

Characteristics and clinical outcomes after treatment of a national cohort of PCR-positive Lyme arthritis.

Antoine Grillon, Marc Scherlinger, Pierre-Hugues Boyer, Sylvie de Martino, Aleth Perdriger, Amandine Blasquez, Julien Wipff, Anne-Sophie Korganow, Christian Bonnard, Alain Cantagrel, et al.

► To cite this version:

Antoine Grillon, Marc Scherlinger, Pierre-Hugues Boyer, Sylvie de Martino, Aleth Perdriger, et al.. Characteristics and clinical outcomes after treatment of a national cohort of PCR-positive Lyme arthritis.. Seminars in Arthritis and Rheumatism, 2019, 48 (6), pp.1105-1112. 10.1016/j.semarthrit.2018.09.007. hal-02921189

HAL Id: hal-02921189 https://hal.science/hal-02921189v1

Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S0049017218304244 Manuscript_b759e835b54cd853b0da77fb9103d6a6

1 Characteristics and clinical outcomes after treatment of a national cohort of PCR-

2

positive Lyme arthritis

3

Antoine Grillon^{1*}, Marc Scherlinger^{2*}, Pierre-Hugues Boyer¹, Sylvie De Martino^{1,22}, Aleth
Perdriger³, Amandine Blasquez⁴, Julien Wipff⁴, Anne-Sophie Korganow⁵, Christian
Bonnard⁶, Alain Cantagrel⁷, Didier Eyer⁸, François Guérin⁹, Irène Monteiro¹⁰, Jean-Marie
Woehl¹¹, Paul Moreau¹¹, Jean-Loup Pennaforte¹², Joel Lechevallier¹³, Frédéric Bastides¹⁴,
Antoine Colombey¹⁵, Isabelle Imbert¹⁶, Yves Maugars¹⁷, Philippe Gicquel¹⁸, François
Cuchet¹⁹, Michel Brax²⁰, Jean Sibilia²¹, Laurence Zilliox²², Cathy Barthel¹, Laurent Arnaud²¹
and Benoit Jaulhac^{1,22}

11

12 ¹ EA 7290-Virulence bactérienne précoce, groupe borréliose de Lyme, Université de Strasbourg, CHRU de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, 13 Strasbourg, France.² Service de Rhumatologie, CHU de Bordeaux, France.³ Service de 14 Rhumatologie, CHU de Rennes, France.⁴ Service de Rhumatologie, CH de Libourne, 15 France.⁵ Service de Médecine Interne, CHRU Strasbourg, France.⁶ Service de Chirurgie 16 orthopédique, CHRU Tours, France.⁷ Service de Rhumatologie, CHU Toulouse, France.⁸ 17 Service de Pédiatrie, CH Haguenau, France.⁹ Service de Rhumatologie, CH Niort, France.¹⁰ 18 Service de Rhumatologie, CH Annecy, France.¹¹ Service de Rhumatologie, CH Colmar, 19 France.¹² Service de Rhumatologie, CHU Reims, France.¹³ Service de Chirurgie infantile, 20 CHRU Rouen, France.¹⁴ Service de Rhumatologie, CHRU Tours, France.¹⁵ Service de 21 Rhumatologie, CH Saint Nazaire, France.¹⁶ Service de Rhumatologie, Hôpital d'instruction 22 des armées, Saint-Mandé, France.¹⁷ Service de Rhumatologie, CHU Nantes, France.¹⁸ Service 23 de Chirurgie pédiatrique, CHRU Strasbourg, France.¹⁹ Service de Maladies infectieuses, 24 CH Chambéry, France.²⁰ Service d'Orthopédie, CH Haguenau, France.²¹ Service de 25

26	Rhumatologie, CHRU Strasbourg, France. ²² Centre National de Référence des Borrelia,					
27	CHRU Strasbourg, France.					
28	*Antoine Grillon and Marc Scherlinger contributed equally to this work					
29						
30 31 32 33 34 35	Corresponding author: Dr Antoine Grillon, PharmD., PhD. Centre National de Référence des <i>Borrelia</i> Hôpitaux Universitaires de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg E-mail: antoine.grillon@chru-strasbourg.fr Phone: +33 3 69 55 15 82					
36	Keywords: Lyme arthritis; Borrelia; Polymerase Chain Reaction; rheumatic disease					
37						
38	Conflict of interest: none to declare related to this work.					
39	Funding Statement: none to declare.					
40						
41						
42						
43						
44						
45						
46						
47						
48						
49						
50						
51						
52						
53						

54 Abstract

55 Objectives: To describe the clinical and microbiological characteristics and outcomes after 56 antibiotic treatment of a national cohort of patients with Lyme arthritis confirmed by PCR 57 testing on synovial fluid and by serology, when available.

58 Methods: Using the French National Reference Center for *Borrelia* database, patients with a 59 positive PCR on synovial fluid for *Borrelia* were identified. Patient clinical and biological 60 characteristics were reviewed from patient records. Long-term outcomes after treatment were 61 studied through a questionnaire and with follow-up data.

62 Results: Among 357 synovial fluid testing by PCR between 2010 and 2016, 37 (10.4%) were 63 positive for Borrelia. Patients' median age was 36 years (range 6-78) with 61% of men and 64 28% patients under 18. The presentation was monoarticular in 92% and the knee was 65 involved in 97%. Contrary to the Borrelia species repartition in European ticks, 66 B. burgdorferi sensu stricto was the most prevalent species found in synovial fluid (54%) 67 followed by B. azfelii (29%) and B. garinii (17%). Antibiotic treatments were mainly 68 composed of doxycycline (n=24), ceftriaxone (n=10) and amoxicillin (n=6), for a median 69 duration of 4 weeks (range 3-12). Despite a properly conducted treatment, 34% of patients 70 (n=12) developed persistent synovitis for at least 2 months (median duration 3 months, range 71 2-16). Among those, 3 developed systemic inflammatory oligo- or polyarthritis in previously 72 unaffected joints with no signs of persistent infection (repeated PCR testing negative), which 73 mandated Disease-Modifying Antirheumatic Drugs (DMARD) introduction, leading to 74 remission.

Conclusion: In France and contrary to ticks ecology, Lyme arthritis is mainly caused by *B. burgdorferi* sensu stricto. Despite proper antibiotic therapy, roughly one third of patients
may present persistent inflammatory synovitis and a small proportion may develop systemic
arthritis. In such cases, complete remission can be reached using DMARD.

80	- Contrary to tick ecology (with B. afzelii being the most frequent species)
81	B. burgdorferi sensu stricto is the most common species involved in Lyme arthritis in
82	France.
83	- After one run of proper antibiotic therapy, roughly one third of patient develop
84	persistent inflammatory synovitis.
85	- Nearly 10% of patients developed systemic arthritis with negative repeat PCR test and
86	good DMARD response.
87	
88	
89	Introduction
90	Lyme borreliosis (LB) is the most common vector-borne disease in the Northern
91	Hemisphere.(1) The spirochete bacteria causing LB, Borrelia burgdorferi sensu lato complex
92	are transmitted by hard ticks belonging to the genus <i>Ixodes</i> (2) In Europe, the most three

79

Key messages :

iging .(2) Europe, the most the to the ge nus *Ixode* 9, 93 frequent species responsible for human infections are B. afzelii, B. garinii and B. burgdorferi 94 sensu stricto, whereas B. burgdorferi sensu stricto is almost the only species causing LB in 95 North America.(3) In Europe, neuroborreliosis is the most frequent disseminated clinical 96 manifestation of LB, followed by Lyme arthritis, acrodermatitis chronica atrophicans, and, 97 more rarely, borrelial lymphocytoma, and Lyme carditis.(4–6) These different clinical 98 pictures are linked to the great species diversity found in Europe. Conversely, in the US, 99 Lyme arthritis (LA) is the most common feature of disseminated LB, and as B. burgdorferi 100 sensu stricto is the main species found in the US it has been hypothesized that it is the main 101 etiologic agent for LA in the US and in Europe.

102 The clinical manifestations of LA, include synovitis, usually in one or a few large 103 joints, especially the knee.(7) For untreated cases, recurrent joint-swelling episodes may

persist for months or even years. The diagnosis of LA can be challenging, especially in high endemic areas, and cannot be based on a single clinical or biological characteristic. High levels of IgG antibodies against Borrelia are found in serum from patients with LA, but although serological testing shows excellent sensitivity and specificity in LA, a positive result alone is not sufficient to make the diagnosis.(8) The bacterial culture in LA is ineffective, because of its weak sensitivity.(8) Molecular diagnosis on the synovial fluid using PCR detecting Borrelia DNA is an attractive add-on test in LA diagnostic algorithm, providing a 100% specificity and a 42-96% sensitivity.(8–10)

The treatment of LA is based on antibiotics, generally for 3 to 4 weeks, and the vast majority of patients recover completely.(5,11) In the US, roughly 10% of patients develop persistent synovitis lasting ≥ 2 months, called slowly resolving or antibiotic-refractory LA.(7) Although slowly resolving LA pathophysiology remains obscure, there is strong evidence for an autoimmune or inflammatory mechanism.(12–15) and little to none for persistent infection. Since few data about clinical and microbiological features and outcome of patients with LA are available in Europe, we conducted a retrospective observational study to describe the clinical and biological characteristics and treatment outcomes of a national cohort of patients with LA confirmed with synovial fluid PCR.

129 Patients and Methods

130

131 Patients

132 We conducted a retrospective observational study using the French National Reference 133 Centre (NRC) for Borrelia database. Among its missions, the French NRC for Borrelia 134 contributes to the epidemiological surveillance of LB. Between 2010 and 2016 all the patients 135 referred to the NRC for Borrelia PCR testing and who had a positive Borrelia PCR (n=37) in 136 their synovial fluids were included. Patients' medical history and laboratory findings, when 137 available, were reviewed from medical records (Figure 1). Time to diagnosis was calculated 138 as the time between the first reported articular symptoms (retrieved from the medical report) 139 and the PCR testing. The duration and route of antibiotic therapy were retrieved from medical 140 records. In order to study treatment outcome, patients were submitted a standardized 141 questionnaire by their referent physician. This questionnaire included reported articular or 142 other sequelae, asthenia or reported invalidity. Follow-up clinical data were also retrieved 143 from their referent physician.

144

145 Borrelia ELISA and western-blot

Borrelia ELISA were realized using different commercial kits done by the considered
hospital taking care of the patients (Euroimmun Lyme ELISA IgG IgM, Diasorin Liaison
XL® Borrelia IgG IgM, Biomérieux Vidas® Lyme panel, Siemens Enzygnost® IgG IgM,
Mikrogen recomwell® Borrelia IgG IgM).

150 Serum Borrelia western-blot using different commercial kits (Biosynex LYMECHECK®

151 Optima IgG IgM, Mikrogen recomLine® Borrelia IgG IgM, Euroimmun Euroline® Borrelia-

152 RN-AT-Adv) or an in-house test as previously described.(17)

154 Borrelia polymerase chain reaction testing

155 Borrelia PCR in synovial fluid were conducted as previously described.(18). Briefly, 156 presence or absence of Borrelia DNA was assessed by a specific real-time PCR assay 157 targeting a 230 bp DNA fragment from the conserved region of the flagellin (fla) gene of 158 the Borrelia burgdorferi sensu lato complex and a Taqman[®] probe (11 bp). Then Borrelia 159 species identification was realized by a second real-time DNA amplification using 160 hybridization probes targeting species-specific regions of the *fla* gene for *B. afzelii*, *B.* 161 garnii/B. bavariensis, B. burgdorferi ss, B. bissettii, B. valaisiana and B. lusitaniae. All PCR 162 tests were performed in the same laboratory (Borrelia NRC located in Strasbourg, France).

163

164 Statistical analyses

Data were analysed using GraphPad Prism Version 6.03. Non-parametric Kruskal-Wallis test followed by a Dunn's correction for multiple testing was used to compare the distribution of numerical variables. Mann-Whitney test was used when Kruskal-Wallis test was not applicable. Unadjusted associations between serum CRP levels and synovial fluid leucocytes count were estimated with Spearman correlation coefficient. Fisher's exact tests were used to compare categorical variables. P values (bilateral) <0.05 were considered statistically significant.

172

173 Ethical considerations

This study was approved by the Ethic Committee of the Faculty of Medicine andStrasbourg University Hospital, with the reference number 2018-4.

176

178 **Results**

179

180 **Patient characteristics**

181 Between 2010 and 2016, 357 synovial fluids (SF) were tested by the French National 182 reference centre. Borrelia DNA was detected in 37 (10.4%) of them (Figure 1). Positive 183 samples came from many regions of France where LB has been previously reported 184 (Figure 2)(19). Patient characteristics are summarized in Table 1. Median time to diagnosis 185 was 3 months (range 1-112 months) after clinical symptoms onset, and was significantly 186 longer in adults than children (4 vs 1.5 months, respectively, p=0.03). On a seasonal point of 187 view, date of the first clinical signs was observed during winter for 11 patients, spring for 188 6 patients, summer for 10 patients and fall for 8 patients (without significant difference). No 189 significant differences were observed between diagnosis delay and Borrelia species, or 190 between patients' age and Borrelia species.

191

192 Clinical presentation at diagnosis

193 The presentation was monoarticular in 92% (34/37) cases, and oligoarticular in the 194 other cases. The knee was involved in 97% (36/37) patients, other involved joints were the 195 ankle (n = 1) and the elbow (n = 1). Fever (>38°C) was reported in 22% (8/37) patients and 196 was significantly more frequent in patients under 18 years old (45.5% vs 11.5%, p = 0.035). 197 Erythema migrans was reported by 14% (6/33) of patients. Other manifestations included 198 headaches (n = 2), cervico-brachial nevralgia (n = 1), leukocytoclastic vasculitis (n = 1). None 199 of the patients was diagnosed with concomitant cardiac Lyme disease manifestation. The 200 characteristics are detailed in Table 1.

201

203 Laboratory Findings

204 Lyme borreliosis serology was available for 33 patients, who all had IgG antibodies 205 against Borrelia with the ELISA assay (Table 1). Western-blots were positive with the 206 presence of at least 5 specific bands in 97% (32/33) of our cohort. One patient had a non-207 significant western-blot result with only 3 bands detected (41, 50 and 83 kDa bands). This 208 patient had a 6-month diagnosis delay. Forty percent (12/30) of patients had detectable IgM 209 antibodies against Borrelia. No association was observed between IgM positivity and 210 Borrelia species, patients' age, or diagnosis delay or resolution of symptoms (data not 211 shown).

212 Among available synovial fluid counts (n = 18), the median SF count was 25000 (range 1400 213 -300000) with a median neutrophil percentage of 90% (range 65-99). C-reactive protein 214 (CRP) level was high (> 5mg/L) in 91% of patients, with a median value of 45 mg/L (range 3-182). CRP level was associated with leucocytes count in synovial fluids (r^2 : 0.423; p = 0.003). 215 216 Among the 37 patients with a positive Borrelia PCR in SF, PCR detected 217 B. burgdorferi sensu stricto DNA in 19 patients (54%), B. afzelii DNA in 10 patients (29%), 218 and B. garinii DNA in 6 patients (17%) (Figure 3). No statistical difference was observed in 219 the annual species repartition or in the annual ratio of positive samples on total samples 220 tested. Most of the molecular analyses were performed on synovial fluids obtained from 221 patients who hailed from the North of France.

222

223 Treatment

Antibiotic treatments used were oral doxycycline (n = 24), intravenous ceftriaxone (n = 10), oral amoxicillin (n = 6), oral tetracycline (n = 1) and oral cefaclor (n = 1). Five patients received a combination therapy (doxycycline and ceftriaxone). Three of them received ceftriaxone after doxycycline, one received doxycycline after 4 days of ceftriaxone and one received both at the same time. Ceftriaxone therapy was added when inadequate response to oral therapy was observed. Median antibiotic treatment duration was 4 weeks (range 3 to 12). After the diagnosis, 9 patients received intra-articular glucocorticoids including 8 patients who had antibiotic-resistant LA. Seven received triamcinolone hexacetonide synoviorthesis, as initial treatment for the arthritis (n = 1) or as adjunctive treatment for persistent synovitis (n = 6). One patient received isotopic synoviorthesis (detailed in next paragraph). None of them had to undergo surgical synovectomy.

235

236 Clinical outcome after treatment

Follow-up data after treatment were available for 35 (95%) patients with a median follow-up time of 17 (range 1-73) months (Figure 1). Sixty-six percent of patients (n = 23) had a rapid resolution of the arthritis whereas 34% (n = 12) presented residual synovitis lasting ≥ 2 months after oral antibiotic or 1 month after IV antibiotic (also called antibiotic refractory LA).

Among the 23 patients with rapid resolution of the arthritis, 78% (n = 18) presented a full recovery and 22% (n = 5) reported long-lasting residual mechanical pain in the affected joint. The residual mechanical pain was moderate and did not significantly limit the patients' activities.

Among the 12 patients with residual clinical synovitis lasting ≥ 2 months (median duration 3 months, range 2-16) after one course of oral antibiotic treatment or for at least 1 month after IV treatment, *Borrelia* PCR testing in SF was repeated in 9 patients, and all tests were negative. Three of them received combination treatment with doxycycline and IV ceftriaxone. The initial treatment of the residual synovitis consisted of non-steroidal antiinflammatory drugs and intra-articular glucocorticoid injections were used in 75% cases. Half (n = 6) of these patients with residual synovitis presented a full recovery, 17% (n = 2)

253 reported long-lasting residual mechanical pain in the affected joint, 25% (n=3) developed 254 systemic inflammatory arthritis in initially non-affected joints (Figure 1). One patient with 255 persistent knee synovitis despite doxycycline (4 weeks) and IV ceftriaxone (3 weeks) 256 underwent isotopic synoviorthesis (intra-articular injection of a radioactive isotope (i.e. 257 ⁹⁰Ytrium) to decrease synovial inflammation). The isotopic synoviorthesis was performed 258 after persistent Borrelia infection was ruled out by repeat synovial fluid PCR and after a 259 relapse despite triamcinolone hexacetonide synoviorthesis and 3 months treatment with oral 260 methotrexate (15mg/week). He did not present subsequent articular flare-up. One patient with 261 negative repeat synovial fluid PCR developed symptoms suggestive of chronic pain syndrome 262 without inflammatory joint disease. Characteristics of patients with or without slowly 263 resolving synovitis are presented in Table 2.

264 The characteristics of the 3 patients who developed diffuse inflammatory arthritis are 265 detailed in Table 3. Briefly, the 3 patients presented oligo- or polyarthritis involving 266 previously non-affected joints. One patient developed dactylitis, no patient developed axial of 267 extra-articular involvement. Borrelia PCR testing on SF was repeated for all these 3 patients, 268 with negative results. Laboratory testing for autoimmunity (including at least antinuclear 269 antibody and ACPA) was negative for all the 3 patients. None of these 3 patients had HLA-270 DR locus typed. All these 3 patients were started on methotrexate at an oral dose of 15 to 271 20mg/week leading to sustained remission in 2 patients. Adalimumab was added to the third 272 patient's treatment regimen, leading to sustained remission.

- 273
- 274
- 275
- 276
- 277

279

To determine clinical and biological characteristics and treatment outcome of patients with proven Lyme arthritis, we examined data from 37 patients with a positive *Borrelia* PCR on synovial fluid.

283 The diagnosis of LA is currently based on the presence of specific symptoms, 284 combined with laboratory evidence for infection. Serology is the cornerstone of Lyme disease 285 laboratory diagnosis, and serological tests that are most often used are enzyme-linked 286 immuno-sorbent assays (ELISAs) followed by immunoblots. In our cohort, all patients with 287 available serological data (33/33) showed a positive ELISA IgG result. It is noteworthy that 288 all Borrelia serology were sampled at the same time or after the synovial fluid and that PCR 289 was performed independently of the serology. Therefore no bias of inclusion criteria related to 290 the Borrelia serological result was possible in our cohort. In LA, serological tests such as 291 ELISAs IgG are known to show a great sensitivity (93-100%) and specificity (91-97%) (20). 292 ELISAs IgM are known to be less sensitive than IgG in LA, and their presence was found in 293 only 40% cases of our cohort. Thus, positive Borrelia IgG with negative IgM should not be 294 considered as a "serological scar" and discard the diagnosis.

295 In our study, the diagnosis of LA was always confirmed by a positive SF PCR for *Borrelia*. 296 Molecular diagnosis on the synovial fluid using PCR detecting Borrelia DNA is an interesting 297 add-on diagnostic tool in LA diagnosis. In Europe, its sensibility is roughly 60-70% (8-10) 298 and a PCR positivity in synovial fluid, in case of positive serology allows diagnosis certainty 299 (100% specificity), which is not the case with serology alone. In a practical point of view, 300 molecular diagnosis must be realized when serological tests are positive. Several points 301 support this conception: On the one hand, some patients with LA will have a negative 302 Borrelia PCR test in their synovial fluid, which can be due to low spirochaetal load, technical failure of the PCR or DNA degradation due to incorrect pre-analytic sample handling. On the second hand, since virtually all patients described in the literature as having LA have a positive serology, serology should be realized first considering its lower cost and that a false positive results due to external contamination is at least theoretically always possible. If PCR testing is negative (and serology is positive), differential diagnoses should be considered, but LA diagnosis remains still possible.

In comparison with serology, repeat PCR test turns negative after antibiotic treatment, sometime with a few months delay.(16) In one American study, spirochaetal DNA could be found in some patients after antibiotic therapy, however, amplification of mRNA (marker of spirochaetal viability) was negative in all patients, suggesting dead bacteria remnants rather than persistent infection. (16) In our study, all synovial fluid PCR repeated after antibiotic treatment among whom 9 had antibiotic refractory LA, were negative (n =14).

315 In Europe, the most frequent species responsible for human LB are B. afzelii, 316 B. garinii and B. burgdorferi sensu stricto, whereas the most frequent species that causes LB 317 in North America is mainly B. burgdorferi sensu stricto.(3) In France and all over Europe, 318 B. burgdorferi sensu stricto is the least frequent species found in the Ixodes ricinus, the main 319 vector of LB in Europe. In a recent meta-analysis, the major Borrelia species found in 320 European I. ricinus ticks was B. afzelii (46.6%), followed by B. garinii (23.8%), then 321 B. burgdorferi sensu stricto, found in only 10.2% of ticks.(21) In European patients with LB, 322 EM is the most frequent clinical manifestation, and is mainly associated with B. afzelii;(22-323 24) the second most frequent clinical picture is neuroborreliosis and is mainly associated with 324 B. garinii.(25) Interestingly, the most frequent Borrelia species found in synovial fluids from 325 our patients was B. burgdorferi sensu stricto (54%). A potential bias could be that PCR 326 technique may have different sensibility, meaning that some organisms are more likely to be 327 identified than others. But our PCR technique is routinely used and sensitivity is the same for 328 all Borrelia strains. For example, in erythema migrans biopsies, B. afzelii is found in more 329 than 90% of cases (personal communication). Our observations are concordant with some 330 other previous studies, in which B. burgdorferi sensu stricto was found to be more frequent 331 than the other species in European LA.(26,27) However, some studies did not observe this 332 correlation.(28,29) In Europe, Borrelia strains causing Lyme arthritis are greatly 333 heterogeneous, and our study, based on French data, might not be extrapolated to other 334 European countries. Although our study provides the largest cohort of European LA patient 335 with Borrelia species determination, a global survey involving other European countries may 336 help to elucidate this question.

337 Initial clinical presentations in our LA cohort were classical, with joint swelling of a 338 large articulation (especially the knee, in 97%), as previously reported in a cohort of 65 US 339 patients with LA.(30) Fever was rarely reported but significantly associated with children 340 borreliosis which are known to experience a more acute presentation.(31) These observations 341 occurred from weeks to months after a tick bite, although only 40% of patients remembered 342 this bite. In a European case series, the period from tick bites or EM to the onset of LA ranged 343 from 10 days to 16 months.(32) Because of this great variability of the latency period, there is 344 no seasonal peak in the occurrence of LA.(30) We also observed this characteristic in our 345 cohort, since the date of the first clinical signs was observed all over the year. History of a 346 prior EM to LA is a rare phenomenon. Herein, only 6 (16.2%) of our 37 patients remembered 347 an EM before LA presentation. Based on European studies, history of EM in case of LA is 348 ranged between 10 to 32%.(33–35)

Diagnosis delay was usually short, with 18/35 patients diagnosed between 1 and 350 3 months after clinical signs appearance ; 4/35 patients were diagnosed after 12 months, with 351 one patient after 112 months. This shows that LA is sometimes a difficult diagnosis, and should be systematically investigated for in the presence of a monoarticular or oligoarticulararthritis with negative culture and crystal observation, especially in case of knee involvement.

354 Antibiotic course mostly included doxycycline, ceftriaxone or amoxicillin for a 355 median time of 4 weeks. All these treatment regimen have a proven efficacy in LA (35,36). In 356 our study, one third of patients presented persistent synovitis lasting at least 2 months after a 357 well-conducted oral antibiotic treatment or 1 month after IV treatment. This condition is 358 called slowly resolving or antibiotic-refractory Lyme arthritis in the literature and is usually 359 reported in roughly 10% of patients in US cohorts and thought to be even rarer in Europe 360 (38,39). Although its pathophysiology remains unclear, the current preferred paradigm is an 361 autoimmune reaction against Borrelia antigens or a loss of tolerance against an unidentified 362 autoantigen rather than persistent *Borrelia* infection (38). In line with this paradigm, all 363 9 repeated synovial fluid PCR testing in our patients with antibiotic-refractory LA were 364 negative. Interestingly, matrix metalloprotease 10, an auto-antigen targeted by B and T 365 lymphocytes, have been identified in some patients with antibiotic-refractory LA, reinforcing 366 the autoimmune hypothesis.(40) Association between antibiotic-refractory LA and certain 367 HLA-DR haplotype has been reported.(12) Unfortunately, HLA-phenotyping could not be 368 performed in our study. Our data suggest that slowly resolving LA is not uncommon in 369 Western Europe or at least in France. Clinical outcomes were favourable for 67% with 370 symptomatic treatments (NSAID or intra-articular glucocorticoids). One patient with slowly 371 resolving LA with negative follow-up PCR testing later developed symptoms suggestive of 372 chronic pain syndrome. Finally, 3 patients (25% of patients with persistent synovitis and 9% 373 from our follow-up cohort) developed systemic arthritis after antibiotic treatment. Systemic 374 arthritis is a poorly identified complication of LA which incidence and pathogenesis are 375 largely unknown. Infection-induced rheumatic disease (eg, rheumatoid arthritis) or post-376 spirochaetal reactive polyarthritis are two viable hypothesis but further fundamental work is

377 needed. A recent report described 30 rheumatoid arthritis-like and psoriatic arthritis-like cases 378 following LA diagnosis in the US.(41) One critic voiced by Tuttle was that LA diagnosis was 379 based on serology alone and that testing to investigate for persistent Borrelia infection in 380 these patients was not reported. (42) However, in the 5 patients in whom synovial fluid was 381 available, testing for *Borrelia* DNA was negative, which supports the conclusion that these 382 patients did not have persistent Borrelia infection. In our study, the facts that all 3 patients 383 developing systemic arthritis had negative repeated SF Borrelia PCR testing and an excellent 384 response to DMARD treatment strongly argue against persistent infection.

385 One of the strengths of our study is the direct involvement of the French national 386 reference centre for Borrelia. The French national reference centre for Borrelia based in 387 Strasbourg since 2012 provides diagnosis testing for all regions of France thus allowing a 388 representative capture of French PCR-positive LA cases. Besides, since patients' inclusion 389 was based on synovial fluid PCR positivity, the LA diagnosis was proven in all cases. The 390 main limit of our study is that due to the retrospective analysis, some data were not available 391 for analysis. Two patients (5% of the cohort) could not be contacted in order to study the after 392 treatment outcome. Another limitation is that due to the multicentre origin of our cohort, we 393 were not able to reunite a cohort of LA with a negative PCR for use as a control group. 394 However, the main aims of our study were to describe clinical characteristics and treatment 395 outcome of PCR-proven LA, for which a control group was deemed unnecessary. Besides, as 396 a positive serological test alone does not mean that a patient necessarily has active Lyme 397 borreliosis, the additive value of this type of control group may be not relevant.

398

In conclusion we report 37 cases of synovial fluid PCR-positive Lyme arthritis in French patients. We identify *B. burgdorferi* sensu stricto as the main species involved in LA, in spite of its low prevalence in European ticks. After antibiotic treatment, follow-up

402	ident	ified 34% (12/35) patients with slowly resolving arthritis among whom 25% (3 patients,			
403	9% of the follow-up cohort) developed systemic inflammatory arthritis without any sign of				
404	persistent infection (negative repeat PCR testing). Our study suggests that European patients				
405	with	with LA may present post-infectious inflammatory manifestation in a significant proportion			
406	of ca	ses.			
407					
408					
409	Ackr	nowledgments			
410	We t	hank Lionel Spielmann and Emmanuel Chatelus for help with identifying patients with			
411	Lyme	e arthritis, and Marie-Christine Michellet for English revision.			
412					
413					
414	Refe	rences			
415	1.	Stanek G, Wormser GP, Gray J, Strle F. Lyme borreliosis. Lancet.			
416		2012;379(9814):461–73.			
417	2.	Radolf JD, Caimano MJ, Stevenson B, Hu LT. Of ticks, mice and men: understanding			
418		the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol.			
419		2012;10(2):87–99.			
420	3.	Pritt BS, Mead PS, Johnson DKH, Neitzel DF, Respicio-Kingry LB, Davis JP, et al.			
421		Identification of a novel pathogenic Borrelia species causing Lyme borreliosis with			
422		unusually high spirochaetaemia: A descriptive study. Lancet Infect Dis.			
423		2016;16(5):556-64.			
424	4.	Stanek G, Fingerle V, Hunfeld KP, Jaulhac B, Kaiser R, Krause A, et al. Lyme			
425		borreliosis: Clinical case definitions for diagnosis and management in Europe. Clin			
426		Microbiol Infect. 2011;17(1):69–79.			

- 427 5. Arvikar SL, Steere AC. Diagnosis and treatment of Lyme arthritis. Infect Dis Clin
 428 North Am. 2015;29(2):269–80.
- 429 6. Herzer P. Joint manifestations of Lyme Borreliosis. In: Acta Dermatovenerologica
 430 Alpina, Panonica et Adriatica. 1996. p. 143–6.
- 431 7. Steere AC, Schoen RT, Taylor E. The clinical evolution of lyme arthritis. Ann Intern
 432 Med. 1987;107(5):725–31.
- 433 8. Dessau RB, van Dam AP, Fingerle V, Gray J, Hovius JW, Hunfeld KP, et al. To test or
- 434 not to test? Laboratory support for the diagnosis of Lyme borreliosis: a position paper
- 435 of ESGBOR, the ESCMID study group for Lyme borreliosis. Vol. 24, Clinical
- 436 Microbiology and Infection. 2018. p. 171–4.
- 437 9. Jaulhac B, Chary-Valckenaere I, Sibilia J, Javier RM, Piémont Y, Kuntz JL, et al.
- 438 Detection of *Borrelia burgdorferi* by DNA amplification in synovial tissue samples
 439 from patients with Lyme arthritis. Arthritis Rheum. 1996;39(5):736–45.
- 440 10. Nocton JJ, Dressler F, Rutledge BJ, Rys PN, Persing DH, Steere AC. Detection of
- 441 Borrelia burgdorferi DNA by polymerase chain reaction in synovial fluid from patients
- 442 with Lyme arthritis. N Engl J Med. 1994;330(4):229–34.
- 443 11. Strle F, Stanek G. Clinical manifestations and diagnosis of lyme borreliosis. Vol. 37,
- 444 Current Problems in Dermatology. 2009. p. 51–110.
- 12. Steere AC, Klitz W, Drouin EE, Falk B a, Kwok WW, Nepom GT, et al. Antibiotic-
- refractory Lyme arthritis is associated with HLA-DR molecules that bind a *Borrelia*
- 447 *burgdorferi* peptide. J Exp Med. 2006;203(4):961–71.
- Shen S, Shin JJ, Strle K, McHugh G, Li X, Glickstein LJ, et al. Treg cell numbers and
 function in patients with antibiotic-refractory or antibiotic-responsive lyme arthritis.
- 450 Arthritis Rheum. 2010;62(7):2127–37.
- 451 14. Strle K, Shin JJ, Glickstein LJ, Steere AC. Association of a toll-like receptor 1

452		polymorphism with heightened Th1 inflammatory responses and antibiotic-refractory
453		Lyme arthritis. Arthritis Rheum. 2012;64(5):1497–507.
454	15.	Vudattu NK, Strle K, Steere AC, Drouin EE. Dysregulation of CD4+CD25high T cells
455		in the synovial fluid of patients with antibiotic-refractory lyme arthritis. Arthritis
456		Rheum. 2013;65(6):1643–53.
457	16.	Li X, McHugh GA, Damle N, Sikand VK, Glickstein L, Steere AC. Burden and
458		viability of Borrelia burgdorferi in skin and joints of patients with erythema migrans or
459		lyme arthritis. Arthritis Rheum. 2011;63(8):2238–47.
460	17.	N'Guyen Y, Lesaffre F, Metz D, de Martino S, Jaulhac B, Andréoletti L. No
461		serological evidence for Borrelia burgdorferi sensu lato infection in patients with
462		dilated cardiomyopathy in Northern France. Vol. 48, Infectious Diseases. 2016. p. 763-
463		4.
464	18.	Hidri N, Barraud O, de Martino S, Garnier F, Paraf F, Martin C, et al. Lyme
465		endocarditis. Clin Microbiol Infect. 2012;18(12):E531-2.
466	19.	Vandenesch A, Turbelin C, Couturier E, Arena C, Jaulhac B, Ferquel E, et al.
467		Incidence and Hospitalisation rates of lyme borreliosis, France, 2004 to 2012.
468		Eurosurveillance. 2014;19(34).
469	20.	Leeflang MMG, Ang CW, Berkhout J, Bijlmer HA, Van Bortel W, Brandenburg AH,
470		et al. The diagnostic accuracy of serological tests for Lyme borreliosis in Europe: a
471		systematic review and meta-analysis. BMC Infect Dis. 2016;16(1):140.
472	21.	Strnad M, Hönig V, Růžek D, Grubhoffer L, Rego ROM. Europe-wide meta-analysis
473		of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl
474		Environ Microbiol. 2014;83(15).
475	22.	Kuiper H, Cairo I, Van Dam A, De Jongh B, Ramselaar T, Spanjaard L, et al. Solitary
476		erythema migrans: a clinical, laboratory and epidemiological study of 77 Dutch

- 477 patients. Br J Dermatol. 1994;130(4):466–72.
- 478 23. Cerar T, Ružić-Sabljić E, Glinšek U, Zore A, Strle F. Comparison of PCR methods and
- 479 culture for the detection of *Borrelia* spp. in patients with erythema migrans. Clin
 480 Microbiol Infect. 2008;14(7):653–8.
- 481 24. Ornstein K, Berglund J, Nilsson I, Norrby R, Bergström S. Characterization of Lyme
 482 borreliosis isolates from patients with erythema migrans and neuroborreliosis in

483 Southern Sweden. J Clin Microbiol. 2001;39(4):1294–8.

484 25. Strle F, Ruzić-Sabljić E, Cimperman J, Lotric-Furlan S, Maraspin V. Comparison of
485 findings for patients with *Borrelia garinii* and *Borrelia afzelii* isolated from

486 cerebrospinal fluid. Clin Infect Dis. 2006;43(6):704–10.

- 487 26. Jaulhac B, Heller R, Limbach F, Hansmann Y, Lipsker D, Monteil H, et al. Direct
- 488 molecular typing of *Borrelia burgdorferi* sensu lato species in synovial samples from
 489 patients with lyme arthritis. J Clin Microbiol. 2000;38(5):1895–900.
- 490 27. Van Der Heijden IM, Wilbrink B, Rijpkema SGT, Schouls LM, Heymans PHM, Van
- 491 Embden JDA, et al. Detection of *Borrelia burgdorferi* sensu stricto by reverse line blot
- 492 in the joints of Dutch patients with Lyme arthritis. Arthritis Rheum. 1999;42(7):1473–
 493 80.
- 494 28. Vasiliu V, Herzer P, Rössler D, Lehnert G, Wilske B. Heterogeneity of Borrelia
- 495 *burgdorferi* sensu lato demonstrated by an ospA-type-specific PCR in synovial fluid
- from patients with Lyme arthritis. Med Microbiol Immunol. 1998;187(2):97–102.
- 497 29. Eiffert H, Karsten A, Thomssen R, Christen HJ. Characterization of Borrelia
- 498 *burgdorferi* strains in Lyme arthritis. Scand J Infect Dis. 1998;30(3):265–8.
- 499 30. Herzer P. Joint manifestations. In: Weber K, Burgdorfer W, editors. Aspects of Lyme
 500 borreliosis. Heidelberg: Springer; 1993. p. 168–84.
- 501 31. Daikh BE, Emerson FE, Smith RP, Lucas FL, McCarthy C a. Lyme arthritis: a

502		comparison of presentation, synovial fluid analysis, and treatment course in children
503		and adults. Arthritis Care Res (Hoboken). 2013;65(12):1986–90.
504	32.	Herzer P. Joint manifestations of Lyme borreliosis in Europe. Scand J Infect Dis Suppl.
505		1991;77:55–63.
506	33.	Haugeberg G, Hansen IJW, Skarpaas T, Noraas S, Kjelland V. Lyme arthritis in
507		Southern Norwayan endemic area for Lyme borreliosis. BMC Infect Dis.
508		2014;14:185.
509	34.	Priem S, Munkelt K, Franz JK, Schneider U, Werner T, Burmester GR, et al.
510		[Epidemiology and therapy of Lyme arthritis and other manifestations of Lyme
511		borreliosis in Germany: results of a nation-wide survey]. Z Rheumatol.
512		2003;62(5):450-8.
513	35.	Berglund J, Eitrem R, Ornstein K, Lindberg a, Ringér a, Elmrud H, et al. An
514		epidemiologic study of Lyme disease in southern Sweden. N Engl J Med.
515		1995;333(20):1319–27.
516	36.	Steere A, Levin R, Molloy P, Kalish R, Abraham J 3rd, Liu N, et al. Treatment of
517		Lyme arthritis. Arthritis Rheum. 1994;37(6):878–88.
518	37.	Dattwyler RJ, Volkman DJ, Halperin JJ, Luft BJ. Treatment of late Lyme borreliosis-
519		randomised comparison of ceftriaxone and penicillin. Lancet. 1988;331(8596):1191-4.
520	38.	Steere AC, Angelis SM. Therapy for lyme arthritis: Strategies for the treatment of
521		antibiotic-refractory arthritis. Vol. 54, Arthritis and Rheumatism. 2006. p. 3079-86.
522	39.	Akin E, Aversa J, Steere AC. Expression of adhesion molecules in synovia of patients
523		with treatment-resistant lyme arthritis. Infect Immun. 2001;69(3):1774-80.
524	40.	Crowley JT, Strle K, Drouin EE, Pianta A, Arvikar SL, Wang Q, et al. Matrix
525		metalloproteinase-10 is a target of T and B cell responses that correlate with synovial
526		pathology in patients with antibiotic-refractory Lyme arthritis. J Autoimmun.

528	41.	Arvikar SL, Crowley JT, Sulka KB, Steere AC. Autoimmune Arthritides, Rheumatoid
529		Arthritis, Psoriatic Arthritis, or Peripheral Spondyloarthritis Following Lyme Disease.
530		Arthritis Rheumatol. 2017;69(1):194–202.
531	42.	Tuttle C. Post-Lyme Arthritis May Be More Than Lyme: Comment on the Article by
532		Arvikar et al. Vol. 69, Arthritis and Rheumatology. 2017. p. 684.
533		
534		
535		
536		
537		
538		
539		
540		
541		
542		
543		
544		

552 Figures

555 Figure 1. Included patients' flowchart through the study. From our database of 357 tested 556 synovial fluids from 2010 to 2016, 37 were positive for Borrelia DNA. Of these 37 patients, 557 35 had available follow-up data after treatment. Twenty-three patients had rapid resolution of 558 the arthritis whereas 12 presented residual synovitis lasting ≥ 2 months. Among the 559 23 patients with rapid resolution of the arthritis, 18 presented a full recovery and 5 reported 560 residual mechanical pain in the affected joint. Among the 12 patients with residual synovitis, 561 6 patients presented a full recovery, 2 reported residual mechanical pain in the affected joint, 562 3 developed systemic inflammatory arthritis in initially non-affected joints and 1 showed 563 symptoms suggesting chronic pain syndrome.

Geographical repartition of the PCR tested/PCR positive SF during the 2010-2016 period by the NRC for Borrelia

579 Figure 3. Repartition of *Borrelia* species found in synovial fluids from 2010 to 2016.

Table 1: Patient, disease and treatment characteristics at diagnosis

Characterist	ics at diagnosis	PCR-positive Lyme Arthritis (n = 37)
Patient cha	racteristics	
Age, median	(range), years	36 (6 – 78)
Minor < 18 y	vears	28% (11/37)
Male Sex		61% (23/37)
Tick exposu	re	91% (29/32)
History of tie	ck bite	45% (15/33)
Diagnostic d	elay, median (range), months	3 (1 – 112)
Clinical pre	sentation	
Previous ery	rthema migrans	19% (6/32)
Monoarthrit	is	92% (34/37)
Oligoarthriti	S	8% (3/37)
Knee involve	ement	97% (36/37)
Fever (>38°	C)	22% (8/37)
Laboratory	findings	
C-reactive p	rotein, median (range), mg/L	45 (3-182)
Positive Bor	relia serology (ELISA)	100% (37/37)
Positive Bor	<i>relia</i> western-blot	97% (36/37)
Negative Bon	rrelia western-blot	3% (1/37)
Joint fluid as	piration	
leuko	cyte count > 2000/mm ³	95% (18/19)
Leuko	ocyte count, median (range)	25000 (1400 – 300 000)
% of 1	neutrophils, mean (SD)	85% (±10%)
Antobiotic I	regimen	
Treatment d	uration, median (range), weeks	4 (3 – 12)
Doxycycline		65% (24/37)
Ceftriaxone		27% (10/37)
Amoxicillin		16% (6/37)
Other		5% (2/37)
596		

603 Table 2: Characteristics of patients with or without persistent arthritis

	Characteristics at diagnosis	Arthritis resolution (n = 23)	Persistent arthritis (n = 12)	P-value
	Patient characteristics			
	Age, median (range), years	33 (6-75)	41 (12-78)	0.48
	Minor < 18 years	39% (9)	17% (2)	0.26
	Male Sex	65% (15)	28% (7)	0.73
	Diagnostic delay, median (range), months Clinical presentation	3 (1-112)	5 (1-24)	0.27
	Monoarthritis	96% (22)	83% (10)	0.27
	Oligoarthritis	4% (1)	17% (2)	0.27
	Fever	26% (6)	17% (2)	0.69
	Laboratory findings			
	C-reactive protein, median (range), mg/L Synovial fluid aspiration	37 (3-182)	61 (6-136)	0.46
	Leukocyte count, median (range)	17000 (1400-300000)	27000 (2700-60000)	0.31
	Borrelia species B. burgdorferi sensu stricto B. afzelii B. garinii	48% (11) 30% (7) 22% (5)	67% (8) 25% (3) 8% (1)	0.64
	Antibiotic regimen			
	Treatment duration, median (range), weeks	4 (3-12)	6 (3-12)	0.09
	Doxycycline	57% (13)	83% (10)	0.15
	Ceftriaxone	22% (5)	33% (4)	0.69
	Amoxicillin	22% (5)	8% (1)	0.64
	Other	9% (2)	0%	0.53
604				
605 606				
607				

Table 3. Characteristic of patients developing chronic systemic arthritis.

Characteristics at diagnosis	racteristics at Patient 1 Patient 2 gnosis		Patient 3	
Age	24 years 28 years		14 years	
Sex	Female	Male	Male	
Initial clinical presentation	Acute knee monoarthritis No fever no EM	Acute right knee arthritis Left knee arthritis 4 weeks earlier No fever no EM	Acute left knee arthritis Right knee arthritis 6 weeks earlier Leukocytoclastic purpura No fever no EM	
CRP level	3 mg/L	8mg/L	84mg/L	
SF leukocyte count	2400/mm ³ 75% neutrophils	17600/mm ³ neutrophil count NA	25000/mm ³ 90% neutrophils	
Borrelia species	B. garinii	<i>B. burgdorferi</i> sensu stricto	B. azfelii	
Initial treatments	Tetracyclin 600mg/day 4 weeks Naproxen	Before diagnosis : Oral MTX 15mg/week Hexatrione acetonide At diagnosis : Doxycycline 200mg/day 12 weeks MTX discontinuation	Doxycycline 200mg/day 8 weeks Naproxen	
Inflammatory disease presentation	Asymmetric oligoarthritis: right knee and hip, left ankle	Knee bi-arthritis and dactylitis	Asymmetric polyarthritis: left wrist and elbow, right wrist and 2 nd MCP	
New SF PCR	Negative	Negative	Negative	
Immune panel	ANA and ACPA negative	ANA and RF and ACPA negative	ANA and ACPA negative	
B27 status	Negative	NA	Negative	
Treatments	MTX 15 mg/week	MTX 15mg/week Hexatrione acetonide Adalimumab 40mg/2weeks	MTX 15mg/week	
Outcome	Rapid remission MTX discontinuation after 24 months No recurrence at 3 months	Flare-up with MTX alone Remission with MTX+ADA Treatment still ongoing	Rapid remission MTX discontinuation after 18 months No recurrence at 1 year of follow-up	

		Lost of follow-up		
615				
616	Abbreviations :	ACPA, anti-citrulinated pro	tein antibody; ANA, anti-nu	clear antibody; CRP,
617	C-reactive prote	in; ECM, erythema migrans	; MTX, methotrexate; RF, r	heumatoid factor; SF,
618	synovial fluid; N	IA, not available		
619				
620				