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Abstract: Liver fibrosis due to viral or metabolic chronic liver diseases is a major challenge of global
health. Correlating with liver disease progression, fibrosis is a key factor for liver disease outcome
and risk of hepatocellular carcinoma (HCC). Despite different mechanism of primary liver injury and
disease-specific cell responses, the progression of fibrotic liver disease follows shared patterns across
the main liver disease etiologies. Scientific discoveries within the last decade have transformed the
understanding of the mechanisms of liver fibrosis. Removal or elimination of the causative agent such
as control or cure of viral infection has shown that liver fibrosis is reversible. However, reversal often
occurs too slowly or too infrequent to avoid life-threatening complications particularly in advanced
fibrosis. Thus, there is a huge unmet medical need for anti-fibrotic therapies to prevent liver disease
progression and HCC development. However, while many anti-fibrotic candidate agents have shown
robust effects in experimental animal models, their anti-fibrotic effects in clinical trials have been
limited or absent. Thus, no approved therapy exists for liver fibrosis. In this review we summarize
cellular drivers and molecular mechanisms of fibrogenesis in chronic liver diseases and discuss their
impact for the development of urgently needed anti-fibrotic therapies.

Keywords: Hepatic stellate cell; liver myofibroblast; Kupffer cell; liver cirrhosis; anti-fibrotics;
TGF-β; PDGF

1. Introduction

Chronic liver diseases are a major global health burden and account for approximately 2 million
deaths per year worldwide [1]. Underlying etiologies in chronic liver disease comprise viral (Hepatitis
B; HBV and hepatitis C; HCV) related chronic liver disease, alcoholic steatohepatitis (ASH), and
non-alcoholic steatohepatitis (NASH), as well as autoimmune and genetic diseases. Organ fibrosis
characterizes disease progression in chronic inflammatory diseases and contributes to 45% of all-cause
mortality world-wide [2]. Similarly, in the liver, development of fibrosis mainly determines quality of
life, as well as prognosis [3]. Thus, the level of fibrosis correlates with liver function and represents the
major risk factor for development of hepatocellular carcinoma (HCC) [4]. Moreover, chronic portal
hypertension due to liver fibrosis is the major cause of clinical complications, including hydropic
decompensation, and bleeding events, as well as hepatic encephalopathy [3]. Consequently, liver
cirrhosis is currently the 11th most common cause of death in the world [1] and the fourth most
frequent cause of death in adults in central Europe [5,6].

Liver fibrosis is characterized by progressive accumulation of extracellular matrix (ECM), which
destroys the physiological architecture of the liver [7]. Pathogenetically, toxic, metabolic, or viral
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diseases lead to damaged hepatocytes and infiltration of immune cells that activate trans-differentiation
of Hepatic stellate cells (HSCs) into collagen-producing myofibroblasts [8,9]. Physiologically involved in
tissue repair, upon short-term injury this process is balanced by counteracting anti-fibrotic mechanisms
resulting in inactivation or apoptosis of myofibroblasts and scar resolution. In contrast, in chronic
liver diseases an imbalance of pro-fibrogenic and anti-fibrogenic mechanisms causes persistent
activation of proliferating, contractile, and migrating myofibroblasts that lead to excessive production
of ECM [8,9]. The liver’s fate to either pass into an anti-fibrotic scar-dissolving stage or to proceed into
an uninhibited fibrosis-promoting stage is hereby mainly regulated by non-parenchymal cells (NPCs),
including Kupffer cells and other immune cells [10–12]. Thus, hepatocyte apoptosis and release of
damage-associated patterns (DAMPs) by hepatocytes not only activate HSCs directly but also induce
recruitment and activation of lymphocytes and macrophages that contribute to promotion of HSC
trans-differentiation and myofibroblast activation by producing pro-inflammatory and pro-fibrogenic
cytokines [13,14]. Distinct macrophage subpopulations on the other hand participate in fibrosis
resolution due to expression of matrix-metalloproteinases (MMPs) [15,16]. On the molecular basis, a
complex network of cytokine-induced signaling pathways orchestrate pro-fibrogenic cell interactions.
In fact, Transforming Growth Factor Beta (TGF-β), Platelet Derived Growth Factor (PDGF), and the
inflammasome (NLRP3)-Caspase1 pathway, as well as WNT/β-catenin signaling have been suggested
to be key signaling pathways associated with HSC activation and fibrosis progression [17–19]. The
general, etiology-independent cell interactions involved in fibrosis development are depicted in
Figure 1.

Cells 2019, 8, x FOR PEER REVIEW 2 of 49 

 

Liver fibrosis is characterized by progressive accumulation of extracellular matrix (ECM), which 

destroys the physiological architecture of the liver [7]. Pathogenetically, toxic, metabolic, or viral 

diseases lead to damaged hepatocytes and infiltration of immune cells that activate trans-

differentiation of Hepatic stellate cells (HSCs) into collagen-producing myofibroblasts [8,9]. 

Physiologically involved in tissue repair, upon short-term injury this process is balanced by 

counteracting anti-fibrotic mechanisms resulting in inactivation or apoptosis of myofibroblasts and 

scar resolution. In contrast, in chronic liver diseases an imbalance of pro-fibrogenic and anti-

fibrogenic mechanisms causes persistent activation of proliferating, contractile, and migrating 

myofibroblasts that lead to excessive production of ECM [8,9]. The liver’s fate to either pass into an 

anti-fibrotic scar-dissolving stage or to proceed into an uninhibited fibrosis-promoting stage is hereby 

mainly regulated by non-parenchymal cells (NPCs), including Kupffer cells and other immune cells 

[10–12]. Thus, hepatocyte apoptosis and release of damage-associated patterns (DAMPs) by 

hepatocytes not only activate HSCs directly but also induce recruitment and activation of 

lymphocytes and macrophages that contribute to promotion of HSC trans-differentiation and 

myofibroblast activation by producing pro-inflammatory and pro-fibrogenic cytokines [13,14]. 

Distinct macrophage subpopulations on the other hand participate in fibrosis resolution due to 

expression of matrix-metalloproteinases (MMPs) [15,16]. On the molecular basis, a complex network 

of cytokine-induced signaling pathways orchestrate pro-fibrogenic cell interactions. In fact, 

Transforming Growth Factor Beta (TGF-β), Platelet Derived Growth Factor (PDGF), and the 

inflammasome (NLRP3)-Caspase1 pathway, as well as WNT/β-catenin signaling have been 

suggested to be key signaling pathways associated with HSC activation and fibrosis progression [17–

19]. The general, etiology-independent cell interactions involved in fibrosis development are depicted 

in Figure 1. 

 

Figure 1. Examples for mechanistic concepts for liver fibrosis. Chronic hepatocyte injury causes 

release of damage-associated patterns (DAMPs) and apoptotic bodies that activate Hepatic stellate 

cells (HSCs) and recruit immune cells. Complex multidirectional interactions between activated HSCs 

and Kupffer cells, as well as innate immune cells promote trans-differentiation into proliferative and 

extracellular matrix (ECM) producing myofibroblasts. Abbreviations: PDGF: Platelet Derived Growth 

Factor; TGF-β: Transforming Growth Factor Beta; CCL2: chemokine (C-C motif) ligand 2. 

Figure 1. Examples for mechanistic concepts for liver fibrosis. Chronic hepatocyte injury causes release
of damage-associated patterns (DAMPs) and apoptotic bodies that activate Hepatic stellate cells (HSCs)
and recruit immune cells. Complex multidirectional interactions between activated HSCs and Kupffer
cells, as well as innate immune cells promote trans-differentiation into proliferative and extracellular
matrix (ECM) producing myofibroblasts. Abbreviations: PDGF: Platelet Derived Growth Factor; TGF-β:
Transforming Growth Factor Beta; CCL2: chemokine (C-C motif) ligand 2.

One approach to prevent liver-related mortality is to prevent progression of fibrogenesis. Within
the past years, several in-vitro and in-vivo models have been developed in order to address the unmet
medical need of developing efficient and safe anti-fibrotic drugs [20–23]. However, despite increasing
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knowledge regarding the molecular mechanisms of liver fibrogenesis, an approved drug exist to treat
liver fibrosis is still pending [24]. In this review we summarize recent advances in the understanding of
cellular and molecular drivers of liver fibrogenesis in key etiologies of chronic liver disease. Moreover,
anti-fibrotic strategies and agents in clinical development are discussed.

2. Mechanistic Concepts of Liver Fibrosis

2.1. Hepatocyte Cell Death and Apoptosis

Hepatocyte death is an important initial event in all liver disease etiologies. Dead hepatocytes
release intracellular compounds termed DAMPs that send out danger signals to surrounding cells
including HSCs and Kupffer cells and therefore play an important role in fibrosis development and
inflammation. This family of molecules comprise nucleic acids, intracellular proteins, Adenosine
Triphosphate (ATP), or mitochondrial or nucleic compounds such as High-Mobility Group Box-1
(HMGB1) [25]. DAMPs can be passively released by necrotic hepatocytes due to the disruption
of plasma membrane [25,26]. HMGB1 is one of the most studied DAMPs in the context of liver
disease. It is a DNA-binding non-histone nuclear protein ubiquitously expressed in eukaryotic cells.
HMBG1 is highly released by necrotic hepatocytes as a danger pattern [26]. In addition, it can be
secreted by stressed cells and contribute to immune responses and inflammation by interacting with
the Toll Like Receptors (TLR) 4 and 9 [27–30]. Moreover, Li et al. recently provided evidence that
HMGB1 directly activates HSCs by regulating HSCs autophagy in a model of HBV-related liver fibrosis
progression [31]. Finally, it was recently demonstrated that HMGB1 plays an essential role in the
recruitment of pro-inflammatory neutrophils to sites of necrotic injury in the liver [32].

In contrast, apoptosis generates low levels of DAMPs because the cell components are largely
retained in apoptotic bodies [25,26]. However, a pro-fibrogenic response can be elicited by hepatocyte
apoptosis through activation of the Fas death receptor [33,34]. Moreover, hepatocyte apoptosis induces
the release of apoptotic bodies which can be phagocytosed by HSCs and Kupffer and induce a
pro-fibrogenic response [35,36]. In addition, DNA from apoptotic hepatocytes triggers TLR9 activation
on HSCs and collagen production [37].

Lipid overload in hepatocytes is one of the main drivers of hepatotoxicity, which accelerates the
development of progressive inflammation, oxidative stress and fibrosis [38]. In the liver, lipids are
mainly stored as triglycerides, an inert and non-cytotoxic form of lipid. Lipotoxicity is rather due to
accumulation of toxic intermediates of triglyceride synthesis such as saturated Free Fatty Acids (FFAs)
and their derivates, accumulation of free cholesterol or complex lipids as lysophosphatidylcholine and
ceramides [39–41]. Accumulation of these lipids affect cellular function through different mechanism
including oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, and induction
of apoptosis [38]. Accumulation of FFAs is one of the strongest apoptosis inducers in hepatocytes.
This process is mainly mediated by the Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand
Receptor 2 (TRAIL-R2), also known as death receptor 5 TRAIL-R2 especially contributes to cell death
caused by palmitic acid, which induces downstream activation of caspase 8 and executionary caspases
3 and 7 [42,43]. Moreover, FFA-induced lipo-apoptosis in hepatocytes stimulate the release of ATP,
which stimulate migration of monocytes [44]. In addition to hepatocytes, NPCs are also impacted by
the toxic lipid accumulation. FFAs accumulation in HSCs and Kupffer cells especially triggers TLR4
pathway activation, leading to c-Jun N-terminal Kinase (JNK) and NF-kB pathway activation, as well
as secretion of pro-inflammatory and chemoattractant cytokines [38,45].

Dysregulation of hepatic cholesterol metabolism is also a key event leading to hepatocyte death.
Free cholesterol causes hepatocyte apoptotic and necrotic death by activating JNK1 [46]. It has
recently been shown that high concentration of free cholesterol in hepatocytes of NASH patients
leads to cholesterol crystallization [47,48]. Dead hepatocytes containing cholesterol crystals induce
the recruitment and aggregation of Kupffer cells in “crown-like structures”, which process dead cells
and transform into activated foam cells [48]. Activation of Kupffer cells during this process contribute
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to HSCs activation through the release of pro-inflammatory cytokines. The group of Hibi et al. also
demonstrated that accumulation of free cholesterol in HSCs directly exacerbate liver fibrosis [49,50].

2.2. HSC Activation and Myofibroblast Progenitor Cells

HSCs are the main myofibroblast progenitor cells and therefore key effectors of the fibrogenic
response [51]. In normal liver, HSCs are quiescent, non-proliferative perisinusoidal cells, characterized
by their star-like morphology and their high number of cytoplasmic lipid droplets [52]. Upon liver
injury, HSCs become activated, and transdifferentiate from a quiescent phenotype into a proliferative
and contractile myofibroblast phenotype [53]. During this process, activated HSCs progressively lose
their star shaped morphology and their lipid droplets, while abundantly producing ECM components
(including types I, III, and IV collagens, fibronectin, laminin, and proteoglycans) and pro-inflammatory
mediators. In addition, activated cells express high levels of alpha Smooth Muscle Actin (α-SMA) and
Tissue Inhibitor of Metalloproteinase 1 (TIMP1) which contribute to the changes from a adipocytic
phenotype to a pro-fibrogenic and inflammatory phenotype [54,55].

Physiologically involved in tissue repair, following short-term injury myofibroblasts are rapidly
cleared by apoptosis or inactivation [56]. However, under chronic injury, the persistent HSCs activation
leads to disruption of the balance between ECM deposition and dissolution and triggers progressive
liver fibrosis [51]. Moreover, in advanced fibrosis, the high number of activated HSCs and contractibility
of the myofibroblasts promote the constriction of hepatic sinusoids, therefore affecting the blood flow
and the nutrient exchange and participating in liver dysfunction [9].

Activation of HSCs consists of two major phases (i) the initiation, or pre-inflammatory stage,
referring to the early changes in gene expression shortly after injury and (ii) the perpetuation, which
corresponds to maintenance of an activated phenotype and fibrosis development [57]. The initiation
stage is triggered by paracrine stimulation of HSCs through the products of injured hepatocytes, signals
from the resident Kupffer cells and endothelial cells, as well as Reactive Oxygen Species (ROS) and
lipid peroxides exposure [58]. Perpetuation results from the continuing effects of these stimuli. These
signals induce enhanced proliferation, contractility, pro-inflammatory and chemoattractant mediator
synthesis, and fibrogenesis/matrix degradation [57,58].

The production of chemotactic and inflammatory substances induces the activation and the
recruitment of other cellular effectors, including Kupffer cells, infiltrating immune cells, endothelial
cells, and platelets, which reinforce the pro-fibrogenic environment and the maintenance of HSCs
activation [53,59]. TGF-β and PDGF are the two major cytokines contributing to HSCs activation and
proliferation. These two major pathways as well as further contributing mediators driving liver fibrosis
(i.e., ROS) will be further discussed in this section [57,60]. All these signals lead to ECM accumulation
in the extracellular space. Importantly, the matrix-degrading enzymes such as MMPs produced by
HSCs and other pro-inflammatory effectors contribute to the replacement of normal ECM by an altered
matrix. Indeed, the ECM remodeling involves changes in matrix stiffness, flexibility, and density
related to the dysregulation of the components production [61] (Figure 2). Moreover, the ECM is not
inert and can also store cytokines and growth factors secreted by the cellular effectors hereby further
contributing to inflammation, fibrogenesis, hepatocyte proliferation, and carcinogenesis [53,61].

While activated HSCs are the predominant precursor of myofibroblasts in fibrotic liver (>90% of
collagen-producing cells), increasing evidence shows that myofibroblasts can also derive from portal
fibroblasts [62,63], bone marrow [64,65], and some studies have suggested Epithelial-To-Mesenchymal
Cell Transition (EMT) from hepatocytes or cholangiocytes [66]. However, the contribution of these cells
in the development of liver fibrosis is still unclear and differ upon the different liver disease etiologies
and stages. For example, the portal fibroblasts are mainly activated by cholestatic injuries and may
initiate the periportal fibrosis [67,68]. Indeed, Iwaisako et al. reported that portal fibroblasts contribute
to more than 70% of myofibroblasts upon biliary injury [68]. Regarding bone-marrow-derived
myofibroblasts two potential sources have been described: fibrocytes and Mesenchymal Stem Cells
(MSCs). The fibrocytes can differentiate into myofibroblasts and are recruited in the injured tissue over
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time, suggesting a role in advanced disease [62]. MSCs are multipotent progenitor that can differentiate
into hepatic myofibroblasts [62,64] via mesothelial to mesenchymal transition upon chronic liver
injury [69]. Nonetheless, their exact contribution to liver disease development is still controversial. On
one hand, studies indicate their ability to differentiate into pro-fibrogenic myofibroblasts [70], on the
other hand several studies demonstrated that injection of MSCs improves liver fibrosis/cirrhosis in
mice and could be used as a novel therapeutic approach [71,72]. More studies are therefore needed to
clarify the role of these cells. Finally, cholangiocytes and hepatocytes can develop a myofibroblast
phenotype via EMT [66,73]. EMT is a reversible process by which epithelial cells lose their polarity and
can differentiate into mesenchymal cells. TGF-β, the most potent pro-fibrogenic cytokine upregulated
during liver fibrosis is known to be a strong inducer of EMT. However, some controversies remain.
Indeed, lineage-tracing experiments have demonstrated that myofibroblasts found in experimental
liver fibrosis do not originate from epithelial cells [74,75].
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2.3. Liver Macrophages 

Figure 2. HSC activation and downstream pro-fibrogenic responses. Following the initial event of HSC
activation, non-parenchymal cell directed pro- or anti-fibrogenic responses determine whether activated
HSCs either transit into spontaneous resolution via reversion and apoptosis or pass into a perpetuated
state that results in maintenance of a pro-inflammatory and pro-fibrogenic microenvironment as well
as liver degrading ECM accumulation. Abbreviations: α-SMA: α-smooth muscle actin; DAMPS:
Damage-associated molecular pattern; ECM: Extracellular matrix; HSC: hepatic stellate cells; PDGF:
Platelet-derived growth factor; ROS: Reactive oxygen species; TGF-β: Transforming growth factor β.

2.3. Liver Macrophages

Macrophages represent the largest NPC population in the liver and play a central role in liver
inflammation and fibrosis. Hepatic macrophages comprise the liver resident Kupffer cells and
monocyte-derived macrophages, originating from the bone-marrow [13]. Activation of Kupffer cells
and recruitment of monocyte-derived macrophages are triggered by the release of DAMPs ROS
production, anti-viral response but also by metabolic signaling induced by fat accumulation [76–79].
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Macrophages can be classified into a wide spectrum of different phenotypes ranging from the
classically activated pro-inflammatory macrophages (M1) to alternatively activated immunoregulatory
macrophages (M2). These subclasses are induced by different regulators and exhibit distinct markers
and functional activities. M1 are characterized by the expression of pro-inflammatory cytokines
(Tumor Necrosis Factor alpha (TNF α), the interleukins (IL) IL6 and IL1β), whereas M2 express
anti-inflammatory mediators (IL4, IL1) [80]. Hepatic macrophages exhibit a remarkable plasticity
and can switch to different phenotypes in response to various stimuli of their microenvironment,
sometimes expressing both markers of M1 and M2 differentiation. While being difficult to distinctly
attribute this dichotomous classification to pro- or anti-fibrogenic actions [13,15], numerous studies
indicate distinct subpopulations of macrophages to coexist in the liver and to contribute to different
phases of fibrosis. Thus, Duffield et al. demonstrated that macrophage depletion in the early phase of
injury decreases the inflammatory response and reduces scarring and the number of myofibroblasts.
In contrast, macrophage depletion during recovery leads to a failure of ECM degradation and a less
efficient repair [81].

In the early phase of the injury, the dominant macrophage populations are pro-inflammatory. The
resident Kupffer cells rapidly secrete IL-1β, TNFα, chemokine (C-C motif) ligand 2 (CCL2), and CCL5
resulting in activation of HSCs and recruitment of other immune cells including monocyte-derived
macrophages [15]. Monocytes infiltration into the liver is primarily controlled by C-C Motif Chemokine
Receptor 2 (CCR2) and its ligand CCL2 and is a major contributor of fibrosis development [82,83].
Recruitment of pro-inflammatory cells is the principal driver of hepatic inflammation. Mutual
stimulation of inflammatory cells and HSCs results in amplification and perpetuation of the
pro-fibrogenic liver state (for a review, see [84]). Activated HSCs modulate immune cell recruitment
via secretion of pro-inflammatory and chemoattractant molecules and by secreting ECM which
constitutes a network for leukocytes migration and retention [85]. Activated macrophages secrete
cytokines to stimulate HSCs, which in turn produce the macrophage colony-stimulating factor, IL6,
and other cytokines to perpetuate the pro-fibrotic macrophage activity [85–87]. Moreover, Kupffer
cell activation increases the activity of NF-kB in HSCs, which further promotes pro-inflammatory
cytokine secretion [87]. Different studies also described a direct interaction of HSCs with immune
cells through expression of adhesion molecules (ICAM-1, VCAM-1), resulting in mutual stimulation
and amplification of the pro-fibrogenic response [88,89]. More recently, Lodyga et al. showed
that cadherin-11 (CDH11) mediates adhesion of macrophages to myofibroblasts and establishes a
pro-fibrotic niche of active TGF-β [90]. Another recent example of mutual stimulation between HSCs
and Kupffer cells was reported by Cai et al.They demonstrated that CXCL6 plays an important role
in liver fibrosis through stimulating the release of TGF-β by Kupffer cells via an EGFR-dependent
pathway [91].

During progression of injury, macrophages exhibit intermediate phenotypes and switch to a
most anti-inflammatory profile. These macrophages respond to IL10, IL4, and IL13 and secrete
anti-inflammatory mediators such as IL-10 and TGF-β [92]. At this stage, some resident macrophages
can have a wound healing phenotype characterized by the production of MMPs (i.e., MMP9, MMP12,
MMP1), which are involved in matrix degradation and resolution of fibrosis [11,16]. During late-stage
injury, the dominant macrophage population is anti-inflammatory due to the abundance of the TGF-β
in the fibrotic environment [93]. These macrophages progressively switch to an immunosuppressive
phenotype, allowing immune evasion and tumor promotion. Indeed, they produce immunosuppressive
mediators such as IL10 and express cell surface receptors like programmed cell death 1 ligand 1 (PD-L1)
and the receptor sialic-acid-binding Ig-like lectin 10 that play major roles in suppressing the immune
system [94–96]. Therefore, TGF-β provides a link between liver fibrosis and immune responses.

The controlled inflammation and macrophage activation at the different stage of liver injury
is an essential feature to control fibrosis development. However, due to the remarkable plasticity
of macrophages, translation of this concept into clinical application is challenging. The precise
contribution of each macrophage population needs to be fully dissected in the future.
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2.4. Lymphocytes

While the role of myofibroblasts and macrophages in fibrogenesis is well described, the role of
adaptive immune cells is less defined. Nevertheless, the importance of lymphocytes in fibrogenesis is
evidenced by in vivo studies showing that inhibition of lymphocyte recruitment in the liver induces a
decrease in the fibrogenic responses [97–100].

As described above, chronic liver injury results in the production of pro-inflammatory mediators
and the infiltration of leukocytes, including lymphocytes, in the sub-endothelial space. The recruitment
of lymphocytes from the circulation is further triggered by interactions with endothelial cells, a process
regulated by several chemokines. Importantly, lymphocytes can interact with ECM components and
endothelial cells though cell surface integrins, which contribute to cell activation and differentiation
as well as fibrogenic responses [101,102]. After migration through the endothelium by a complex
mechanism, lymphocytes are recruited at the injury site by chemoattractant molecules [88]. It has been
shown that CXCR3 activation by its ligands, including CXCL9, CXCL10, and CXCL11 produced by
HSCs and endothelial cells, promotes lymphocytes trans-endothelial migration [103]. Myofibroblasts
also secrete cytokines promoting lymphocyte migration, including IL-6, hepatocyte growth factor and
TGF-β [97].

CD4+ T cell responses have been shown to be critical for fibrosis development. Polarization of
CD4+ T cells in distinct T-helper (TH) lineages is critical for defining cell properties and cytokine
production. The TH2-polarized T cells are directly involved in fibrosis development by stimulating
pro-fibrogenic gene expression in myofibroblasts (pro-collagen I and III, MMP2, MMP9, and TIMPs)
and the synthesis of immunoregulatory mediators in macrophages (IL10, TGF-β) [14]. These processes
are mainly driven by IL4 and IL13 [14,104]. IL17-producing CD4+ T cells and regulatory T cells (Tregs)
have also been identified as effectors of liver fibrogenesis. It was observed that IL-17 expression is
upregulated in fibrotic liver tissue and promotes pro-inflammatory cytokine expression, neutrophil
influx, liver injury, and fibrosis [105,106]. Similarly, an increase of the Treg population was observed
in patients with advanced fibrosis, which may promote fibrosis through secretion of IL8 [107,108].
The role of B-lymphocytes and CD8+ T cells in liver fibrosis is less well understood. It is possible
that these cells could promote fibrosis by secreting pro-fibrotic cytokines or by amplifying tissue
injury [88,97,109].

2.5. Gut Dysbiosis

Numerous studies suggest a key role of gut dysbiosis in the progression of liver fibrosis. The
term liver-gut axis describes the close bidirectional interaction between the gut and its microbiota
with the liver. Thus, 75% of the portal vein blood derives from the gut and transports intestinal
products to the liver. The liver in turn secretes bile and antibodies into the gut [110]. The interface
between the liver and the gut microbiota is shaped by the mucosal barrier, consisting of the gut
epithelial barrier and the gut vascular barrier. The integrity of this intestinal mucus barrier and
the physiological composition of the intestinal microbiome are critical for maintaining homeostasis
of the liver-gut axis [111]. Metabolic toxins, especially alcohol abuse or high fat/low fiber diet in
NAFLD have been described to disrupt intestinal homeostasis by increasing intestinal permeability
and altering microbiota [112,113]. Consequentially, the relative overgrowth of potentially pathogenic
bacteria not only drives hepatic inflammatory immune responses and HSC activation due to portal
delivery of pathogen-associated molecular patterns (PAMPs, as lipopolysaccharides, peptidoglycans,
and flagellin), the altered microbiome also results in intestinal deconjugation of bile acids and
therefore production of so-called secondary bile acids that suppress Farnesoid-X Receptor (FXR)
signaling [111]. FXR is a nuclear receptor activated by bile acids that regulates bile acid, lipid, and
glucose metabolism [114,115]. Intestinal FXR signaling physiologically exert protective effects on
intestinal epithelial barrier properties [116] and accelerates gut vascular barrier repair [113]. Intestinal
accumulation of secondary FXR- suppressing bile acids in chronic liver disease therefore promotes
disruption of the intestinal barrier.
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Independent of the underlying etiology and presence of the causal toxin, fiver fibrosis itself is
typically accompanied by gut dysbiosis [117,118]. These etiology-independent alterations in the gut
microbiome [117,119] are due to reduced small bowel motility e.g., in the context of ascites [119–121]
and compromised intestinal immunity [122]. Moreover, highlighting the reciprocal interaction
of bile acids and the gut microbiome, reduced excretion of primary bile acids in liver fibrosis
with compromised liver function directly affects composition of the gut microbiome [119,121].
Typical features of gut dysbiosis in liver cirrhosis are reduced diversity and relative overgrowth
of potentially pathogenic bacteria as Enterococcaceae and Enterobacteriacae or bacteria of buccal
origin [118]. Together with the typical severely compromised gut barrier, gut dysbiosis promotes
cirrhosis inflammatory state due to hepatic accumulation of PAMPs and toxic bacteria products [123]
and correlates with liver disease progression [124,125]. Nevertheless, abundance of pathogenic
taxa associates with risk of decompensation in patients with liver cirrhosis and enteral bacterial
translocation is involved in outcome-determining complications as spontaneous bacterial peritonitis
and hepatoencephalopathy [124,126].

2.6. Molecular Signaling Pathways Involved in Liver Fibrogenesis

2.6.1. PDGF Signaling

PDGF is a growth factor promoting HSCs division and proliferation. Four different PDGF
subunits, termed PDGF-A, -B, -C, and -D, were identified and can produce five different polymers
(PDGF-AA, -BB, -AB, -CC, and -DD), via a disulfide bond linkage, which have different functions [127].
PDGF-AA mainly controls cell proliferation and chemotaxis, while PDGFR-AB and -BB promote
collagen synthesis [17]. Moreover, several studies demonstrated that the subunit PDGF-B is the most
potent factor associated with early HSCs activation. Indeed, PDGF-B expression is transiently increased
during the early stage of activation. In contrast, PDGF-C and -D levels are increased during the
trans-differentiation and persist upon the perpetuation, suggesting a role of these subunits in the late
phase of fibrogenesis [128–130].

Under healthy conditions, PDGF is produced by platelets. During liver injury, Kupffer cells mediate
intrahepatic recruitment of platelets [59]. Moreover, PDGF can also be expressed by Kupffer cells,
endothelial cells, and activated HSCs. Finally, PDGF receptor (PDGFR) is expressed at the membrane
of HSCs and can therefore stimulate HSCs activation through autocrine mechanism [131,132].

The binding of PDGFs on their corresponding receptors induces receptor dimerization and
phosphorylation which in turn phosphorylate tyrosine residues on different intracellular substrates.
Stimulation of PDGFR triggers activation of several signaling pathways including the Ras/Raf
system, the phospholipase Cγ (PLCγ), the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, and the
JAK/signal transducer and activator of transcription (STAT) pathway [17]. These downstream elements
then regulate the expression levels of pro-fibrotic target genes such as type I collagen (COL1A1),
metalloproteinase inhibitors (TIMPs), and MMPs but also the apoptosis regulator Bcl 2, resulting in
cell proliferation and survival [17].

2.6.2. TGF-β Signaling

In cooperation with PDGF, the TGF-β signaling is considered as one of the most important
pathways driving HSC activation and fibrogenesis [133]. The TGF-β family comprises 33 members.
While TGF-β2 plays an important role in biliary fibrogenesis, TGF-β1 is the most widely investigated
isoform in liver fibrogenesis [134]. TGF-β is synthetized as a latent precursor by a variety of cells
including endothelial cells, macrophages, and hepatocytes. Moreover, platelets were recently identified
as an important source of TGF-β in the liver [135]. The inactive TGF-β molecules bind to the latency
associated protein (LAP) and accumulate in the ECM and must be cleaved by specific proteases to
become active. Endothelial cells participate in the conversion of TGF-β from the latent to the active
form. Moreover, interactions with transmembrane integrins are considered as the principal activating
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mechanism for latent TGF-β [136]. The active form binds to and activates the TGF-β type II receptor
(TβRII), which recruits the TGF-β type I receptor (TβRI). The downstream canonical signaling of
TGF-β1 converges on SMAD proteins.

The SMAD protein family can be classified into three groups based on their functions. The
receptor-regulated SMADs (R-SMADs) include SMAD1, SMAD2, SMAD3, SMAD5, and SMAD8. The
inhibitory SMADs include SMAD6 and SMAD7. SMAD4 is the only member of the third category,
named common SMAD. R-SMADs are activated by phosphorylation at their C-terminus, i.e., pSMAD2
and pSMAD3, and form a complex with SMAD4, which translocates into the nucleus to regulate gene
expression. SMAD3 is crucial for inducing HSCs activation and pro-fibrogenic gene transcription
such as α-SMA or COL1A1 [116]. Of note, activation of the SMAD3-dependent TGF-β signaling in
hepatocytes was also demonstrated to contribute to fibrosis development, especially in NASH, by
inducing hepatocyte death and lipid accumulation [137]. In contrast to SMAD3, SMAD2 has no DNA
binding capacity and is described as an anti-fibrotic molecule. The underlying mechanism could
involve the ability of SMAD2 to induce TRAIL-mediated HSC apoptosis [138]. Moreover, SMAD6 and
SMAD7, which negatively regulate TGF-β signaling, are considered as anti-fibrotic factors [139,140].
As a proof of concept, the group of Mertens showed that overexpression of SMAD7 in transgenic mice
interferes with liver fibrosis progression and liver damage [141].

The canonical pathway in which SMAD3 is phosphorylated at its C-terminus (pSMAD3C) is
described as the main fibrogenic pathway [60,142]. However, a non-canonical and pro-fibrogenic
pathway was recently described, in which PDGF activates JNK that phosphorylates SMAD3 in its
linker domain (pSMAD3L). PSMAD3L is able to rapidly translocate into the nucleus to stimulate
HSC proliferation and induces a pro-fibrogenic response [143,144]. This non-canonical pathway
is therefore crucial for the induction of ECM production and is now considered as an attractive
therapeutic target [143]. Other studies have also identified TGF-β non-canonical pathways such
as mitogen-activated protein kinase (MAPK), mammalian target of rapamycin (mTOR), PI3K/Akt,
JAK1/STAT3, and Rho GTPase pathways. Both the canonical and the non-canonical pathways contribute
to HSCs activation but also to macrophages activation and polarization [136]. TGF-β production is also
associated with the activation of the connective tissue growth factor (CTGF) in HSCs and hepatocytes,
a mitogenic factor playing an important role in liver fibrosis development [60]. Finally, it was shown
that ROS can act as inducer or effector of the TGF-β signaling and therefore generate a vicious cycle for
fibrosis [145]. Moreover, high levels of TGF-β induce a massive hepatocyte cell death, contributing to
chronic liver damage [88].

2.6.3. Oxidative Stress

Oxidative stress (OS) is a key process driving liver damage and initiation liver fibrosis. It
corresponds to an altered balance between cellular pro-oxidant and antioxidant factors, which results
in ROS and reactive nitrogen species (RNS) production. ROS constitute a family of pro-fibrotic
mediators including superoxides, hydrogen peroxide (H2O2), and hydroxyl radicals [146]. They are
generated during normal cellular metabolism and in particular during oxidative phosphorylation
and lipid peroxidation in hepatocytes, HSCs, and macrophages. At low levels, ROS can serve as
secondary messengers to activate different cellular responses [147]. However, at high levels, they
provoke disruption of cellular lipids, proteins and DNA and lead to hepatocyte necrosis and apoptosis.
Moreover, ROS stimulate pro-inflammatory and pro-fibrogenic factor production by activated HSCs,
Kupffer cells, and other pro-inflammatory cells [77,148]. ROS production is exacerbated by ethanol,
FFA accumulation, iron deposit, and chronic viral infection [146,149,150].

The NADPH oxidases (NOXs) are a major source of ROS in the liver and mediate fibrogenic
responses induced by angiotensin II, PDGF, and TGF-β in HSCs and macrophages [151,152]. Zhan et al.
notably showed that phagocytosis of apoptotic bodies by HSCs following hepatocyte death results in
NOX activation and collagen production [35]. Other studies demonstrated that the TGF-β-SMAD3
pathway increases NOX1 and NOX4 expression in HSCs, which correlates with the degree of



Cells 2020, 9, 875 10 of 43

fibrosis [153–155]. ROS signaling also regulates the expression and the activity of the transcription
factor NF-κB. NF-κB has a key role in the regulation of cell death, inflammation, and wound healing
and is therefore an important modulator of liver fibrosis progression [156]. Indeed, several studies
have shown that inhibition of NF-κB activity protects from hepatic fibrosis in-vivo [157]. Moreover,
in contrast to quiescent HSCs where NF-κB activity is suppressed, myofibroblasts display a high
NF-κB activity, suggesting that NF-κB activity is linked with HSC proliferation [156]. In line with this
observation, it was demonstrated that Kupffer cell activation increases the activity of NF-kB in HSCs,
which in turn promotes pro-inflammatory cytokine secretion [87,156].

Over the last few years, epigenetic regulation of fibrosis progression has emerged as another
process which orchestrates several aspects of the fibrogenic response in the liver (for a review,
see [158]). Important epigenetic changes are induced by ROS in the HSCs, including chromatin
remodeling by histone modification, DNA methylation and gene silencing by microRNAs (miRs) [158].
In-vitro and in-vivo approaches have demonstrated that HSCs show a global demethylation of
fibrogenic genes during transdifferentiation into myofibroblasts, which is associated with liver fibrosis
development [159–161].

2.6.4. The Inflammasome (NLRP3)-Caspase1 Pathway

Hepatic inflammation is a pan-etiology driver of hepatic damage and liver fibrosis. Inflammasomes
are intracellular multiprotein complexes expressed in hepatocytes and NPCs including HSCs and
Kupffer cells [162]. From the various inflammasomes, the NOD-like receptor (NLR) NLRP3
inflammasome is the best characterized. It has been shown to play a crucial role in the progression of
NAFLD to NASH [163,164]. NLRP3 inflammasome consists of an intracellular multiprotein complex
that activates caspase 1 by cleavage, which further cleaves pro-IL1β and pro-IL18 into mature forms.
IL1β and IL18 are important mediators of the innate inflammatory response which initiate and
perpetuate an abnormal wound-healing response and facilitate the progression of hepatic fibrosis.

Even if NLRP3 inflammasome activation in different cell types has not been completely elucidated,
several evidences demonstrated that accumulation of toxic lipids and DAMPs- and PAMPS-mediated
TLR signaling activates NLRP3 inflammasome [45,163,165]. It was notably demonstrated that TLR2 and
palmitic acid cooperatively activate NLRP3 inflammasome in Kupffer cells and promote HSCs activation
through pro-inflammatory cytokine secretion [166]. Moreover, it was speculated that phagocytosis
of cholesterol crystals from hepatocytes can activate NLRP3 inflammasome in macrophages and
may contribute to inflammation and fibrosis in NASH [47]. Finally, it was shown that activation of
NLRP3 in hepatocytes results in pyroptosis, a form of programmed cell death involving caspase 1,
liver inflammation, and fibrosis [167]. Therefore, blockade of NLRP3 pathway emerges as a novel
therapeutic target to reduce liver inflammation and fibrosis in NASH [168].

2.6.5. Wnt/β-Catenin Signaling

Physiologically, the Wnt/β-catenin pathway is necessary for organ development. However,
Wnt/β-catenin signaling has also been associated with the development of fibrosis in different organs,
including the liver [19]. β-catenin is a protein which acts as both adhesion molecule and transcription
factor. Its expression is regulated by the Wnt protein. When the pathway is inactive, β-catenin level in
the cytoplasm is regulated by a destruction complex which includes the glycogen synthase kinase 3β
and casein kinase 1α. In contrast, when the pathway is active, Wnt binds the receptor Frizzled and
the low-density lipoprotein-receptor-related protein 5/6 to form a complex, which inhibits β-catenin
degradation. β-catenin in turn translocates in the nucleus to activate target genes transcription.
However, β-catenin must recruit coactivators to be fully active, such as p300 or the cyclic AMP
response element-binding protein-binding protein (CBP) [19]. During liver injury, the Wnt signaling is
upregulated in the HSCs compared to quiescent cells and contribute to the pro-fibrogenic response by
promoting α-SMA expression and collagen deposition [169].
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3. Disease-Related Pro-fibrogenic Mechanisms in Chronic Liver Diseases

3.1. Chronic Hepatitis C

Chronic hepatitis C affects around 70 million people worldwide and still represents a leading
cause of HCC and liver transplantation [170]. In most cases, infection by the hepatitis C virus (HCV)
does not resolve spontaneously. Thus, approximately 80% of infected patients become chronic carriers
and 20–30% develop liver cirrhosis within 25–30 years [171]. Chronic hepatitis C can now efficiently be
cured by direct acting antivirals (for review see [172]). Chronic HCV infection induces hepatocyte cell
death, that leads to release of DAMPs that can directly activate HSCs [31,35,77]. However, chronic
inflammation due to antiviral immune response is still regarded as the most important driver of
myofibroblast activation and ECM production in HCV infected patients [173]. Thus, immune response
to HCV infection results in enhanced secretion of multiple growth factors, inflammatory cytokines,
and chemokines by Kupffer cells and lymphocytes [174,175]. Moreover, HCV replicating hepatocytes
have been shown to secrete pro-fibrogenic cytokines [176].

HCV viral proteins have also been shown to directly modulate signaling and metabolic pathways
implicated in fibrogenesis. Thus, several studies indicate activation of HSCs into myofibroblasts by
the HCV core protein, as well as non-structural HCV proteins. In fact, HCV core protein activates
HSC proliferation in an Ras/ERK and PI3K/AKT dependent manner. The non-structural NS3 and NS5
proteins on the other hand induce inflammatory signaling pathways, including NF-κB [177]. Moreover,
hepatocyte expression of HCV core protein is associated with decreased intracellular and mitochondrial
glutathione levels, an important antioxidant [178,179]. Further promoting oxidative stress, the HCV
protein NS3 can directly activate NOX2 in Kupffer cells and T cells [149,180]. The HCV envelope
protein E2 on the other hand has been shown to bind to CD81 on HSC and actives MMP2, which
have been hypothesized to promote inflammatory infiltration and enhanced parenchymal damage due
to degradation of normal hepatic ECM [181]. Finally, human myofibroblasts have been reported to
express HCV host factors and to be permissive to HCV. Increased proliferation and collagen production
in these cells indicates further potential direct pro-fibrogenic effects of HCV on these fibrosis-driving
cell population [182].

While cure of HCV infection has been shown to reduce liver disease complications and HCC risk,
a significant risk to develop HCC persists in advanced fibrosis [183,184]. Several studies have shown
that chronic HCV infection results in persistent epigenetic and transcriptional changes associated with
the stage of fibrosis and HCC risk [185,186], suggesting that viral cure only partially eliminates the
virus-induced pro-fibrogenic and carcinogenic drivers particularly in advanced fibrosis [187].

3.2. Chronic Hepatitis B

Despite the presence of an efficient vaccine, chronic HBV infection still affects currently
approximately 260 million people, mostly in Africa and Asia [188]. While horizontal transmission
of adults often results in self-limiting acute infection, vertical transmission mostly leads to chronic
infection [189,190]. Currently available therapeutic therapies for chronically infected patients include
interferon-based therapies and several nucleos(t)ide analogues. While nucleos(t)ide analogues
rarely result in viral cure, suppression of viral replication slows down disease progression, that
can eventually end in liver cirrhosis and HCC [191]. As in chronic hepatitis C, chronic hepatitis B
triggers HSCs activation via DAMPs release and the host antiviral immune response leading to chronic
inflammation [31,35,76,77,192]. However, in contrast to HCV, the direct involvement of HBV infection
in HSC activation remains less defined. A recent study showed that the HBV encoded x protein (HBx)
induces overexpression of the special AT-rich binding protein 1 (SATB1) in hepatocytes, which in turn
promotes the activation and proliferation of HSCs through the secretion of CTGF and PDGF [193].
Moreover, Liu et al. observed that HBV can transiently infect and replicate in cultured HSCs in-vitro
and that production of HBV S protein (HBs) affects their proliferation and expression of collagen type
I [194]. Moreover, a direct activation of Tregs by HBx was observed in HBV-infected patients [105,106].
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While pharmacological control of HBV infection markedly reduces liver disease progression and HCC
risk, the absence of effective curative therapies still poses a challenge for the long-term management of
patients [195].

3.3. Alcoholic Liver Disease

Alcoholic liver disease is a major cause of liver fibrosis world-wide. Chronic alcohol intake
activates pro-fibrogenic mechanisms: the metabolization of alcohol in hepatocytes to acetaldehyde
causes release of ROS, that can activate HSCs in a paracrine way [196]. Moreover, the ethanol
metabolite acetaldehyde itself is fibrogenic and induces secretion of TGF-β [197]. Furthermore, both
collagen type 1 genes have acetaldehyde-responsive elements that allow acetaldehyde-induced collagen
expression in HSCs within hours [197,198]. Several studies further indicate alcohol-induced apoptosis
of hepatocytes as a mechanism of liver fibrosis. Thus, hepatocyte apoptosis increases upon alcoholic
liver injury [199], which not only induces production of chemokines and pro-inflammatory cytokines
that activate HSCs [200] but also induces phagocytosis of the apoptotic bodies by Kupffer cells, that
become pro-fibrogenic and release HSC activating cytokines as TNFα and TGF-β [36,201–203]. Finally,
chronic alcoholic intake has been correlated with suppression of innate immunity [204–206]. Innate
cytokines [207], natural killer (NK) cells [208], and macrophages [209] have been reported to inhibit
liver fibrosis by clearance or inactivation of HSCs and therefore may underlie decompensation of the
physiological balance of pro- and anti-fibrogenic mechanisms in chronic ASH.

3.4. Non-Alcoholic Liver Disease

NAFLD represents the fastest growing etiology of chronic liver disease and currently affects
15-30% of the global adult population [210] with expected further exponential increase within the next
years [211]. NASH describes currently the inflammatory form of NAFLD characterized by disease
progression and increased HCC risk. For many years, diagnosis of NASH required the exclusion of
other potential triggers of chronic liver disease as alcohol abuse or viral infection. However, due to the
variety of etiologies and pathologies there is overlap. Recently, another term “metabolic associated fatty
liver disease (MAFLD)” has been suggested as a more appropriate and defining nomenclature for the
heterogeneous population of patients with this disease. By avoiding the description “non-alcoholic”,
this new terminology is supposed to address the high prevalence of co-existing toxic (e.g., alcohol) or
viral contributors that do not exclude the affiliation to a metabolic liver disease [212]. Instead, thorough
patient stratification according to present risk factors and chronic liver disease contributors should be
performed to allow preventive and therapeutic recommendations that address the underlying disease
in its whole complexity [212].

HSCs activation by oxidative stress and inflammation plays a leading role in NASH disease
progression and fibrosis development [213]. Accelerated by insulin resistance accumulating metabolites
of saturated fatty acids cause lipotoxicity that damages hepatocytes and results in oxidative stress [214,
215]. Hepatocyte released DAMPs activate Kupffer cells via TLR and hereby create a pro-inflammatory
microenvironment that promotes a HSC activating fibrogenic adaptive immune response [216].
Moreover, it has been shown that the high levels of oxidative stress in NASH hamper the physiologic
regenerative proliferation of mature hepatocytes [217] and triggers recruitment of hepatic progenitor
cells. These cells form the so called ductular reaction at the interface of hepatocytes and the biliary tree
and are able to differentiate into both hepatocytes and cholangiocytes [218]. Of note, pro-fibrogenic
cytokines, including TGF-β have been shown to be released by the ductular reaction [219]. Moreover,
it has been shown that cholangiocytes can transform into collagen-producing myofibroblasts by
EMT [220]. Further highlighting the potential role of HPC expansion/ductular reaction in NASH
associated fibrosis progression, portal fibrosis that represents a key feature in progressive NASH livers
correlates with the extent of ductular reactions and the degree of fibrosis [221]. However, demonstrating
ECM accumulation and myofibroblast activation prior to PLC expansion in a murine mouse model of
NASH, Van Hul et al. elegantly indicated LPC expansion to be only part of the complex pathogenesis
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of fibrosis in NASH, that is further depending on the inflammatory microenvironment [222]. While
there is a large pipeline of compounds for treatment of NASH, there are currently no approved
therapies [223].

4. Resolution of Liver Fibrosis

Progression into liver fibrosis and cirrhosis account for high morbidity and mortality in patients
with chronic liver diseases, causing substantial economic burden. Patients with compensated liver
cirrhosis have a 2–7% risk for hepatic decompensation and 1–7% risk of HCC development per
year [224]. In NASH patients, fibrosis is the only histological feature that independently correlates
with clinical outcomes [225–227]. Emphasizing the urgent need for efficient anti-fibrotic drugs, liver
cirrhosis is currently the 11th most frequent cause of death worldwide [1].

Removal of the main inducer of chronic inflammation have been shown to be able to induce
regression of advanced liver fibrosis (up to Metavir stages 3 and 4) due to chronic HBV and HCV
infection [228–230]. However, approximately 15% of patient with chronic viral liver infection do not
show any reversal in liver fibrosis despite sustained viral response [228,229]. In metabolic liver disease,
lifestyle changes and bariatric surgery can induce regression of histological fibrosis [231], however,
licensed therapeutic compounds for NASH are absent. Finally, spontaneous resolution after removal
or treatment of the trigger of chronic inflammation occurs slowly and may not prevent life-threatening
complications. Thus, besides causal therapies of underlying pathologies of chronic liver disease,
anti-fibrotic strategies are needed to inhibit trigger-dissociated progression of liver fibrosis and to
accelerate fibrosis resolution.

4.1. Molecular Mechanisms of Fibrosis Regression

Fibrosis regression is associated with inactivation or apoptosis of HSCs and myofibroblasts [56,232].
Thus, whereas increased cell death in hepatocytes contributes to fibrogenesis, cell death in HSCs is an
important mechanism for the resolution of liver fibrosis. Indeed, TRAIL-mediated HSCs apoptosis is
associated with an improvement of liver fibrosis [233–235]. Dissolution of the fibrotic scar is mainly
mediated by macrophages that secrete the matrix-degrading enzymes collagenase and MMPs [10,16].
Macrophages associated with the resolution of hepatic fibrosis have been termed scar-associated
macrophages (SAMs) and exhibit a phenotype outside the M1/M2 classification [16]. Thus, while
pro-fibrotic macrophages have been characterized by a high expression of Ly-6C or Gr1 [16], CD11bneg

macrophages with low expression of Ly-6C are associated with MMPs production and fibrosis
resolution [236,237]. Using single-cell RNA-Seq of patient-derived liver tissue, Ramachandran et al.
elegantly demonstrated that distinct macrophage subpopulations inhabit the fibrotic niche [238].
Moreover, they identified a novel scar-associated TREM2+ CD9+ subpopulation of macrophages with
a hybrid phenotype, which expands in liver fibrosis and is pro-fibrogenic.

In addition to macrophages, NK cells exhibit an anti-fibrotic activity by mediating HSCs apoptosis
through the production of interferon gamma (IFNγ) [239–243]. Moreover, activation of NK cells and
their cytolytic activity are important to control premalignant cell growth in fibrotic environment [244].

4.2. Candidate Targets and Pathways for Therapeutic Intervention

Generally, anti-fibrotic therapies can be divided into agents that mediate its anti-fibrotic
effects by i) hepatocyte protection, ii) inhibition of HSC activation and fibrotic scar evolution, or
iii) immune modulation (for recent reviews see [24] and [245]). Moreover, several phytodrugs
have been characterized to potentially exert multidimensional protective effects on liver fibrosis
progression [246,247].

However, despite numerous preclinical and clinical trials, to date, no Food and Drug
Administration (FDA)-approved anti-fibrotic drugs exist and the only available curative treatment
option for patient with advanced liver cirrhosis is liver transplantation [248]. Examples of anti-fibrotics,
that are currently in clinical trial are reviewed in the following and further summarized in Tables 1–3.
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4.2.1. Hepatic Protection via Inhibition of Apoptosis

Hepatocyte cell death by apoptosis is a major trigger of inflammation and HSC activation in
the evolution of liver fibrogenesis in all etiologies [249,250]. Accordingly, inhibition of hepatocyte
apoptosis decreased HSC activation in animal models of liver fibrosis [251,252]. Following a promising
pre-clinical study in a carbon tetrachloride (CCl4)-based liver fibrosis rat model [253], just recently
two randomized placebo-controlled trials investigated the pan-caspase inhibitor Emricasan in NASH
patients with F1-F3 fibrosis [254] or cirrhosis with severe portal hypertension [255]. Garcia-Tsao et al.
reported small reductive effects on hepatic venous pressure gradient (HVPG) in cirrhotic NASH
patients [255]. No effects were seen in patients with acutely decompensated cirrhosis [256]. In contrast,
72 week administration of Emricasan in patients with NASH-associated F1-F3 fibrosis did not improve
liver inflammation or fibrosis but rather tended to worse hepatocyte-ballooning, potentially due to
activation of other mechanisms of cell death and necrosis [254]. Results from a recently completed
clinical trial of Emricasan in the setting of post-transplant HCV-induced fibrosis after SVR are awaited
2020 (NCT02138253).

Another approach to reduce liver injury associated hepatocyte cell death is to inhibit stress signals.
Apoptosis signal-regulating kinase (ASK1) belongs to the MAPK pathways and is involved in hepatic
apoptosis, inflammation and fibrosis [257–259]. The selective ASK1 inhibitor Selonsertib improved
fibrosis in a murine NASH model [257]. In a multicenter phase II clinical trial, 24 week treatment
of patients with NASH F2-3 improved histological degree of fibrosis [260]. However, considering
frequently reported improvement of fibrosis due to enforced patient’s compliance and therapeutic
monitoring, the absent inclusion of a placebo-control group in this study substantiates the need for
further confirmatory studies. Phase 3 clinical trials in patients with NASH associated F3 (NCT03053050)
and F4 fibrosis (NCT03053063) have just been completed and results are awaited to be published
in 2020.

4.2.2. Hepatic Protection via Reduction of Oxidative Stress

Oxidative Stress is one of the major drivers in liver fibrosis progression, especially in NASH [261].
Consequently, several strategies to reduce oxidative stress have been developed and investigated in
terms of anti-fibrotic potency [262–265]. NOXs are membrane-bound enzyme complexes that catalyze
the reduction of NADH, hereby producing superoxide radicals. NOX 1, 2, and 4 exert key roles
in the activation of HSCs during liver fibrogenesis [155,266] and NOX4 is involved in hepatocyte
apoptosis [155]. GKT137831, a dual NOX1/4 inhibitor suppressed ROS production in HSCs in-vitro
and in-vivo and significantly attenuated liver fibrogenesis in CCl4 and bile duct ligation based mouse
models of liver fibrosis [267]. According to a first interim analysis of a phase 2 clinical trial in patients
with primary biliary cholangitis, GKT137831 showed significant effects on serological cholestasis
parameters. Publication of effects on additional endpoints, including fibrosis after a treatment duration
of 24 weeks are expected to be published soon (NCT03226067).

4.2.3. Hepatic Protection via Restoration of Gut Microbiome

Considering the pathophysiological implication of gut dysbiosis in chronic liver disease progression
and fibrogenesis, numerous studies investigated the potential of probiotics, prebiotics, and fecal
microbiota transplantation for anti-fibrotic therapy [268]. Probiotics are living micro-organisms and
prebiotics are indigestible food ingredients that are supposed to improve or restore the gut microflora.
Confirming the pathological relevance of gut dysbiosis in chronic liver diseases, prebiotics and probiotics
have shown protective effects on steatosis and liver inflammation in animal models of chronic liver
injury [269–272]. In line with the pre-clinical data, VSL#3, the most studied probiotic formulation,
showed potential anti-inflammatory and insulin-sensitizing effects according to a meta-analysis in
NASH/NAFLD patients [273]. Recently, Bajaj et al. reported association of a diet rich in cereals,
fermented milk, vegetables, and coffee/tea, with microbial diversity and lower risk of hospitalization in
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cirrhotic patients [125]. However, evidence for systematical clinical application of pro- and prebiotics is
still lacking due to limitations of clinical studies in sample size, placebo-control and precise information
regarding patients’ diet and lifestyle [268].

Fecal microbiota transplantation (FMT) describes the transfer of a fecal suspension from a healthy
donor into the intestine of a patient. Interestingly, FMT reduced liver injury in a mouse model of
alcohol-induced chronic liver disease [269]. Moreover, FMT was superior to probiotics in prevention of
hepatic encephalopathy due to protective effects on intestinal mucosal barrier function [274]. Few small
clinical trials further indicated potential protective effects of FMT on chronic liver disease progression.
Thus, Philips et al. reported single FMT in patients with severe ASH to reduce hepatic inflammation
and improve survival during one year of follow-up [275]. Moreover, a randomized clinical trial with
20 patients with cirrhosis and recurrent hepatic encephalopathy revealed improved cognition and
reduced hospitalizations following FMT compared to standard care [276]. However, lethal Escherichia
coli bacteremia have been reported in patients that have undergone FMT [277]. Thus, further studies are
needed to evaluate the potential and especially safety profile of FMT in chronic liver disease patients
that are at high risk of bacteremia due to bacterial translocation.

4.2.4. Hepatic Protection via Lipid-Lowering Agents

Statins are widely used lipid-lowering agents that decrease serum cholesterol levels by inhibition of
the activity of 3-hydroxy-3-methylglutaryl co-enzyme a reductase [278]. Considering its lipid lowering
properties, several studies addressed the consequential hypothesis of statins to decrease experimental
liver steatosis with controversial results [279–281]. However, recent evidence for independent
pleiotropic effects of statins on chronic liver diseases have led to increasing interest among hepatologists
(for a recent review see [282]). Thus, several studies on animal models of liver fibrosis reported statins
to decrease oxidative stress, hepatic inflammation, and fibrogenesis [283–285]. Moreover, retrospective
analyses of patients with chronic liver diseases and hypercholesterinemia-indicated statin-use revealed
association with reduced risk of disease progression, as well as complications, including HCC
development [286]. Moreover, several retrospective cohort studies and randomized controlled trials
reported reduced HVPG and decreased risk of decompensation, HCC development and death in
statin-treated patients with liver cirrhosis of different etiologies [287–289]. Finally, statins are described
to exert beneficial effects on cardiovascular mortality and morbidity, that is especially of interest in
patients with NASH [290].

Despite consistent data indicating potential anti-fibrotic effects, validity of these studies is limited
due to retrospective design and lack of hard clinical endpoints, e.g., histological assessment of fibrosis.
Moreover, considering drug-induced hepatotoxicity as a rare, though well-described side effect of
statin as well as increased risk of rhabdomyolysis in patients with chronic liver disease due to impaired
CYP3A4 metabolism in the liver, the safety profile of statins in patients with chronic liver disease and
liver cirrhosis needs to be evaluated in detail. Thus, just recently Pose et al. reported rhabdomyolysis
requiring treatment discontinuation in 19% (3/18) of patients with decompensated liver cirrhosis and
treatment with 40mg simvastatin per day compared to 14% in 20mg simvastatin or placebo treated
patients, respectively [291]. Another study reported severe rhabdomyolysis in 3% of patients with
liver cirrhosis and statin use [289]. Taken together, growing experimental and clinical evidence suggest
statins to exert beneficial pleiotropic effects on chronic liver disease progression and fibrosis. However,
large prospective placebo-controlled trials with strong clinical endpoints as well as extended safety
evaluation are awaited before recommendation of statins in patients with liver fibrosis (NCT03780673;
NCT02968810; NCT04072601).

4.2.5. Inhibition of HSC Activation

Numerous studies indicate Wnt/β-catenin signaling to be implicated in HSC activation and to
contribute to liver fibrosis [169,292,293]. ICG-001 is a small molecule inhibitor that specifically disrupts
the interaction between CBP and β-catenin. Initially developed for colon cancer therapy, ICG-001 [294]
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has been tested in several fibrosis studies and has been shown to inhibit TGF-β mediated upregulation
of α-SMA and collagen 1 in mouse fibroblasts and human HSCs. Moreover, ICG-001 administration in
a murine CCl4 induced mouse model of fibrosis attenuated HSC activation and ECM accumulation.
Mechanistically, ICG-001 was found to affect macrophage infiltration and thereby reduce hepatic
inflammation by affecting Wnt-dependent secretion of CCL12 by HSCs [295]. Apart from the liver,
ICG-001 has also been reported to suppress pulmonary [296] and renal interstitial fibrosis [297].

As another member of CBP/β-catenin inhibitors, PRI-724 have been shown to inhibit HSC activation
and collagen production in HCV transgenic mice [298]. Moreover, an independent study reported
anti-fibrotic effects of PRI-724 in CCl4 induced murine liver fibrosis. In addition to confirmation of
suppressed HSC activation, this study further indicated improved fibrosis resolution due to an increased
F4/80+ CD11b+ and Ly6Clow CD11b+ macrophage population [11,299]. In a NASH mouse model,
PRI-724 was shown to decrease hepatocyte apoptosis as well as fibrosis degree. Similar observations in
CBP KO mice highlighted the CBP/β-catenin specific anti-fibrotic mode of action of PRI-724 [300]. A
single-center, open label phase I clinical trial of PRI-724 in patients with HCV-associated liver cirrhosis
showed dose dependent histological improvement (> 2 points decrease in histologic activity index
score) in 3/12 patients, but deterioration by 2 points in 2/12 patients. A phase I/IIa clinical trial of
PRI-724 in patients with hepatitis B or C related liver cirrhosis is expected to be completed in July 2020
and will further clarify the yet uncertain potential of PRI-724 in fibrosis treatment (NCT03620474).

FXR ligands have first been developed in the context of cholestatic liver diseases, as primary
biliary cirrhosis. Thus, primary bile acids bind to FXR, that heterodimerizes with the retinoid X receptor,
resulting in activation of its function as a transcription factor. FXR activation in hepatocytes and
enterocytes hereby downregulates bile acid production, export as well as enteral and hepatic uptake.
Moreover, it protects the intestinal mucosal barrier contributing to maintenance of the physiological
gut microbiome and ultimately homeostasis of the liver-gut axis. FXR agonists such as obeticholic
acid (OCA), may support reconstitution of gut microbiome composition, reduce bacterial translocation
and inflammation [301,302]. Moreover, interfering the physiological feedback control system of bile
acid production, synthetic FXR agonists as OCA have been developed and shown anti-cholestatic
potency, leading to its approval for second-line treatment in PBC [303,304]. Recent clinical studies
further indicate improvement of histological features, including fibrosis in patients with PBC after
long-terms OCA treatment [305]. Moreover, FXR has been described to mediate inhibitory effects
on HSCs activation [306]. Investigation of OCA in animal models of fibrosis further emphasized
anti-fibrotic activity of FXR activation [306–308]. In 2015, the FLINT study, a phase 2b clinical trial
reported histological improvement of fibrosis in NASH patients after short-term treatment with OCA
for 72 weeks [309]. Just recently the first 18 month interim results of a multicenter, randomized
placebo-controlled phase 3 clinical trial of long-term OCA treatment in NASH patients with fibrosis
F1-F3 (NCT02548351) have been published and reports dose-dependent improvement of fibrosis in
23% of OCA 25 mg treated compared to 12% placebo treated participants. Moreover, OCA-treated
patients showed less hepatocellular inflammation and ballooning. Reports regarding impact on
non-invasive markers of fibrosis, long-term safety as well as clinical outcomes of this ongoing clinical
trial (NCT02548351) are awaited in the future [310].

4.2.6. Reduction of Fibrotic Scar evolution and Contractility

In liver cirrhosis up to 50% of the livers’ dry weight consists of collagens [311]. Collagen 1
(Col1) represents the most abundant collagen in fibrotic livers [312]. Jimenez et al. reported specific
inhibition of Col1A1 siRNA containing lipoplexes in mouse models of liver fibrosis. Parenteral
treatment hereby led to a 90% decrease in collagen production and 50% decrease of total collagen
accumulation [313]. Another study on transgenic mice with inducible Col1 knockdown further reported
additional anti-inflammatory effects [314]. Hsp47 is a Col1 chaperone and knockdown by siRNA
can be used to block collagen synthesis. In order to target mainly fibrosis-effector cells, Sato et al.
used Hsp47 siRNA containing vitamin A-coupled liposomes, which are predominantly uptaken by
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HSCs and achieved significant anti-fibrotic effects in 3 in-vivo models of liver fibrosis [315]. A clinical
trial, investigating BMS 986263, an HSP47 siRNA delivering Lipid Nanoparticle, did not reveal any
toxicity in healthy humans [316]. A phase 1b/2 open label dose escalation study of BMS 986,263 has
recently been completed (NCT02227459). More studies on collagen inhibitors are expected to start in
the next years.

Lysyl oxidases (LOXs), that are secreted by HSCs or MFs deamidate lysine or hydroxylysine
residues in collagen or elastin and hereby crosslink collagen with each further [317,318]. These
enzymes are therefore contributing to the stiffness of the ECM and impair degradation of deposited
collagen fibrils by MMPs [319,320]. ECM stiffness in turn further promotes proliferation and activity of
myofibroblasts via integrins [319,321]. LOX enzymes further exert functions on gene regulation [322],
receptor function, and growth factor activity [323]. In fact, LOX enzymes impact on Collagen 3
expression [322]. Moreover, LOX members have been shown to oxidize PDGFRβ, thereby increasing
the affinity to its ligand [324]. Development of liver fibrosis in a CCl4 based mouse model was
shown to be accompanied by a 30-fold increase in LOX activity. Inhibition of all LOX members
by β-aminopropionitrile decreased number and activity of MFs leading to a lower degree of liver
fibrosis in this CCl4 induced liver fibrosis mouse model [325–327]. However, despite promising results
in a mouse model of liver fibrosis [328], clinical trials investigating the LOXL2 blocking antibody
Simtuzumab in patients with NASH, human immunodeficiency virus (HIV), or HCV-associated liver
fibrosis as well as primary sclerosing cholangitis gave only disappointing results with no effect on liver
fibrosis [329–331]. A later study showing rapid downregulation of LOXL2 after liver injury in contrast
to stable upregulation of LOX and LOXL1, suggests a rather minor role of LOXL2 in liver fibrosis [317].
Future studies should address this observation by specific targeting of LOX o LOX1.

4.2.7. Immune Modulation

Considering macrophages as the first pro-inflammatory response to liver injury [15,332,333],
modulation of their first innate immune response represents a potential target for anti-fibrotic treatment
approaches. Reduction of pro-inflammatory macrophage recruitment, using a dual CCR2/CCR5
inhibitor (Cenicriviroc) revealed anti-fibrotic effects in animal models of liver fibrosis [334–336].
Anti-fibrotic efficacy was also reported in a phase II clinical trial (CENTAUR; NCT02217475 [337]) of
Cenicriviroc in NASH patients. In fact, especially patients with high disease activity and fibrosis stage
benefit from oral Cenicriviroc treatment for 2 years. Surprisingly this was not accompanied by an
anti-inflammatory activity [338]. Cenicriviroc was well tolerated, regardless of hepatic insufficiency.
Headache and gastrointestinal disorders of mild severity were most frequent adverse events [338,339].
A phase 3 study on patients with advanced fibrosis and cirrhosis will further unravel the potency of
CCR2/CCR5 inhibition for fibrosis therapy (AURORA; NCT 03028740).

Galectins are carbohydrate-binding proteins that get secreted by different cell types upon liver
injury [340]. Extracellularly, these proteins bind to components of the ECM or to cell surface
receptors [341,342]. Several studies indicate increased levels of galectin in inflammatory, fibrotic,
or malignant liver tissue [343–345]. Due to its anti-apoptotic, cell differentiating and chemotactic
properties, especially Gal-3, that is mainly secreted by activated macrophages, is involved in the
pathophysiology of liver fibrosis [346–348]. Belapectin, an inhibitor or galectin-3 has shown potent
anti-fibrotic efficacy in mouse and rat models of liver fibrosis [349,350] and was well tolerated in a
phase 1 clinical trial [351]. However, just recently published results of a phase 2b placebo-controlled
clinical study of belapectin in patients with NASH and liver fibrosis showed no effect on fibrosis
following treatment for 52 weeks [352]. Still, considering significant protective effects on hepatocyte
ballooning as well as significant lower HPVG and varices development in a subgroup of patients
with NASH cirrhosis, a phase 3 clinical study in patients with NASH cirrhosis without varices at
baseline timepoint is currently being initiated. The medication was well tolerated by NASH patients.
Most frequently reported mild-moderate adverse events included infections, gastrointestinal, and
musculoskeletal, as well as connective tissue disorders [352].
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4.2.8. Phytodrugs with Multi-Dimensional Effects on Liver Fibrosis

Several studies investigated herbal formulations and phytodrugs in treatment of liver fibrosis.
Among many other phytochemicals, resveratrol, silymarin, and curcumin are the most extensively
studied phytodrugs with potential anti-fibrotic activity [246,247].

Resveratrol is a natural antioxidant that can be found in a wide variety of plants. Frequently
reported beneficial effects of resveratrol on health have been attributed to its mimicry of calorie
restriction via activation of AMP-activated kinase (AMPK), nuclear factor (erythroid-derived)-like
2 (Nrf2), and nicotinamide adenine dinucleotide NAD+-dependent deacetylase (SIRT1) [353–355].
Treatment with resveratrol improves NASH and chronic liver disease in mouse models [264,353,356].
In NAFLD patients, a randomized, double-blinded clinical trial of oral resveratrol supplementation
compared to placebo for 12 weeks revealed significant protective effects on markers of liver inflammation
(serum level of alanine aminotransferase, NF-kB activity) and hepatic steatosis grade, but not on
fibrosis [357].

Silymarin is an extract of the milk thistle (Silybum marianum), consisting of a mixture of different
flavonoids and is applied as a supportive, hepatoprotective medication in patients with liver cirrhosis,
chronic inflammatory, and toxic liver diseases since ages [358]. The consideration as a hepatoprotective
agent is due to experimental data indicating potential prevention of hepatic injury by toxins and deceleration
of fibrosis progression by the main ingredient, silibinin [359,360]. Moreover, long clinical experience
exists for silymarin in prevention of alpha-amanitin-induced hepatotoxicity [361]. Thus, silibinin is
regarded as a specific antidote of amanitin [362]. In terms of therapeutic application, small clinical
studies reported anti-viral, anti-oxidative, anti-inflammatory, and insulin-sensitizing effects of silymarin
in different etiologies of chronic liver disease, including ALD, NASH, and viral hepatitis [363–366].
Thus, silymarin administration for four weeks reduced oxidative stress, fibrosis score, and activation
of HSCs as well as Kupffer cells in a CCl4 based rat model of liver fibrosis [367,368]. However, in
clinical practice low water solubility and limited oral bioavailability due to poor enteral absorption
(23–47%) and high first-pass metabolism in the liver hamper use of silymarin [359,369]. Recently,
new formulations of silymarin, including complexes with phosphatidylcholine and glyco-conjugates,
have bypassed these limitations in oral application [370]. First studies using orally bioavailable
silybin-vitamin E-phospholipids complexes for 12 months showed potential effects on hepatocyte
ballooning, steatosis and liver fibrosis in 180 patients with NAFLD or NASH and 36 patients with
HCV [371]. However, large double-blind, placebo-controlled studies of silymarin in treatment of
chronic liver diseases are still missing, but needed to define its clinical value in not only supportive but
also therapeutic applications [358].

Curcumin, the active compound of Curcuma longa have been investigated in several medical
diseases and reported to exert tumor preventive, antiviral and anti-inflammatory effects in chronic
liver disease [372,373]. Thus, curcumin administration inhibited hepatic inflammation, steatosis,
fibrosis development, and progression in NASH in-vivo models [374,375]. Few clinical studies
exist regarding the therapeutic potential of curcumin in chronic liver diseases. As observed for
silymarin, curcumin is characterized by low oral bioavailability [376]. However, two independent
randomized, placebo-controlled clinical trials reported decrease of biochemical and ultrasonographic
markers of liver inflammation and steatosis by short-term curcumin administration (500-1000 mg/d)
in 87 and 80 patients with NAFLD, respectively. Considering the low bioavailability of curcumin,
these clinical effects are thought to be mediated by its metabolites [377,378]. Nevertheless, absent
histological evaluation of changes following curcumin treatment strongly limits impact of the studies
especially in terms of their anti-fibrotic capacity [379,380]. Moreover, a recent placebo-controlled
clinical trial investigating lifestyle modification plus curcumin supplementation vs. placebo in 50
patients with NASH did not find significant advantages of curcumin in amelioration of biochemical and
sonographic liver inflammation, steatosis, and fibrosis compared to lifestyle intervention alone [381].
Well-designed randomized placebo-controlled trials including histological examination are needed to
define curcumin’s significance in clinical practice.
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4.3. From Mouse to Men: Challenges in the Clinical Development of Anti-Fibrotic Compounds

The largely disappointing results of clinical phase 2 and 3 trials contrasts a long pipeline of
promising anti-fibrotic candidate agents in preclinical models. This indicates the yet insufficient
investigation or representation of disease biology by cell culture and animal models of fibrosis. Thus,
conventional cell culture models of fibrosis do not recapitulate the multicellular and multidirectional
evolution of fibrosis in humans. In fact, some agents have strong inhibitory effects on HSCs and
myofibroblasts but mediate pro-fibrogenic mechanisms in other liver cells. Moreover, animal models of
liver fibrosis have been shown to only partially reflect the human disease and reliable fibrotic readouts
have long been undefined. In the past years, more and more guidelines for pre-clinical investigation
and validation of potential anti-fibrotic agents have been proposed [24]. Thus, investigation of
anti-fibrotic drugs in 2–3 validated and complementary fibrosis models are recommended. Widely
accepted experimental approaches are CCl4 or Thioacetamide (TAA)-induced fibrosis, nutritional
models mimicking NASH or biliary models [24,382,383]. Moreover, novel 3D in-vitro models that
incorporate multiple parenchymal and non-parenchymal cell types as well as the fibrosis-driving
fibrotic ECM itself are more and more established [20,384,385]. Consideration of the complex disease
pathophysiology, implementation of complementary cell culture, and animal models of liver fibrosis as
well as use of validated endpoints will hopefully revolutionize future anti-fibrotic opportunities.
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Table 1. Examples for compounds in clinical development aiming to reduce fibrosis by inhibition of hepatocyte apoptosis and reduction of oxidative stress.

Anti-fibrotic Mechanism Agent Rationale Molecular Mode of Action in
Preclinical Studies Key Findings in Clinical Trials

Inhibition of hepatocyte
apoptosis

Pan-caspase inhibitor Emricasan
Hepatocyte apoptosis is a major

trigger of inflammation and
HSC activation [249,250].

Decreased HSCs activation and
improvement of liver function in rat

CCl4 model [253].

Phase 2: Improvement of liver inflammation
or fibrosis and tendency towards worsening
of hepatocyte ballooning in NASH patients
with F1-F3 fibrosis [254]. Small reductive

effect on HVPG in cirrhotic NASH patients
[255].

No effects in patients with acutely
decompensated cirrhosis [256].

NCT02138253: clinical trial of Emricasan in
the setting of post-transplant HCV-induced

fibrosis after SVR: awaited 2020.

ASK1 inhibitor, selonsertib
Mediation of hepatocyte

apoptosis via activation of JNK
and p38 MAP kinases [257].

Improvement of steatosis and fibrosis
in NASH mouse model [257].

Phase 2: Improvement of histological degree
of fibrosis in patients with NASH F2-3 [260]

Decrease of liver stiffness by MRE and
improvements of non-invasive markers of

fibrosis and inflammation [386].
Phase 3: STELLAR-3 and 4: Selonsertib in

NASH patients and bridging fibrosis or
cirrhosis: ongoing (NCT03053050;

NCT03053063)

Reduction of oxidative stress

Natural antioxidant with
several targets, Resveratrol

Anti-inflammatory and
antioxidant activity

Resveratrol reduces inflammation,
fibrosis [264] as well as steatosis [387]

in a mice models of NASH.

Phase 2: significant protective effects of
resveratrol on markers of liver inflammation
and hepatic steatosis grade within 12 weeks

of treatment, no effect on fibrosis [357].

Dual NOX1/4 inhibitor,
GKT137831

Activation of HSCs (NOX1) and
induction of apoptosis in
hepatocytes (NOX4) by

production of superoxide
radicals [155,266].

Anti-fibrotic effect in CCl4 and bile
duct ligation based mouse models of
liver fibrosis via suppression of ROS

production in HSCs in-vitro and
in-vivo [267].

Phase 2: significant effects on serological
cholestasis parameters after 6 weeks of

treatment in PBC. Ongoing study
(NCT03226067).
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Table 2. Examples for compounds in clinical development aiming to reduce fibrosis by inhibition of HSC activation and reduction of fibrotic scar evolution.

Anti-fibrotic Mechanism Agent Rationale Molecular Mode of Action in
Preclinical Studies Key Findings in Clinical Trials

Inhibition of HSC activation

FXR agonist, Obeticholic acid

Transcriptional regulation of
fibrogenic genes in HSCs [306].

Improvement of intestinal
mucosal barrier and

homeostasis of gut-liver axis
[301,302].

Downregulation of collagen 1 synthesis
in HSCs, potent anti-fibrotic effect in
animal models of liver fibrosis [306].

Phase 2: Improvement of fibrosis after
72 weeks treatment with OCA [309]

Phase 3 (CENTAUR): dose-dependent
improvement of fibrosis in 23% of OCA
25 mg treated compared to 12% placebo

treated participants. Reduction of
hepatocellular inflammation and

ballooning [310].

CBP/β-catenin small molecule
inhibitor PRI-724

Implication of Wnt/β-catenin
signaling in HSC activation and

liver fibrosis [169,292,293].

Inhibition of HSC activation in HCV
transgenic mice as well as CCl4 based

murine liver fibrosis [298].
Beneficial effects on fibrosis resolution
by activating anti-fibrotic macrophage

subpopulations [299].
Decrease of hepatocyte apoptosis as

well as fibrosis degree in NASH mouse
model [300].

Phase 1: dose dependent histological
improvement (>2 point decrease in

histologic activity index score) in 3/12
patients, but deterioration by 2 points in

2/12 patients with HCV associated cirrhosis
[388].

Phase 2: PRI-724 in patients with hepatitis
B or C related liver cirrhosis: expected to be

completed in July 2020 (NCT03620474).

Reduction of fibrotic scar
evolution and contractility

Hsp47 siRNA delivering lipid
nanoparticle, BMS 986263

Function of Hsp47 as a collagen
1 chaperone [315].

Significant anti-fibrotic effects in 3 and
in-vivo models of liver fibrosis [315].

Phase 1b/2: open label dose escalation
study of BMS 986,263 in patients with

moderate to severe fibrosis: completed, not
yet published (NCT02227459).

LOXL2 specific monoclonal
antibody, AB0023 (Simtuzumab)

Contributing of LOXL2 to ECM
stiffness and hampered

degradation of deposited
collagen fibrils [317–320]
Implication in Collagen 3

expression [322] and PDGFR
sensitivity [324].

Potent anti-fibrotic activity in
bleomycin based mouse model of liver

fibrosis via inhibition of
collagen-crosslinking and its

downstream activating effect on
TGF-β1 signaling that contributes to

myofibroblast simulation [328].

Phase 2: No effect on fibrosis in NASH,
PSC, or patients with HIV and/or

HCV-infected patients with liver fibrosis
[329–331].



Cells 2020, 9, 875 22 of 43

Table 3. Examples for compounds in clinical development aiming to reduce fibrosis by immune modulation.

Anti-fibrotic
Mechanism Agent Rationale Molecular Mechanism of

Action in Preclinical Studies Key Findings in Clinical Trials

Immune modulation

CCR2/CCR5 inhibitor,
Cenicriviroc

Involvement of CCR2/CCR5
mediated monocyte and

macrophage recruitment during
early pro-fibrogenic response

[15,332,333].

Dose-dependent decrease in
monocyte/macrophage

recruitment
[334–336].Significant decrease

in lobular inflammation,
hepatocellular ballooning as

well as collagen 1 and α-SMA
protein expression in NASH

mouse model [334].

Phase 2: Improvement of fibrosis stage
(>1 stage) without worsening of

steatohepatitis especially in patients with
high disease activity (NAS > 5, prominent
hepatocyte ballooning, F2-F3 fibrosis) [338].

No effect on lobular inflammation, but
decrease in serological markers of systemic
inflammation (hsCRP, IL6, fibrinogen) [338].

Phase 3: AURORA, NASH patients with
advanced fibrosis and cirrhosis

(NCT03028740): ongoing

Inhibitor of galectin-3,
Belapectin

Function of galectin-3 as a
chemoattractant for

macrophages and monocytes,
hereby accelerating further

pro-inflammatory and
pro-fibrogenic immune

responses [347,348].
Activator of MMP2 and MMP9

[342].

Dose-dependent reduction of
NAS, fibrosis and portal

pressure in rat and murine
models of NASH potentially

due to an impact on
macrophage polarization and
reduced activation of HSCs

[349,350].

Phase 2: No effect on fibrosis following
within 52 weeks of treatment in NASH

patients.
Significant protective effects on hepatocyte

ballooning as well as significant lower HPVG
and varices development in a subgroup of

patients with NASH cirrhosis [352].
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5. Conclusions

Despite different mechanisms of primary liver injury, the progression of fibrotic liver disease
follows shared patterns across the main liver disease etiologies. For all the etiologies, the development
of hepatic fibrosis is initiated in response to hepatocytes or cholangiocytes damage, while progression
of the fibrotic disease is mainly driven by dysregulated inflammatory processes. Thus, chronic viral
infection triggers robust immune responses leading to chronic inflammation and hepatocyte death. The
progression of ALD and NASH is marked by the accumulation of fat in the liver leading to hepatocyte
apoptosis and oxidative stress. Repetitive peaks of inflammation, followed by anti-inflammatory,
reparative immune responses activate collagen-producing myofibroblasts that account for excessive
accumulation of ECM, the cellular correlate of tissue fibrosis. Removal or elimination of the initial
trigger such as viral cure may slow down or reverse liver fibrosis, but mostly occurs often too slowly
or too infrequent to avoid life-threatening complications in particular in late-stage disease. While
many anti-fibrotic candidate agents have shown robust effects in experimental animal models, their
anti-fibrotic effects in clinical trials are less clear. The fact that selected anti-fibrotic agents have shown
evidence for potential effect on fibrosis progression in clinical trials, suggests that it is possible to target
liver fibrosis by pharmacological intervention. However, additional clinical studies are needed to
confirm the long-term impact and robustness of these findings. Given the still limited clinical efficacy
and adverse effects of the current compounds in clinical development, there is a high unmet medical
need for more efficient and safe anti-fibrotic drugs to significantly improve the patients’ outcome.
The recent development of innovative patient-derived models for liver fibrosis may advance the
development of compounds with anti-fibrotic properties in the future.
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