techniques used might be worth to be investigated with other technologies. In contrast, most
reviewed solutions not revealing training data (indirect leakage) shift the concern to parameters protection
being the element exposed. In this case,  a number of techniques were reported as fairly successful such as
partial sharing combined with differential privacy or enhancing local differential privacy with ρ-visibility for
gradients protection. However, for some of these methods, more investigation might be useful for better privacy
budget consumption and efficiency like considering appropriate trade-off with accuracy. Data masking-based
solution for collaborative learning seems interesting but privacy preservation was only evaluated theoretically.
On the other hand, other solutions for individual learning based on model splitting with data augmentation or
irreversiblity transformation techniques were also reported as fairly successful in preserving privacy of training
data. However, model splitting concept requires the deployment of a part of the deep model on user device,
while shared model requires the availability of voluntary shared data and local retraining for specializing the



model for user.

6.2 PP analysis

a) Effectiveness.  Similarly to deep model training, achieving acceptable accuracy is the main challenge
when designing deep-learning-based analysis solutions with privacy-preservation. Homomorphic encryption with
polynomial  approximation  of  activation  function,  are  from  the  most  used  concepts  with  good  reported
evaluation results. Reviewed solutions took different directions to achieve good model utility results such as the
combination of polynomial approximation with batch normalization, the selection of appropriate  polynomial
approximation and  search of a  trade-off between its degree and model’s performance,  or the use of scheme
variants which do not require network modifications, but at the expense of a certain degree of privacy. On the
other  hand,  the  use  of  Yao’s  garbled  circuit  or  model  splitting  concept  with  Siamese  architecture  as
alternatives to homomorphic encryption seems worth to be more explored given the reported good results.
However, other aspects of the above techniques should be more investigated such as efficiency for Yao’s garbled
circuit or deploying part of the model on the user side.

b) Efficiency.  Communication and computation costs are the most faced challenges. Employing a non-
colluding dual cloud model was proposed to address heavy computation overhead of homomorphic encryption
while a reviewed work suggested that more efficient encoding schemes with smaller parameters,  and faster
homomorphic  computation  should  be  sought.  For  garbled  circuit,  some  data  and  network  preprocessing
techniques was proposed to reduce computation and processing times. Besides, huge communication cost was
noted for garbled circuit and needs to be investigated. 

c) Privacy. Main concerns addressed refer to the protection of users private data and predictions while
sometimes  trained  model  is  also  considered.  Homomorphic  encryption  based  solutions  seem  successful  in
protecting input, inference process and predictions through encrypting the overall, whereas garbled circuit is
proven to be secure in honest-but-curious model. However, privacy outside of the garbled circuit protocol was
only proved formally. On the other hand, removing undesired sensitive information from extracted features in
model-splitting  solution  seems  to  be  successful  for  achieving  privacy  of  users  data,  while  methods  for
irrevesibility transformation of local-side ouput like step-wise functions deserves more investigation. However,
the method depends on deploying part of the model on the user side although this splitting makes the solution
desirable by cloud providers since users do not access to the complete model.

6.3 Release a PP model

a) Effectiveness.  Accuracy of the released privacy-preserving  model  is  the main concern  to consider.
Although differential privacy involves introducing noise, reviewed solutions using this technology could achieve
acceptable model’s accuracy. However, as high accuracy can be a mandatory requirement in some applications,
exploring combining  differential  privacy with other  improvement  techniques  in order  to  increase  accuracy
without compromising privacy might be necessary. Adaptive redistribution of noise based on relevance is a
good example in this context.

b) Efficiency. Ensuring that privacy budget consumption is independent from number of training epochs is
an important factor to consider allowing to work with large datasets. In this context, it is not advised for
example to add noise into gradients in every training step.

c) Privacy. Protecting training data when releasing a privacy-preserving deep model is the main challenge
to address. To that end, model’s parameters, which are most potential sources of leakage, should be protected,
particularly  using  differential  privacy.  This  was  shown  to  be  fairly  successful  either  through  perturbing
parameters, objective functions or affine transformations. In this context, when it comes to objective functions,
it is noted that the selection of appropriate polynomial approximation is an important factor to consider as it
was reported that Chebyshev approximation could be more effective in preserving differential privacy. Besides,
mimic learning is an interesting concept as teachers models trained on original training data are never directly
exposed to end-users. In addition, mimic learning can be combined with other techniques in order to further
strengthen privacy guarantees like introducing differential privacy, limiting the number of teachers votes, or
revealing only topmost  noisy  vote  for  student  training.  On the other  hand,  the introduction  of  moments
accountant was shown to be worth for allowing tight automated analysis of the privacy loss.

6.4 Future directions

In this section, we present some recommendations and paths to explore as future research directions in the



design of efficient privacy-preserving deep learning solutions.

An interesting starting point, towards future designs of the solutions, would be by taking benefits from the
state-of-the-art  research  and  exploring  the  different  learned  lessons  derived  from reviewed  solutions.  This
includes  investigating  potential  combinations  between  different  concepts  as  well  as  their  underlying
technologies  as  mentioned  previously  (see  sections  3.3,  4.3  and  5.3,  Discussion  and  learned  lessons).  A
performance  study  in  terms  of  effectiveness,  efficiency  and  privacy  should  be  conducted  for  potentially
promising combinations.

On the other hand, we think that coming up with a real-world solution requires addressing privacy concerns
encountered as a whole issue from their different aspects, which  might need a combination of different PP
solutions classes. For example, designing a solution allowing to collaboratively train a public cloud model in
practice, might require not only to protect the training data of participants from the cloud and participants
during the learning process, but also to prevent the resulting trained model from leaking sensitive information
to future clients. Such a solution covers therefore both PP model learning and release a PP model classes. 

Moreover, although various efforts were deployed in order to tackle privacy preservation in deep learning either
for training, using or sharing a model, generalizing a solution or preferring one solution over another in an
absolute way might not be the right direction in our opinion. In fact, the design of a successful solution that
achieves  together  appropriate  effectiveness,  efficiency,  and  privacy  depends  on  different  constraints  and
requirements such as communication costs, time constraints or available resources for typical users devices to
perform encryption/decryption for instance or to deploy a local feature extractor provided that user consents
[9]. However, it is interesting to design flexible solutions that allow a certain trade-off involving effectiveness,
efficiency, privacy, and ability to address constraints and requirements of different applications.

Besides, promising future work in the privacy-preserving deep learning approach, particularly in the context of
collaborative or federated model learning, might also involve further exploration of the Blockchain technology,
one of the emerging technologies nowadays. Blockchain, initially used in the financial industry, is basically a
peer-to-peer distributed ledger technology or database represented by a series of data blocks secured and linked
using cryptography [44-46]. In the literature, some Blockchain-related works addressing privacy-preservation in
deep learning [44-48] have already been conducted. Jiasi Weng et al. [47] for example presented “Deepchain” a
secure  framework  for  distributed  deep  learning  introducing  a  value-driven  incentive  mechanism based  on
Blockchain  in  order  to  address  malicious  adversaries  as  well  as  the  lack  of  incentives  for  distrustful
participants.  In  a  more  recent  work,  Lifeng  Liu et  al.  [46]  proposed  a  Blockchain-based  federated  model
learning paradigm in order to address privacy of model and high computation cost of data owner. Such recent
works in this context shows that research in the domain is still topical.

From a hardware point of view, a recent study [49] proposed the use of trusted hardware for privacy preserving
deep neural  network predictions.  The  study  concluded  that  although using  trusted  hardware  could  make
privacy preserving machine learning more viable for real-world applications, absolute confidentiality still cannot
be guaranteed. However, it was pointed out that such a issue was essentially due to implementation limitations
which paves the way for further exploration of this direction. Besides, novel processors technology specialized
in the acceleration of machine learning algorithms, i.e., Neural processor or Neural Processing Unit (NPU)(1)

such as TPU (Tensor Processor Unit) from Google or NVDLA (Nvidia Deep Learning Accelerator) might be
helpful towards a better support of privacy techniques requiring local neural network processing or even the
design of more efficient ones. In addition, investigating how to use NPUs for non-neural-network processing
might be an interesting path to explore and compare with other powerful processors like GPUs in the context
of privacy techniques having high local resources requirements like encryption-based ones.

Lastly,  in order  to address  computing  and communication costs on the client  side,  exploring compression
methods for neural networks might be an interesting future path to follow given reported promising results
[50]. Song Han et al. [51] for example showed that through a three stage pipeline including pruning, trained
quantization and Huffman coding, storage requirement of neural networks could be reduced by 35x to 49x
without affecting their accuracy.

(1) https://en.wikichip.org/wiki/neural_processor



7. Conclusion

In this paper, we have provided a review of privacy-preservation deep learning solutions, along with a set of
learned lessons, challenges, and future recommendations.

We  have  proposed  a  novel  multi-level  taxonomy,  which  categorizes  the  current  state-of-the-art  privacy-
preserving  deep  learning  techniques  on  the  basis  of  privacy-preserving  tasks  at  the  top  level,  and  key
technological concepts at the base level. The top level  privacy-preserving tasks involve three main privacy
concerns essentially related to input data, namely: (1) PP (Privacy-Preserving) model training or learning, (2)
PP inference or analysis, and (3)  release a PP model. At the base level, encryption and more particularly
homomorphic encryption (often supported by polynomial approximation) is the most used concept for for PP
model learning and PP inference, while for releasing a PP model, differentially privacy particularly that of
model parameters is the major key concept used.

We have also identified performance metrics to evaluate the solutions evaluation, which are grouped into three
main metrics namely: (1) effectiveness, popularly evaluated through accuracy, (2) efficiency, mainly including
communication/computational overhead and execution time, and (3) privacy, mainly evaluated through direct
and indirect leakage protection guarantees, and privacy budget consumption for differential privacy.

This work is  a  in-depth privacy-preserving deep learning review that summarizes  state-of-the-art  solutions
along  with  their  evaluations  results with  respect  to  the  identified  performance  metrics,  discusses  their
advantages and drawbacks, and derives a set of learned lessons from each privacy-preserving task. In addition,
research challenges are highlighted with respect to performance metrics and privacy-preserving tasks. 

For the design of future solutions, it is advisable to take into consideration the presented learned lessons and
investigate further the combination of the different concepts and  reported results of reviewed techniques. In
fact, the design of a successful solution that achieves together appropriate effectiveness, efficiency, and privacy
should consider different constraints and requirements. Moreover, coming up with a real-world solution requires
addressing privacy concerns encountered as a whole issue from their different aspects,  which  might need a
combination of different PP solutions classes. Lastly, emerging techniques and technologies like Blockchain,
neural processors, and their potential opportunities, might represent some of the promising future paths  to
explore.
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