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Blind Kalman Filtering for Short-term Load

Forecasting
Shalini Sharma, Student member, IEEE, Angshul Majumdar, Senior member, IEEE, Vı́ctor Elvira, Senior

member, IEEE, Émilie Chouzenoux, Senior member, IEEE

Abstract—In this work we address the problem of short-term
load forecasting. We propose a generalization of the linear state-
space model where the evolution of the state and the observation
matrices is unknown. The proposed blind Kalman filter algo-
rithm proceeds via alternating the estimation of these unknown
matrices and the inference of the state, within the framework
of expectation-maximization. A mini-batch processing strategy
is introduced to allow on-the-fly forecasting. The experimental
results show that the proposed method outperforms the state-of-
the-art techniques by a considerable margin, both on load profile
estimation and peak load forecast problems.

Index Terms—load forecasting, state-space model, Kalman
filtering, expectation-minimization algorithm.

I. INTRODUCTION

IN this letter, we address the classical problem of short

term (day ahead) load forecasting [1]. Classical signal

processing techniques like stochastic time series analysis,

Kalman filter, multiple linear regression, and exponential

smoothing were used initially for this problem [2]. These

linear techniques, with fixed and empirically set linear oper-

ators, presented low accuracy and flexibility, paving the way

for non-linear neural network prediction paradigm since the

1990’s [3]. After the saturation of the initial studies on neural

networks (since the 2000’s), non-linearity in short-term load

forecasting was modelled in terms of support vectors [4].

The rise of deep learning led to the modern residual neural

networks (ResNet) [5] and long short-term memory (LSTM)

networks [6] in electricity load forecasting. One advantage

of classical signal processing models (e.g., Kalman filter and

its non-linear versions [7]) is their interpretability. Moreover,

they can explicitly quantify the uncertainty in the estimate.

The main issue with these models (both linear [2] and non-

linear [8]) is that the state and the observations functions

need to be known. Modelling short term (weekly) and long

term (seasonal) fluctuations by a single function leads to

oversimplification and consequently poor performance. This is

the likely reason why neural network approaches, known for

their function approximation capability, improve over classical

signal processing techniques based on state-space models.

However, the improved performance is at the expense of losing

both interpretability and uncertainty quantification. In this
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work, we aim at retaining advantages from both approaches.

Our methodology is based on the classical state-space model.

However, we do not require specification of the state and

observation matrices, which are instead learnt progressively

from the data. While we assume a linear-Gaussian model, the

state and observation matrices that we estimate can change

over time. Hence, the method works by assuming temporally

local (and unknown) linearity, which can be seen as an

approximation of an underlying non-linearity, generalizing

the standard linear-Gaussian model with static parameters.

In this framework, we propose an inference method for the

joint estimation of these unknown linear operators and the

hidden state, all in a sequential manner. In this work we focus

on the application of forecasting building level loads, which

has generated much interest this last decade [9], [10]. We

specifically address two problems: next day hourly (profile)

load forecast and next day peak load forecast.

The paper is organized as follows. In Section II, we first

focus on the problem of profile estimation, and introduce our

blind Kalman filter method to address it. Then we show how

to extend the latter to the problem of peak load forecast. Sec-

tion III presents our numerical results, along with comparisons

with state-of-the-art methods. Section IV concludes this paper.

II. PROPOSED APPROACH: BLIND KALMAN FILTERING

A. Profile load forecast

The profile estimation problem can be formulated, using

the following linear state-space model, for time k = 1, . . . ,K:

State Evolution:

xk = Axk−1 + uk, (1)

Observation:

yk = Bxk + vk, (2)

where xk and yk are the hidden state and observed hourly

quantities (e.g., power, temperature, humidity), respectively,

for k = 1, . . . ,K, uk and vk are additive white Gaussian

noises (AWGN) with zero mean and covariances Q and R,

respectively. A is the state transition matrix and B is the

observation matrix. The first state x0 is a random variable with

normal distribution N (x0; x̄0,P0). When the matrices A and

B are known, the filtering and smoothing solutions are given

by the Kalman filter and Rauch-Tung-Striebel (RTS) smoother

i.e., computing the distributions p(xk|y1:k) and p(xk|y1:K)
respectively [11]. However, in practical situations, A and B

are unknown, and hence they must be estimated.
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We propose here the so-called blind Kalman filter

(BKF) algorithm. The solution, relying on the expectation-

maximization framework [13], proceeds in two parts; it alter-

nates between the (i) estimation of the states, assuming A and

B to be fixed, and (ii) estimation of A and B, assuming the

states to be fixed.

1) Filtering-smoothing step: For the first step, we fix the

parameters A and B. We use the aforementioned Kalman filter

/ RTS smoother.1 The Kalman recursions are as follows:

Initialize: x̄0, P0

For k = 1, . . . ,K
Predict State:

{
x−

k
= Ax̄k−1,

P−

k
= APk−1A

⊤ +Q.
(3)

Update state:





zk = yk −Bx−

k
,

Sk = BP−

k
B⊤ +R,

Kk = P−

k
B⊤S−1

k
,

xk = x−

k
+Kkzk,

Pk = P−

k
−KkSkK

⊤

k
.

(4)

The Kalman filter provides the normal filtering distribution as

p(xk|y1:k) = N (xk; x̄k,Pk). (5)

One can also compute the distribution of the hidden state con-

ditioned to all data (i.e., including future data when possible).

This is the smoothing distribution given by

p(xk|y1:K) = N (xk;x
s

k
,Ps

k
), (6)

where mean and variance are computed by the RTS smoother

that re-uses some of the results of the Kalman filter:

For k = K, . . . , 1
Backward Recursion (Bayesian Smoothing):





x−

k+1
= Axk,

P−

k+1
= APkA

⊤ +Q,

Gk = PkA
⊤[P−

k+1
]−1,

xs

k
= xk +Gk[x

s

k+1
− x−

k+1
],

Ps

k
= Pk +Gk[P

s

k+1
−P−

k+1
]G⊤

k
.

(7)

Using the RTS smoother requires processing the full sequence

of data, which prevents from an online prediction and a

responsive estimation of the hidden state. In practice, we will

make use of a windowing strategy, applying the RTS to data

minibatches.

2) State matrices update step: The next step is to update the

matrices A and B through a pointwise maximum likelihood

procedure. As explained in [11], [12], this step can be viewed

as the M-step in a generic EM method, while the E-step

corresponds to the step of Section II-B (see also [14], [15], [16]

for applications of a similar framework in other application

fields).

1More details regarding the probabilistic interpretation of all involved
variables can be found in [11, Chapters 4-8].

More precisely, using the outputs of the RTS, the E-step

defines the following quantities:




Σ = 1

K

∑
K

k=1
Ps

k
+ xs

k
(xs

k
)⊤,

Φ = 1

K

∑
K

k=1
Ps

k−1
+ xs

k−1
(xs

k−1
)⊤,

Γ = 1

K

∑
K

k=1
yk(x

s

k
)⊤,

Λ = 1

K

∑
K

k=1
Ps

k
G⊤

k−1
+ xs

k
(xs

k−1
)⊤.

(8)

Then, a lower bound of the marginal log-likelihood ϕ(A,B) =

log p(y1:K |A,B) under this model is built (see [11, Theorem

12.3], in particular [11, Eq. (12.38)], for obtaining recursively

the log-marginal likelihood within the Kalman framework, and

[11, Theorem 12.4] for the full derivation lower bound). One

derives the M-step by maximizing this minorizing bound to

update A and B, which yields the closed form expressions:
{

A = ΛΦ−1,

B = ΓΣ−1.
(9)

Our proposed method referred later as blind Kalman filter

(BKF) by applying (3)-(4)-(5) then (6)-(7), until stabilization

of function ϕ. We processed each data minibatches sequen-

tially. At the time k, the parameters are estimated by applying

the EM iterates only on the past N observations, in a sliding-

window manner. A warm start strategy is employed for the

Kalman iterations initialization for the next window.

B. Peak load forecast

In order to address the problem of peak load forecast, we

modify the observation model integrating the following label

consistency constraint for an observed peak load value as

ck = w⊤xk + nk, (10)

where nk is zero-mean AWGN with variance σ2, and w is

an unknown vector. It is easy to show that this new equation

can actually be incorporated to the observation equation (2)

by setting ỹk = B̃xk + ṽk with

ỹk =

[
yk

ck

]
, (11)

B̃ =

[
B

w⊤

]
, (12)

ṽk =

[
vk

nk

]
. (13)

Once we have modified the model in this way, the previously

described blind Kalman algorithm can be applied.

III. EXPERIMENTAL EVALUATION

The dataset used here is the I-BLEND dataset which is

collected for 52 months at the Indraprastha Institute of In-

formation Technology, New Delhi, India. The dataset contains

power consumption of student hostels, academic buildings, and

administrative buildings. The data is available at 10 minutes

intervals, but we have used aggregated readings at the hourly

level for our experiments. On top of that, we collected the

corresponding hourly weather information (temperature and

humidity) at the city level. The input for each day k therefore
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Building Window
MAE RMSE MAPE

LSTM ResNet BKF LSTM ResNet BKF LSTM ResNet BKF

1 week 0.423 0.339 0.131 0.721 0.581 0.232 27.5 20.3 2.8
Lecture 2 weeks 0.500 0.418 0.224 0.890 0.620 0.267 28.9 21.6 2.9

4 weeks 0.921 0.811 0.340 1.366 1.003 0.355 28.1 24.3 3.5

1 week 0.387 0.287 0.152 0.714 0.603 0.263 29.8 26.3 3.1
Academics 2 weeks 0.428 0.309 0.159 0.809 0.697 0.286 30.6 29.9 3.3

4 weeks 0.876 0.733 0.223 1.311 1.020 0.370 38.9 37.0 4.1

1 week 0.903 0.804 0.237 1.287 1.038 0.326 23.3 19.1 2.1
Facilities 2 weeks 0.967 0.829 0.327 1.441 1.173 0.391 24.8 22.3 2.7

4 weeks 1.026 0.943 0.439 1.517 1.246 0.430 30.6 28.7 3.2

Girls 1 week 0.432 0.340 0.149 0.831 0.644 0.262 23.8 23.9 3.2
Hostel 2 weeks 0.592 0.487 0.154 0.944 0.709 0.295 29.2 25.2 3.5

4 weeks 1.036 0.874 0.170 1.083 0.937 0.375 32.3 34.3 4.2

Boys 1 week 0.321 0.243 0.107 0.873 0.639 0.199 28.3 22.8 3.1
Hostel 2 weeks 0.469 0.391 0.126 0.961 0.714 0.217 29.8 24.1 3.4

4 weeks 0.893 0.548 0.223 1.320 1.001 0.286 31.9 29.1 4.2
TABLE I

COMPARISON OF FORECASTING RESULTS FOR PROFILE ESTIMATION.

Building Window
MAE RMSE MAPE

LSTM ResNet BKF LSTM ResNet BKF LSTM ResNet BKF

1 week 0.195 0.120 0.0062 0.237 0.229 0.081 26.3 17.7 2.5
Lecture 2 weeks 0.195 0.120 0.066 0.244 0.229 0.086 26.8 19.3 2.7

4 weeks 0.219 0.218 0.091 0.374 0.319 0.098 28.5 21.9 2.9

1 week 0.199 0.107 0.066 0.228 0.210 0.098 27.6 25.6 3.0
Academics 2 weeks 0.201 0.108 0.075 0.237 0.210 0.102 30.7 29.5 3.1

4 weeks 0.291 0.206 0.083 0.316 0.309 0.115 37.6 36.7 3.2

1 week 0.117 0.103 0.068 0.220 0.205 0.084 19.4 16.6 1.9
Facilities 2 weeks 0.120 0.103 0.069 0.227 0.205 0.087 21.9 19.5 2.1

4 weeks 0.217 0.200 0.075 0.322 0.294 0.094 28.4 26.3 2.8

Girls 1 week 0.184 0.105 0.071 0.207 0.208 0.077 22.0 21.6 3.1
Hostel 2 weeks 0.189 0.106 0.081 0.212 0.208 0.086 28.2 22.5 3.1

4 weeks 0.282 0.201 0.092 0.306 0.301 0.126 31.8 31.5 3.3

Boys 1 week 0.165 0.103 0.060 0.183 0.204 0.082 22.5 20.1 2.8
Hostel 2 weeks 0.167 0.104 0.064 0.186 0.205 0.085 25.5 22.0 2.9

4 weeks 0.274 0.202 0.071 0.295 0.296 0.092 31.4 28.7 3.3
TABLE II

COMPARISON OF FORECASTING RESULTS FOR PEAK LOAD ESTIMATION.

consists of a vector yk of length 72 (24 hourly power read-

ings, 24-hourly temperature readings, and 24-hourly humidity

readings) in case of the profile estimation problem, while ỹk

is of size 73 for the peak load forecasting. Note that the model

could easily include weather forecasts if they were available

(either perfect or imperfect) by simply adding these features

in the input vectors.

We run our BKF algorithm for matrices A and B of size

24×24 and 72×24 (or 73×24, in case of peak load problem)

respectively, initialized from a uniform random distribution.

Note that this dimensionality of 24 for the hidden state,

also corresponding to the number of hours considered per

observation, was observed empirically to yield the best results.

x̄0 is initialized as a zero vector, and P0, Q, and R are

set as multiple of identity matrix with scale values 10−5,

10−2 and 10−2, respectively. For the peak load problem, we

initialized w with all ones. In both cases, we provide the

results for 5 iterations of EM, which appears enough here

to reach convergence, and three different window sizes of

N ∈ {1, 2, 4} weeks, using sliding windowing with an overlap

of 1 day. We have compared with two recent state-of-the-art

deep learning techniques (ResNet [4] and LSTM [5]) whose

parameters were taken from the corresponding papers. Both

methods are trained using the first half of the total number

of days, as a training set. After that from the first window of

the test data, the trained model is used for prediction. For

comparing the prediction accuracy of all the methods, we

have used standard performance metrics: mean absolute error

(MAE), root mean squared error (RMSE) and mean absolute

percentage error (MAPE). All the codes are run in Python 3.6

and Pytorch environment.

We first present, in Table I, the results for profile estimation.

BKF is used to predict the entire output vector (of length 72)

for the next day, provided the records for past data within the

considered time window. The prediction accuracy is evaluated

by means of MAE, RMSE, and MAPE, on the power readings

(i.e., the first 24 values of the output vector). In Table II

we show the results of the BKF in the peak load estimation

problem. Here, accuracy is computed only for the prediction

of future peak load values (i.e., last value of the output vector).

In both cases, we consider the predicted mean given the past

observations, given by ŷK+1 = Bx−

K
.

From both tables, we find out that our proposed method

yields the best results by a large margin. We reduce the
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Fig. 1. Results of the prediction of daily peak load (left) and hourly power readings (right) for BKF, ResNet and LSTM, in case of 1 week window for
Academics dataset.

error in terms of MAE and RMSE by half, compared to

the next best performing technique. In terms of MAPE, we

reduce the error by almost an order of magnitude. Note that

when we increase the window size, the performance of all the

techniques deteriorates. This may be because the data is non-

stationary, so that keeping a long memory of the past reduces

the performance.

We also provide in Figure 1 an example of forecasting

results of daily peak load as well as hourly power readings,

for our BKF method, as well as for LSTM and ResNet, in the

dataset academics. Here we use a 1-week sliding-window

with overlap of 1 day. The hourly power reading profile shows

a rather interesting pattern throughout the day. Let us remind

that this dataset is associated to an academic blocks where

faculty members and PhD students sit and classes are held.

As expected, the power consumption is lower at night and

gradually ramps up from morning (between 9am and noon).

One can then notice a slight dip in consumption between

1pm and 2pm explained by lunch hour so that many faculty

member’s rooms and classrooms are unused. Late in the

evening, one can observe a slight rise in consumption, mostly

because graduate students tend to work after hours (being a

residential campus). One can also notice on the daily peak

load profile that the peak consumption for the weekdays is

higher than that of the weekend. We observe a great predictive

performance of our BKF method in both situations.

IV. CONCLUSION

In this work, we have proposed a novel method for short-

term load forecasting. It is based on the linear state-space

model with unknown state and observation matrices that are

sequentially estimated from the data. Our method allows to

predict the next day load, given past observed data within a

given time window. It operates on a small segment of the entire

time series and assumes that segment to be linear. This letter

shows that the strategy is effective when compared to other

state-of-the-art approaches. In the future, we can consider an

unequal and adaptive choice of the window length.

REFERENCES

[1] Y. Chen et al., “Short-Term Load Forecasting: Similar Day-Based Wavelet
Neural Networks,” IEEE Transactions on Power Systems, vol. 25, no. 1,
pp. 322-330, Feb. 2010.

[2] I. Moghram and S. Rahman, “Analysis and evaluation of five short-term
load forecasting techniques,” IEEE Transactions on Power Systems, vol.
4, no. 4, pp. 1484-1491, 1989.

[3] K. Y. Lee, Y. T. Cha and J. H. Park, “Short-term load forecasting using
an artificial neural network,” IEEE Transactions on Power Systems, vol.
7, no. 1, pp. 124-132, 1992.

[4] B. J. Chen, M. W. Chang and C. J. Lin, “Load forecasting using
support vector Machines: a study on EUNITE competition 2001,” IEEE
Transactions on Power Systems, vol. 19, no. 4, pp. 1821-1830, 2004.

[5] K. Chen, K. Chen, Q. Wang, Z. He, J. Hu and J. He, “Short-term load
forecasting with deep residual networks,” IEEE Transactions on Smart
Grid, vol. 10, no. 4, pp. 3943-3952, 2019.

[6] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu and Y. Zhang, “Short-term
residential load forecasting based on LSTM recurrent neural network,”
IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 841-851, 2019.

[7] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Journal of Basic Engineering, vol. 82, pp. 35–45, 1960.

[8] T. Launay, A. Philippe and S. Lamarche, “On particle filters applied to
electricity load forecasting,” arXiv preprint arXiv:1210.0770, 2012.

[9] Y. Liu, W. Wang and N. Ghadimi, “Electricity load forecasting by an
improved forecast engine for building level consumers,” Energy, vol. 139,
pp.18-30, 2017.

[10] J. G. Jetcheva, M. Majidpour and W. P. Chen, “Neural network model
ensembles for building-level electricity load forecasts,” Energy and Build-
ings, vol. 84, pp. 214-223, 2014.

[11] S. Sarkka, Bayesian Filtering and Smoothing, 3rd edition, 2013.
[12] R. H Shumway and D. S. Stoffer, “An approach to time series smoothing

and forecasting using the EM algorithm,” Journal of Time Series Analysis,
vol. 3, no. 4, pp. 253–264, 1982.

[13] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the Royal
Statistical Society: Series B, vol. 39, no. 1, pp.1–22, 1977.

[14] L. Frenkel and M. Feder, “Recursive Expectation-Maximization (EM)
algorithms for time-varying parameters with applications to multiple
target tracking,” IEEE Transactions on Signal Processing, vol. 47, no.
2, pp. 306–320, 1999.

[15] M. E. Khan and D. N. Dutt, “An expectation-maximization algorithm
based Kalman smoother approach for event-related desynchronization
(ERD) estimation from EEG,” IEEE Transactions on Biomedical Engi-
neering, vol. 54, no. 7, pp. 1191–1198, 2007.

[16] G. W. Pulford and B. F. La Scala, “Map estimation of target manoeuvre
sequence with the expectation-maximization algorithm,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 38, no. 2, pp. 367–377,
2002.


