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Abstract. The Berth Allocation Problem (BAP) is considered as one of the 
most important operational problems in the seaside area of ports. It refers to the 
problem of assigning a set of vessels to a given berth layout within a given time 
horizon. In this paper, we study the dynamic and hybrid case of the BAP in the 
context of bulk ports with multiple quays, different water depths, and heteroge-
neous loading equipment, considering routing constraints (routes between stor-
age hangars and berths). This study is motivated by the operations of OCP 
Group, a world leader in the phosphate industry, at the bulk port of Jorf Lasfar 
in Morocco, recognized as the largest ore port in Africa. The objective of the 
problem is to enhance the coordination between the berthing and yard activities, 
besides maximizing the difference between the despatch money and the demur-
rage charges of all berthed vessels. We propose an integer linear programming 
model formulated with predicates, which ensures maximum flexibility in the 
implementation of the model. Finally, the proposed model is tested and 
validated through numerical experiments based on instances inspired by real 
bulk port data. The results show that the model can be used to solve to optimali-
ty instances with up to 40 vessels within reasonable computational time. 

Keywords: Berth Allocation Problem, Conveyor System, Bulk Ports.  

1 Introduction 

Although containerization has played a significant role in developing the port sector 
and maritime transport, bulk cargoes are still the essential and enduring trades that 
support the dynamism of maritime shipping. It has to be noted that bulk port opera-
tions are very different from container port operations. Indeed, in bulk ports, it is nec-
essary to consider the cargo type and to model the interaction between the storage 
locations of goods on the yard and the berthing locations of vessels. Hence, establish-
ing a set of feasible routes between berths and storage locations to guarantee that 
goods are shipped on schedule when making berth allocation decisions, is critical.  
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Our analysis considers the bulk port of Jorf Lasfar where a complex conveyor sys-
tem, composed of different routes that share one or more conveyor belts, is used to 
transport goods from storage hangars to berths. In addition, we consider the draft 
restrictions on vessels that limit the feasible berthing positions to only those berths 
having a water depth higher than their draft. To solve this problem, we propose an 
integer linear programming model. The spatiotemporal constraints of the problem are 
formulated as disjunctive constraints, thanks to the use of spatiotemporal binary vari-
ables. Moreover, all the conditions of the problem are expressed as predicates, which 
ensures maximum flexibility in the implementation of the model and significantly 
improves its computational performance. Indeed, it is no longer necessary to intro-
duce the conditions of the problem as constraints in the model, and the space search 
of solutions becomes smaller. 

The rest of the paper is organized as follows: Section 2 provides a literature re-
view. In Sections 3 and 4, the problem and the mathematical formulation are intro-
duced. The results of the numerical experiments are reported in Section 5. Finally, 
conclusions and future research directions are addressed in Section 6. 

2 Literature Review 

The BAP in bulk ports has received little attention in Operations Research literature 
compared to container ports. In this section, we present a brief review of past research 
on the BAP in the context of bulk ports. There is a multitude of BAP formulations 
depending on the spatial and temporal constraints involved in the problem. The spatial 
attribute concerns the berth layout (discrete, continuous or hybrid) and the draft re-
strictions, while the temporal one includes the arrival process and the handling time of 
vessels. Umang et al. [1] studied the dynamic hybrid BAP taking into account the 
cargo type and the draft of each vessel. Ernst et al. [2] solved the continuous BAP 
with tidal constraints that limit the departure of fully loaded vessels from the terminal. 
In contrast, Barros et al. [3] solved the discrete BAP considering homogeneous berths 
with tide and stock level constraints, prioritizing vessels related to the most critical 
mineral stock level.  

Since the problems of berth allocation and yard management are interrelated, some 
authors have integrated the BAP with the Yard Assignment Problem. Indeed, 
Robenek et al. [4] extended the dynamic hybrid BAP to account for the assignment of 
yard locations, with the assumptions that each vessel has only one single cargo type. 
To solve this integrated problem, the authors proposed an exact solution algorithm 
based on a branch and price framework and a metaheuristic approach based on criti-
cal-shaking neighborhood. Unsal and Oguz [5] proposed a MILP model for an inte-
grated problem that consists of three operations: berth allocation, reclaimer (a large 
machine used to recover bulk material from a stockpile) scheduling and stockyard 
allocation, considering tide constraints. In the same logic of integrating problems, 
Pratap et al. [6] developed a decision support system to solve the integrated problem 
of berth and ship unloader allocation. Menezes et al. [7] integrated production plan-
ning and scheduling problems with a First In, First Out (FIFO) policy for berthing 
vessels. This integrated problem defines the amount and destination of each input or 
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output order between reception, stockyards and piers, establishing a set of feasible 
routes between these three subsystems, to guarantee that goods are stored and shipped 
on schedule and to minimize operational costs. 

In our paper, we solve the dynamic and hybrid BAP under routing constraints, con-
sidering the type of cargo and the capacity limits of the equipment. The storage loca-
tions of goods are provided as input parameters to the model. To reduce the gap be-
tween the abstract representation of the studied problem and its applicability in real 
situations, we consider many aspects such as draft restrictions, the heterogeneity of 
equipment, Charter Party clauses and multiple cargo types on the same vessel. 

3 Problem Description 

We consider a bulk port with multiple quays and heterogeneous loading equipment 
linked to storage hangars by a conveyor system. This latter is composed of different 
routes that share one or more conveyor belts (see Fig. 1a). Each quay has as hybrid 
layout where large vessels may occupy more than one berth, however, small vessels 
cannot share a berth (see Fig. 1b). Each berth is characterized by a length, a fixed 
loading equipment and a water depth. All the berths of a quay can have the same wa-
ter depth, or the water depth increases seaward by berths. We assume dynamic vessel 
arrivals (i.e. Fixed arrival times are given for the vessels; hence, vessels cannot berth 
before the expected arrival time). Each vessel is characterized by a length, a draft, a 
maximum waiting time in the harbor and a number of cargo types with different 
amounts to be loaded in it. These amounts of cargo types can be expressed as batches. 
Each batch has an availability date and is stored in a hangar. It has to be noted that the 
batches to be loaded in a single vessel can be stored in different hangars. Handling 
times of vessels depend on their berthing position due to the productivity of the load-
ing equipment at the berth. We assume that two (or more) batches cannot be loaded at 
the same time, but they can be loaded in any order, with no downtime. We also con-
sider technical constraints of vessels that prohibit their berthing at some berths or 
oblige them to berth at a specific berth. Finally, we consider Charter Party clauses by 
defining for each vessel the laytime (i.e. contractual handling time), the despatch 
money (i.e. the bonus payment offered by the shipowner to the charterer if the vessel 
completes loading before the laytime has expired), and the demurrage charges (i.e. the 
fees paid by the charterer to the shipowner for exceeding the laytime). These contrac-
tual clauses are more detailed in Bouzekri et al. [8].   

 

        Fig. 1a. Port conveyor system.      Fig. 1b. Hybrid berth layout. 
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4 Model Formulation 

4.1 Notation 

Table 1. Indexes, sets, input parameters and variable decisions. 

Index Description 

v Index of vessels  1,...,VV . 

b Index of berths  1,...,BB . 

t Index of time periods  1,...,TT . 

p Index of pairs of berths that share a berth and cannot be used simultaneously 

 1,..., PP  (e.g. in Fig. 1b, the pair of berths 3 and 5 share the berth 3, so 

they cannot be used at the same time). 

vi  Index of batches to be loaded in vessel v  1, ..., Iv vI . 

r Index of routes  1,..., RR . Each route links a storage hangar to a berth. 

g Index of groups of routes that share at least one conveyor belt of the conveyor 
system to transport batches  1,..., GG . Hence, the routes in a given group 

cannot be used all at once. 
Parameter Description 

Lb  Length of berth b. 

Wb  Minimum water depth of berth b. 

E p
b  Boolean parameter that equals 1 if berth b belongs to the pair p of berths that 

share a berth, 0 otherwise. 
Av  Expected time of arrival of vessel v. 

Mv  Maximum waiting time in the harbor of vessel v. 

λv  Length of vessel v. 

Dv  Draft of vessel v when it is fully loaded. 

Nvb  Boolean parameter that equals 1 if vessel v can berth at berth b, 0 otherwise. 

Jv  Contractual handling time of vessel v. 

δv  Contractual finishing time of vessel v: Aδ J 1, .v v v v    V  

αv  Contractual demurrage by hour of vessel v. 

βv  Contractual despatch by hour of vessel v. 

θ vi
vb  Loading time of batch vi  in vessel v when this latter is berthed at berth b. 

Ovb  Loading time of vessel v, which equals the sum of loading times of all the 
batches loaded in this vessel: O θ , , .v

v v

i
vb vbi

v b


     I
V B  

K vi
v  Date of availability of batch vi  to be loaded in vessel v. 

H vi
v  Storage hangar of batch vi  to be loaded in vessel v. 

Qr  Index of the berth linked to route r. 

Sr  Index of the storage hangar linked to route r. 
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Fg
r  Boolean parameter that equals 1 if route r belongs to group g of routes that share 

at least one conveyor belt of the conveyor system, 0 otherwise. 

U g  Maximum number of routes that can be used simultaneously in group g of 
routes. 

Variable Description 

vbtx  1 if vessel v starts berthing at berth b in time period t, 0 otherwise. 

vi
vbtry  1 if batch vi  starts to be loaded in vessel v at berth b in time period t using route 

r, 0 otherwise. 

vu  Integer, delay of vessel v. 

vw  Integer, advance of vessel v. 

4.2 Mathematical Model 

The existence of the decision variable vbtx  is subject to four conditions:  

1. Vessel v must be able to berth at berth b: N 1vb  . 

2. The length of vessel v must not exceed the length of berth b: Lλv b . 

3. The draft of vessel v must not exceed the water depth of berth b: WDv b .  

4. Vessel v can berth only after its expected time of arrival without exceeding its 
maximum waiting time in the harbor: A A Mv v vt   . 

The existence of the decision variable vi
vbtry  is subject to seven conditions: 

1. Conditions 1, 2 and 3 of the existence of the decision variable vbtx . 

4. Batch vi  can be loaded in vessel v between the expected time of arrival of this ves-

sel and its finishing time as it reaches its maximum waiting time in the harbor, mi-
nus the loading time of this batch: A A M O θ vi

v v v vb vbt     . 

5. Batch vi  can be loaded in vessel v only after its date of availability: K vi
vt  . 

6. The route used to load the batch vi  in vessel v must be linked to the berth b of this 

vessel: Q r b . 

7. The route used to load the batch vi  in vessel v must be linked to the storage hangar 

of this batch: HS vi
r v . 

We define the intermediate variables v  and vi
v , which give for each vessel v, re-

spectively, the berthing position in both decision variables vbtx  and vi
vbtry . 

N 1 λ L D W A A M
,

vb v b v b v v v
v vbtb t t

b x v
         

    B T
V

N 1 λ L D W A A M O θ K Q S H
,v v

i i iv v v
vb v b v b v v v vb v r r vvb

i i
v vbtrb t t t r b

b y
                 

   B T R
 

, v vv i   V  I  

Similarly, we set for each vessel v, the berthing and finishing time v  and v  by re-

placing vbtb x  in v , respectively, by vbtt x  and  O 1vb vbtt x   . Likewise, we 
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define for each batch vi  to be loaded in vessel v, the loading start and finishing time 

vi
v  and vi

v  by replacing vi
vbtrb y  in vi

v , respectively, by vi
vbtrt y  and 

 θ 1 .v vi i
vb vbtrt y    

The model for the BAP with routing constraints can be formulated as follows: 

  β αv v v vv
Max w u


   V

 (1) 

s.t.                   
N 1 λ L D W A A M

1,
vb v b v b v v v

vbtb t t
x v

         
   B T

V             (2) 

N 1 λ L D W A A M O θ K Q S H
1,v

i i iv v v
vb v b v b v v v vb v r r vvb

i
vbtrb t t t r b

y
                 

  B T R
 

, v vv i   V  I  (3) 

 , ,vi
v v v vv i     V  I  (4) 

 , ,vi
v v v vv i     V  I  (5) 

 , ,vi
v v v vv i     V  I  (6) 

A M O θ

N 1 λ L D W Q S HA K θ 1
1,

iv
v v vb vb v

iii vvv
v v vb v b v b r r vv v vb

t t t i
vbt ri b r bt t t t

y
    

               
   I B R

 

 ,t v   T V  (7) 
A M O θ

N 1 λ L D W F 1 Q S HA K θ 1
U ,

iv
v v vb vb v

igii vvv
v v vb v b v b r r r vv v vb

t t t i g
vbt rv i b r bt t t t

y
    

                  
    V I B R

            ,t g   T G  (8) 

 
A M

N 1 λ L D W A O 1
1, ,v v

vb v b v b v vb

t t t

vbtv t t t
x t b

  
         
     V

T B       (9) 

 
A M

E 1 N 1 λ L D W A O 1
1, ,v v

p
vb v b v b v vbb

t t t

vbtv b t t t
x t p

  
            
      V B

T P  (10) 

 δ ,v v vu v   V  (11) 

 δ ,v v vw v   V  (12) 

 δ ,v v v vu w v    V  (13) 

 , 0,v vu w v  V  (14) 

Objective function (1) maximizes the difference between the despatch money and 
the demurrage charges of each vessel v. Equation (2) ensures that each vessel v starts 
berthing at a unique berth b and in a unique time period t. Equation (3) ensures that 
each batch vi  starts its loading in vessel v at a unique berth b, in a unique time period 

t, and is transported in a unique route r. Equation (4) ensures that berth b in both deci-

sion variables vtbx  and vi
vtbry  is the same. Equation (5) ensures that the loading of each 

batch vi  can only begin once vessel v has been berthed. Equation (6) ensures that 

each vessel v can only leave the port when all batches have been loaded. Equation (7) 
ensures that two (or more) batches cannot be loaded at the same time in each vessel v. 
Equation (8) avoids simultaneous use of routes that share at least one conveyor belt of 
the conveyor system. Equation (9) avoids the overlapping of vessels in each berth b. 
Equation (10) ensures that only one berth can be used from each pair of berths that 
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share a berth since the berth layout of each quay is hybrid. Equations (11)-(14) deter-
mine the delay and the advance of each vessel. 

5 Numerical Experiments 

The experiments were conducted using a computer with a core Intel® Xeon® CPU 
E3-1240 v5 @ 3.50 GHz - 64 Go RAM, running a 64-bit version of the commercial 
solver Xpress-IVE 1.24.24. The method used for solving the problem is the primal 
simplex algorithm. The detailed characteristics of test instances and results can be 
found at Mendeley in Bouzekri et al. [9]. 

5.1 Input Data 

Test instances were generated based on a sample of data obtained from OCP group. 
This latter operates six quays in the port of Jorf Lasfar to import raw materials (sulfur 
and ammonia) and export raw materials and products (phosphate rock, phosphoric 
acid and fertilizers). We focus on the first two quays that are dedicated to the export 
of fertilizers and partitioned into five berths each (1, 2, 3, 4, and 5 3 4  ). Each 
berth has a minimum water depth and a fixed quay crane with a specific productivity. 
The produced fertilizers (around 50 different types) are stored in 9 hangars. All the 
hangars are linked to all the berths by a conveyor system composed of 90 routes. The 
data sample received provides information about all the vessels that were berthed 

during the year 2019. We consider 3 sets of 5 instances each for  V 20,  30,  40 ,
generated from the data sample, for a planning horizon of 20 days (480 hours).  

5.2 Computational Results 

The output of the model refers to the scheduling of vessels and batches. These deci-
sions can be illustrated in a same Gantt chart (see Bouzekri et al. [9]). For each set of 
5 instances of a given size, the table shows the number of instances solved, the num-
ber of instances solved to optimality, the average computation time in seconds, and 
the average and maximum gap in percentages. For each instance, the computation 
time was limited to 1 hour and the gap was provided by the solver as 

 100 /ub lb ub  , where ub is the best upper bound obtained within the time limit, 

and lb is the value of the objective function corresponding to the best integer solution 
achieved. Overall, from the results, we can observe that the computation time increas-
es with the number of vessels and the solver can solve to optimality most of the cases.  

Table 2. Computational results. 

V Solved Optimum Avg. time Avg. gap Max. gap 
20 5 5 5.9 0 0 
30 5 5 203.6 0 0 
40 5 3 1734.2 2.4 7.4 
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6 Conclusions and Future Research 

In this paper, we study the Berth Allocation Problem with routing constraints in bulk 
ports. Our study is motivated by the port of Jorf Lasfar, but it is also valid for any 
bulk port. A new integer linear programming model is proposed to solve this problem. 
The formulation proposed herein is flexible thanks to the use of predicates and it can 
be used to solve real cases in bulk ports. Computational experiments show that our 
model is able to solve the problem instances of realistic size (up to 40 vessels, 10 
berths, 9 storage hangars, and 90 routes) in a reasonable computation time.  

Further improvements are intended to be made such as considering tide constraints 
and extending our model to integrate storage locations decisions under the restrictions 
that forbid two or more cargo types to be stored in adjacent yard locations to avoid 
intermixing. Also, a heuristic could be developed to obtain faster results.  
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