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KEY POINTS 

- Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics are 
revolutionary techniques which allow the study of liver cell composition, physiology 
and disease development in unprecedented detail. 

- ScRNA-seq comprises multiple technologies and the choice of platform used should 
be guided by the biological question, the study design and endpoints required. 

- Gathering spatial information from single-cell data is challenging and several 
sequencing strategies and computational frameworks have been developed to 
overcome this issue. 

- ScRNA-seq has uncovered substantial functional heterogeneity within the main liver 
cell lineages in health and disease, identifying zonation of multiple lineages across 
the liver lobule, and identification of novel progenitor populations. 

- Liver zonation is not restricted to hepatocytes, but it is extended to non-parenchymal 
cells such as liver sinusoidal endothelial cells and stellate cells. 

- ScRNA-seq of cirrhotic liver samples has allowed investigation of the cellular 
interactome regulating the human liver fibrotic niche. 

- Notch signaling is a central pathway involved in cell interactions in the human liver 
fibrotic niche. 

- ScRNA-seq has uncovered cellular heterogeneity within the tumor microenvironment 
of primary liver cancers. 

 

SUMMARY 

Transcriptome analysis allows the study of gene expression of human tissues and it is 

a valuable tool to characterize liver function, gene expression changes during liver disease, 

identify prognostic markers or signatures, and to facilitate discovery of new therapeutic 

targets. In contrast to whole tissue RNA sequencing analysis, single-cell RNA-sequencing 

(scRNA-seq) and spatial transcriptomics enables the study of transcriptional activity at the 

single cell or spatial level. ScRNA-seq has paved the way to the discovery of previously 

unknown cell types and subtypes in normal and diseased liver, the study of rare cells such as 

liver progenitor cells as well as the functional role of non-parenchymal cells in chronic liver 
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disease and cancer. By adding spatial information to scRNA-seq data, spatial transcriptomics 

transforms understanding of tissue functional organization and cell-to-cell interactions in their 

native environment. These approaches have recently been applied to investigate liver 

regeneration, organization and division of labor of hepatocytes and non-parenchymal cells, 

and to profile the single cell landscape of chronic liver diseases and cancer. Here we review 

the principles and technologies behind scRNA-seq and spatial transcriptomics approaches, 

highlighting the recent discoveries and novel insights these methodologies have yielded in 

both liver physiology and disease biology. 
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INTRODUCTION 

Sequencing technologies are increasingly used to study phenotypes and drivers of 

liver disease. Whole tissue RNA sequencing has been primarily used to identify major 

differences in gene expression between normal and diseased conditions. Advanced 

computational analyses have established gene signatures to predict patients’ prognosis and 

classify primary liver cancers1, 2 but these tools have yet to be fully integrated into clinical 

practice. Whole tissue RNA sequencing provides an average readout of the RNA content of a 

sample, which represents mixed RNA signals from the different cells present within the tissue 

and, therefore, it is significantly influenced by cell type prevalence. This approach is unable 

to study rare cell populations, cellular heterogeneity (i.e. cell subsets among major cell 

types), specific pathogenic cell subpopulations, or to dissect cancer clonal evolution and 

microenvironment. In the era of immunotherapy and precision medicine, higher resolution 

sequencing data are required to characterize heterogeneous tissues and complex diseases 

such as chronic liver disease and cancer. 

Recent technological advances enabled genome-wide RNA profiling in individual 

cells, a technique termed single-cell RNA sequencing (scRNA-seq)3-6. In scRNA-seq, liver 

tissue is dissociated, single cells captured, and RNA sequencing is performed using several 

workflows (Figure 1, 2). ScRNA-seq generates very large datasets of thousands of gene 

transcripts per cell. These datasets are usually represented in a compressed 2D space, e.g. 

t-distributed stochastic neighbor embedding (t-SNE) map7, where each cell is a dot and the 

distance between cells is a function of their similarity (Figure 1A). In this 2D space, cells can 

be clustered according to their similarity and single or multiple genes can be plotted on 

separate t-SNE maps. ScRNA-seq allows discovery, identification and/or study of rare cell 

types, cell subtypes, disease-specific cell-types and cell-to-cell interactions via ligand-
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receptor expression analysis (Figure 1A). Furthermore, computational analyses, such as 

pseudo-time diffusion mapping8 or RNA velocity9, allow in silico lineage tracing and analysis 

of development trajectories between cell types (e.g. from progenitor cells to differentiated 

hepatocytes) or among cell subtypes (e.g. from cytotoxic to exhausted T cells) (Figure 1B).  

A major challenge of scRNA-seq data is to match the cell RNA profile with cell 

position within the tissue (i.e. spatial information). This is particularly important in liver biology 

because the liver is spatially organized in functional lobules and acini10. To address this 

need, spatially-resolved RNA sequencing, paired-cell sequencing, complex computational 

algorithms and direct spatial transcriptomic techniques – in which scRNA-seq is performed 

on tissues sections using spatially organized RNA capture probes – have recently been 

developed.  

Here, we summarize and discuss the technical principles of scRNA-seq and spatial 

transcriptomic approaches and present their application and discoveries regarding liver 

organization, regeneration, and cell-cell interactions in chronic liver disease and cancer. 

 

FROM LIVER TISSUE TO SINGLE-CELL RNA SEQUENCING 

The initial steps in a scRNA-seq experiment involve tissue dissociation and isolation 

of single cells which can be obtained by a variety of methods such as fluorescence-activated 

cell sorting (FACS), magnetic separation using specific antibodies, chip-based or 

microdroplet-based microfluidic technologies, micromanipulation using an inverted 

microscope and a motorized micromanipulation platform or laser microdissection11. FACS is 

one of the most widely used techniques and allows the selection of specific cell populations 

from heterogeneous tissues. High-throughput microdroplet-based microfluidic technologies 
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(e.g. 10X Chromium) are increasingly used because of high capture efficiency and low costs. 

Microfluidic technologies are based on the dispersion of single cells into water-in-oil droplets, 

containing uniquely barcoded beads and primers, using a continuous oil flow as depicted in 

Figure 2. The choice of single-cell capture method greatly depends on the cell types of 

interests, their prevalence in the tissue, and costs. 

After cell isolation, scRNA-seq libraries are generated by cell lysis, reverse 

transcription into complementary DNA (cDNA), second-strand synthesis and cDNA 

amplification by polymerase chain reaction (PCR) or in vitro transcription (IVT) followed by 

deep sequencing. These steps vary across the different scRNA-seq protocols (Figure 2). 

Smart-Seq2 is a protocol which uses template-switching technologies for the reverse 

transcription and PCR technologies for the amplification allowing the sequencing of full-

length transcripts and the study of splicing events and allele-specific expression6, 12, 13. Smart-

Seq2 is limited by high costs and, therefore, different protocols have evolved to allow 

adequate RNA coverage and reduced costs. These protocols involve the capture of the RNA 

poly(A) tail with the insertion into the cDNA of random unique molecular identifiers (UMIs) 

and pre-specified cellular barcodes (Figure 2). The presence of both cellular barcodes and 

UMIs in each single cDNA allow pooling of cDNAs from different cells for the amplification 

and sequencing steps which reduces significantly the costs per run. The cell of origin is 

inferred using the cellular barcodes and gene expression is quantified by counting and 

normalizing UMIs per single cells. In terms of performance, Smart-seq2 and CEL-seq2 

showed the highest sensitivity, while Drop-seq has reduced costs but capture efficiency and 

resolution are lower3. Among the different microdroplet-based microfluidic technologies, 10X 

Chromium results in higher sensitivity and less technical noise14. Finally, the combination of 

two or more scRNA-seq techniques, e.g. a microdroplet-based system and Smart-Seq2, can 
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be synergistic, increasing the probability of capturing both rare cell types and low abundance 

transcripts15.   

ScRNA-seq comprises multiple technologies and the choice of platform used should 

be guided by the biological question. The appropriate technique or combination of techniques 

should be chosen in the context of the study design and endpoints required (e.g. study of 

rare cell types or lowly expressed genes or splicing variant analysis). Smart-seq2 is preferred 

when analyzing splicing, transcriptome annotations or genome integrations while high-

throughput microdroplet-based microfluidic technologies are preferred for broader cell 

coverage at shallower sequencing read depths. 

 

LIVER PHYSIOLOGY AT SINGLE-CELL LEVEL 

REWIND THE TAPE: GATHER SPATIAL INFORMATION FROM SINGLE-CELL 

DATA TO STUDY LIVER ZONATION 

One of the first applications of scRNA-seq has been the study of liver zonation in mice 

and humans. The liver is a highly organized tissue, and the porto-central axis of the acinus is 

a fundamental functional unit during homeostasis and disease development. Hepatocyte 

function varies along this axis, with hepatocytes classically divided into three zones. A major 

challenge in the use of scRNA-seq for the study of liver physiology is the integration of 

individual cell RNA data with spatial information. To overcome this hurdle, specific 

sequencing strategies and bioinformatic analyses have been developed (Table 1), allowing 

new insights into liver zonation (Figure 3). Halpern et al. studied liver zonation in mice 

combining scRNA-seq with single-molecule RNA fluorescence in situ hybridization (smRNA-

FISH) to perform spatially-resolved RNA-sequencing16. At first, they used smRNA-FISH to 
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assess at high-resolution the spatial distribution of known zonated landmark genes allowing 

their fine porto-central profiling. Secondly, scRNA-seq of mouse hepatocytes was performed 

and the porto-central profile of landmark genes was used to assign a porto-central position to 

each single cell (for review see17). Spatially-resolved scRNA-seq data of the mouse liver 

discovered that (1) major determinants of liver zonation were not only oxygen gradient and 

WNT signaling18, but also RAS signaling, which activates periportal genes, and pituitary 

signals which inhibits periportal genes (Figure 3B); (2) zonation is not always monotonic and 

some genes, e.g. Hamp encoding for hepcidin, have the highest expression in the mid-layers 

of the lobule (Figure 3A); (3) genes encoding for biliary acid metabolism enzymes are 

differently expressed along the porto-central axis suggesting the spatial zonation of entire 

metabolic processes; (4) metabolites produced in periportal areas are uptaken by pericentral 

hepatocytes in a process called spatial recycling. 

Once the spatial transcript data of a certain cell type is known, paired-cell sequencing 

is an elegant technique to infer the zonation of other cell types forming with it strong cell-to-

cell interactions (for review see17). Halpern and colleagues sequenced doublets of 

hepatocytes and liver sinusoidal endothelial cells (LSECs) and used hepatocyte single-cell 

zonation data16 to infer the zonation of LSECs19. This analysis showed that LSECs genes are 

significantly zonated, and pericentral LSECs are enriched with WNT signaling genes and 

modulators - major determinants of hepatocyte zonation - suggesting that LSECs might 

shape hepatocyte zonation. 

When surface proteins are available as spatial markers, spatial sorting is a strategy 

using FACS to sort cells from a specific area. Combining two or more inversely zonated 

markers allows sorting of cells from specific liver lobule areas facilitating not only scRNA-seq 

but also multi-omics analyses20. Mass spectrometry proteomics and RNA-seq on spatially 

sorted hepatocytes allowed the mapping of protein zonation and the correlation of gene 
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expression with protein expression in specific liver zones. Bulk microRNA (miRNA) 

microarray measurement after spatial sorting on mouse liver revealed that miRNAs are 

zonated along the porto-central axis20. MiRNA are short non-coding RNA oligonucleotides 

which target specific messenger RNAs to increase their degradation or to decrease their 

translation21. Forty-five percent of known and validated hepatocyte miRNA were found to be 

mildly pericentral zonated (79%) or strongly periportal zonated (11%)20 with their targets 

inversely zonated. Study of mouse miRNA zonation via spatial sorting revealed their inverse 

correlation with WNT-related genes suggesting a potential role of miRNAs in determining 

hepatocyte zonation. 

Computational analysis can also help with inference of spatial information from 

scRNA-seq data when spatial organization is the main source of heterogeneity in a tissue 

(Table 1). Aizarani et al. applied diffusion pseudotime analysis to model zonation of 

hepatocytes and LSECs in human healthy liver22. This computational analysis was able to (1) 

profile for the first time, at single-gene level, the porto-central zonation of human hepatocytes 

and LSECs, (2) discover that LSECs’ genes are highly zonated and (3) demonstrate that 

both hepatocyte and LSECs have genes with non-monotonic zonation patterns. More than 

60% of LSECs genes were found to be zonated: periportal LSECs were enriched in genes 

involved in hormone signaling and metabolism (e.g. incretin and angiotensinogen 

metabolism) while central/mid LSECs were enriched in genes involved in platelet activation, 

immunity regulation and scavenger functions. Interestingly, scavenger and platelet activation 

genes were also enriched in central/mid-zone hepatocytes suggesting a functional co-

zonation of hepatocytes and LSECs (Figure 3C and D). 

More complex computational algorithms, enabling spatial information from scRNA-seq 

data, have recently been developed. NovoSpaRc is a computational framework allowing de 

novo spatial reconstruction of single-cell gene expression cartographies with or without the 
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use of known spatial information and marker genes23. NovoSpaRc assumes that physically 

apposed cells probably share similar transcriptomic profiles and that physical distance can be 

a function of transcriptomic difference. The algorithm can reconstruct, in a virtual space, the 

organization of symmetric tissues, e.g. normal liver and intestine, but also early embryos and 

charts of complex tissues such as cerebellum and kidney. However, novoSpaRc has not yet 

been used to investigate liver spatial organization and function. 

One of the challenges of inferring spatial information from standard scRNA-seq data 

is the requirement for careful, follow-on validation by direct spatial techniques such as 

immunohistochemistry, immunofluorescence or FISH. To overcome this issue, systems 

which allow in situ spatial transcriptomics have recently been developed24-26. These systems 

generally consist of a special slide covered by beads carrying oligos composed by a polyd(T) 

tail for RNAs capture, a spatial barcode defining bead position, an UMI for transcript count, 

promoters and adaptors for cDNA synthesis, amplification and sequencing, and a cleavage 

site to detach the oligos from the slide (Figure 4A). Frozen liver tissue is cut, placed on the 

spatial transcriptomic slide, stained by hematoxylin and eosin (H&E) and scanned by a 

conventional microscopy slide scanner. The tissue is lysed - releasing RNA which is captured 

by the oligos - the capture oligos are cleaved, and library prepared as for scRNA-seq. Once 

the sequencing is performed, the H&E image is combined with the coordinates of the spatial 

barcode beads to produce single-cell spatial transcriptomic data. Indeed, H&E staining 

provides data on cell position and size and allows for the definition of cell boundaries and the 

assignment of, in certain protocols, spatial barcodes to a single cell. Single-cell 

transcriptomic data can then be visualized in the tissue 2D space (Figure 4B). These 

techniques have been successfully used in investigating complex tissues such as the brain24-

26 or breast cancer26, and hold exceptional promise for the detailed study of liver disease.  

 



12 

 

 

USING SCRNA-SEQ TO IDENTIFY PROGENITOR CELLS IN THE CONTEXT OF 

LIVER DEVELOPMENT AND REGENERATION 

Regeneration is one of the key features of liver physiology, but the precise identity 

and degree of heterogeneity of hepatobiliary precursor cells has still to be fully clarified. Data 

has mainly been generated from mouse models, proposing differing progenitor populations 

ranging from biliary-like progenitor cells to differentiated hepatocytes as the major sources of 

the hepatic epithelial regenerative response, depending on injury model and experimental 

context27-31.  ScRNA-seq, with its ability to help study rare cell types, has recently been used 

in this area, investigating heterogeneity and signaling pathways within hepatobiliary 

precursors in both fetal and adult livers.  

Single-cell analysis of the human fetal liver has identified a distinct hepatobiliary 

hybrid progenitor (HHyP) cell capable of lineage commitment towards hepatocytes or biliary 

epithelial cells32. The fetal HHyP belongs to the EPCAM+/NCAM+/TROP2- compartment and 

showed both cholangiocyte, hepatocyte and classical progenitor markers. This cell can be 

found in the liver ductal plate which is a single or double layered structure of small cuboidal 

cells at the interface between hepatoblasts and portal mesenchyme.  

Aizarani and colleagues used scRNA-seq to analyze the heterogeneity across 

EPCAM+ cells in healthy human livers to understand whether the adult liver has a cell type 

analogous to the HHyP. They observed considerable heterogeneity within the EPCAM+ 

compartment, which comprises an EPCAM+TROP2intCK19low progenitor cell with high 

potential for forming bipotent organoids and committing to either hepatocyte or cholangiocyte 

fate22, 33 (Figure 5). This previously unknown adult liver progenitor cell is located in the canals 

of Hering and represents the equivalent of the fetal HHyP and the oval cell described in 

mice31. 
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In the normal liver, progenitor cells are usually quiescent and the mechanisms 

underlying their commitment and activation following liver injury are still unclear. In animal 

models, liver injury can be induced in a reproducible fashion with several strategies 

mimicking different liver pathologies. ScRNA-seq has been successfully applied to mouse 

models of liver injury to study drivers of liver regeneration and has revealed YAP target 

genes as a major source of the heterogeneity in the EPCAM+ compartment34. This YAP 

target gene signature represents a dynamic inducible state that is upregulated during liver 

injury, promoting and sustaining progenitor proliferation and liver regeneration (Figure 5)34.  

In summary, scRNA-seq has facilitated the discovery of a bipotent progenitor cell in 

the EPCAM+ compartment in both fetal and normal adult liver, and whose activation is 

associated with an upregulation of YAP target genes. To accurately characterize liver 

regeneration drivers in human disease, further analyses focused on progenitor cell 

populations in human liver after chronic and acute injury are required. 

 

NOVEL INSIGHTS INTO CHRONIC LIVER DISEASE AND CANCER 

MICROENVIRONMENT 

THE PHENOTYPE OF NON-PARENCHYMAL CELLS IN CHRONIC LIVER 

DISEASE AND CIRRHOSIS 

Two human liver single-cell atlases provide a detailed insight into the composition of 

the normal liver using two complementary sequencing techniques, mCEL-Seq2 (miniaturized 

CEL-Seq2)35 and 10X Chromium36 and constitute a reference point for single-cell based 

research in liver disease22, 37. 
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The liver microenvironment, comprising hepatocytes and non-parenchymal cells 

(NPCs), plays a key role in the pathogenesis of all chronic liver diseases. In response to 

chronic hepatocyte damage, immune cells produce pro-inflammatory cytokines and 

chemokines and activate quiescent hepatic stellate cells (HSCs) into myofibroblasts that are 

responsible for collagen and extra-cellular matrix accumulation38, 39 - a hallmark of liver 

fibrosis40. This dysregulation of liver immunity is common across different forms of chronic 

liver diseases and triggers cellular stress and death, apoptosis, liver fibrosis, and hepatocyte 

proliferation and liver regeneration38. Single-cell studies have been carried out to resolve the 

heterogeneity and complex cell-to-cell interactions of NPCs in chronic liver diseases and 

cirrhosis.  

 

Liver endothelial cells are involved in multiple cell-to-cell interactions and prime 

differentiation of circulating monocytes into liver macrophages. 

A single-cell study of NPCs in healthy and diet-induced NASH amylin (AMLN) mice41 

focused on the characterization of the NPCs secretome and cell-to-cell interactions42. LSECs 

were found to secrete angiocrine factors and express several genes involved in cell-to-cell 

interactions. Ligands were expressed by cholangiocytes, HSCs but also LSECs, suggesting 

extensive interactions with other NPCs as well as autocrine signaling. In NASH liver, LSECs 

upregulated the expression of genes implicated in lipid metabolism, chemokine release and 

antigen presentation, whilst genes involved in vascular homeostasis and vascular 

development were downregulated, inducing a significant disruption of sinusoid capillaries42. 

LSECs are the port of entry of monocyte and other bone-marrow derived cells in the 

liver lobule. LSEC-to-monocyte interactions are crucial in determining the fate of circulating 

monocytes and their differentiation into liver macrophages43. Livers of Kupffer cell (KC)-
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depleted mice are rapidly repopulated by circulating monocytes which acquire a KC-like 

phenotype. LSECs express DLL4 and TGFβ1 that interacts, respectively, with NOTCH and 

TGFβ/BMP receptors on monocytes, downregulating monocyte-specific genes. Single-cell 

analysis of mouse models demonstrated that monocyte-derived macrophages are largely 

expanded in NASH livers with a unique inflammatory phenotype44. Whether dysregulated 

NASH LSECs determine the phenotype of the NASH monocyte-derived macrophages is still 

unknown and further studies are needed to elucidate LSEC-to-monocyte interactions in the 

context of NASH pathogenesis. 

 

Hepatic stellate cells are spatially and functionally zonated, and are hubs of 

autocrine and paracrine signaling. 

HSCs had previously been thought to represent a functionally homogeneous 

population. Dobie et al. used scRNA-seq to deconvolve the hepatic mesenchyme in both 

healthy and fibrotic mouse liver, uncovering spatial zonation of HSC across the hepatic 

lobule45. HSCs partition into topographically diametric lobule regions, designated portal vein-

associated HSCs (PaHSCs) and central vein-associated HSCs (CaHSCs). HSCs display 

functional zonation, with CaHSCs representing the dominant pathogenic collagen-producing 

cells in a mouse model of CCl4-induced centrilobular fibrosis. Furthermore, LPAR1 

(lysophosphatidic acid receptor 1) was identified as a therapeutic target on collagen-

producing HSCs, and inhibition of LPAR1 resulted in decreased contractility in human HSCs 

in vitro, and a reduction of liver fibrosis in a choline-deficient high-fat diet rodent model of 

NASH45.  

ScRNA-seq from mouse liver has also shown that HSCs specifically secrete cytokines 

acting on LSECs, macrophages and cholangiocytes regulating fibrosis pathways, cytokine 
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expression, vasoactive hormone signaling and HSC apoptosis via secretion of nerve growth 

factor42. HSCs express both Il11ra1, a receptor belonging to the IL-6 family, and its ligand 

Il11, constituting a previously unknown autocrine signal which stimulates the activation of 

STAT3 and ERK and cytokine secretion42. Analysis of HSC gene expression also revealed 

potential extrahepatic modulation of this cell type. HSCs express vasoactive hormone-

responsive receptors mediating both contraction and relaxation which specifically mediate 

the effect of calcitonin gene-related peptide, PTH and VIP which are not expressed by any 

liver cell type. In the classical view of liver fibrosis pathogenesis, HSCs are the final effector 

and the last step of the NPCs activation cascade. Single-cell analysis of HSCs in NASH 

showed that they upregulate both Il11 and cytokines and modulate function of LSECs and 

macrophages, suggesting a more complex bidirectional interaction. Altogether, single-cell 

profiling of HSC has further extended the concept that this cell type acts as a central hub in 

the paracrine/autocrine network of liver NPCs in both normal and diseased liver. 

 

Macrophage phenotype and non-parenchymal cell interactions in the fibrotic 

niche. 

In homeostasis, the liver is continuously exposed to pathogens and toxins derived 

from the gut and removes large numbers of microbes and microbe-associated molecules to 

maintain a tolerant and immunosuppressive environment46. Data from the human liver single-

cell atlases have shown that the normal liver contains not only immunomodulating 

macrophages with metabolic and scavenger functions, but also proinflammatory 

macrophages22, 37. 

In NASH mouse models, scRNA-seq has demonstrated an expansion of 

macrophages with a proinflammatory phenotype. Macrophages in NASH express high levels 
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of Trem2 encoding for an innate immunity scavenger receptor implicated in phagocytosis and 

clearance of apoptotic cells. This receptor has been described in the pathogenesis of 

Alzheimer’s disease as a microglia metabolism modifier47, and in human and mouse adipose 

tissue macrophages in response to pathogenic lipid accumulation48. Liver Trem2high 

macrophages were enriched in genes involved in antigen presentation, ECM remodeling, 

endocytosis and lysosomal degradation suggesting an important role in NASH 

pathogenesis42. Trem2high macrophages also overexpress Cd9 which encodes for a 

tetraspanin protein involved in many cellular processes including cell differentiation, 

adhesion, and signal transduction49 and prevents macrophage fusion into multinucleated 

giant cells50. Furthermore, this NASH-associated macrophage expresses Gpnmb which is a 

transmembrane glycoprotein negatively regulating inflammation and previously described in 

macrophages infiltrating the liver during the recovery phase of CCl4-induced acute liver 

injury51, 52. Trem2high macrophages represent over 60% of KCs in NASH livers whilst they 

were almost undetectable in control mice, and their prevalence is reduced upon treatment 

with elafibranor or switch from AMLN diet to chow with subsequent improvement of liver 

inflammation. Ramachandran and colleagues performed scRNA-seq of healthy and cirrhotic 

human livers and investigated heterogeneity in fibrosis-associated NPCs53. Specific 

macrophage subpopulations were more prevalent in cirrhotic tissue and were annotated as 

scar-associated macrophages (SAMΦ). SAMΦ were marked by the expression of TREM2 

and CD9, and were able to activate HSCs. Self-organizing maps and pseudotime analysis at 

single-cell level revealed that SAMΦ are derived from blood monocytes. The differentiation 

process towards SAMΦ fate involved the expression of genes related to antigen processing 

and presentation, phagocytosis, chemokines, angiogenesis, production of extracellular matrix 

and wound healing. SAMΦ were also found in the early stages of NAFLD and in a CCl4 

mouse model of liver fibrosis. Overall, these data suggest that TREM2+ SAMΦ are 
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monocyte-derived macrophages that represent a conserved innate response to chronic liver 

damage, promoting mesenchymal cell activation and fibrogenesis. Ongoing studies are 

investigating ways to manipulate this macrophage subpopulation for therapeutic gain, and 

more functional data are required to fully understand the contribution of this novel 

macrophage subtype across different aetiologies of chronic liver disease. 

ScRNA-seq analysis also unveiled the complexity of the cellular interactome of the 

human liver fibrotic niche, identifying not only SAMΦ but PDGFRα+ mesenchymal cells 

(SAMes, scar-associated mesenchymal cells) and two, previously unknown, scar-associated 

endothelial cell subpopulations (CD34+PLVAP+VWA1+ and CD34+PLVAP+ACKR1+, 

SAEndo)53. Using single-cell data, multi-lineage ligand-receptor interaction analysis and 

multiplex immunofluorescence, the multi-directional interactions between SAMΦ, SAEndo 

and SAMes were characterized (Figure 6). Multi-lineage modelling of ligand-receptor 

interactions between these cells revealed intra-scar activity of several pro-fibrogenic 

pathways including TNFRSF12A, PDGFR and NOTCH signaling. As an example, SAMes 

and SAEndo interact via non-canonical Notch ligands DLL4, JAG1, JAG2 with the receptor 

NOTCH3 expressed on SAMes and primary SAEndo from cirrhotic liver cultured together 

with HSCs promoted collagen production which decreased upon treatment with the Notch-

signaling inhibitor Dibenzazepine.  

In summary, scRNA-seq revealed novel scar-associated subpopulations of 

macrophages, endothelial cells and mesenchymal cells inhabiting the fibrotic niche of human 

liver cirrhosis, and has shed light on how these different cell types interact to promote 

fibrosis. Fibrogenesis in cirrhosis is a highly complex process characterized by the interaction 

of multiple different cell lineages which are in various states of differentiation and activation. 

Development of novel anti-fibrotic therapies will require consideration of the complexity of the 
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human liver fibrotic niche, and will likely need to modulate multiple therapeutic targets 

simultaneously to achieve anti-fibrotic efficacy. 

 

UNRAVELING TUMOR MICROENVIRONMENT AND HETEROGENEITY WITHIN 

PRIMARY LIVER CANCER 

Aizarani et al. demonstrated the potential of hepatocellular carcinoma (HCC) single-

cell analysis using their normal human cell atlas as a reference to characterize perturbed cell 

states in HCC22. They showed that (1) cancer epithelial cells upregulate pro-inflammatory, 

WNT and Hedgehog genes, (2) endothelial cells in HCC lose classical sinusoidal markers 

and display typical macrovascular endothelial cell markers in line with the arterialization 

process characterizing HCC development and (3) both HCC endothelial cells and 

macrophages downregulate innate immunity pathways and upregulate receptor tyrosine 

kinase signaling pathways, targets of the currently approved systemic treatments for HCC 

such as sorafenib and regorafenib. Interestingly, HCC endothelial cells expressed CD34 and 

PLVAP at high levels, as also observed in SAEndo53, suggesting potentially common 

changes in fibrosis-associated and cancer-associated endothelial cells.  

ScRNA-seq analysis has also allowed new insights into the complexity of the immune 

cell microenvironment in HCC (Figure 7). Zheng et al. investigated, at single cell level, T cell 

composition in blood, non-tumor liver and tumor tissues from HCC patients. T regulatory cells 

(Tregs, CD4+CTLA4+) with immunosuppressive functions and exhausted CD8+ T cells (Tex) 

were clonally enriched, with the latter predicted to originate from cytotoxic CD8+ T cells via an 

intermediate CD8+GZMK+ T cell subtype. LAYN, a transmembrane protein with homology to 

c-type lectin, was identified as a novel marker of T cell exhaustion and its expression in HCC 

was found to be associated with higher rates of tumor recurrence54. Combining Smart-Seq2 
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and 10X Chromium approaches, Zhang and colleagues performed scRNA-seq of CD45+ 

immune cells from tumor, lymph nodes (LN) and ascites to characterize macrophages and 

dendritic cells (DCs) in HCC15. LAMP3 is a DC-specific glycoprotein induced upon DC 

maturation after inflammatory stimulation55. Mature LAMP3+ DCs were observed in both HCC 

and LNs, and these cells were predicted to interact with T and NK cells via IL-15 and PD-

1/PD-L1 and, importantly, they were strongly associated with T cell dysfunction15. 

Macrophages in HCC were found to have two main distinct states. Some macrophages 

resembled myeloid-derived suppressor cells, which have a strong immunosuppressive 

phenotype and can regulate the function of other immune cell types including T cells and 

DCs56, 57. A second macrophage group were similar to the tumor-associated macrophages 

(TAM) described in lung cancer58 with a mixed proinflammatory-immunosuppressive 

phenotype. TAM-like macrophages express TREM2 and GPNMB similarly to the SAMΦ 

described in fibrotic livers. 

The factors shaping tumor microenvironment (TME) in HCC are still not known. In a 

recent study, single-cell analysis was used to explore the interconnection between intratumor 

heterogeneity (ITH) and TME. Data from both HCC and intrahepatic cholangiocarcinoma 

showed that tumors with higher ITH have a more immunosuppressive TME, are associated 

with more hypoxia-related genes, higher VEGF expression and lower long-term patient 

survival. Hypoxia and VEGF secretion from cancer epithelial cells seems to be the main 

mechanism driving ITH and TME changes in heterogenous cancers giving a supplementary 

rationale to the anti-VEGF and anti-angiogenic drugs in the treatment of primary liver 

cancer59. 

Considering the urgent need for new treatment strategies for liver cancer, scRNA-seq 

could help not only in the identification of new therapeutic targets but also in the development 

of more refined tumor classification, allowing more accurate tailoring of a patient’s treatment. 



21 

 

 

Preliminary classification using scRNA-seq has been already developed60, but will need 

prospective validation before being incorporated into routine use. 

Collectively scRNA-seq has helped characterize the cellular phenotypes of various 

cell types within the HCC microenvironment, and has shed light on the interplay between 

cancer epithelial cells and TME. HCC is a complex cellular ecosystem, including clonal 

Tregs, clonal CD8+LAYN+ Tex, pre-exhausted CD8+GZMK+ cells, LAMP3+ DC, myeloid-

derived suppressor cells, TAM-like macrophages and PLVAP+ endothelial cells resembling 

endothelial cells inhabiting the liver fibrotic niche. ScRNA-seq and spatial transcriptomic 

approaches will be valuable tools to help increase our understanding of the cellular and 

molecular mechanisms regulating the TME, which should in turn aid in the identification of 

novel treatment targets for hepatobiliary cancers. Furthermore, these approaches should 

also be informative with regard to development of more precise tumor classification and 

patient stratification, thereby refining clinical trial design in this area.   

 

CHALLENGES AND PERSPECTIVES 

While scRNA-seq and the associated cutting-edge computational analyses have 

revolutionized investigation of complex organs and tissues and hold great promise for 

enabling future discoveries in the liver field, several challenges still need to be addressed. 

Dissociation is a critical step that can induce transcriptomic changes61 and should be 

carefully optimized to obtain the maximum dissociation yield without inducing biases. 

Furthermore, scRNA-seq is expensive and the analysis of single-cell data is time consuming 

and requires skilled bioinformatics support. Direct spatial transcriptomic techniques can 

potentially overcome some of these issues but their sensitivity and validity in liver-related 

studies is still to be determined. Finally, technologies are rapidly moving towards the 
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development of multi-omics single cell approaches that will allow the characterization of 

proteomic, gene expression and DNA mutations in the same cell62. Single-cell multi-omics 

will allow an even more comprehensive understanding of liver biology and disease at single-

cell resolution. Efforts are needed to reduce the costs of single-cell genomics technologies, 

and then identify histological or radiological surrogate markers to help characterize and 

stratify liver disease, which in turn will help predict drug response or patients’ prognosis 

without having to recourse to full single-cell analysis of samples from patients. 

 

CONCLUSIONS 

ScRNA-seq is a revolutionary technique which has already been successfully applied 

to study the biology of healthy and diseased liver at unprecedented resolution, capturing the 

heterogeneity of cell types and states and characterizing cell-to-cell interactions. The choice 

of scRNA-seq approach relies on study design, endpoints and costs, and often entails a 

compromise between costs and gene coverage. Computational algorithms, direct spatial 

transcriptomics and combination of scRNA-seq and spatial techniques enable the study of 

single-cell gene expression in complex, highly spatially organized tissues. 

ScRNA-seq has already delivered transformative new discoveries in the 

understanding of liver zonation, regeneration, and the biology of chronic liver disease and 

cancer. Liver disease biology involves multiple cell types and complex cell-to-cell 

interactions, and scRNA-seq allows detailed investigation of these multi-cellular 

microenvironments.  The challenge now is to fully harness and translate this new knowledge 

into effective novel therapeutic approaches to address the major clinical challenges in 

hepatology. 
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TABLES 

Table 1. Spatial transcriptomics and strategies to match scRNA-seq data with 

spatial information 

 

DPT= diffusion pseudo-time, scRNA-seq= single-cell RNA-sequencing, smRNA-

FISH= single-molecule RNA fluorescent in situ hybridization. 

Methods 
Required input data other 

than scRNA-seq 
Pros/Cons 

Spatially-resolved 

RNA-seq16 

Accurate spatial pattern of two 

or more marker genes 
High resolution and accurate. 

Paired-scRNA-seq19 

Spatial pattern of one cell 

forming strong cell-to-cell 

interactions with the cell of 

interest 

High resolution and accurate. 

Spatial sorting 

analysis20 

Known extracellular marker 

proteins to be used for FACS 

Known extracellular marker proteins are 

not always available. Can be used for 

multi-omics analysis. 

DPT analysis22 None 

Cell diversity needs to be correlated with 

cell position in the tissue. Validation by 

histology, smRNA-FISH or other imaging 

techniques is needed. 

Gene cartography 

(novoSpaRc)23 

Optional Marker genes and 

general tissue organization 

Cell diversity needs to be correlated with 

cell position in the tissue. Marker genes 

are optional inputs to refine the analysis.  

Validation by histology, smRNA-FISH or 

other imaging techniques is needed. 

In situ spatial 

transcriptomics24-26 
Slide-based system 

Lower sequencing depth than classical 

scRNA-seq but higher spatial resolution. 

High costs. Not data available yet on 

human liver tissue. 
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FIGURE LEGENDS 

Figure 1. Single-cell RNA-sequencing analyses to study liver pathophysiology. 

A) Normal and/or diseased liver tissue are dissociated into a single cell suspension and 

scRNA-seq is performed. Thousands of transcripts per cell are compressed in a 2D space 

where each cell is a dot and the distance between cells is a function of their similarity. Cells 

are can be aggregated in clusters or groups of clusters plotted as different colors and 

potentially representing cell types or subtypes. ScRNA-seq allows the study of rare cell 

types, cell state and subtype heterogeneity, disease-specific cell type and cell-to-cell 

interactions via ligand-receptor analysis. B) Computational analyses such as pseudo-time 

diffusion mapping or RNA velocity, which analyze cell similarity and diversity, consent to 

trace differentiation processes, clonal evolution and cell state transitions of a specific cell 

type or between different cell types (from cell of origin to development A or B). 

 

Figure 2. Main steps in scRNA-seq workflows and comparison of the most 

widely used protocols. Smart-seq2 and CEL-Seq2 are performed in 96 or 384-well plates 

after FACS sorting, while droplet systems (e.g. 10X Chromium and Drop-Seq) couple cells 

with barcoded beads containing unique molecule identifier (UMI) and primers forming water-

in-oil droplets via a continuous oil flow. Reverse transcription and cDNA amplification are 

performed by polymerase chain reaction (PCR) in Smart-Seq and 10X Chromium and by in 

vitro transcription (IVT) in CEL-Seq2. In CEL-Seq2 and 10X Chromium protocols, UMI and 

cell-specific barcodes are added during reverse transcription to allow the pooling of the 

subsequent steps. Libraries are prepared by fragmentation in CEL-Seq2 and by tagmentation 

with or without 3’enrichment in Smart-Seq2 and 10X Chromium. Gene coverage is full-length 
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in Smart-seq2 whereas in CEL-Seq2 and 10X Chromium only the 3’ part of the gene is 

sequenced.  

 

Figure 3. New concepts in liver zonation derived from scRNA-seq studies. A) 

Zonated genes can have a non-monotonic pattern with genes peaking in the mid-layers of 

liver lobule. B) Determinants of mouse hepatocyte zonation on periportal (left) and pericentral 

genes (right). C-D) Liver sinusoidal endothelial cell (LSEC) specific zonated pathways. 

Periportal LSECs are enriched in pathways related to hormone signaling and metabolism 

while pericentral LSECs are enriched in immune regulatory genes, WNT-related genes, 

platelet activation and scavenger function pathways. LSECs and hepatocytes show co-

zonation in pericentral areas of WNT-related genes (mouse data) and platelet activation and 

scavenger function pathways (human data). MiRNA = microRNA. 

 

Figure 4. Model of in situ spatial transcriptomics. A) Frozen liver tissue is cut and 

placed on a special slide special slide covered by beads carrying capture oligos composed 

by a polyd(T) tail for RNAs capture, a spatial barcode defining bead position, an UMI for 

transcript count, promoters and adaptors for cDNA synthesis, amplification and sequencing 

and a cleavage site to detach the oligos from the slide. B) The liver tissue on the spatial 

transcriptomics slide is fixed, stained by hematoxylin and eosin (H&E) and scanned by a 

conventional microscopy slide scanner. The tissue is lysed to release RNA, the capture 

oligos are cleaved and the libraries prepared as for scRNA-seq. The H&E image combined 

with data and coordinates of the spatial barcodes produce high-resolution single-cell gene 

expression data. GLUL encoding for glutamate-ammonia ligase is a known pericentral 
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zonated gene and PCK1 encoding for phosphoenolpyruvate carboxykinase 1 is a periportal 

zonated gene. 

 

Figure 5. Bipotent progenitor cell in the normal human liver revealed by scRNA-

seq. ScRNA-seq of human liver identified an EPCAM+TROP2interCK19low progenitor cell 

which has the potential to differentiate into cholangiocytes or hepatocytes (human data). 

Upon liver damage, progenitor cells upregulate WNT- and YAP-target genes promoting liver 

regeneration (mouse data). 

 

Figure 6. Intercellular ligand-receptor interactions in the human liver fibrotic 

niche. Main receptors and ligands involved in Interactions between scar-associated 

macrophages, scar-associated mesenchymal cells and scar-associated liver endothelial cells 

are presented. The most relevant molecules belong to Notch signaling, PDGF and VEGF, 

TGFβ and TNF family. 

 

Figure 7. Insights of the tumor microenvironment in hepatocellular carcinoma 

using scRNASeq. Hepatocellular carcinoma (HCC) is enriched in clonal CD4+CTLA4+ Treg 

and exhausted CD8+LAYN+ lymphocytes expressing the same TCR (T-cell receptor). 

CD8+LAYN+ lymphocytes derived from CD8+GMZK+ lymphocytes. LAMP3+ dendritic cells 

(DC) are mature DCs enriched in HCC, interacting with exhausted T cells and Tregs via IL-15 

and PD1/PD-L1 axis and capable of migrating into lymph nodes. HCC microenvironment 

includes also myeloid-derived suppressor cells with strong immunosuppressive functions and 
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tumor-associated macrophages -like cells which have intermediate proinflammatory-

immunosuppressive phenotype and express TREM2.  
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