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Abstract

In many developing countries, small-scale fisheries provide employment and important food

security for local populations. To support resource management, the description of the spa-

tiotemporal extent of fisheries is necessary, but often poorly understood due to the diffuse

nature of effort, operated from numerous small wooden vessels. Here, in Gabon, Central

Africa, we applied Hidden Markov Models to detect fishing patterns in seven different fisher-

ies (with different gears) from GPS data. Models were compared to information collected by

on-board observers (7 trips) and, at a larger scale, to a visual interpretation method (99

trips). Models utilizing different sampling resolutions of GPS acquisition were also tested.

Model prediction accuracy was high with GPS data sampling rates up to three minutes

apart. The minor loss of accuracy linked to model classification is largely compensated by

the savings in time required for analysis, especially in a context of nations or organizations

with limited resources. This method could be applied to larger datasets at a national or inter-

national scale to identify and more adequately manage fishing effort.

Introduction

In many developing countries, small-scale fisheries are the mainstay of the fisheries sector [1].

Approximately 50 million people worldwide are employed directly in fishing, of which 22 mil-

lion (44%) are associated with small-scale fisheries [2]. This sector, therefore, makes a consid-

erable contribution to local and national economies due to its important role in food security,

employment, and as a potential route to poverty alleviation. It has been demonstrated that in

comparison to large-scale industrial fishing, small-scale fisheries provide more employment,

have lower production costs, produce fewer discards [3], and may be more likely to promote

the sustainable use of marine species, as they respond dynamically to resource fluctuations [4].
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Despite this, small-scale fisheries are often under-studied in comparison to large-scale indus-

trial fleets [5–8].

Among the main challenges to describing and quantifying the spatial distribution and pres-

sures associated with small-scale fisheries are: (1) a lack of resources directed towards data col-

lection; (2) the distant and dispersed nature of fisheries (e.g. remote landing sites); (3) a

scarcity of fine-scale spatial data on fishing effort; and (4) a lack of stakeholder engagement

and participation in data collection [9,10]. This paucity of information, together with the com-

plex socio-economic conditions of communities involved in this sector can have two impor-

tant and negative consequences. First, the lack of data can lead to an underestimation of

fishing effort and hence overexploited fisheries [7]. Second, it can marginalize communities

from decision-making processes and so lead to increased conflict, particularly with govern-

ment agencies [9].

As fishing effort varies with location and season, it is important to design spatial manage-

ment plans for stocks and fisheries [11–14]. However, creating a spatiotemporal footprint of

coastal fisheries is often more challenging than for industrial fleets that are frequently tracked

using Vessel Monitoring Systems (VMS) or Automatic Identification Systems (AIS) [15–17].

As such, the tracking of small-scale fleets tends to require the use of novel approaches. A num-

ber of such approaches have been developed including interviews [18], participatory mapping

[19], at-sea transects [20], modelling using generalized behavior rules such as distance from

the shore and fishing depths [21], number of boats and coastal populations [22] or a combina-

tion of these methods [23–26].

Recent advances in remote monitoring technologies, have led to an increase in the use of

GPS tracking devices to study small-scale fisheries [27–30]. Despite requiring more frequent

intervention for downloading data and for servicing, small GPS tracking devices are capable of

collecting similar data to VMS and AIS systems and are more appropriate for small vessels

without dedicated electrical systems. Several studies have attempted to understand fishing

behavior using VMS data, by separating fishing activity from other activities (cruising, search-

ing, transiting, hauling) based mostly on simple thresholds on speed [15,16,31–34] and some-

times combined with turning angles [12,35]. In the last decade, more refined approaches have

been investigated using Generalized Linear Models [36], Gaussian Mixture Models [37,38],

Random Forest [39] and, Neural Networks [40–42]. In the case of data with temporal depen-

dence, a generative model such as Hidden Markov Model (HMM) is appropriate. When part

of the data is available for training [43] and sampling is done with a regular time interval [36],

HMMs are the generally preferred methodology [44–50] and have been shown to provide

accurate detections of fishing patterns, especially when speed and turning angle are chosen as

variables [38,51].

Small-scale fisheries in Gabon are a perfect illustration of the gap between the importance

of the sector and the level of active research and management. The most recent published sta-

tistics from 2014 indicate that while industrial fisheries produced 7,026 tons, small-scale

marine fisheries produce 18,076 tons (i.e. 72% of the national production [52]). With approxi-

mately 1,200 wooden boats along the coast, Gabonese small-scale fisheries are characterized by

a great diversity of fishing gears and techniques, practiced by a variety of different communi-

ties [53]. While VMS is mandatory for industrial vessels in Gabon, little has been achieved

with regard to spatially mapping of small-scale fisheries. In this experimental study, GPS track-

ers were used to address this knowledge gap. As technology develops and management issues

arise, deployment of GPS devices in small-scale fisheries is anticipated to increase. With no

electrical power on most small fishing boats, devices are still limited by battery life and/or data

storage capacity. Given these limitations, it is important to gain a better understanding of the

potential artifacts, limitations and benefits of differing sampling strategies resulting from
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working on these often geographically remote, exposed and more logistically challenging fish-

ing environments.

Using small-scale fisheries in Northern Gabon, we examined two approaches to processing

tracking data (expert interpretation of fishing tracks and the use of Hidden Markov Models)

and investigated the most effective sampling strategies to make use of low-cost tracking solu-

tions for this fleet.

Materials and methods

GPS data collection and pre-processing

Between February 2013 and September 2014, GPS devices (Model 1: Garmin Etrex 20, n = 31;

Model 2: Mobile Action GT600 motion sensing tracker, n = 6) were deployed on 99 individual

fishing trips undertaken by small-scale motorized fishing boats from 6 landing sites in Libre-

ville and Cocobeach (Fig 1). Devices were programmed to record positions at high frequency

(5-second intervals), to collect fine scale spatiotemporal data and allow subsequent degrada-

tion of the time interval during analysis. Small-scale fisheries are defined here according to

Gabonese regulations, as boats that require little financial or technical investment, and which

principally rely upon manual manipulation of fishing gear (MEFPE 1994; République Gabo-

naise 2005). Fishing gears utilized varied within and between the communities using each

landing sites. Each trip was, therefore, assigned to one of seven fishing gears: (1) surface drift-

ing gillnet, (2) bottom gillnet, (3) purse seine, (4) circling gillnet for sardines, (5) circling gillnet

for mullets, (6) longline and (7) handline.

The average deployment duration of each GPS unit ranged between 1 and 10 days before

needing to be recharged and/or replaced with a new unit. The number of individual fishing

trips recorded for each gear ranged between 8 and 32 (mean±SD number of trips recorded per

gear: 14 ± 8; n = 7 gears). Once each GPS unit was retrieved, the recorded data were down-

loaded and processed to remove possible erroneous location data, which included: (1) remov-

ing pre- and post-deployment locations associated with travel to and from the landing sites;

(2) removing locations that were within 3 km of landing sites as these are associated with tran-

siting and are areas where fishing is prohibited; and (3) applying a speed filter to remove loca-

tions with a speed > 50 km.h-1. This threshold was based on maximal speed of 40 HP engines

typically used by small-scale fisheries. In a time series of locations, time interval standardized

data are a prerequisite for Hidden Markov Models, therefore, GPS data for each fishing trip

were standardized to 5-second intervals to avoid time lag and to eliminate missing locations

from poor satellite coverage using speed-based linear interpolation. After processing, the

resulting dataset comprised of 99 tracks, and 818,747 vessel locations (longitude and latitude

decimal degrees, WGS84). To gain an insight into the general operating behavior of small-

scale fisheries in the region, information on total trip duration and total distance were calcu-

lated and summarized for each individual gear type. Data were processed in R using adehabi-
tatLT, rgdal, geosphere packages in R [54,55].

Characterizing behavioral fishing states

We investigated two approaches to identify fishing behavior within GPS tracking data

(n = 99), using data from on-board observers (n = 7) regarding fisher behavioral changes as

reference: (1) visual interpretation based on several characteristics of fishing behavior deter-

mined by on-board observers and (2) application of Hidden Markov Model to GPS tracking

data. Due to the low sample of trips with observers on-board, the visual inspection was

employed as the truth against which to assess the accuracy of HMM.
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Fig 1. Map of the North of Gabon showing the size of the fleet and the number of fishing trips sampled by landing

site. Size of circles represents estimated number of boats by landing site and number inside is the count of fishing trips

sampled in this location.

https://doi.org/10.1371/journal.pone.0234091.g001
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On-board observers. For each fishing gear (n = 7), an observer accompanied a single fish-

ing trip recording fishing practices and behaviors such as: time of departure, start and end

time of gear deployment, start and end time of gear retrieval (e.g. hauling), and time of return

to the landing site.

From these data and associated GPS tracks, the unique fishing “signature” for each fishing

gear was characterized (i.e. typical shape, speed and turning angle; Fig A in S1 File). Artisanal

fishers in Gabon transit to fishing grounds upon which the crew actively search for signs at the

sea surface before deploying their gear. In other studies, each fishing trip could be divided into

distinct behaviors: transiting, searching, setting, fishing and hauling [44]. In our study, as the

typical engine used is relatively low-powered (i.e. 40 HP), vessel speed is maintained during

the searching phase. For all fishing operations, there is a phase of gear deployment (i.e. fishing

commences). For the following gear types: longline, drifting and bottom gillnet, fishers wait

with the gear while it soaks and fish are caught. The gear is then retrieved from the water (i.e.

fishing ceases) and a transiting phase follows as boats return to the port, or to commence fur-

ther fishing operations.

Visual interpretation. These signatures were used to identify fishing operations for

remaining tracks that did not have on-board observers (n = 99 trips). This process involved 3

experts (including FC) who have> 10 years of experience working on artisanal fisheries in

Gabon and so have a detailed understanding of fishing practices and behaviors displayed by

distinct communities. Each expert analyzed tracks from communities they know the best and,

therefore, each track has been analyzed only by one expert. They visualized the track shape

and pattern along with information on speeds to distinguish each individual fishing operation.

This method based on expert knowledge has already been used in a previous study [43]. Each

location in a track was subsequently classified as either ‘fishing’ or ‘non-fishing’. When vessel

speed was less than 7 km.h-1 and the typical shape of a fishing operation was observed, the

start and end time of the fishing operation were recorded.

Hidden Markov Model theory. To identify fishing activity from track metrics, a Hidden

Markov Model was applied. HMMs are commonly used as discrete time-series models to rep-

resent probabilities of hidden states [51,56–60] and are increasingly being employed to analyze

fishing vessel movements [43–47,61].

According to [62], a HMM is characterized by:

1. N, the number of states in the model. In this case study, those states correspond to fisher

behavior, for instance being at anchor, traveling, fishing, etc. The individual state is noted

S = {S1, S2, . . ., SN} and the state at time t is qt.

2. M, the number of distinct observations. Here, it is the number of segments (steps) between

two successive positions in a track. The individual observation is noted as V = {V1, V2, . . .,

VM}

3. The state transition probability distribution A = {aij} where

aij ¼ P½qtþ1 ¼ Sjjqt ¼ SiÞ; 1 � i; j � N

In our case, it’s the probability to switch, for instance, from a fishing activity to transiting

between t and t+1. It’s one of the main characteristics of HMM that qt+1 depends on qt but

is completely independent of the previous state qt-1.

4. The observation probability distribution in state j, B = B {bj(k)} where

BjðkÞ ¼ P½vktjqt ¼ Sj�; 1 � j � N

1 � k � M
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Here, it is the probability for a segment Vk to be in a specific state Sj.

5. The initial state distribution π = {πi} where

pi ¼ P½q1 ¼ Si�; 1 � i � N

The initial state corresponds to the state the first observation takes.

Choice of observed variables, number of states and initial parameter values. To deter-

mine fishing activity within tracking data, speed is commonly used [36] as well as turning

angles [37,39,49], as these characteristics of movement change with fisher activity. When tran-

siting to a fishing ground, the GPS track tends to produce a straighter trajectory with a higher

speed as opposed to when it is fishing, when the trajectory tends to be more sinuous with a

lower speed in artisanal fisheries in Gabon (as seen in Fig B in S1 File). Distance between each

location (step) and turning angles were used as observed variables in the model. The choice of

the number of states for the model is crucial and depends on the study system [63]. To choose

the number of states, the distribution of speeds for each gear was observed and integrated with

existing knowledge about fishing techniques.

In HMMs, seed values for the model parameters need to be specified. In this case, data

from on-board observers were used to provide initial parameter values. Step lengths followed a

gamma distribution, and angles a Von Mises distribution [64]. For each gear type, mean and

standard deviation of step lengths and concentration of angles were calculated for each state

(fishing and non-fishing), to determine initial parameter values.

HMM fitting. The R package MoveHMM was used to determine fishing and non-fishing

states from the GPS tracking data [57,65]. A Hidden Markov Model was fitted for each gear

type, using the forward algorithm [65]. To determine the most probable state sequence, a

Viterbi algorithm was used. Pseudo-residual distributions from the HMM process were visu-

ally inspected to confirm normal distribution.

Method performance evaluation

Confusion matrices were used to determine the performance of the HMM and visual interpre-

tation approaches. Using the confusion matrix, several performance measures were calculated,

these included: (1) sensitivity, which is the probability that a test will indicate ’fishing’ among

those which were actually fishing; (2) specificity which is the probability that a test will indicate

’non-fishing’ among those which were actually not fishing; (3) fishing prediction which indi-

cates the probability of true fishing positions among fishing positions detected by the model;

and (4) non-fishing prediction which indicates the probability of true non-fishing positions

among non-fishing positions detected by the model [66].

For trips with observers on-board (n = 7), observed data on the occurrence of fishing

activity were compared to fishing detected during expert interpretation and from the

HMM process. Visual interpretation and HMM approaches were also compared. Since for

the rest of tracks (n = 99), fishing trips did not have an observer on-board, the visual inter-

pretation was used as the truth against which to assess the accuracy of HMM. To test the

utility of this approach on datasets with different temporal sampling resolutions, the HMM

was fitted to data regularized at different time intervals (i.e. 10, 20, 30, 40, 50 and 60 seconds,

and each of 2 to 10 minutes at 60-second intervals). Ten minutes was the maximum time

step tested as it was typically the shortest duration of a fishing operation, especially for

handlines.
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To assess the most efficient method for detecting fishing activity within GPS tracking data

(i.e. minimum analytical time), three time-based metrics were calculated: (1) the mean dura-

tion of a fishing trip hosting an on-board observer, (2) the mean duration required to visually

inspect tracking data during the expert interpretation process, and (3) the mean duration

required to complete the execution of the HMM.

Results

Cleaned data characteristics

Fishing characteristics (e.g. trip duration and distance covered) varied with fishing gear type

(Fig 2). Some fishing techniques occurred during a single day such as sardine circling gillnets,

mullet circling gillnets and purse seines; the minimum trip duration was 02:19 hours for purse

seins. Other techniques, however, extended through day and night (longlines, bottom gillnets)

Fig 2. Boxplots of trip duration (A) and distance covered (B) for n trips by gear type. SCG = Sardine Circling Gillnet (n = 10), SG = Surface

Drifting Gillnet (n = 14), MCG = Mullet Circling Gillnet (n = 12), PS = Purse Seine (n = 32), HL = Handline (n = 12), LL = Longline (n = 8) and

BG = Bottom Gillnet (n = 11).

https://doi.org/10.1371/journal.pone.0234091.g002
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or even several days per trip (surface drifting gillnets, handlines); the maximum trip duration

was 76:11 hours for surface drifting gillnets.

Variation among gear types was also observed with the total trip distance, with up to 165

km covered for surface drifting gillnet trips, or with more coastal fishing methods like purse

seines where the minimum trip distance was 26 km.

Behavioral states

In this study, behavioral states were simplified to “fishing” and “non-fishing” activities. Indeed,

speed distributions for each gear type (Fig 3) revealed a bimodal distribution and, as such, a

two states HMM modeling process was considered the most parsimonious approach.

For each gear type, one track was split into different behaviors thanks to an observer on-

board. These observed data were used to calculate initial values to fit the HMM for each gear

type (Table A in S1 File), and the shape of a fishing operation within the GPS track was

Fig 3. Distribution of vessel speed for each gear type. SCG = Sardine Circling Gillnet, SG = Surface Drifting Gillnet, MCG = Mullet Circling

Gillnet, PS = Purse Seine, HL = Handline, LL = Longline and BG = Bottom Gillnet.

https://doi.org/10.1371/journal.pone.0234091.g003
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memorized as a “fishing signature” (Fig A in S1 File), which was then used to recognize fishing

patterns (combined with vessel speed) in the visual interpretation method (Fig 4).

Based upon the confusion matrix, accuracy was assessed between observed data (when an

observer was on-board) and the visual interpretation classification (Table 1). Median accuracy

was 0.95 and, values were higher for fishing detection (sensitivity) and fishing prediction than

for non-fishing detection (specificity) and non-fishing prediction. Sardine circling gillnets and

handlines experienced the lowest accuracy (0.90). When comparing observed data with HMM

predictions (Table 2), the median accuracy was 0.80. The fishing prediction was better than

the non-fishing prediction. The sardine circling gillnets produced the lowest accuracy (0.72),

with a weak specificity (0.59), followed by longlines with the 0.75 accuracy due to the lowest

specificity (0.49). Other gear types produced accuracies greater than 0.8. Comparison between

visual interpretation and HMM predictions (Table 3) produced a median accuracy of 0.8,

Fig 4. Mapping of 2 different methods used to identify a fishing event on a fishing trip (B: Visual interpretation,

C: HMM) compared to observed data (A: On-board observer) for two different gear types (1: Surface drifting

gillnet, 2: Purse seine).

https://doi.org/10.1371/journal.pone.0234091.g004

Table 1. Performance measures between on-board observers and visual interpretation for each gear type.

Accuracy Sensitivity Specificity F prediction NF prediction

Sardine circling gillnet 0.90 0.98 0.87 0.77 0.99

Surface drifting gillnet 0.98 0.99 0.85 0.98 0.89

Mullet circling gillnet 0.96 0.96 0.95 0.96 0.95

Purse seine 0.95 0.97 0.92 0.97 0.92

Handline 0.90 0.95 0.46 0.94 0.48

Longline 0.95 0.94 0.97 0.97 0.93

Bottom gillnet 0.96 1.00 0.63 0.96 1.00

MEDIAN (MAD) 0.95 (±0.00) 0.97 (±0.02) 0.87 (±0.08) 0.96 (±0.01) 0.93 (±0.04)

Analysis was conducted on the seven trips with observers on-board, with data collected on-board taken as the truth. The sensitivity expresses the fishing detection and

the specificity, the non-fishing detection. (F = fishing, NF = non-fishing, MAD = Median Absolute Deviation).

https://doi.org/10.1371/journal.pone.0234091.t001
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whereby the lowest accuracies were for longlines (0.71), sardine circling gillnets (0.79) and

mullet circling gillnets (0.79).

Modelling versus visual interpretation

When HMM was applied to all the data and compared to the visual interpretation method

considered as truth, the median accuracy was 0.75, and performance varied depending on the

gear type (Table 4). The lowest accuracy (0.69) was obtained for surface drifting gillnets. The

best accuracy (0.85) was achieved by the purse seines. The median sensitivity was higher than

the median specificity and the median non-fishing prediction was higher than the median fish-

ing prediction. The percentage of time spent fishing during a fishing trip was also compared

between methods. Fishing time was greater for each gear type when calculated from HMM

results than for visual interpreted states, except for longlines and bottom gillnets (Table 4).

Surface drifting gillnets is the gear type that resulted in the lowest accuracy of all, and corre-

sponds to 13 fishing trips and 372,378 points (Fig 5). Fishing and non-fishing state accuracies

were 0.76 and 0.56, respectively. Results for other gears are presented in Fig B in S1 File.

Performance measures with different sampling intervals

Performance metrics were examined for different sampling intervals, revealing substantial var-

iation by gear type. For most gears, accuracy decreased with increasing time intervals between

Table 2. Performance measures between on-board observers and HMMs.

Accuracy Sensitivity Specificity F prediction NF prediction

Sardine circling gillnet 0.72 1.00 0.59 0.52 1.00

Surface drifting gillnet 0.80 0.79 0.92 0.99 0.32

Mullet circling gillnet 0.80 0.99 0.51 0.75 0.98

Purse seine 0.97 0.97 0.97 0.99 0.92

Handline 0.91 0.90 1.00 1.00 0.52

Longline 0.75 0.98 0.49 0.69 0.96

Bottom gillnet 0.82 0.81 0.89 0.98 0.37

MEDIAN (MAD) 0.80 (±0.05) 0.97 (±0.03) 0.89 (±0.11) 0.98 (±0.02) 0.92 (±0.08)

Analysis was conducted on the seven trips with observers on-board, with data collected on-board taken as the truth. The sensitivity expresses the fishing detection and

the specificity, the non-fishing detection. (F = fishing, NF = non-fishing, MAD = Median Absolute Deviation).

https://doi.org/10.1371/journal.pone.0234091.t002

Table 3. Performance measures between visual interpretation and HMMs.

Accuracy Sensitivity Specificity F prediction NF prediction

Sardine circling gillnet 0.79 0.98 0.66 0.65 0.98

Surface drifting gillnet 0.80 0.80 0.91 0.99 0.30

Mullet circling gillnet 0.79 0.99 0.50 0.75 0.97

Purse seine 0.95 0.96 0.95 0.98 0.89

Handline 0.81 0.84 0.51 0.94 0.25

Longline 0.71 0.96 0.45 0.65 0.92

Bottom gillnet 0.80 0.80 1.00 1.00 0.26

MEDIAN (MAD) 0.80 (±0.01) 0.96 (±0.03) 0.66 (±0.22) 0.94 (±0.06) 0.89 (±0.09)

Analysis was conducted on the seven trips with observers on-board, with visual interpretation considered as the truth. The sensitivity expresses the fishing detection and

the specificity, the non-fishing detection. (F = fishing, NF = non-fishing, MAD = Median Absolute Deviation).

https://doi.org/10.1371/journal.pone.0234091.t003
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locations, with the exception of bottom gillnets, which increased (Fig 6A, Table B in S1 File).

Accuracy was highest for bottom gillnets. Gears with consistently high sensitivity values

(between 0.8 and 1), included: purse seines, sardine circling gillnets, bottom gillnets and mullet

circling gillnets. Other gears produced lower sensitivity values that tended to decrease with

increasing time steps, such as surface drifting gillnets, longlines and handlines (Fig 6B). Some

gears showed decreasing specificity with increasing time steps, such as purse seines, mullet cir-

cling gillnets and sardine circling gillnets, while other gears such as handlines and surface drift-

ing gillnets tended to show increasing specificity. Longlines and bottom gillnets showed varied

specificity by first decreasing and then increasing (Fig 6C). The fishing prediction values for

bottom gillnets were consistently high across time steps, while they tended to decline with

Table 4. Performance measures of the HMM compared to visual interpreted states for all tracks (n = 99) and percentage of trip duration spent fishing (F = fishing,

NF = non-fishing).

Performance measures % of trip fishing

Accuracy Sensitivity Specificity F prediction NF prediction visual interpretation HMM

Sardine circling gillnet 0.78 0.96 0.66 0.66 0.96 41 59

Surface drifting gillnet 0.69 0.76 0.57 0.76 0.58 64 64

Mullet circling gillnet 0.75 0.95 0.57 0.67 0.92 48 68

Purse seine 0.85 0.94 0.77 0.79 0.94 47 57

Handline 0.74 0.85 0.43 0.80 0.51 73 77

Longline 0.75 0.96 0.43 0.72 0.88 60 38

Bottom gillnet 0.75 0.75 0.75 0.94 0.36 84 67

Median 0.75 0.94 0.57 0.76 0.88 60 67

https://doi.org/10.1371/journal.pone.0234091.t004

Fig 5. Map of all tracks for surface drifting gillnet gear type and fishing areas identified by visual interpretation

and HMM methods (In grey: Both methods predicted non-fishing, in blue: Both methods predicted fishing, in

red: Only HMM predicted fishing, in green: Only visual interpretation predicted fishing).

https://doi.org/10.1371/journal.pone.0234091.g005
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time steps for purse seines, sardine circling gillnets and mullet circling gillnets. Other gears

such as handline, longline and surface drifting gillnet seems to be stable (Fig 6D).

The optimal value for sampling frequency to achieve high accuracy and sensitivity was 120

seconds, 300 seconds for specificity, 5 seconds for fishing prediction, 60 seconds for non-fish-

ing prediction (dashed lines in Fig 6).

Comparison of methods

When the two methods were compared to having on-board observer data, regarding the time

spent conducting analysis, the HMM method was the quickest, about 30 times less than the

visual interpretation method and 720 times less than when an observer was on-board (Fig 7).

The HMM method also required use of one software package (R), while the visual interpreta-

tion method required two software packages (R and a GIS). Median accuracy across gears was

95% for the visual interpretation method and 80% for the HMM method.

Fig 6. Accuracy, sensitivity, specificity, fishing prediction and non-fishing prediction across different time steps for each gear type. The dashed line

shows the time step where values were highest. Values can be found in Table B in S1 File.

https://doi.org/10.1371/journal.pone.0234091.g006
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Discussion

Accuracy of methods

This study describes a way to identify and to map fishing behaviors for small-scale fisheries in

Central Africa using Hidden Markov Models. We chose to develop models by gear type due to

the large variation among their trip characteristics. Our visual interpretation approach had a

high accuracy (0.95) when compared to data collected by on-board observers. The HMM

results suggested that model accuracy was good enough to have an idea of actively-fished areas

(median = 0.75) and proved to be about 30 times faster than visual interpretation of fishing

states.

It was important to validate visual interpretation before comparing it to HMM. As having

an on-board observer is expensive and not always possible, the visual interpretation approach

has been accepted in similar studies [43,61]. Here, results show a high performance accuracy

(0.95), but a lower performance for specificity (0.87), meaning that the visual interpretation

method is not as good at detecting non-fishing behaviors. More precisely, when the compari-

sons were made by gear, non-fishing detection and prediction were low for handline fishing in

this study. Indeed, when using this gear, fishermen slowed down to put the line in water, let it

soak for a few minutes (10 min), moved the boat a short distance and put the line again in

water. Those short moves between two fishing events were difficult to recognize visually. This

weakness was, however, also found using HMM; the non-fishing prediction was low. The

same issue was observed in bottom gillnet data, with the visual interpretation being weak at

detecting non-fishing states. In those cases, transition between two fishing events could be

classified as fishing by visual interpretation and by HMM.

Accuracy of the HMM became weaker when applied to a larger dataset but it is possible

that the accuracy of the visual interpretation decreases also. To assess this tendency, more data

from on-board observers would be necessary. Those data would also allow to have more pre-

cise model parameters but in a context of working with fishing communities, gaining trust

Fig 7. Stepwise overview of the processes of the two methods. Their time investment and estimated accuracy (%) are compared to having an on-

board observer.

https://doi.org/10.1371/journal.pone.0234091.g007
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takes time and observers are not always accepted. This is why the sample size was low and this

should be addressed in future studies when trust is well established. Lower model performance

accuracy occurred for fishing gears where fishermen let the gear soak longer in the water. In

these cases, time was spent drifting and sometimes fishers left their gear in place and moved

the boat to another area. In fact, the model was better at predicting fishing behaviors than it

was at predicting non-fishing behaviors. During non-fishing patterns, fishermen could

decrease speed and change direction for various reasons (engine stops, meeting with another

boat, etc.). This was confirmed by comparing time spent fishing per trip among methods; the

HMM over-detected fishing states (except for bottom gillnets). Still, accuracy was good enough

to detect fishing areas, since high precision was not essential when gear length can be as much

as 3 km long. A similar level of accuracy has been found when HMM was applied to data from

VMS compared to those from on-board observers [51]. The model performance accuracy

could be increased by adding covariates to the model, such as bathymetry and/or landing sites

of origin, given that fishing methods depend on water depth and also on the fishing commu-

nity. This should be explored in future studies.

Understanding fishing techniques

Some fishing trips, such as those using surface drifting gillnets or longlines, typically result in a

stay at-sea for several days, while fishers deploying other gears undertake fishing trips of less

than 24 hours in duration. It is frequently related to the soak time of the gear, as drifting nets

or longlines (passive gears) can be set for multiple hours as opposed to active gears, such as

purse seines, where circling a school of fish can take as little as 30 minutes. One of the impor-

tant results of this study was obtaining the fishing signatures for each gear type, via on-board

observers, allowing us to identify fishing patterns post-hoc from the shape of a GPS track visu-

alized in GIS software. Moreover, this characterization of the fishing gears enabled initial

parameterization of the HMMs. In this study, two states were chosen, as this fit the bimodal

distribution of boat speeds, but it would be interesting to test a model with three or four states

in future studies, as some fishing techniques can be divided into four different activities: travel-

ing, setting, soak time and hauling.

The maps showing fishing states identified by both methods (Fig 5 and Fig B in S1 File) pro-

vided insights into the idiosyncrasies of some gears. For all gears, the model predicted a few

fishing steps completely outside the fishing locations, probably due to decreasing speed (which

could reflect engine problems, meeting with other fishermen, etc.) that was corroborated by

performance measures, which were weaker when the model tried to detect and to predict non-

fishing states.

Surface drifting gillnet. On rare occasions, the model missed some fishing states. One of

the characteristics of this fishing technique is that the boat stays attached to the net while it

drifts. Occasionally, fishermen can leave the net for a few minutes (i.e. meeting with other fish-

ermen, surveillance controls) and then, the track recorded is not the position of the fishing net

but that of the boat, even if the net is still in the water.

Mullet circling gillnet. Here, the HMM doesn’t detect states visually interpreted as fishing

by experts, mainly when the boat is close to the shore. Usually, boats decrease their speed

when they approach the coast and may even stop, to rest. Interpretation errors could occur, as

this gear, targeting mullets (Mugilidae) that feed on mud banks [67] in shallow water.

Purse seine. This fishing technique is peculiar because fishermen encircle a school of sar-

dines and, consequently, sometimes decrease their speed to detect a school before fishing. The

HMM could interpret those changes in speed as fishing. Despite those errors, it should be

noted that this gear produced the best performance measures.
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Handline. The model under-detected fishing identified by the expert. Because this fishing

technique is characterized by short moves between fishing operations of short duration, it can

be difficult to recognize visually and this bias could be associated with manual interpretation

errors. It may be possible that models outperform visual interpretation in certain cases [68].

Bottom gillnet. The model under-detected fishing events compared to expert validation.

Bottom gillnet fishermen have five to six different nets in the boat. They set all the nets succes-

sively (with some increases in speed between each net), wait a while, and then pull out all the

nets successively. Determination of the exact position of the gear is problematic since the GPS

records the boat’s track, and in this case, the boat is not attached to the gear the entire time.

Experts included moves between each net as fishing time because nets were still in the water.

The model identified those moves as non-fishing operation. Again, when bearing in mind the

scale of the fisheries (nets extending to 1 km in length) and the fact that nets are set near each

other, this difference would be negligible for a generalized view of fishing locations, however it

makes a difference in time spent fishing during the trip. Due to the peculiarity of this fishing

technique, a 3-state model should be tested (non-fishing, setting and hauling).

GPS sampling interval

When the sampling interval between each location was increased, model prediction accuracy

varied by gear type. For the majority of gears, accuracy decreased with the exception of bottom

gillnets, where accuracy increased. Not surprisingly, accuracy increased at shorter time steps

for gears with the shortest fishing operations (i.e. handlines, longlines, purse seines, sardine

and mullet circling gillnets). Indeed, some fishing techniques, such as handlines can last just

10 minutes and, if the time step is larger, then a fishing operation would not be highlighted by

the model. For other gears like surface drifting gillnets, the gear can remain in the water for

several hours, which explains why a change of time step (between 5 seconds and 10 minutes)

has little impact on the accuracy of the model.

Although it may be easy to recognize the gear employed when looking at a track from a fish-

ing trip, it is more difficult to predict which gear will be used by a given boat type, as fishermen

in this study regularly change their fishing techniques. For this reason, it would be useful to

have a maximum time step to set up GPS trackers in the future. Taking into account the short-

est fishing events (i.e. handlines with 10 minutes), and the requirement that a minimum of 3

points are necessary to describe a fishing event (due to angle calculations), a maximum sam-

pling interval would be 200 seconds for the gears evaluated in this study. The best sampling

interval was 120 seconds, as it produced the best accuracy and sensitivity. Based on these find-

ings we suggest that a GPS with an autonomous battery should be set to sample locations

between 120 and 200 seconds, as this will improve the model prediction accuracy as well as

extend battery life during deployment.

Conclusion

In the context of fisheries management in Gabon, utilization of HMM has allowed a consider-

able insight into how spatiotemporal patterns of small-scale fisheries could be assessed in the

absence of VMS/AIS, and where adequate personnel and other resources cannot be guaran-

teed. This study provides advice to managers in such situation who would want to detect fish-

ing events from GPS data, i.e. having a stratified sampling by gear and set up sampling time

interval between 2–3 minutes. Using HMM is also a promising approach associated with a par-

ticipatory data collection process. Indeed, fishermen are often interested in new technologies

that allow them to map their fishing grounds, to know their real-time position and be able to

check if they are, for example, within a protected area. It also allows fishers to actively
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demonstrate to management authorities where they actually fish. This role is particularly

important when decisions are being made on fishing area closures at a governmental level. In

2014, the Gabonese government announced a program to protect at least 23% of Gabonese

Exclusive Economic Zone (EEZ). Knowledge of where fishing was occurring helped the design

of a new Marine Protected Area network in 2017, which finally covered 26% of the EEZ.

Finally, neighboring countries (Congo and Equatorial Guinea) have already started to

deploy GPS trackers on their small-scale fisheries boats [29], following the example of the Gab-

onese MPA project. This labor-efficient method of analysis could be shared with those coun-

tries and any nation sharing Gabon’s characteristics and challenges.
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