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Representations of Uncertainty in Artificial
Intelligence: Probability and Possibility

Thierry Denœux, Didier Dubois, and Henri Prade

Abstract Due to its major focus on knowledge representation and reasoning, ar-
tificial intelligence was bound to deal with various frameworks for the handling
of uncertainty: probability theory, but more recent approaches as well: possibility
theory, evidence theory, and imprecise probabilities. The aim of this chapter is to
provide an introductive survey that lays bare specific features of two basic frame-
works for representing uncertainty: probability theory and possibility theory, while
highlighting the main issues that the task of representing uncertainty is faced with.
This purpose also provides the opportunity to position related topics, such as rough
sets and fuzzy sets, respectively motivated by the need to account for the granularity
of representations as induced by the choice of a language, and the gradual nature of
natural language predicates. Moreover, this overview includes concise presentations
of yet other theoretical representation frameworks such as formal concept analysis,
conditional events and ranking functions, and also possibilistic logic, in connection
with the uncertainty frameworks addressed here. The next chapter in this volume is
devoted to more complex frameworks: belief functions and imprecise probabilities.
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1 Introduction : An Historical Perspective

The question of including, hence modeling, uncertainty in scientific matters is not
specific to the field of artificial intelligence. Historically, this concern already ap-
pears in the XVIIth century, with pioneering works of Huyghens, Pascal, chevalier
de Méré, and Jacques Bernoulli. There existed at that time a major distinction be-
tween the objective notion of chance in connection with the study of games (of
chance), and the subjective notion of probability in connection with the issue of
unreliable testimonies at courts of law. With J. Bernoulli, chances are related to fre-
quencies of events and are naturally additive, while subjective probabilities are not
supposed to be so. This view is still present in the middle of the XVIIIth century with
the works of Lambert. He proposed a combination rule which turns out to be a spe-
cial case of Dempster’s rule of combination; see [Shafer, 1978; Martin, 2006], and
Chapter 4 of this volume. However, with the rapid development of physics and actu-
arial sciences later on, the interest for the non-additive side of probability eventually
waned and the issue was forgotten for almost two centuries, while the additive view
became prominent, with the works of Laplace, whether the focus was on frequentist
probability or not. Noticeably, in the middle of the XXth century, in economics, not
only the main approach to decision under (frequentist) risk after [von Neumann and
Morgenstern, 1944], but also the mainstream theory of decision under (subjective)
uncertainty relied on additive probability.

It is the emergence of computer sciences that brought issues related to knowledge
representation and reasoning in the presence of imprecision, uncertainty, and con-
flicting information to the front. This went on till the 1980’s almost independently of
probability theory and the issue of decision-making. Instead, artificial intelligence
first put the emphasis on logical and qualitative formalisms, as well as the modeling
of linguistic information (in trends of research such as fuzzy set theory).

Indeed, the available information to be stored in a computer is often unreliable,
as is human knowledge, so that reasoning is based on rules that may lead to uncer-
tain conclusions even starting from sure premises. The need to handle uncertainty
arose in fact with the emergence of the first expert systems at the beginning of the
1970’s. One of the first and best known expert rule-based system, namely MYCIN
[Shortliffe, 1976; Buchanan and Shortliffe, eds.], already proposed an ad hoc, en-
tirely original, technique for uncertainty propagation based on degrees of belief and
disbelief. This method will not be described here for lack of space, and because it
is now totally outdated, especially due to its improper handling of exceptions in if-
then rules. But the uncertainty propagation technique of MYCIN pioneered the new,
more rigorous frameworks for uncertainty modeling that would appear soon after.
On this point, see [Dubois and Prade, 1989], and [Lucas and van der Gaag, 1991] as
well.

This chapter is structured in four sections. In Section 2, basic notions useful
for describing the imperfection of information are defined and discussed. Section 3
deals with probability theory, focusing on the possible meanings of probability and
the difficulty to handle plain incomplete information with probability distributions,
as well as the connections between conditioning and logic. Section 4 deals with
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set functions extending the modalities of possibility and necessity, distinguishing
between qualitative and quantitative approaches, and describing connections with
reasoning tolerant to exceptions, formal concept analysis, probability and statistics.
Section 5 explains the links between uncertain reasoning and Aristotelian logic,
generalizing the square of opposition.

2 Imprecision, Contradiction, Uncertainty, Gradualness, and
Granularity

Before presenting various representation frameworks (see [Halpern, 2003; Dubois
and Prade, 2009; Liu, 2001; Parsons, 2001] for interesting focused overviews), it
is useful to somewhat clarify the terminology. We call information item any collec-
tion of symbols or signs produced by observing natural or artificial phenomena, or
by human cognitive activity, whose purpose is communication. Several distinctions
are in order. First, one must separate so-called objective information items, com-
ing from sensor measurements or direct observations of the world, from subjective
ones, expressed by individuals and possibly generated without using direct observa-
tions of the outside world. Information items may be couched in numerical formats,
especially objective ones (sensor measurements, counting processes), or in quali-
tative or symbolic formats (especially subjective ones, in natural language for in-
stance). However the dichotomy objective numerical vs. subjective qualitative is not
so clearcut. A subjective information item can be numerical, and objective observa-
tions can be qualitative (like a color perceived by a symbolic sensor, for instance).
Numerical information can take various forms: integers, real numbers, intervals,
real-valued functions, etc. Symbolic information is often structured and encoded in
logical or graphical representations. There are also hybrid representation formats,
like Bayesian networks [Pearl, 1988]. Finally, another important distinction should
be made between singular and generic information. Singular information refers to
particular facts and results from an observation or a testimony. Generic information
pertains to a class of situations and expresses knowledge about it: it can be a law of
physics, a statistical model stemming from a representative sample of observations,
or yet commonsense statements such as “birds fly” (in this latter case the underlying
class of situations is not precise: is it here a zoological definition, or the birds of any
epoch, or of any place, etc. ?).

2.1 Imprecise Information

To represent the epistemic state of an agent, one must beforehand possess a language
for representing the states of the world under interest, according to the agent, that is,
model relevant aspects by means of suitable attributes. Let v be a vector of attribute
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variables1 relevant for the agent, and let S be its domain (possibly not described in
extension). S is then the set of (precise descriptions) of the set of possible states of
affairs. A subset A of S is viewed as an event, or as a proposition that asserts v ∈ A.

An information item v∈A possessed by an agent is said to be imprecise if it is not
sufficient to enable the agent to answer a question of interest about v. Imprecision
corresponds to the idea of incomplete or even missing information. The question
to which the agent tries to answer is of the form what is the value of v, or more
generally does v satisfy a certain property B, given that v ∈ A is known? The notion
of imprecision is not absolute. When concerned with the age of a person, the term
minor is precise if the referential set is S = {minor,ma jor} and the question is : has
this person the right of vote? In contrast if the question is to determine the age of
this person and S = {0,1, . . . ,150} (in years), the term minor is very imprecise.

The standard format of an imprecise information item is v∈A where A is a subset
of S containing more that one element. An important remark is that elements of A,
seen as possible values of v are mutually exclusive (since the entity v possesses only
one value). So, an imprecise information item takes the form of a disjunction of
mutually exclusive values. For instance, to say that John is between 20 and 22 years
old, that is, v = age(John) ∈ {20,21,22} means to assume that v = 20 or v = 21 or
v = 22. An extreme form of imprecise information is total ignorance: the value of v
is completely unknown. In classical logic, imprecision explicitly takes the form of a
disjunction (stating that A∨B is true is less precise than stating that A is true). The
set A representing an information item is called an epistemic set.

Two imprecise information items can be compared in terms of informational con-
tent: an information item v ∈ A1 is said to be more specific than another information
item v ∈ A2 if and only if A1 is a proper subset of A2.

The disjunctive view of sets used to represent imprecision contrasts with the
more usual conjunctive view of a set as a collection of items forming a certain
complex entity. It then represents a precise information item. For instance, consider
the set of languages that John can speak, say v = Lang(John). This variable is set-
valued and stating that Lang(John) = {English, French} is a precise information
item, as it means that John can speak English and French only. In contrast, the
variable v′ = NL(John) representing the native language of John is single-valued
and the statement NL(John) ∈ {English, French} is imprecise. The domain of v′ is
the set of all spoken languages while the domain of v is its power set. In the latter
case, an imprecise information item pertaining to a set-valued variable is represented
by a (disjunctive) set of (conjunctive) subsets.

1 In fact, in this chapter, v denotes an ill-known entity that may be for instance a random variable
in a probabilistic setting, or rather an imprecisely known entity but which does not vary strictly
speaking.
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2.2 Contradictory Information

An information item is said to be contradictory if it is of the form v ∈ A, where
A = /0. Under this form there is not much we can do with such an information item.
In mathematics, the presence of a contradiction ruins any form of reasoning, and
it is only used to prove claims by refutation (a claim is true because assuming its
falsity leads to a contradiction). In artificial intelligence, contradiction often stems
from the conflict between several information items, e.g., v ∈ A and v ∈ B where
A∩B = /0. It is thus a natural situation that is to be expected each time there are
several sources, and more generally if collected information items are numerous.
Another cause of conflicting information is the presence of exceptions in generic
information items such as rules, which may lead to simultaneously infer opposite
conclusions. There are several approaches in the literature that aim at coping with
contradictory information, and that are studied in this book:

• information fusion techniques that aim at restoring consistency, by deleting un-
reliable information items, taking into account the sources that deliver them, and
analyzing the structure of the conflict between them. See Chapter 14 in this vol-
ume.

• argumentation methods that discuss the pros and the cons of deriving a propo-
sition v ∈ A using a graph-theoretic representation of an attack relation between
conflicting arguments. See Chapter 13 in this volume.

• paraconsistent logics that try to prevent the infection of the contradiction affect-
ing some variables or some subgroups of information items to other ones, by for
instance changing the inference relation, thus avoiding the explosive nature of
standard inference from inconsistent bases in classical logic. See Chapter 13 in
this volume.

• nonmonotonic reasoning formalisms that try to cope with exceptions in rules by
giving priority to conclusions of the most specific ones. See Chapter 2 in this
volume.

2.3 Uncertain Information

An information item is said to be uncertain for an agent if the latter does not know
whether it is true or false. If an elementary information item of the form of a propo-
sition v ∈ A, where A contains a set of non-impossible values for v, is tainted with
uncertainty, a token of uncertainty is attached to it. This token is a qualifier situ-
ated at the meta-level with respect to the information item. It can be numerical or
symbolic: compare statements expressing uncertainty such as The task will take at
least one hour, with probability 0.7, and It is not fully sure that John comes to the
meeting. Uncertainty has two main origins: the lack of information, or the presence
of conflicting information. A special case of the latter is aleatory uncertainty, where
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due to the variability of an observed phenomenon, it is difficult to predict the next
event, hence the information item v ∈ A that may describe it.

The most usual representation of uncertainty consists in assigning to each propo-
sition v∈A or event A⊆ S, a number g(A) in the unit interval. This number expresses
the agent’s confidence in the truth of the proposition v∈A. Note that this proposition
is ultimately only true or false, but the agent may currently ignore what its actual
truth-value is. Natural conditions are required for the set function g:

g( /0) = 0; g(S) = 1; if A⊆ B then g(A)≤ g(B). (1)

Indeed the contradictory proposition v∈ /0 is impossible, and the tautological propo-
sition v ∈ S is certainly true. Moreover, if A is more specific than B (and thus im-
plies B), a rational agent cannot trust v ∈ A more than v ∈ B. When S is infinite, one
must add suitable continuity properties with respect to monotonic sequences of sub-
sets. Such a function g is often called a capacity [Choquet, 1953], or fuzzy measure
[Sugeno, 1977], or yet plausibility function [Halpern, 2001] (not to be confused
with the dual to belief functions, defined in the next chapter in this volume). An
important consequence of (1) is in the form of two inequalities:

g(A∩B)≤min(g(A),g(B)); g(A∪B)≥max(g(A),g(B)). (2)

These inequalities suggest to consider extreme confidence measures g such that one
of these inequalities is an equality, and more generally, when A and B are mutually
exclusive, assume that g(A∪B) only depends on g(A) and g(B) [Dubois and Prade,
1982], i.e.,

if A∩B = /0 then g(A∪B) = g(A)⊕g(B). (3)

for some binary operation ⊕ on [0,1].
The conjugate set function, defined by g(A) = 1− g(A), then satisfies the dual

property g(A∩B) = g(A)⊥g(B) if A∪B = S where a⊥b = 1− (1− a)⊕ (1− b)
[Dubois and Prade, 1982]. The set functions g and g are said to be decompos-
able. Compatibility constraints with the Boolean algebra of events suggests con-
sidering operations ⊕ and ⊥ that are associative, which leads to choose ⊥ and
⊕ among triangular norms and co-norms [Klement et al, 2000] (they get their
name from their role in the expression of the triangular inequality in stochastic ge-
ometry [Schweizer and Sklar, 1963]). The main possible choices for a⊥b (resp.
a⊕ b) are the operators minimum min(a,b), product (a× b), and truncated addi-
tion max(0,a+ b− 1) (resp. maximum max(a,b), probabilistic sum a+ b− a× b,
and bounded sum min(1,a+ b)). Probability measures are recovered by defining
a⊕b = min(1,a+b) (equivalently a⊥b = max(0,a+b−1)), and possibility mea-
sures and necessity respectively for a⊕b = max(a,b) and for a⊥b = min(a,b). The
use of more complex operators (like ordinal sums of the above ones) may make
sense [Dubois et al, 2000b].
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2.4 Graduality and Fuzzy Sets

Representing a proposition in the form of a statement that can only be true or false
(or an event that occurs or not) is but a convenient convention. It is not always
an ideal one. Some information items are not easily amenable to respecting this
convention. This is especially the case for statements involving gradual properties,
like in the proposition John is young, that may sometimes be neither completely
true nor completely false: it is clearly more true if John is 20 than if he is 30, even
if in the latter case, John is still young to some extent. Predicates like young can be
modified by linguistic hedges. It makes sense to say very young, not so young, etc.
Such linguistic hedges cannot be applied to Boolean predicates, like single. In other
words, the proposition John is young is not Boolean, which denotes the presence of
an ordering between age values to which it refers. This type of information can be
taken into account by means of fuzzy sets [Zadeh, 1965]. A fuzzy set F is a mapping
from S to a totally ordered set L often chosen to be the unit interval [0,1]. The value
F(s) is the membership degree of the element s in F . It evaluates the compatibility
between the situation s and the predicate F .

Fuzzy sets are useful to deal with information items in natural language refer-
ring to a clear numerical attribute. Zadeh [1975] introduced the notion of linguistic
variable with values in a linearly ordered linguistic term set. Each of these terms
represents a subset of the numerical domain of the attribute, and these subsets cor-
respond to a partition of this domain. For instance, the set of terms T = {young,
adult, old} forms the domain of the linguistic variable age(John) and partitions the
domain of this attribute. Nevertheless it is not surprising to admit that the transitions
between the ranges covered by the linguistic terms are gradual rather than abrupt.
And in this situation, it sounds counterintuitive to set precise thresholds separating
these continuous ranges. Namely, it sounds absurd to define the set F =young ∈ T
by a precise threshold s? such that F(s) = 0 if s> s? and F(s) = 1 otherwise, beyond
which an individual suddenly ceases to be young. The membership function of the
fuzzy set valued in the scale [0, 1], representing here the gradual property young,
is but a direct reflection of the continuous domain of the attribute (here the age).
This also leads to the idea of a fuzzy partition made of non-empty fuzzy subsets
F1, · · · ,Fn, often defined by the constraint ∀s,Σi=1,nFi(s) = 1 [Ruspini, 1970].

If we admit that some sets are fuzzy and membership to them is a matter of
degree, one issue is to extend the set-theoretical operations of union, intersection
and complementation to fuzzy sets. This can be done in a natural way, letting

(F ∪G)(s) = F(s)⊕G(s); (F ∩G)(s) = F(s)⊥G(s); F(s) = 1−F(s),

where ⊕ and ⊥ are triangular co-norms and norms already encountered in the pre-
vious subsection. The choice ⊕ = max and ⊥ = min is the most common. With
such connectives, the De Morgan property between ∪ and ∩ are preserved, as well
as their idempotence and their mutual distributivity. However, the excluded middle
(A∪A = S) and contradiction laws (A∩A = /0) fail. Choosing ⊕= min(1, ·+ ·) and
⊥= max(0, ·+ ·−1) re-install these two laws, at the cost of losing idempotence and
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mutual distributivity of ∪ and ∩. As to fuzzy set inclusion, it is oftentimes defined
by the condition F ⊆ G⇔ ∀s,F(s) ≤ G(s). A more drastic notion of inclusion re-
quires the inclusion of the support of F (elements s such that F(s) > 0) in the core
of G (elements s such that G(s) = 1). In agreement with the spirit of fuzzy sets, in-
clusion can also be a matter of degree. There are various forms of inclusion indices,
of the form d(F ⊆ G) = mins F(s)→ G(s), where→ is a many-valued implication
connective.

Fuzzy sets led to a theory of approximate reasoning and the reader is referred
to a section dedicated to interpolation in Chapter 10 of this volume. Besides, since
the mid-1990’s, there has been a considerable development of formal fuzzy logics,
understood as syntactic logical systems whose semantics is in terms of fuzzy sets.
These works, triggered by the book by Hájek [1998], considerably improved the
state of the art in many-valued logics developed in the first half of the XXth century
(see [Dubois et al, 2007] for a detailed survey of both approximate reasoning and
formal fuzzy logic.)

2.5 Degree of Truth vs. Degree of Certainty: A Dangerous
Confusion

It is very crucial to see the difference between the degree of adequacy between a
state of affairs and an information item (often called degree of truth) and a degree
of certainty (confidence). Already, in natural language, sentences like John is very
young and John is probably young do not mean the same. The first sentence ex-
presses the fact that the degree of membership of age(John) (e.g., age(John) = 22)
to the fuzzy set of young ages is for sure high. The degree of membership F(s)
evaluates the degree of adequacy between a state of affairs s0, e.g., s0 = 22, and the
fuzzy category F =young. According to the second sentence, it is not ruled out that
John is not young at all.

Degrees of truth and degrees of certainty correspond to distinct notions that occur
in distinct situations with unrelated semantic contents. Moreover they are driven by
mathematical frameworks that should not be confused despite their superficial re-
semblances as to the involved connectives. Indeed, as seen earlier in this text, truth
degrees are usually assumed to be compositional with respect to all connectives like
conjunction, disjunction, and negation (respectively corresponding to intersection,
union, and complementation of fuzzy sets). However, full-fledged compositionality
is impossible for degrees of certainty. This is because the Boolean algebra of stan-
dard events is not compatible with the structure of the unit interval, nor any finite
totally ordered set with more than 2 elements [Dubois and Prade, 2001]: they are
not Boolean algebras. For instance, probability is compositional only for negation
(Prob(A) = 1−Prob(A)), and as we shall see later on, possibility (resp. necessity)
measures are compositional only for disjonction (resp. conjonction). For instance
one can be sure that v ∈ A∪B is true (especially if B = A !), without being sure at
all that any of v ∈ A, and v ∈ B is true.
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A typical situation where certainty and truth tend to be confused is when using a
three-valued logic to capture partial information, changing Boolean interpretations
of a language into three-valued ones. The usual truth set {0,1} is turned into, say,
{0,1/2,1}, with the idea that 1/2 stands for unknown as in Kleene logic [Kleene,
1952]. Now the problem is that under the proposed calculus by Kleene with con-
junction, disjunction and negation expressed by operations min, max and 1− (·),
respectively, the excluded middle law is lost. This is a paradox here as, since a
proposition v ∈ A can only be true or false, the composite proposition v ∈ A or v 6∈ A
is always valid while, in the three-valued setting, it will have truth value 1/2 if v ∈ A
is set to unknown. The way out of the paradox consists in noticing that the negation
of unknown is known, actually known to be true or known to be false. So the three
alleged truth-values {0,1/2,1} are degrees of certainty, and actually stand for the
three non-empty subsets of {0,1}, 1/2 standing for the hesitation between true and
false, namely {0,1}. And then it becomes clear the statement either v ∈ A is known
to be true or v ∈ A is known to be false is not a tautology.

The Kleene approach to ignorance has been extended by Belnap [1977a; 1977b]
to include contradictory information stemming from conflicting sources, adding a
fourth truth value expressing contradiction. The 4-valued truth set forms a bilattice
structure and is isomorphic to the four subsets of {0,1} (now including /0), equipped
with two partial orderings: the truth-ordering (where the two new truth-values are
incomparable and lie between true and false) and the information ordering (that
coincides with inclusion of subsets in {0,1}). These “epistemic truth-values” are at-
tached to atomic propositions, and truth-tables in agreement with the bilattice struc-
ture enable the epistemic status of complex propositions to be computed. The same
kind of analysis as above applies regarding the use of compositional truth values
in this logic (e.g., true in the sense of Belnap means approved by some source and
disapproved by none, an epistemic stance). See [Dubois, 2012] for a discussion. Be-
sides, Ginsberg [1990] used Belnap bilattices to propose a unified semantic view for
various forms of non-monotonic inferences (see Chapter 2 in this volume and the
subsection 4.2.1 in this chapter).

2.6 Granularity and Rough Sets

In the preceding sections, we did not question the assumptions that underlie the def-
inition of the set S of states of the world. It should not be taken for granted, as it
presupposes the definition of a language. The logical approach to Artificial Intelli-
gence often starts from a set of statements expressed in a propositional language,
to which it may assign degrees of confidence. Then the set S is the set of states or
interpretations generated by these propositions (mathematically, the subsets of S are
the smallest Boolean algebra supporting these propositions). This view has impor-
tant consequences for the representation and the updating of bodies of information
items. For instance, a new information item may lead to a refinement of S: this is
called a change of granularity of the representation.
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The simplest case of change of granularity is when the basic propositions are
taken as atomic ones, or more generally when describing objects by attributes. Let
Ω be a set of objects described by attributes V1,V2, . . . ,Vk with respective domains
D1,D2, . . . ,Dk. Then S is the Cartesian product D1×D2× ·· ·×Dk. Each element
of S can be refined into several ones if a (k+1)th attribute is added. Clearly, noth-
ing prevents distinct objects from having the same description in terms of such at-
tributes. Then they are indiscernible by means of this language of description.

Consider a subset Θ of objects in Ω . It follows from the above remark, that in
general Θ cannot be described precisely using such an attribute-based language.
Indeed let R be an equivalence relation on Ω clustering objects having the same
description: ω1Rω2 if and only if Vi(ω1) = Vi(ω2),∀i = 1, . . . ,k. Let [ω]R be the
equivalence class of object ω . We only have such equivalence classes to describe
the set Θ , so only approximate descriptions of it can be used. The only thing we can
do is to build upper and lower approximations Θ ∗ and Θ∗ defined as follows:

Θ
∗ = {ω ∈Ω : [ω]R∩Θ 6= /0}; Θ∗ = {ω ∈Ω : [ω]R ⊆Θ} (4)

The pair (Θ ∗,Θ∗) is called a rough set [Pawlak, 1991; Pawlak and Skowron, 2007].
Only subsets of objects such as Θ ∗ and Θ∗ can be accurately described by means of
combinations of attribute values V1,V2, . . . ,Vk.

There are various examples of situations where rough sets implicitly appear, for
instance histograms or digital images correspond to the same notions of indiscern-
ability and granularity, where equivalence classes correspond, respectively, to the
bins of the histograms and to pixels.

The concept of rough set is thus related to the ones of indiscernibility and granu-
larity, while the concept of fuzzy set is related to gradualness. It it is possible to build
concepts where these two dimensions are at work, when the set to be approximated
or the equivalence relation become fuzzy [Dubois and Prade, 1992]. Rough sets are
also useful in machine learning to extract rules from incomplete data [Grzymala-
Busse, 1988; Hong et al, 2002], as well as fuzzy decision rules [Greco et al, 2006]
(see Chapter 12 in Volume 2).

3 Uncertainty: The Probabilistic Framework

Probability theory is the oldest uncertainty theory and, as such, the best developed
mathematically. Probability theory can be envisaged as a chapter of mathematics. In
that case, we consider a probability space, made of a set Ω (called a sample space)
and an application v from Ω to S (called random variable), where oftentimes S is
taken as the real line. In the simplest case S is a finite set which determines via v
a finite partition of Ω . If B is the Boolean algebra generated by this partition, a
probability space is actually the triple (Ω ,B,P), and P is a probability measure,
i.e., an application from B to [0,1] such that:
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P( /0) = 0; P(Ω) = 1; (5)
if A∩B = /0 then P(A∪B) = P(A)+P(B). (6)

Elements of B are called measurable subsets of Ω . The probability distribution in-
duced by v on S is then characterized by a set of weights p1, p2, . . . , pcard(S), defined
by pi = P(v−1(si)), and such that

card(S)

∑
i=1

pi = 1.

Probabilities of events can be extended to fuzzy events by considering the expec-
tation of their membership functions [Zadeh, 1968], which indeed generalizes the
usual expression P(A) = ∑si∈A pi of a classical event.

Beyond the apparent2 unity of the mathematical model of probability, there are
strikingly different views of what probability means [Fine, 1983]. The aim of this
section is to discuss some of these views, emphasizing some limitations of the repre-
sentation of uncertainty by means of a unique probability distribution. This section
is completed by a glance at De Finetti’s conditional events and their three-valued
logic, and at a very specific kind of probability distribution (so-called big-stepped)
that play a noticeable role in the representation of default rules.

3.1 Frequentists vs. Subjectivists

If probability theory is considered as a tool for knowledge representation, one must
explain what probability means, what is it supposed to represent. There are at least
three understandings of probability, that have been proposed since its inception.

The simplest one is combinatorial. The set Ω is finite and pi is proportional to the
number of elements in v−1(si). Then a probability degree is just a matter of counting,
for each event, the proportion of favorable cases over the number of possible ones.
The well-foundedness of this approach relies on considerations about symmetry (a
principle of indifference or insufficient reason, after Laplace), or the assumption
that the phenomenon we deal with is genuinely random (like coin flipping, fair die
tossing, etc.), and follows a uniform distribution.

The most common interpretation is frequentist. It is assumed that we accumulate
observations (a finite n-element subset Ω(n) of the sample space Ω ). Then frequen-
cies of observing v = si defined by:

fi =
card(v−1(si)∩Ω(n))

n

2 Apparent, because the mathematical settings proposed by Kolmogorov and De Finetti [1974] are
different, especially for the notion of conditioning, even if the Kolmogorov setting seems to be
overwhelmingly adopted by mathematicians.
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can be obtained. When S is infinite, we can build a histogram associated to the
random variable v by considering frequencies of elements of a finite partition of S
(possibly adjusting a continuous distribution to it).

As the number of observations increases, Ω(n) becomes a representative sam-
pling of Ω , and it is assumed that such frequencies fi converge to probability val-
ues defined as limits, by pi = limn→∞ fi. To use this definition of probability, one
must clearly have a sufficient number of observations available (ideally an infinite
number) for the phenomenon under study. Under this view, the probability of a non-
repeatable event makes no sense. Moreover, the frequentist probability distribution
is a mathematical model of a physical phenomenon, hence objective, even if it can
be part of the knowledge of an agent.

Under the third, subjectivist, view, the degree of probability P(A) is interpreted
as a degree of belief of an agent in the truth of the information item v ∈ A. Hence
it should apply to any event, be it repeatable or not. What plays the role of fre-
quencies for making subjective probability operational for non-repeatable events is
the amount of money one should pay for a gamble on the occurrence or the non
occurrence of event A. More precisely the degree of probability P(A) for an agent
is equated to the fair price this agent is willing to pay to a bookmaker for a lottery
ticket with a 1 euro reward in case the event occurs. The price is fair in the sense that
the agent would also agree to sell it at this price to the bookmaker, should the latter
decide to buy it. Clearly the more the agent believes in A the greater (i.e., the closer
to 1 euro) the price (s)he is likely to offer. This approach then relies on a rationality
principle, called coherence, saying that the agent is not willing to lose money for
sure. It ensures that degrees of belief (betting prices) behave in an additive way like
probabilities. To see it, suppose the agent buys two lottery tickets, the first one to bet
on A, the second one to bet on its complement A. The agent is sure to have one win-
ning ticket, which means a profit of 1−P(A)−P(A) euros in relative value. Prices
such that P(A)+P(A)−1 > 0 are not rational as it means a sure loss for the agent.
However, prices such that P(A)+P(A)− 1 < 0 are unfair and will lead the book-
maker to buy the tickets at those prices instead of selling them, to avoid sure loss on
the bookmaker side. So the only choices left for the agent is to propose prices such
that P(A) +P(A) = 1. The same reasoning can be carried our for three mutually
exclusive events, A,B,A∪B, leading to the constraint P(A)+P(B)+P(A∪B) = 1,
which, since P(A∪B) = 1−P(A∪B), leads to P(A∪B) = P(A)+P(B). Note that
the probability degrees so-defined are personal, and may change across agents, con-
trary to frequentist probabilities.

Apparently, the subjectivist approach looks like a mere copy of the calculus of
frequentist probabilities. In fact as shown by De Finetti [1974] and his followers
[Coletti and Scozzafava, 2002], things are not so simple. First, in the subjectivist
approach there is no such thing as a sample space. The reason is that a subjective
probability is either assigned to a unique event (after betting one checks whether
this event did occur or not), or to a single realization of a repeatable one (e.g.,
flipping this coin now). Next, on infinite spaces, only finite additivity (in contrast
with σ -additivity for the frequentist approach) can be justified by the above bet-
ting paradigm. Finally, the initial data does not consist of statistics, but a collec-
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tion of bets (prices ci) on on the truth of propositions Ai in an arbitrary set thereof
{A j : j = 1, . . . ,m}, along with a number of logical constraints between those propo-
sitions. The state space S is then constructed based on these propositions and these
constraints. It is assumed, by virtue of the coherence principle, that the agent assigns
prices c j to propositions A j in agreement with the probability calculus, so that there
is a probability distribution that satisfies P(A j) = c j, j = 1, . . . ,m. While the fre-
quentist approach leads to assuming a unique probability distribution representing
the random phenomenon (obtained via an estimation process from statistical data),
this is not the case in the subjectivist setting, if the bets bear on arbitrary events. In-
deed there may be several probability measures such that c j = P(A j),∀ j = 1, . . . ,m.
Any of those probability functions is coherent but the available information may not
allow us to select a single one. It may also occur that no such probability exists (then
the bets are not coherent). To compute the probability degree P(A) of some arbitrary
event A based on a collection of pairs {(A j,c j) : j = 1, . . . ,m}, one must solve lin-
ear programming problems whose decision variables are probabilities pi attached
to singletons of S of the form: maximise (or minimise) ∑si∈A pi under constraints
c j = ∑sk∈A j pk,∀ j = 1, . . . ,m.

It is then clear that the subjectivist approach to probability is an extension of the
logical approach to artificial intelligence based on propositional logic and classical
inference. The latter is recovered by assigning probability c j = 1 to A j, j = 1, . . . ,m,
which enforces P(A) = 1 to all logical consequences A of {A j : j = 1, . . . ,m}.

There are other formal differences between frequentist and subjectivist probabil-
ities when it comes to conditioning.

3.2 Conditional Probabilities

By considering S as the state space, it is implicitly assumed that S represents an
exhaustive set of possible worlds. To emphasize this point of view we may as well
write the probability P(A) as P(A | S). If further on the agent receives new infor-
mation that comes down to restraining the state space, probabilities will be defined
based on a different context, i.e., a non-empty subset C 6= /0⊂ S and the probability
P(A) becomes P(A |C) in this new context. Changing P(A) into P(A |C) essentially
consists in a renormalization step for probabilities of states inside C, setting other
probabilities to 0:

P(A |C) =
P(A∩C)

P(C)
(7)

We can indeed check that P(A) = P(A | S). This definition is easy to justify in the
frequentist setting, since indeed P(A |C) is but the limit of a relative frequency.

Justifying this definition in the subjectivist case is somewhat less straightforward.
The probability P(A | C) is then assigned to the occurrence of a conditional event
denoted by A |C3. The quantity P(A |C) is again equated to the fair price of a lottery

3 We come back to the logic of conditional events at the end of this section.
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ticket for the conditional bet on A |C. The difference with a standard bet is that if the
opposite of C occurs, the bet is called off and the amount of money paid for the ticket
is given back to the agent [De Finetti, 1974]. The conditional event A |C represents
the occurrence of event A in the hypothetical context where C would be true. In this
operational set-up it can be shown that the identity P(A∩C) = P(A |C) ·P(C) holds.

This definition of conditional probability contrasts with the one of Kolmogorov
based on a quotient, which presupposes P(C) 6= 0, and proves to be too restric-
tive in the subjectivist setting. Indeed, in the latter setting, conditional probabilities
are directly collected, so that conditional probability is the primitive concept in the
subjectivist setting of De Finetti, and no longer derived from the unconditional prob-
ability function. The conditional probability satisfying P(A∩C) = P(A | C) ·P(C)
still makes sense if P(C) = 0 (see [Coletti and Scozzafava, 2002]).

Under the subjectivist view, a body of knowledge consists of a set of condi-
tional probability assignments {P(Ai | C j) = ci j, i = 1, . . . ,m; j = 1, . . . ,n}. Such
conditional events correspond to various hypothetical contexts whose probability is
allowed to be 0. The questions of interest are then (i) to derive a probability dis-
tribution in agreement with those constraints (actually a sequence of probability
measures on disjoint parts of S (see [Coletti and Scozzafava, 2002]); (ii) to find in-
duced optimal bounds on some conditional probability P(A|C). For instance, one
may consider the probabilistic syllogism already studied by Boole and De Mor-
gan. Namely suppose the quantities P(B|A), P(C|B) are precisely known, what can
be inferred about P(C|A) ? It turns out that if P(C|B) < 1, we can only conclude
that P(C|A) ∈ [0,1]. However when the values of P(A|B) and P(B|C) are known as
well, we can compute non-trivial bounds on P(C|A). These bounds can be found in
[Dubois et al, 1993]. For example, it can be shown that

P(C|A)≥ P(B|A) ·max
(

0,1− 1−P(C|B)
P(A|B)

)
and that this lower bound is tight.

Yet another mathematical attempt to justify probability theory as the only rea-
sonable belief measure is the one of R. T. Cox [1946]. To do so he relied on the
Boolean structure of the set of events and a number of postulates, considered com-
pelling. Let g(A|B) ∈ [0,1] be a conditional belief degree, A,B being events in a
Boolean algebra, with B 6= /0:

i) g(A∩C|B) = F(g(A|C∩B),g(C|B)) (if C∩B 6= /0);
ii) g(A|B) = n(g(A|B)), B 6= /0, where A is the complement of A;
iii) function F is supposed to be twice differentiable, with a continuous second

derivative, while function n is twice differentiable.

On such a basis, Cox claimed g(A|B) is necessarily isomorphic to a probability
measure.

This result is important to recall here because it has been repeated ad nauseam
in the literature of artificial intelligence to justify probability and Bayes rule as the
only reasonable approach to represent and process numerical belief degrees [Horvitz
et al, 1986; Cheeseman, 1988; Jaynes, 2003]. However some reservations must be
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made. First, the original proof by Cox turned out to be faulty – see [Paris, 1994]
for another version of this proof based on a weaker condition iii) : it is enough that
F be strictly monotonically increasing in each place. Moreover, Halpern [1999a,b]
has shown that the result does not hold in finite spaces, and needs an additional
technical condition to get it in the infinite setting. Independently of these technical
issues, it should be noticed that postulate (i) sounds natural only if one takes Bayes
conditioning for granted; the second postulate requires self-duality, i.e., it rules out
all other approaches to uncertainty considered in the rest of this chapter and in the
next one; it forbids the representation of uncertainty due to partial ignorance as seen
later on. Noticing that P(A|B) can be expressed in terms of P(A∩B) and P(A∩B),
an alternative option would be to start with assuming g(A|B) to be a function of
g(A∩B) and g(A∩B)), adding the postulate g((A|B)|C) = g(A|B∩C), if B∩C 6=
/0, but dropping (iii). This could lead to a general study of conditional belief as
outlined in [Dubois et al, 2010]. The above comments seriously weaken the alleged
universality of Cox results.

3.3 Bayes Rule: Revision vs. Prediction

Assuming that a single probability measure is available, the additivity property of
probability theory implies two noticeable results for conditional probabilities, that
are instrumental in practice:

• The theorem of total probability: If {C1, . . . ,Ck} forms a partition of S, then

P(A) =
k

∑
i=1

P(A |Ci)P(Ci).

• Bayes theorem

P(C j | A) =
P(A |C j)P(C j)

∑
k
i=1 P(A |Ci)P(Ci)

.

The first result makes it possible to derive the probability of an event in a general
context S given the probabilities of this event in various subcontexts C1, . . . ,Ck, pro-
vided they form a partition of the set of possible states, and if probabilities of these
subcontexts are available. Bayes theorem is useful to solve classification problems:
suppose k classes of objects forming a partition of S. If the probability that objects
in each class C j satisfy property A is known, as well as prior probabilities of classes
C j, then if a new object is presented that is known to possess property A, it is easy
to compute the probability P(C j | A) that this object belongs to class C j. Diagnosis
problems are of the same kind, replacing “class” by “disease” and “observed prop-
erty” by “symptom”. The use of conditional probabilities in Bayesian networks first
proposed in [Pearl, 1988] is extensively discussed in Chapter 8 of Volume 2 of this
treatise.
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Most of the time, the information encoded in a probability distribution refers
to some population. It represents generic information, with a frequentist meaning.
One can use this information to infer beliefs about a particular situation, in which
one has made partial, but unambiguous observations. This task is referred to as
prediction. If P(A | C) is the (frequentist) probability of event A in context C, one
measures the agent’s confidence g(A |C) in proposition A, when only information
C is known, by the quantity P(A | C), assuming the current situation is typical of
context C. The agent’s belief about proposition A is updated from g(A) = P(A) to
g(A |C) = P(A |C) after observing that C is true in the current situation, and nothing
else. Conditioning is thus used to update the agent’s contingent beliefs about the cur-
rent situation by exploiting generic information. For instance, probability measure
P represents medical knowledge (often compiled as a Bayesian network). Contin-
gent information C represents test results for a given patient. Conditional probability
P(A |C) is then the probability that disease A is present for patients with test results
C; this value also measures the (contingent) probability that the particular patient
under consideration has disease A. We can remark that, under inference of this kind,
the probability measure P does not change. One only applies generic knowledge to
the reference class C, a process called focalization.

In the context of subjective probability à la De Finetti, to say that a probability
distribution P is known means to know P(A |C) for all events in all contexts. The
agent only chooses the conditional probability of the event of interest in the context
that is in agreement with the information on the current situation.

These views of conditioning differ from a revision process leading to a change
of probability measure. Indeed some authors justify conditional probability in terms
of belief revision [Gärdenfors, 1988]. The quantity P(A | C) is then viewed as the
new probability of A when the agent learns that C occurred. A basic principle of
belief revision is minimal change: the agent revises its beliefs minimally while ab-
sorbing the new information item, interpreted as the constraint P(C) = 1. Under
this view, the nature of the prior probability, and of the input information is the
same, as is the posterior probability. In this revision scenario (see Chapter 14 of
this volume), the probability function can be generic (e.g., frequentist, population-
based) or singular (a subjective probability) and the input information is of the same
kind as P (we learn that C has actual probability 1). The revision problem is then
defined as follows: find a new probability P′ as close as possible to P such that
P′(C) = 1, which obeys minimal change [Domotor, 1985]. Using a suitable measure
of relative information (e.g., Kullback-Leibler relative entropy) it can be shown that
P′(A) = P(A |C),∀A.

This revision scenario contrasts with the one of making predictions based on
generic knowledge (in the form of a probability measure P describing the behavior
of a population) and singular information items describing a situation of interest,
even if the same tool, conditional probability, is used. As will be seen later on in this
chapter and in the next one, the two tasks (revision vs. prediction) will no longer be
solved by the same form of conditioning in more general uncertainty theories.
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3.4 Probability Distributions and Partial Ignorance

The so-called Bayesian approach to subjective probability theory postulates the
unicity of the probability distribution as a preamble to any kind of uncertainty mod-
eling (see, for instance, [Lindley, 1982]), which could read as follows: any state of
knowledge is representable by a single probability distribution. Note that indeed, if,
following the fair bet procedure of De Finetti, the agent decides to directly assign
subjective probabilities via buying prices to all singletons in S, the coherence princi-
ple forces this agent to define a unique probability distribution in this case. However,
it is not clear that the limited perception of the human mind makes the agent capable
of providing real numbers with infinite precision in the unit interval as prices. The
measurement of subjective probability should address this issue in some way. If one
objects that perhaps the available knowledge of the agent hampers the assignment
of precise prices, the Bayesian approach sometimes resorts to selection principles
such that the Laplace Principle of Insufficient Reason that exploits symmetries of
the problem, or the maximal entropy principle [Jaynes, 1979; Paris, 1994]. Resort-
ing to the latter in the subjectivist setting is questionable because it would select
the uniformly distributed probability whenever it is compatible with the imprecise
probabilistic information, even if imprecise probabilities suggest another trend.

Applying the Bayesian credo as recalled above forces the agent to use a sin-
gle probability measure as the universal tool for representing uncertainty whatever
its source. This stance leads to serious difficulties already pointed fifty years ago
[Shafer, 1976]. For one, it means we give up making any difference between uncer-
tainty due to incomplete information or ignorance, and uncertainty due to a purely
random process, the next outcome of which cannot be predicted. Take the example
of die tossing. The uniform probability assignment corresponds to the assumption
that the die is fair. But if the agent assigns equal prices to bets assigned to all facets,
how can we interpret it? Is it because the agent is sure that the die is fair and its
outcomes are driven by pure randomness (because, say, they could test it hundreds
of times prior to placing the bets)? Or is it because the agent who is given this die,
has just no idea whether the die is fair or not, so has no reason to put more money
on one facet than on another one? Clearly the epistemic state of the agent is not
the same in the first situation and in the second one. But the uniformly distributed
probability function is mute about this issue.

Besides, the choice of a set of mutually exclusive outcomes depends on the cho-
sen language, e.g., the one used by the information source, and several languages
or points of view can co-exist in the same problem. As there are several possible
representations of the state space, the probability assignment by an agent will be
language-dependent, especially in the case of ignorance: a uniform probability on
one state space may not correspond to a uniform one on another encoding of the
same state space for the same problem, while in case of ignorance this is the only
representation left to the betting agent. Shafer [1976] gives the following example.
Consider the question of the existence of extra-terrestrial life, about which the agent
has no idea. If the variable v refers to the claim that life exists outside our planet
(v = l), or not (v = ¬l), then the agent proposes P1(l) = P1(¬l) = 1

2 on S1 = {l,¬l}.
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However it makes sense to distinguish between animal life (al), and vegetal life
only (vl), which leads to the state space S2 = {al,vl,¬l}. The ignorant agent is then
bound to propose P2(al) = P2(vl) = P2(¬l) = 1

3 . As l is the disjunction of al and
vl, the distributions P1 and P2 are not compatible with each other, while they are
supposed to represent ignorance. A more casual example comes from noticing that
expressing ignorance by means of a uniform distribution for v ∈ [a,b], a positive in-
terval, is not compatible with a uniform distribution on v′ = logv ∈ [log(a), log(b)],
while the agent has the same ignorance on v and v′.

Finally, it is not easy to characterize a single probability distribution by as-
signing lottery prices to propositions that do not pertain to singletons of the state
space. Probability theory and classical logic, understood as knowledge represen-
tation frameworks, do not get along very conveniently. A maximal set of propo-
sitions to each of which the same lower bound of probability strictly less than 1
is assigned is generally not deductively closed. Worse, the conditioning symbol in
probability theory is not a standard Boolean connective. The values Prob(A|B) and
Prob(B→ A) = Prob(B∪A) can be quite different from each other, and will co-
incide only if they are equal to 1 [Kyburg, Jr. and Teng, 2012]. A natural concise
description of a probability distribution on the set of interpretations of a language
is easily achieved by a Bayesian network, not by a weighted set of propositional
formulas.

Besides, in first-order logic, we should not confuse an uncertain universal con-
jecture [Gaifman and Snir, 1982] (for instance, Prob(∀x,P(x)→Q(x)) = α) with a
universally valid probabilistic statement (for instance, ∀x,Prob(P(x)→ Q(x)) = α ,
or ∀x,Prob(Q(x)|P(x)) = α). Extensions of Bayesian networks to first-order logical
languages can be found in [Milch and Russell, 2007]. Finally we give a number of
references to works that tried to reconcile probabilistic and logical representations
(propositional, first-order, modal) in various ways: [Halpern, 1990; Bacchus, 1991;
Nilsson, 1993; Abadi and Halpern, 1994; Marchioni and Godo, 2004; Jaeger, 2001;
Halpern and Pucella, 2002, 2006; Jaeger, 2006]. See Chapter 9 in Volume 2 for a
detailed account of probabilistic relational languages.

The above limitations of expressive power of single probability distributions have
motivated the emergence of other approaches to uncertainty representations. Some
of them give up the numerical setting of degrees of belief and use ordinal or qual-
itative structures considered as underlying the former subjectivist approaches. For
instance [Renooij and van der Gaag, 1999; Parsons, 2001; Bolt et al, 2005; Renooij
and van der Gaag, 2008] for works that try to provide a qualitative counterpart of
Bayesian nets. Another option is to tolerate incomplete information in the proba-
bilistic approaches, which leads to different mathematical models of various level
of generality. They are reviewed in the rest of this chapter and in the next chapter in
this volume. Possibility theory is the simplest approach of all, and is found in both
qualitative and quantitative settings [Dubois and Prade, 1998].
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3.5 Conditional Events and Big-Stepped Probabilities

Instead of considering a conditional probability function P(· |C) as a standard prob-
ability distribution on C, De Finetti [1936] was the first scholar to consider the set
of conditional probabilities {P(A | C) : A ⊆ S,C 6= /0} as a probability assignment
to three-events, or conditional events A |C. A conditional event can be informally
understood as a conditional statement or an if-then rule: if all the currently available
information is described by C, then conclude that A holds.

A three-event is so called because it partitions the state space S into three disjoint
sets of states s:

• Either s ∈ A∩C; s is called an example of the rule “if C then A”. The three-event
is considered as true at state s, which is denoted by t(A |C) = 1;

• or s ∈ A∩C; s is called a counter-example of the rule “if C then A”. The three-
event is considered as false at state s, which is denoted by t(A |C) = 0;

• or s ∈ C; then the rule “if C then A” is said not to apply to s. In this case the
three-event takes a third truth-value at s, which is denoted by t(A |C) = I where
I stands for inapplicable.

A three-event A |C can thus be interpreted as a pair (A∩C, A∩C) of disjoint sets
of examples and counter-examples. A qualitative counterpart of Bayes rule holds,
noticing that as the set-valued solutions of the equation A∩C =X∩C are all sets {X :
A∩C⊆ X ⊆ A∪C}, which is another possible representation of A |C (as an interval
in the Boolean algebra of subsets of S). This definition of conditional events as
pairs of subsets suggests a natural consequence relation between conditional events
defined as follows [Dubois and Prade, 1994]:

B | A � D |C⇔ A∩B �C∩D and C∩D � A∩B

which reads: all examples of B |A are examples of D |C and all counter-examples of
D |C counter-examples of B | A. Note that only the second condition coincides
with the deductive inference between material conditional counterparts of the three-
events. Material conditionals highlight counter-examples of rules, not examples.
When ordering the truth-values as 0 < I < 1, this inference also reads B |A � D |C
⇔ t(B | A)≤ t(D |C).

Representing if-the rules by conditional events avoids some paradoxes of ma-
terial implications, such as the confirmation paradox: in the material implication
representation, the rule if C then A is the same as its contrapositive version if A then
C. If we use material implication, we are bound to say that an example confirms a
rule if it makes this material implication true. So, both s1 ∈ A∩C and s2 ∈ A∩C con-
firm the rule. But this is questionable: suppose the rule means all ravens are black.
Then meeting a white swan would confirm that all ravens are black [Hempel, 1945].
This anomaly does not occur with conditional events as A | C is not equivalent to
C | A: they have the same counterexamples (e.g., white ravens) since they have the
same material conditional representations, but they do not have the same examples:
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s2 is an example of C | A (e.g., a white swan), but this three-event does not apply to
s1 ∈ A∩C [Benferhat et al, 2008].

It is worth noticing that a conditional probability P(A | C) is indeed the proba-
bility of a conditional event A |C since P(A |C) is entirely determined by the pair
(P(A∩C),P(A∩C)). Moreover, if all probabilities of singletons are positive, and
B | A � D |C, it is clear that P(B | A)≤ P(D |C).

A three-valued logic for conjunctions of conditional events was developed by
Dubois and Prade [1994]. A three-valued extension of standard conjunction is used
where the third truth-value I is a semi-group identity. The three-valued logic truth-
table for conjunction and the above inference rule offer an alternative simple se-
mantics for the non-monotonic inference system P [Kraus et al, 1990] that captures
exception-tolerant reasoning, where conditional events B | A model generic rules
of the form: generally if A then B (see also the section on non-monotonic infer-
ence in Chapter 2 in this volume and Section 4.2.1 of the present chapter). Non-
monotonicity manifests itself by the fact that the inference B | A � B | A∩C does not
hold (the latter has less examples than the former), so that, like in probability theory,
conditional events B | A and B | (A∩C) can coexist in the same rule base without rul-
ing out any possible world (contrary to material conditionals in propositional logic
that would enforce A∩C = /0). Under this logic, to infer a plausible conclusion F
from a state of knowledge described by the epistemic set E, and a conditional base
(a set of conditional events) C that encodes generic information, means to infer the
conditional event F | E from a conditional event obtained as a suitable conjunction
of a subset of conditional events in C [Benferhat et al, 1997].

Note also that under this inference scheme, the conditional event A∩B |C follows
from C = {A | C,B | C}, so that the set of plausible conclusions obtained from C
will be deductively closed. But as pointed our earlier, P(A∩B | C) > 1− θ does
not follow from P(A |C) ≥ 1−θ and P(B |C) > 1−θ , however small θ may be.
In particular, if we minimally define A as an accepted belief whenever P(A | C) >
P(A |C) (in other words P(A |C)> 1/2), we see that contrary to what happens with
conditional events, a set of probabilistically accepted beliefs will not be closed in the
sense of classical deduction. To ensure compatibility between symbolic inference
between conditional events and accepted beliefs in the above sense, we can restrict
the set of probability distributions to a subset for which deductive closure will be
respected. This kind of probability measure is called big-stepped probability and is
defined as follows by the condition:

∀i < n−1, pi > ∑ j=i+1,..,n p j where pi = P(si) and p1 > .. > pn−1 ≥ pn > 0.

For an example of big-stepped probability distribution when n = 5, consider
p1 = 0.6, p2 = 0.3, p3 = 0.06, p4 = 0.03, p5 = 0.01. This type of exponential-like (or
super-decreasing) probability distributions are at odds with uniform distributions.
They offer a full-fledged probabilistic semantics to the logic of conditional events
and Kraus, Lehmann and Magidor [1990]’s system P for coping with exceptions in
rule-based systems [Benferhat et al, 1999b; Snow, 1999].
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4 Possibility Theory

Basic building blocks of possibility theory go back to a seminal paper by Zadeh
[1978] and further works by Dubois and Prade [1988] quite independently of the
works of an English economist, Shackle [1961] who had outlined a similar theory
some thirty years before (in terms of so-called degrees of surprize to be equated
to degrees of impossibility). Actually, Zadeh and Shackle did not have the same
intuitions in mind. Zadeh viewed his possibility distributions as representing flex-
ible constraints representing pieces of fuzzy information in natural language (viz.
“what is the possibility that John is more than 30 years old assuming he is young”?).
In contrast Shackle tried to offer a representation of how the human mind handles
uncertainty that is supposedly more faithful than probability theory. After the publi-
cation of Zadeh’s paper, it soon became patent that possibility distributions were not
necessarily generated from the representation of gradual properties in natural lan-
guage (like young), but that they allowed to formalize a gradual notion of epistemic
states by extending the disjunctive view of sets to fuzzy sets, whereby degrees of
possibility, understood as plausibility, can be assigned to interpretations induced by
any propositional language.

Possibility measures are maximum-decomposable for disjunction. There have
companion set-functions called necessity measures, obtained by duality, that are
minimum-decomposable for conjunction. They can be completed by two other set-
functions that use the same basic setting. This general framework is first recalled
in the following subsections. Then the distinction between qualitative and quantita-
tive possibility theories is recalled. Qualitative possibility theory is best couched in
possibilistic logic, which is briefly outlined. This section is completed by an expo-
sition of the relationships between qualitative possibility theory and non-monotonic
reasoning, and the modeling of default rules. We end the section by a possibility-
theory rendering of formal concept analysis, which was originally developed in a
very different perspective.

4.1 General Setting

Consider a mapping πv from S to a totally ordered scale L, with top denoted by 1 and
bottom by 0. It can be the unit interval as suggested by Zadeh, or generally any finite
chain such as L= {0,0.1,0.2, . . . ,0.9,1}, or a totally ordered set of symbolic grades.
The possibility scale can be the unit interval as suggested by Zadeh, or generally
any finite chain, or even the set of non-negative integers. For convenience, it is
often assumed that the scale L is equipped with an order-reversing map denoted by
λ ∈ L 7→ 1−λ . More generally L can be a complete lattice with a top and a bottom
element, denoted by 1 or 0 respectively. The larger πv(s), the more possible, i.e.,
plausible the value s for the variable v, that supposedly pertains to some attribute
(like the age of John in Section 2.4). The agent information about v is captured
by πv called a possibility distribution. Formally, the mapping π is the membership
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function of a fuzzy set [Zadeh, 1978], where membership grades are interpreted
in terms of plausibility. If the possibility distribution stems from gradual linguistic
properties, plausibility is measured in terms of distance to fully plausible situations,
not in terms of, e.g., frequency. Function π represents the state of knowledge of an
agent (about the actual state of affairs), also called an epistemic state distinguishing
what is plausible from what is less plausible, what is the normal course of things
from what is not, what is surprising from what is expected. It represents a flexible
restriction on what is the actual state with the following conventions (similar to
probability, but opposite to Shackle’s potential surprise scale)4:

• π(s) = 0 means that state s is rejected as impossible;
• π(s) = 1 means that state s is totally possible (= plausible).

If the universe S is exhaustive, at least one of the elements of S should be the actual
world, so that ∃s,π(s) = 1 (normalised possibility distribution). This condition ex-
presses the consistency of the epistemic state described by π . Distinct values may
simultaneously have a degree of possibility equal to 1. In the Boolean case, π is
just the characteristic function of a subset E ⊆ S of mutually exclusive states, rul-
ing out all those states considered as impossible. Possibility theory is thus a (fuzzy)
set-based representation of incomplete information. There are two extreme cases of
imprecise information

• Complete ignorance: without information, only tautologies can be asserted. It is
of the form v ∈ S, corresponding to the possibility distribution π?

v (s) = 1,∀s ∈ S.
• Complete knowledge: it is of the form v= s0 for some value s0 ∈ S, corresponding

to the possibility distribution π
s0
v (s) = 1 if s = s0 and 0 otherwise. Note that it is

the value 0 that brings information in πv.

Possibility theory is driven by the principle of minimal specificity. It states that any
hypothesis not known to be impossible cannot be ruled out. It is a minimal com-
mitment, cautious information principle. Basically, we must always try to maximize
possibility degrees, taking constraints into account. Measures of possibilistic speci-
ficity have been proposed in a way similar to probabilistic entropy [Higashi and
Klir, 1982].

4.1.1 The Two Basic Set-Functions

Plausibility and certainty evaluations, induced by the information represented by a
distribution πv, pertaining to the truth of proposition v ∈ A can then be defined. We
speak of degrees of possibility and necessity of event A:

Π(A) = max
s∈A

πv(s); N(A) = 1−Π(A) = min
s/∈A

1−πv(s) (8)

4 If L = N, the conventions are opposite: 0 means possible and ∞ means impossible.
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By convention Π( /0) = 0 and then N(S) = 1. Π(S) = 1 (hence N( /0) = 0) fol-
lows if πv is normalized. The symbol 1− (·) should not suggest these degrees are
numerical. It is just the order-reversing map on L.

When distribution πv takes value on the binary scale {0,1}, i.e., there is a subset
E ⊆ S such that πv(s) = 1⇔ s ∈ E, it is easy to see that Π(A) = 1 if and only if
the proposition v ∈ A is not inconsistent with the information item v ∈ E, i.e., if
A∩E 6= /0. Likewise, N(A) = 1 if and only if proposition v ∈ A is implied by the
information item v ∈ E (since E ⊆ A). Π(A) = 0 means that it is impossible that the
assertion v ∈ A is true if v ∈ E is true. N(A) = 1 expresses that the assertion v ∈ A is
certainly true if v ∈ E is true.

Functions N and Π are tightly linked by the duality property N(A) = 1−Π(A).
This feature highlights a major difference between possibility and necessity mea-
sures and probability measures that are self dual in the sense that P(A) = 1−P(A).

The evaluation of uncertainty in the style of possibility theory is at work in clas-
sical and modal logics. If K is a set of propositional formulas in some language,
suppose that E is the set of its models. Consider a proposition p which is the syn-
tactic form of the proposition v ∈ A, then N(A) = 1 if and only if K implies p, and
Π(A) = 0 if and only if K ∪{p} is logically inconsistent. Of course, the presence
of p inside K encodes N(A) = 1, while the presence of its negation ¬p in K en-
codes Π(A) = 0. In contrast, in the propositional language of K, one cannot encode
N(A) = 0 nor Π(A) = 1, e.g., that v ∈ A is unknown. To do this inside the language,
one must use the formalism of modal logic (see Chapter 2 in this volume), that pre-
fixes propositions by modalities of possibility (♦) and necessity (�): in a modal base
Kmod ,♦p∈Kmod directly encodes Π(A)= 1, and�p∈Kmod encodes N(A)= 1 (the
latter merely encoded by p∈K in propositional logic). The duality relation between
Π and N is very well known in modal logic, where it reads ♦p = ¬�¬p. A simple
modal logic (a very elementary fragment of the KD logic), called MEL (for minimal
epistemic logic), has been defined by Banerjee et Dubois [2014] with a semantics
in terms of non-empty subsets of interpretations ({0,1}-valued possibility distribu-
tions (a similar idea was first suggested by Mongin [1994]). The satisfaction of �p
by an epistemic set E means that E ⊆ A, if p encodes v ∈ A.

In the possibilistic setting one distinguishes three extreme epistemic attitudes
pertaining to an information item v ∈ A:

• the certainty that v ∈ A is true: N(A) = 1, hence Π(A) = 1;
• the certainty that v ∈ A is false: Π(A) = 0, hence N(A) = 0:
• ignorance pertaining to v ∈ A: Π(A) = 1, and N(A) = 0.

These attitudes can be refined as soon as L contains at least one value differing from
0 or 1 leading to situations where 0 < N(A)< 1 or 0 < Π(A)< 1.

It is easy to verify that possibility and necessity measures saturate inequalities
(2) verified by capacities:

Π(A∪B) = max(Π(A),Π(B)). (9)

N(A∩B) = min(N(A),N(B)). (10)
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Possibility measures are said to be maxitive and are fully characterized by the max-
itivity property (9) in the finite case; necessity measures are said to be minitive and
are fully characterized by the minitivity property (10) in the finite case, including
when these functions take values in [0,1].

In general possibility and necessity measures do not coincide. It is impossible for
a set function to be at the same time maxitive and minitive for all events, except in
case of complete knowledge (E = {s0}). Then N = Π also coincide with a Dirac
{0,1}-valued probability measure.

Observe that we only have

N(A∪B)≥max(N(A),N(B)) and Π(A∩B)≤min(Π(A),Π(B)),

and it may occur that the difference is maximal. Indeed in the {0,1}-valued case,
if it is not known whether A is true or false (namely, A∩E 6= /0 and A∩E 6= /0),
then Π(A) = Π(A) = 1 and N(A) = N(A) = 0; however, by definition Π(A∩A) =
Π( /0) = 0 and N(A∪A) = N(S) = 1.

4.1.2 Two Decreasing Set Functions. Bipolarity

Yet another set function ∆ and its dual companion ∇ (first introduced in 1991, see
[Dubois and Prade, 1998]) can be naturally associated with the possibility distribu-
tion πv in the possibilistic framework:

∆(A) = min
s∈A

πv(s); ∇(A) = 1−∆(A) = max
s/∈A

1−πv(s) (11)

Observe first that in contrast with Π and N, ∆ and ∇ are decreasing functions with
respect to set inclusion (hence to the logical consequence relation). Function ∆ is
called strong possibility or guaranteed possibility since inside set A, the degree of
possibility is never less than ∆(A) (while Π is only a weak possibility degree that
just measures consistency); dually, function ∇ is a measure of weak necessity, while
N is a measure of strong necessity. Besides, the following inequality hold:

∀A,max(∆(A),N(A))≤min(Π(A),∇(A))

provided that both πv and 1−πv are normalised.
Characteristic properties of ∆ and ∇ are:

∆(A∪B) = min(∆(A),∆(B)); ∆( /0) = 1. (12)

∇(A∩B) = max(∇(A),∇(B)); ∇(S) = 0. (13)

From the standpoint of knowledge representation, it is interesting to consider
the case when the possibility distribution πv only takes a finite number of dis-
tinct values α1 = 1 > · · · > αn > αn+1 = 0. It can then be described by n nested
subsets E1 ⊆ ·· · ⊆ Ei ⊆ ·· · ⊆ En where πv(s) ≥ αi ⇔ s ∈ Ei. One can then ver-
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ify that ∆(Ei) ≥ αi, while N(Ei) ≥ 1− αi+1 for i = 1, . . . ,n, and that πv(s) =
maxEi3s ∆(Ei) = minEi 63s(1−N(Ei)) (with conventions max /0 = 0 et min /0 = 1). A
distribution πv can thus be seen as a weighted disjunction of sets Ei, from the point
of view of ∆ , and as a weighted conjunction of sets Ei from the point of view of N.
The reading of πv viewed from ∆ offers a positive understanding of the possibility
distribution, expressing to which extent each value is possible, while viewed from
N, πv expressed to what extent each value is not impossible (since each value s is all
the more impossible as it belongs to fewer subsets Ei).

These positive and negative flavors respectively attached to ∆ and N lay the foun-
dation of a bipolar representation of information in possibility theory [Benferhat
et al, 2008]. The idea of bipolarity refers to an explicit handling of positive or nega-
tive features of information items [Dubois and Prade, eds.]. There are several forms
of bipolarity and we only focus on the case when it comes from the existence of
distinct sources of information. In the possibilistic setting, two possibility distribu-
tions δv and πv are instrumental to respectively represent values that are guaranteed
possible for v and values that are just known to be not-impossible (because not ruled
out). The concept of bipolarity applies to representing knowledge as well as prefer-
ences. These distributions are differently interpreted: when representing knowledge
δv(s) = 1 means that s is certainly possible because this value or state has been ac-
tually observed, and, when representing preferences, s is an ideal choice. Moreover,
when representing knowledge, δv(s) = 0 just means that nothing is known about this
value that has not been observed, and, when representing preferences, that the choice
s is not at all attractive. In contrast, when representing knowledge, πv(s) = 1 means
that s is not impossible (just feasible when representing preference), but πv(s) = 0
means that s is completely ruled out (or not acceptable for preferences). Intuitively,
any state that is guaranteed possible should be among the non-impossible situations.
So there is a coherence condition to be required: δv ≤ πv. It corresponds to a stan-
dard fuzzy set inclusion). In possibilistic logic presented further on, the distribution
πv stems from constraints of the form N(Ai) ≥ ηi, and distribution δv from state-
ments of the form ∆(B j) ≥ δ j where Ai ⊆ S,B j ⊆ S, and ηi ∈ L,δ j ∈ L. The idea
of bipolar representation is not limited to possibility theory, even if it was not often
considered in other frameworks (see [Dubois et al, 2000a]).

4.1.3 Possibility and Necessity of Fuzzy Events

The set functions Π , N, ∆ et ∇ can be extended to fuzzy sets. The (weak) possibil-
ity of a fuzzy event F is defined by Π(F) = sups min(F(s),πv(s)) [Zadeh, 1978];
still using duality, the necessity of a fuzzy event then reads N(F) = 1−Π(F) =
infs max(F(s),1− πv(s)). Functions Π and N still satisfy, respectively, maxitivity
(9) and minitivity (10) properties. The values Π(F) and N(F) turn out to be spe-
cial cases of Sugeno integrals (see Chapter 16 in this volume). Possibility and ne-
cessity of fuzzy events are instrumental to evaluate the extent to which a flexible
condition is satisfied by an ill-known piece of data [Cayrol et al, 1982]; in partic-
ular, if πv = F , only N(F) ≥ 1/2 obtains, which at first glance may be question-
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able. To get N(F) = 1, the condition ∀s πv(s) > 0⇒ F(s) = 1 is needed, which
means the inclusion of the support of π in the core of F so that any value that is
possible even to a very low extent be fully in agreement with F . Such evaluations
have been applied to fault diagnosis problems using a qualitative handling of uncer-
tainty, where one may separate anomalies that more or less certainly appear when
a failure occurs, from anomalies that more or less possibly appear [Cayrac et al,
1996; Dubois et al, 2001]. Functions ∆ and ∇ extend similarly to fuzzy events as
∆(F) = infs max(1−F(s),πv(s)), letting ∇(F) = 1−∆(F) by duality, while pre-
serving respective properties (12) and (13).

Set functions N and ∆ on fuzzy events are also very useful to represent fuzzy
if-then rules (see also Chapter 10 in this volume) of the form the more v is F, the
more it is sure that y is G, and the more v is F, the more it is possible that y is G
respectively, where F (but possibly G as well) are gradual properties represented
by fuzzy sets [Dubois and Prade, 1996]. Indeed, the first type of rule expresses a
constraint of the form N(G) ≥ F(s) while the second one is better modeled by the
inequality ∆(G) ≥ F(s). However, the first type of rule, where 1−F(s) is viewed
as the degree of possibility that the conclusion G is false, while in the second type
of rule F(x) is the minimal degree of possibility that the conclusion G holds, which
corresponds to the following possibility distributions on the joint domain of (x,y):

πx,y(s, t)≤max(1−F(s),G(t)) and πx,y(s, t)≥min(F(s),G(t)).

Definitions of the strong necessity and possibility functions compatible with these
inequalities are not the ones based on Zadeh’s weak possibility of a fuzzy event.
Based on the following equivalence: c ≤ max(a,1− b)⇔ (1− a)→ (1− c) ≥ b,
where→ is Gödel implication

u→ v =

{
1 si u≤ v,
v otherwise,

the following extensions of strong necessity and possibility of fuzzy events N et ∆

must be used: N(G) = infs(1−F(s))→ (1−πv(s)) and ∆(G) = infs F(s)→ πv(s).
These evaluations do reduce to strong necessity and possibility of standard events,
like the ones in the previous paragraph, but the necessity function satisfies N(G) = 1
when πv = G (since we expect some equivalence between statements such as it is
sure that John is young and John is young). Likewise, ∆(G) = 1 when πv = G. See
[Dubois et al, 2017a] for a systematic analysis of extensions of the four set functions
of possibility theory to fuzzy events. The two types of fuzzy rules reflect a bipolar
view of a standard rule R of the if v ∈ A then y ∈ B, which, on a Cartesian product
of domains S×T can be represented either by the constraint R(s, t) ≥ (A×B)(s, t)
pointing out examples, or by the constraint R(s, t)≥ (A×B)(s, t)⇔ R(s, t)≤ (A+
B)(s, t) excluding counter-examples, where the overbar means complementation and
where A+B = A×B. The view of an if-then rule as a conditional event B|A is thus
retrieved.
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4.1.4 Conditioning in Possibility Theory: Qualitative vs. Quantitative Settings

Since the basic properties in possibility are based on minimum, maximum and
an order-reversing map on the uncertainty scale (1− (·) on the unit interval, and
1−αk = αm−k) on a bounded chain {α0, · · · ,αm}), it is not imperative to use a
numerical setting for the measurement of possibility and necessity. When the set
functions take values in the unit interval, we speak of quantitative possibility the-
ory. When they take values in a bounded chain, we speak of qualitative possibility
theory [Dubois and Prade, 1998]. In both cases, possibility theory offers a simple,
but non trivial, approach to non-probabilistic uncertainty. The two versions of pos-
sibility theory diverge when it comes to conditioning. In the qualitative case, there
is no product operation, and the counterpart of Bayes rule is naturally expressed
replacing it by the minimum operation on the bounded chain L:

Π(A∩B) = min(Π(A | B),Π(B)). (14)

This equation has no unique solution. In the spirit of possibility theory, one is led
to select the least informative solution, according to minimal commitment, namely
when B 6= /0, and A 6= /0:

Π(A | B) =

{
1 if Π(A∩B) = Π(B),
Π(A∩B) otherwise.

(15)

This is just like conditional probability, except that we no longer make a division
by Π(B). When Π(B) = 0, Π(A | B) = 1 as soon as A 6= /0. It reflects the idea than
you may destroy available information when conditioning on an impossible event.
Conditional necessity is defined by duality as5:

N(A | B) = 1−Π(A | B) =

{
0 if Π(A∩B) = Π(B);
N(A∪B) otherwise.

The least specific solution to equation (14) does capture an ordinal form of con-
ditioning due to the following result:

N(A | B)> 0 ⇐⇒ Π(A∩B)> Π(A∩B)

when Π(B) > 0. Intuitively, it means that a proposition A is an accepted belief in
context B if it is more plausible than its negation in this context. Like with probabil-
ity, one may have that Π(A∩B)> Π(A∩B) while Π(A∩B∩C)> Π(A∩B∩C) in
a more restricted context B∩C. An alternative approach to conditional possibility
is the one of Coletti and Vantaggi [2006], in which coherent possibility assessments

5 The Bayesian-like rule in terms of necessity measures, N(A ∩ B) = min(N(A | B),N(B)),
is trivial. Its least specific solution, minimizing necessity degrees, is N(A | B) = N(A ∩ B) =
min(N(A),N(B)), which defines in turn Π(A | B) = Π(B∪A). It comes down to interpret a condi-
tional event as a material implication.
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on conditional events are defined based on equation (14), in the style of De Finetti’s
conditional probability.

In the case of quantitative possibility theory, the lack of continuity of the set
function Π(A | B) in Equation (15) [de Cooman, 1997] has led to replace minimum
by the product in this equation, mimicking conditional probability:

Π(A | B) = Π(A∩B)
Π(B)

provided that Π(B) 6= 0.

As we shall see, it coincides with Dempster’s rule of conditioning in evidence the-
ory (see the next chapter in this volume). More generally, on the unit interval, the
product can be extended to a triangular norm, and this general setting has been stud-
ied by Coletti and Vantaggi [2009] under the coherence approach in the style of De
Finetti.

A major difference between possibility and probability theories concern inde-
pendence. While stochastic independence between events with positive probability
is a symmetric, negation-invariant, notion, since Prob(B|A) = Prob(B) is equiva-
lent to Prob(A∩B) = Prob(A) ·Prob(B) and to Prob(B|A) = Prob(B), this is no
longer the case for possibilistic independence, several versions of which exist. For
instance, in qualitative possibility theory, the equality N(B|A) =N(B)> 0 expresses
that learning A does not question the accepted belief B and is not equivalent to
N(A|B) = N(A) > 0 nor to N(B|A) = N(B) > 0. Another form of independence is
N(B|A) = N(B) = N(B|A) = N(B) = 0, which means that learning A leaves us ig-
norant about B; see [Dubois et al, 1999] for a complete study. There exist several
definitions of conditional possibilistic independence between variables, in qualita-
tive possibility theory, one being symmetric (Π(x,y|z) = min(Π(x|z),Π(y|z))) and
one being asymmetric (Π(x|z) = Π(x|z,y)); see [Ben Amor et al, 2002]. In the
quantitative setting, independence between variables (∀x,y,z,Π(x|y,z) = Π(x|z)) is
symmetric since it is equivalent to ∀x,y,z,Π(x,y|z) = Π(x|z) ·Π(y|z). The notion
of possibilistic independence has also been studied in [Coletti and Vantaggi, 2006].

Conditional probability is the basis of representation of uncertain information in
the form of Bayesian networks. There also exist graphical possibilistic representa-
tions in quantitative possibility theory, and in qualitative possibility theory as well
(see Chapter 8 in Volume 2) and some variants of possibilistic independence are
useful to develop local uncertainty propagation methods.

4.2 Qualitative Possibility Theory

The main application of qualitative possibility theory is the development of pos-
sibilistic logic, an extension of classical logic that handles qualitative uncertainty,
and is useful for encoding non monotonic reasoning and dealing with inconsistency.
Besides, the basic setting of formal concept analysis can be seen as a set-valued
counterpart of possibility theory, which leads to an interesting parallel between the
two theories. We first present possibilistic logic. Note that qualitative possibility
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theory can be used for decision under uncertainty. Decision-theoretic foundations
of qualitative possibility theory are presented in Chapter 17 of this volume.

4.2.1 Possibilistic Logic

The building blocks of possibilistic logic [Dubois et al, 1994; Dubois and Prade,
2004] are pairs made of a (well-formed) formula of classical logic (propositional,
or first order), and a weight (or level) which may be qualitative or numerical. The
weights usually belong to a totally ordered scale, but may only belong to a lattice
structure with a smallest and a greatest element).

Necessity-based possibilistic logic In its basic version, possibilistic logic only al-
lows to consider conjunctions of pairs of the form (p,α) where p is a propositional
logic formula associated with a weight α belonging to the interval (0,1] (or to a
finite totally ordered scale). The weight α is understood as a lower bound of a ne-
cessity mesure, i.e., the pair (p,α) encodes a constraint of the form N(p) ≥ α . It
either corresponds to a piece of information (one is certain at level α that p is true),
or a preference (p then represents a goal to be reached with priority α). The decom-
posability property of necessity mesures (10) ensures that we make no difference
between (p∧ q,α) and (p,α)∧ (q,α), and thus possibilistic bases, which are sets
of such possibilistic pairs, can be expressed as conjunctions of weighted clauses.

Let BN = {(p j,α j) | j = 1, . . . ,m} be a possibilistic base. At the semantic level, a
possibility distribution π over the set of interpretations satisfies BN (denoted by π |=
BN) if and only if N(p)≥ α j, j = 1, . . . ,m. The least specific possibility distribution
that satisfies BN exists and is of the form

π
N
B (s) = min

j=1,...,m
π(p j ,α j)(s) = min

j: s |=¬p j
1−α j,

where π(p j ,α j)(s) = 1 if s |= p j and 1−α j otherwise. Thus an interpretation s is all
the more possible as it does not violate any formula p j with a high priority level α j,
and π |= BN if and only if π ≤ πN

B .
The possibility distribution πN

B provides a description “from above” (each pair
(p j,α j) combined by min restricts the set of interpretations regarded as possible to
some extent). It takes the form of a min-max combination, since π(p j ,α j)(s) is of the
form max(M(p j)(s),1−α j), where M(p) denotes the characteristic function of the
set of models of p. So, BN can be expressed as a conjunction of weighted clauses,
i.e., the extension of a conjunctive normal form, in agreement with the fact (p,α)
and (q,α) is equivalent to (p∧q,α).

Basic possibilistic logic possesses the cut rule

(¬p∨q,α);(p∨ r,β ) ` (q∨ r,min(α,β )).

This rule is sound and complete for refutation, with respect to possibilistic seman-
tics. It should be noticed that the probabilistic counterpart to this rule, namely
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Prob(¬p∨q)≥ α;Prob(p∨ r)≥ β ) ` Prob(q∨ r)≥max(0,α +β −1)

is sound, but not complete with respect to probabilistic semantics. This is related to
the fact that the deductive closure of possibilistic base {(p j,β j) with β j ≥ α} j=1,n
only contains formulas with weights at least α , while this is wrong in general for
the set of probabilistic formulas {p j|Prob(p j)≥ α} j=1,n after closure with the cor-
responding resolution rule (except if α = 1).

Dual possibilistic logic with guaranteed possibility weights A dual representation
for possibilistic logic bases relies on guaranteed possibility functions. A formula is
then a pair [q,β ], understood as the constraint ∆(q) ≥ β , where ∆ is a guaranteed
possibility (anti-)measure. It thus expresses that all the models of q are at least
possible, at least satisfactory at level β . A ∆ -base B∆ = {[qi,βi] | i = 1, . . . ,n} is
then associated with the distribution

π
∆
B (s) = max

i=1,...,n
π[qi,βi](s) = max

i: s |=qi
βi,

with π[qi,βi](s) =min(M(qi)(s),βi). We define π |=B∆ if and only if ∆(qi)≥ βi,∀i=
1, . . . ,n, which is equivalent to π ≥ π∆

B . So, π∆
B provides a description “from below”

of the distribution representing an epistemic state. Taking advantage of decompos-
ability property (12) of guaranteed possibility measures, it is easy to see that the set
{[p,α], [q,α]} is equivalent to the formula [p∨q,α]. Then putting classical logical
formulas in disjunctive normal form, we can always rewrite a dual possibilistic base
B∆ into an equivalent base where all formulas qi are conjunctions of literals.

A base B∆ in dual possibilistic logic can always be rewritten equivalently in terms
of a standard possibilistic logic N-base BN [Benferhat and Kaci, 2003; Benferhat
et al, 2008], and conversely, in such a way that πN

B = π∆
B . However, note that ∆ -

based possibilistic logic obeys an inference rule different from the above resolution
rule for N-bases: [¬p∧q,α]; [p∧ r,β ] ` [q∧ r,min(α,β )]. It propagates guaranteed
possibility levels in agreement with the decreasingness of set function ∆ (indeed, if
r = >, and q ` p, then α = 1 since ∆(⊥) = 1, and the rule concludes [q,β ] from
[p,β ]).

A set of pieces of possibilistic Boolean information (with a finite number of
possibility levels) can thus be represented by a possibility distribution on interpreta-
tions, but also in a more compact manner under the form of a finite set of formulas
associated either with a certainty (resp. priority) level, or with a level of guaran-
teed possibility (resp. satisfaction) when modeling knowledge (resp. preferences).
Moreover, graphical representations of possibilistic bases in terms of possibilistic
networks (either based on qualitative or on quantitative conditioning) have been
proposed, with exact translations from one type of representation to the other [Ben-
ferhat et al, 2002]. For an introduction to possibilistic networks and their algorithms,
the reader is referred to Chapter 8 in Volume 2. Possibilistic networks are also useful
for preference modeling [Ben Amor et al, 2017] (see also Chapter 7 in this volume).

There exist different variants of possibilistic logic where a logical formula is, in
particular, associated with lower bounds of (weak) possibility measures. They can
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express different forms of ignorance by asserting that two opposite events are both
at least somewhat possible). Other kinds of weights can be attached to logical for-
mulas such as time slots where one is more or less certain that the formula is true,
or subsets of sources or agents that are certain to various extents that the formula is
true; see [Dubois and Prade, 2004, 2014] for references. For further developments
on multiple agent possibilistic logic, see [Belhadi et al, 2013].

Generalized possibilistic logic Another type of extension allows for negations or
disjunctions of basic possibilistic formulas (and not only conjunctions as in standard
possibilistic logic). It then results into a two-tiered logic, named “generalized possi-
bilistic logic” (GPL) [Dubois et al, 2017c], where connectives can be placed inside
or outside basic possibilistic formulas. Its semantics is in terms of subsets of possi-
bility distributions. Indeed, elementary formulas in the logic GPL encode lower or
upper bounds on the necessity or the possibility of logical formulas. GPL is both
a generalization of the minimal epistemic logic MEL [Banerjee and Dubois, 2014]
(where weights are only 1 or 0), and of standard possibilistic logic, in full agree-
ment with possibility theory. GPL has been axiomatized and inference in GPL has
been shown sound and complete w.r.t. semantics in terms of subsets of possibility
distributions.

GPL appears as a powerful unifying framework for various knowledge repre-
sentation formalisms. Among others, logics of comparative certainty, and reasoning
about explicit ignorance can be modeled in GPL. There also exists a close con-
nection between GPL and various existing knowledge representation formalisms.
It includes possibilistic logic with partially ordered formulas [Touazi et al, 2015],
the logic of conditional assertions of Kraus et al [1990], three-valued logics [Ciucci
and Dubois, 2013], and the 5-valued “equilibrium logic” of Pearce [2006] as well
as answer set programming [Dubois et al, 2012] (see Chapter 4 in Volume 2). More
specifically, the intended meaning of answer-set programs can be made more ex-
plicit through a translation in GPL (using a 3-level scale for the possibility distribu-
tions).

Lastly, in the same way as imprecise probabilities (see next chapter in this vol-
ume) are of interest, one may think of imprecise possibilities. In that respect, the
following result is particularly worth noticing: any capacity (i.e., any monotonic in-
creasing set function) on a finite domain can be characterized by a set of possibility
mesures; then capacities offer a semantics to non regular modal logics (useful for
the handling of paraconsistency) [Dubois et al, 2015b], and it may provide a uni-
fying framework for multiple source information processing in the spirit of Belnap
logic.

4.2.2 Inconsistency and Non Monotonic Reasoning

An important feature of possibilistic logic is its ability to deal with inconsistency.
The inconsistency level inc(B) of a possibilistic base B is defined as
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inc(B) = max{α| B ` (⊥,α)}.

No formula whose level is strictly greater than inc(B) contributes to inconsis-
tency. It can be shown that 1− inc(B) is the height h(πB) of πB, defined by
h(πB) = maxs πB(s) (πB being the possibility distribution induced by B). Moreover,
inc(B) = 0 if and only if the set of logical formulas appearing in B, irrespective
of the weights, is consistent in the classical sense. All the formulas in B whose
level is smaller or equal to inc(B) are ignored in the standard possibilistic inference
mechanism; they are said to be “drowned”. However, there exist other extensions of
possibilistic inference that take into account formulas at the inconsistency level or
below, especially those not involved in any inconsistent subset of formulas (called
free formulas), see [Benferhat et al, 1999a] for a complete overview of these infer-
ences.

The application of default rules having potential exceptions (for instance, “birds
fly”) to particular situations (e.g., “Tweety is a bird”) about which information is
incomplete, may lead to tentative conclusions (here, “Tweety flies”) that become
inconsistent with the new conclusions obtained when more information becomes
available on such particular situations (e.g., “Tweety is a penguin”). The non mono-
tonic nature of conditional qualitative possibility enables us to handle this problem.
Indeed it allows N(B | A)> 0 and N(B | A∩A′)> 0 to simultaneously hold, i.e., the
arrival of the piece of information A′ leads to reject a previously accepted proposi-
tion B in the context where we only knew A.

Indeed, a default rule “if Ai then generally B j” can be represented by the pos-
sibilistic constraint Π(B j ∩Ai) > Π(B j ∩Ai) expressing that it is more possible to
have Bi true than Bi false in the context where Ai is true. A base of default rules
is then represented by a set of such constraints, which in turn determines a set of
possibility measures that satisfy them. From such a rule base, two types of inference
are natural in order to deduce new rules applicable to the situation where one exactly
knows A (i.e., the rules of the form “if A then generally B”, which will allow us to
conclude B (tentatively) in this situation).

A first type of inference, which is cautious, requires that the inequality constraint
Π(A∩B) ≥ Π(A∩B) associated with B|A be satisfied by par all possibility mea-
sures that agree with the constraints (supposed to be consistent) associated with
the set of default rules. A second, bolder, inference only considers the largest (the
least specific) possibility distribution that is a solution of the latter constraints (it
can be shown that this distribution is unique when it exists). It can be established
that the first inference relation exactly corresponds the so-called preferential infer-
ence (system P [Kraus et al, 1990]) obeying basic postulates for non monotonic
plausible inference (see Chapter 2 in this volume), while the second one is noth-
ing but the “rational closure” inference of Lehmann and Magidor [1992]. These
two types of inference can be justified also using other semantics such as condi-
tional objects [Dubois and Prade, 1994], infinitesimal probabilities, systems Z and
Z+ [Pearl, 1990; Goldszmidt and Pearl, 1991], conditional modal logic [Boutilier,
1994], Halpern’s plausibility measures [Halpern, 2001]; see [Benferhat et al, 1997]
for an overview and references. There are also semantics in terms of big-stepped
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probabilities [Benferhat et al, 1999b], or conditional probabilities in De Finetti
sense [Coletti and Scozzafava, 2002]. In this latter case the rule “if A then generally
B” simply corresponds to a constraint Prob(B|A) = 1 where Prob(B|A) still makes
sense when Prob(A) = 0 (0 does not mean impossible here, but rather something as
“negligible at first glance”), thanks to a prioritized handling of constraints induced
by a partitioning of the set of interpretations [Biazzo et al, 2002]. The setting of
possibilistic logic thus enables us to practically handle a form of default reasoning
[Benferhat et al, 1998], as well as reasoning from qualitative uncertain information;
il is even possible to combine both [Dupin de Saint-Cyr and Prade, 2008].

Belief revision theory [Gärdenfors, 1988] (see Chapter 14 in this volume), which
is closely related to non monotonic reasoning, relies on the notion of epistemic en-
trenchment, used by the revision process for ordering the way pieces of information
are called into question. It is interesting to note that an epistemic entrenchment rela-
tion is nothing but a qualitative necessity relation [Dubois and Prade, 1991] (whose
unique counterpart on a totally ordered scale is a necessity measure [Dubois, 1986]).
Moreover the possibilistic setting can make sense of the intuition that propositions
in the belief base that are independent of the input information should remain after
revision [Dubois et al, 1999]. Besides, updating and revision can be combined, just
as in Kalman [1960] filtering, in the qualitative setting of possibilistic logic [Ben-
ferhat et al, 2000].

Let us also mention a model of causal ascription where an agent, in the presence
of a sequence of events that took place, is supposed to assert causal relations be-
tween some of these events on the basis of his beliefs on the normal course of things
[Bonnefon et al, 2008]. The normal course of things is represented by default rules
(obeying system P postulates). In this approach, causality plays a role different from
the one in the logics of action (see Chapter 15 in this volume) or in diagnosis (see
Chapter 21 in this volume), where causality relations are supposed to be known. The
possibilistic framework for causal ascription favors “abnormal” events as potential
causes which may be adopted by the agent; a detailed comparison of this approach
with the probabilistic modeling of causation can be found in [Bonnefon et al, 2012].
The prediction of the way people ascribe causality relations between reported events
is not to be confused with actual causality judgements that get rid of spurious cor-
relations by means of interventions in the sense of Pearl [2000] (such interventions
can also be handled in the possibilistic setting [Benferhat and Smaoui, 2011]). The
reader is referred to Chapter 9 in this volume for an overview of approaches to
causality modeling.

4.2.3 Possibility Theory and Formal Concept Analysis

Formal concept analysis (FCA) is a knowledge representation formalism at the basis
of a data mining methodology (see Chapters 12 and 13 of Volume 2). It provides a
theoretical setting for learning hierarchies of concepts. Strong similarities between
this representation framework and possibility theory have been pointed out in the
last decade (and also to some extent with rough set theory [Pawlak and Skowron,
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2007]). This is the reason for the presence of this – maybe unexpected – subsection
in this chapter.

In FCA [Barbut and Montjardet, 1970; Ganter and Wille, 1999], one starts with
a binary relation R, called formal context, between a set of objects O and a set
of properties P; xRy means that x possesses property y. Given an object x and a
property y, let R(x) = {y ∈P | xRy} be the set of properties possessed by object x
and let R(y) = {x ∈ O | xRy} be the set of objects having property y. In FCA cor-
respondences are defined between the sets 2O and 2P . These correspondences are
Galois derivation operators. The Galois operator at the basis of FCA, here denoted
by (.)∆ (for a reason made clear in the following), enables us to describe the set of
properties satisfied by all the objects in X ⊆ O as

X∆ = {y ∈P | ∀x ∈ O (x ∈ X ⇒ xRy)}= {y ∈P | X ⊆ R(y)}=
⋂
x∈X

R(x).

In a dual manner, the set of objects satisfying all the properties in Y is given by

Y ∆ = {x ∈ O | ∀y ∈P (y ∈ Y ⇒ xRy)}= {x ∈ O | Y ⊆ R(x)}=
⋂
y∈Y

R(y).

The pair of operators ((.)∆ ,(.)∆ ) applied respectively to 2O and 2P constitutes a
Galois connection that induces formal concepts. Namely, a formal concept is a pair
(X ,Y ) such that

X∆ = Y and Y ∆ = X .

In other words, X is a maximal set of objects, and Y a maximal set of properties
such that each object in X satisfies all the properties in Y . Then the set X (resp. Y )
is called extension (resp. intension) of the concept. In an equivalent way, (X ,Y ) is a
formal concept if and only if it is a maximal pair for the inclusion

X×Y ⊆R.

The set of all formal concepts is naturally equipped with an order relation (denoted
by 4) and defined by: (X1,Y1)� (X2,Y2) iff X1 ⊆ X2 (or Y2 ⊆Y1). This set equipped
with the order relation 4 forms a complete lattice. Then association rules between
properties can be found by exploiting this lattice, see [Guigues and Duquenne, 1986;
Pasquier et al, 1999].

Note that X∆ =
⋂

x∈X R(x) mirrors the definition of a guaranteed possibility mea-
sure ∆(F) = mins∈F π(s) (where π is a possibility distribution), changing L into 2Y

and π into a set-valued map (R(x) is the set of properties satisfied by object x). On
the basis of this parallel with possibility theory, other operators can be introduced
[Dubois and Prade, 2012]. Namely, the possibility operator (denoted by (.)Π ) and
its dual necessity operator (denoted by (.)N), as well as the operator (.)∇ dual to the
operator (.)∆ on which FCA is based. They are defined as follows:

• XΠ is the set of properties satisfied by at least one object in X :
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XΠ = {y ∈P | ∃x ∈ X , xRy}= {y ∈P | X ∩R(y) 6= /0}=
⋃
x∈X

R(x);

• XN is the set of properties that only the objects in X have:

XN = {y ∈P | ∀x ∈ O (xRy⇒ x ∈ X)}= {y ∈P | R(y)⊆ X}=
⋂
x 6∈X

R(x),

where R(x) is the set of properties that x has not;
• X∇ is the set of properties that are not satisfied by at least one object outside X :

X∇ = {y ∈P | ∃x ∈ X , xRy}= {y ∈P|R(y)∪X 6= O}=
⋃
x 6∈X

R(x).

The operators Y Π , Y N , Y ∇ are obtained similarly. While the equalities X∇ = Y
and Y ∇ = X provide another characterization of usual formal concepts, it can be
shown that pairs (X ,Y ) such that XN = Y and Y N = X (equivalently, XΠ = Y and
Y Π = X) characterize independent sub-contexts (i.e., that have no object or property
in common) inside the initial context [Dubois and Prade, 2012]. The pairs (X ,Y )
such that XN = Y and Y N = X are such that:

(X×Y )∪ (X×Y )⊇R.

It can be checked that the four sets XΠ , XN , X∆ , X∇ are complementary pieces of
information, all necessary for a complete analysis of the situation of X in the formal
context K = (O,P,R). In practice, one supposes that both R(x) 6= /0 and R(x) 6=
P , i.e., each object possesses at least one property in P , but no object possesses
all the properties in P . Under this hypothesis of bi-normalisation, the following
inclusion relation holds: RN(Y )∪R∆ (Y ) ⊆ RΠ (Y )∩R∇(Y ), which is a counterpart
of a relation that holds as well in possibility theory (provided that distributions π

and 1−π are both normalized).
Finally, let us also mention that there exists an extension of FCA to graded prop-

erties [Belohlavek, 2002], as well as an extension to formal contexts displaying in-
complete or uncertain information [Burmeister and Holzer, 2005; Ait-Yakoub et al,
2017]. Another extension deals with the capability of associating objects no longer
with simple properties, but with structured descriptions, possibly imprecise, or with
logical descriptions, thanks to so-called patron structures [Ganter and Kuznetsov,
2001; Ferré and Ridoux, 2004]. They remain in agreement with the possibilistic
paradigm [Assaghir et al, 2010].

4.3 Quantitative Possibility and Bridges to Probability

In the quantitative version of possibility theory, it is natural to relate possibility and
probability measures. It can be done in several independent ways. In the following,
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we outline the three main ones: namely, a possibility distribution can be viewed as
a likelihood function in non-Bayesian statistics, possibility (resp. necessity) degrees
of events can be viewed either as upper (resp. lower) probability bounds, or as a
suitable transformation of exponents of infinitesimal probabilities.

4.3.1 Possibility Distributions as Likelihood Functions

The idea of casting likelihood functions inside the framework of possibility theory
was suggested by Smets [1982], but it has roots in considerations relating statistical
inference and consonant belief functions (another name for necessity measures) in
Shafer [1976]’s book; see also [Denœux, 2014] on this topic. The connection was
formalized in [Dubois et al, 1997], and further studied in the coherence framework
of De Finetti in [Coletti and Scozzafava, 2003]. Consider an estimation problem
where the value of a parameter θ ∈Θ that governs a probability distribution P(· | θ)
on S is to be determined from data. Suppose the obtained data is described by the
information item A. The function `(θ) = P(A | θ),θ ∈Θ is not a probability distri-
bution, it is a likelihood function: a value θ is all the more plausible as P(A | θ) is
greater, while this value can be ruled out if P(A | θ) = 0 (in practice, less that a small
relevance threshold). Such a function is often renormalized so that is maximal value
is 1, since a likelihood function is defined up to a positive multiplicative constant.
There are some good reasons why one may see `(θ) as a degree of possibility of θ ,
and let π(θ) = P(A | θ) (up to renormalizing). First, it can be checked that, in the
absence of prior probability on Θ , ∀B⊆Θ , P(A | B) is upper and lower bounded as
follows:

min
θ∈B

P(A | θ)≤ P(A | B)≤max
θ∈B

P(A | θ)

It suggests that we can apply the maxitivity axiom to get an optimistic estimate
of P(A | B) from {P(A | θ),θ ∈ B}. However, insofar as `(b) is the likelihood of
θ = b, and we extend it to all subsets B of Θ , we should have that `(B) ≥ `(b),
for all b ∈ B. Hence, in the absence of prior probability, we can identify `(B) as
a possibility measure with distribution π(θ) = P(A | θ) [Coletti and Scozzafava,
2003]. Considering the lower bound of P(A |B) would yield a guaranteed possibility
measure.

However, note that under this view, possibility degrees are known in relative val-
ues, which means that not all basic notions of possibility theory apply (e.g., compar-
ing the informativeness of π and π ′ using fuzzy set inclusion, by checking if π ≤ π ′

becomes questionable).

4.3.2 Possibility as Upper Probability

Alternatively, possibility degrees valued on [0,1] viewed as an absolute scale can be
exactly defined as upper probability bounds as Zadeh [1978] had the intuition from
the start. The generation process can be described as follows: consider an increasing
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sequence of nested sets E1 ⊂ E2 ⊂, . . . ,⊂ Ek and let α1 ≤ α2 ≤, . . . ,≤ αk ∈ [0,1],
such that αi is a lower bound on P(Ei). This type of information is typically provided
by an expert estimating a quantity v by means of set Ek with confidence αk that Ek
contains v. Consider the probability family P = {P : P(Ei) ≥ αi,∀i = 1, . . . ,k}. It
is easy to check [Dubois and Prade, 1992] that the function P∗(A) = infP∈P P(A) is
a necessity measure and the function P∗(A) = supP∈P P(A) is a possibility measure
induced by the possibility distribution:

∀s ∈ S, π(s) = min
i=1,...,k

max(Ei(s),1−αi). (16)

where Ei(s) = 1 if s ∈ Ei and 0 otherwise. See [de Cooman and Aeyels, 1999] for
the extension of this result to infinite settings. Each pair (Ek,αk), made of a set and
its confidence level is encoded by the possibility distribution max(Ei(s),1−αi),
where 1−αi is an upperbound on the probability that v 6∈ Ek. Equation (16) just per-
forms the conjunction of these local distributions. It is clear that π is a very concise
encoding of the probability family P . Conversely, the (convex set) of probability
measures encoded by a possibility distribution π can be retrieved as

P(π) = {P,P(A)≤Π(A),∀A measurable}= {P,P(A)≥ N(A),∀A mesurable},

and it can be checked that Π(A) = supP∈P(π) P(A). In the case where the sets Ei
are not nested, the above formula (which is in agreement with possibilistic logic se-
mantics of Section 4.2.1) only yields an approximation of the probability family P;
better approximations can be obtained by means of pairs of possibility distributions
enclosing P [Destercke et al, 2008]. This view of possibility measures cast them
in the landscape of imprecise probability theory studied in the next chapter of this
volume.

Nested shortest dispersion intervals can be obtained from a given probability
distribution (or density) p, letting Eα = {s : p(s) ≥ α}, and αα = P(Eα). The ob-
tained possibility distribution, that covers p as tightly as possible, is called optimal
probability-possibility transform of p [Dubois et al, 2004] and is instrumental for
comparing probability distributions in terms of their peakedness or entropies (by
comparing their possibility transforms in terms of relative specificity) [Dubois and
Hüllermeier, 2007].

4.3.3 Possibility as Infinitesimal Probability

Ranking functions, originally called ordinal conditional functions (OCF), have been
proposed by Spohn [1988, 2012] to represent the notion of belief in a setting that
is basically equivalent to possibility theory, but for the direction and nature of its
value scale. Each state of the world s ∈ S is assigned a degree κ(s) not in [0,1], but
in the set of non-negative integers N, (sometimes even ordinals). The convention
for ranking functions is opposite to the one in possibility theory, since the smaller
κ(s) the more possible s. It is more in agreement with a degree of potential surprise
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suggested by Shackle [1961]: κ(s) =+∞ means that s is impossible, while κ(s) = 0
means that nothing opposes to s being the true state of the world. Set functions
similar to possibility distribution are then built in the same style as Shackle [1961]:

κ(A) = min
s∈A

κ(s) and κ( /0) = +∞.

More specifically, Spohn [1990] interprets κ(A) as the integer exponent of an in-
finitesimal probability P(A) = εκ(A) , which is indeed in agreement with the union-
minitivity property κ(A∪B) = min(κ(A),κ(B)) of ranking functons.

Conditioning is defined by Spohn [1988] as follows:

κ(s | B) =
{

κ(s)−κ(B) si s ∈ B
+∞ sinon

It is obvious that κ(s | B) is the exponent of the infinitesimal conditional probability
P(s | B) = εκ(s)/εκ(B).

Casting ranking functions in possibility theory is easy, due to the following trans-
formations [Dubois and Prade, 1991] :

πκ(s) = 2−κ(s),Πκ(A) = 2−κ(A).

As a consequence possibility distributions πκ and functions Πκ take values on
a subset of rational numbers in [0,1]. Function Πκ is indeed a possivility measure
since

Πκ(A∪B) = 2−min(κ(A),κ(B)) = max(Πκ(A),Πκ(B)).

Moreover, for the conditional ranking function one obtains ∀s,

πκ(s|B) = 2−κ(s)+κ(B) =
2−κ(s)

2−κ(B)
=

πκ(s)
Πκ(B)

,

which is the product-based conditioning of possibility theory. The converse (loga-
rithmic) transformation of a possibility distribution into a ranking function is only
possible if it maps real numbers to non-negative integers. More on the comparison
between possibility theory and ranking functions can be found in [Dubois and Prade,
2016].

Note that this approach is often presented as qualitative while it is a numeri-
cal one. In some applications, or when modeling expert opinions, it may be more
convenient to describe degrees of (dis)belief by means of integers rather than by
real numbers in [0,1]. However it is easier to introduce intermediary grades with
a continuous scale. The integer scale of ranking functions has been used recently
by Kern-Isberner and Eichhorn [2014] to encode non-monotonic inferences and ap-
plied in [Eichhorn and Kern-Isberner, 2015] to belief networks.
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5 The Cube of Opposition: A Structure Unifying Representation
Frameworks

Many knowledge representation formalisms, although they look quite different at
first glance and aim at serving diverse purposes, share a common structure where
involutive negation plays a key role. This structure can be summarized under the
form of a square or a cube of opposition. This in particular true for frameworks able
to represent incomplete information. It can be observed that the properties of non
empty intersection and of inclusion related by negation are at the basis of possibility
theory, formal concept analysis, as well as rough set theory. It is still true for belief
functions presented in the next chapter in this volume. This section first introduces
the square and the cube of opposition, and indicates the formalisms to which it
applies.

The traditional square of opposition [Parsons, 2008], which dates back to Aris-
totle’s time, is built with universally and existentially quantified statements in the
following way. Consider four statement of the form (A): “all P’s are Q’s”, (O): “at
least one P is not a Q”, (E): “no P is a Q”, and (I): “at least one P is a Q”. They can
be displayed on a square whose vertices are traditionally denoted by the letters A, I
(affirmative half) and E, O (negative half), as pictured in Figure 1 (where Q stands
for “not Q”).

ContrariesA: all P’s are Q’s E: all P’s are Q’s

Sub-alterns

Sub-contrariesI: at least one P is a Q O: at least one P is a Q

Su
b-

al
te

rn
s ContradictoriesContra

dictories

Fig. 1 Square of opposition

As can be checked, noticeable relations hold in the square provided that there a
non empty set of P’s to avoid existential import problems:

1. A and O (resp. E and I) are the negation of each other;
2. A entails I, and E entails O (it is assumed that there is at least one P);
3. A and E cannot be true together;
4. I and O cannot be false together.

Another classical example of such a square is obtained with modal logic operators
by taking A as �p, E as, �¬p, I as ♦p, and O as ♦¬p. This structure largely
forgotten with the advent of modern logic after G. Boole, was rediscovered by
Blanché [1966] and then by Béziau [2003] who both advocate its interest. In par-
ticular, Blanché noticed that adding two vertices U and Y defined respectively as
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the disjunction of A and E, and as the conjunction of I and O, leads to a hexagon
that includes three squares of opposition in the above sense. Such a hexagon is ob-
tained each time we start with three mutually exclusive statements, such as A, E,
and Y, and it turns out that this structure is often encountered when representing
relationships between concepts on the same domain (e.g., deontic notions such as
permission, obligation, interdiction, etc.).

Switching to first order logic notations (e.g., A becomes ∀x,P(x)→ Q(x)), and
negating the predicates, i.e., changing P into ¬P, and Q in ¬Q leads to another
similar square of opposition aeoi, where we also assume that the set of “not-P’s” is
non-empty. Altogether, we obtain eight statements that may be organized in what
may be called a cube of opposition [Reichenbach, 1952]. The front facet and the
back facet of the cube are traditional squares of opposition, and the two facets are
related by entailments.

Such a structure can be extended to graded notions [Ciucci et al, 2016], using an
involutive negation such as 1− (·), and where the mutual exclusiveness of A and
E translates into a sum of degrees less or equal to 1, while entailments are trans-
lated by inequalities between degrees (in agreement with residuated implications).
An example of a graded cube is given by possibility theory. Indeed, assuming a
normalized possibility distribution π : S→ [0,1], and also assuming that 1− π is
normalized (i.e., ∃s ∈ S,π(s) = 0), we obtain a cube of opposition on Fig. 2, linking
Π(A), N(A), ∆(A), ∇(A), Π(A), N(A), ∆(A), and ∇(A). The front and back facets
form two squares of opposition, while the side facets express a different property,
namely inequalities such as min(Π(A),∇(A)) ≥ max(N(A),∆(A)). Since these set
functions rely on ideas of graded inclusion and degrees of non-empty intersections,
the fact that they fit with a graded structure of cube of opposition should not be too
surprizing.

i: ∇(A)

I: Π(A) O: Π(A)

o: ∇(A)

a: ∆(A)

A: N(A) E: N(A)

e: ∆(A)

Fig. 2 Cube of opposition of possibility theory

In fact, the structure of cube of opposition is quite general. As noticed in [Ciucci
et al, 2016], any binary relation R on a Cartesian product X ×Y (one may have
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Y = X) gives birth to a cube of opposition, when applied to a subset. Indeed, we
assume R 6= /0. Let R(x) = {y∈Y | (x,y)∈R}. R denotes the complementary relation
((x,y) ∈ R iff (x,y) 6∈ R), and Rt the transposed relation ((y,x) ∈ Rt if and only if
(x,y) ∈ R); let R(y) = {x ∈ X | (x,y) ∈ R} = Rt(y). Moreover, it is assumed that
∀x, R(x) 6= /0, which means that the relation R is serial, namely ∀x,∃y such that
(x,y) ∈ R. Similarly, Rt is also supposed to be serial, i.e., ∀y, R(y) 6= /0, as well as R
and its transpose, i.e. ∀x, R(x) 6= Y and ∀y, R(y) 6= X .

Let T be a subset of Y and T its complement. We assume T 6= /0 and T 6= Y . The
composition is defined in the usual way R(T ) = {x∈X | ∃t ∈T,(x, t) ∈ R}. From
the relation R and the subset T , one can define the four following subsets of X (and
their complements):

R(T ) = {x∈ X | T ∩R(x) 6= /0} (17)

R(T ) = {x∈X | R(x)⊆ T} (18)

R(T ) = {x ∈ X | T ⊆ R(x)} (19)

R(T ) = {x ∈ X | T ∪R(x) 6= X}. (20)

These four subsets and their complements can be nicely organized into a cube of
opposition (Fig.3). Some of the required conditions for the cube hold thanks to
seriality (which plays the role of normalization in possibility theory).

i: R(T )

I: R(T ) O: R(T )

o: R(T )

a: R(T )

A: R(T ) E: R(T )

e: R(T )

Fig. 3 Cube induced by a relation R and a subset T

The front facet of the cube fits well with the modal logic reading of the square
where R is viewed as an accessibility relation, and T as the set of models of a
proposition p. Indeed, �p (resp. ♦p) is true in world x means that p is true at every
(resp. at some) possible world accessible from x; this corresponds to R(T ) (resp.
R(T )) which is the set of worlds where �p (resp. ♦p) is true.

Other than the semantics of modal logics, there are a number of AI formalisms
that exploit a relation and to which the cube of opposition of Fig. 3 applies: formal
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concept analysis, as seen in Section 4.2.3, rough sets induced by an equivalence rela-
tion (see Section 2.6), or abstract argumentation based on an attack relation between
arguments. Graded squares or cubes also apply to belief functions and to upper
and lower probabilities [Pfeifer and Sanfilippo, 2017] presented in the next chapter
in this volume, [Dubois et al, 2015a], as well as to aggregation functions such as
Sugeno integrals used in multiple criteria aggregation and qualitative decision the-
ory, or yet Choquet integrals [Dubois et al, 2017b], both presented in Chapter 16 in
this volume.

This common structure is deeply related to the interplay of three negations as
revealed by the relational cube. In contrast the square and the cube collapse to a
segment in case of probabilities since they are autodual.

The cube of opposition lays bare common features underlying many knowledge
representation formalisms. It exhibits fruitful parallelisms between them, which
may even lead to highlight some missing components present in one formalism and
currently absent from another.

6 Conclusion

In this chapter, we have tried to show that while probability theory properly cap-
tures uncertainty due to the randomness of precisely observed phenomena, the rep-
resentation of uncertainty due to incomplete information requires a different setting
having roots in classical and modal logics, where incompleteness is a usual feature.
The corresponding uncertainty framework is possibility theory, which allows for a
qualitative representation of uncertainty as well as a quantitative one. It has been
shown that numerical possibility theory is appropriate provided that the available
information items, although imprecise, are consonant, i.e., do not contradict each
other. The handling of imprecise and possibly conflicting information items require
joint extensions of probability and quantitative possibility theory studied in the next
chapter.
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