N

N

Habitat suitability and environmental niche comparison
of cold-water coral species along the Brazilian
continental margin
R. V. Barbosa, A. J. Davies, P. Y. G. Sumida

» To cite this version:

R. V. Barbosa, A. J. Davies, P. Y. G. Sumida. Habitat suitability and environmental niche compar-
ison of cold-water coral species along the Brazilian continental margin. Deep Sea Research Part I:
Oceanographic Research Papers, 2020, 155, pp.103147. 10.1016/j.dsr.2019.103147 . hal-02921156

HAL Id: hal-02921156
https://hal.science/hal-02921156
Submitted on 30 Nov 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02921156
https://hal.archives-ouvertes.fr

Deep-sea Research Part I-oceanographic Research Papers
January 2020, Volume 155 Pages 103147 (12p.)
https://doi.org/10.1016/].dsr.2019.103147
https://archimer.ifremer.fr/doc/00607/71927/

Habitat suitability and environmental niche comparison of
cold-water coral species along the Brazilian continental
margin

Barbosa Romina 14 *, Davies A. J. 23, Sumida P. Y. G. 4

1 UBO, Lab Sci Environm Marin LEMAR, Plouzane, France.

2 Bangor Univ, Sch Ocean Sci, Anglesey, Wales.

3 Univ Rhode Isl, Dept Biol Sci, Kingston, RI 02881 USA.

4 Univ Sao Paulo, Inst Oceanog, 191 Praca Oceanog, BR-05508120 Sao Paulo, SP, Brazil.

* Corresponding author : Romina Barbosa, email address : rominavanessa.barbosa@univ-brest.fr

Abstract :

In face of increasing anthropogenic disturbance in the deep sea, it is a priority to better understand the
regional distribution of cold-water corals (CWC). These organisms create some of the most species-rich
habitats in the deep sea and, for this reason, they must be properly protected and managed. In this study,
we aimed to identify suitable habitat for multiple CWC taxa off the Brazilian continental margin and
compare their environmental niches. Habitat suitability models were developed using the Maxent
approach, which allowed for the prediction of species distribution and for the identification of potential 'hot
spot' areas that may be important for biodiversity conservation. Ecological niches were determined by a
PCA-env approach, and niche similarity and equivalence were evaluated based on niche overlap using
the Schoener's D metric. Potentially suitable habitat for Octocorallia covered a broad latitudinal range
encompassing nearly the entire Brazilian continental margin, whereas Scleractinia had greater potentially
suitable habitat in the Central and Southern areas. Scleractinian species were observed to slightly differ
in their environmental niche, with non-reef-forming species being more tolerant to a wider range of
environmental conditions in comparison with reef-forming species, inhabiting a wider area of the South
American continental margin. Due to the high potential suitability for several CWC species, the Central
and Southern parts of the Brazilian continental margin should be considered as potential areas high CWC
diversity. Considering the current state of the art and strategic assessment tools, these areas are
important targets for conservation, management, and environmental impact assessment. Most reef-
forming species had similar but not directly equivalent ecological niches, indicating that mapping efforts
and management planning should consider CWCs at the species level.
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Highlights

» Octocorallia demonstrated suitable habitat that encompassed nearly the entire Brazilian continental
margin P Scleractinia suitable habitat covered principally the Central and Southern continental
margin.versity. » The Central and Southern Brazilian continental margin should be considered as areas
of high cold-water corals di » Reef-forming cold-water coral species had similar but not equivalent
ecological niches. » The mapping efforts and management planning should consider cold-water coral at
the species level.

Keywords : Deep-sea corals, Habitat suitability modelling, Lophelia pertusa, Environmental niche,
Southwestern Atlantic, Octocorallia, Scleractinia
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INTRODUCTION

The deep sea (>200 m depth), the largest bionteasti that covers 65% of the
surface, has been recognized to be environmerdatlybiologically diverse, providing
several important ecosystem services for humansfiEn et al., 2014). Cold-water corals
(CWC) create highly heterogeneous deep-sea hathitdatsan be used by other organisms
as feeding grounds, refuge and/or substrate (Hena)., 2009; Buhl-Mortensen et al.,
2010). In the case of some reef-forming stony cepacies (Order Scleractinia) these
habitats can be many kilometers long and hundredeeters high (Roberts et al., 2006).
Non reef-forming scleractinian species and the smfals from the subclass Octocorallia
also provide habitat due to their occurrence wittense and often diverse aggregations
known as coral gardens (Roberts et al., 2009) th bard and soft bottoms. CWC are
azooxanthellate corals and present a wide bathjendistribution generally extending
deeper than 50 m water depth (Cairns, 2007). Etasygsformed by CWC generally have
a high biodiversity of associated fauna and areicemed some of the most species-rich
habitats in the deep sea (Freiwald et al., 200dyvéver, CWC have a slow growth rate,
high fragility (Hall-Spencer et al., 2002) and legcovery potential (Reed et al., 2007;
Huvenne et al., 2016), consequently, they are demsd to form vulnerable marine

ecosystems (VME).

There are six main reef-forming Scleractinian coelater coral speciesophelia
pertusa (= Desmophyllum pertusuntinnaeus, 1758)Madrepora oculataLinnaeus,
1758; Solenosmilia variabilibuncan, 1873Enallopsammia profundRourtalés, 1868;
Goniocorella dumos#lcock, 1902;and Oculina varicosaLe Sueur 182@Freiwald et
al., 2004). Their importance, distribution and atbumce, varies amongst regions
(Freiwald et al., 2004).. pertusais considered as the primary reef-forming speici¢ise
deep-sea with an almost world-wide distribution\{i2a and Guinotte, 2011y1. oculata
is widely distributed in the Northeast Atlantic aviéditerranean (Reveillaud et al., 2008;
Orejas et al., 2009; Vertino et al., 2010; Goriaét 2013), whilstS. variabilis is
concentrated within New Zealand waters (Cairns5i9%acey et al., 2011). In the last
decade, habitat suitability models have helpedetteb understand CWC distribution at
both regional and global scales (e.g. Davies £2@08; Tittensor et al., 2009; Davies and
Guinotte, 2011; Howell et al., 2011; Yesson et2012; Vierod et al., 2014; Georgian et
al., 2014; Guinotte and Davies, 2014).
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The area predicted using habitat suitability modslgienerally related to the
ecological niche breadth of the species considétdyer et al., 2013). Species that are
geographically widespread normally present broadetogical niches given that they
persist in an area with wider range of environmleotaditions, whereas species with
restricted distributions would have a narrower aitineadth (Gaston, 1997). Estimating
the environmental niche of a given species alloarscomparison between different
species and may also indicate how sensitive spacge# changes in the environment.
Although it is possible to test niche similarityorin the outputs of habitat suitability
models, conceptual and statistical challenges esiktthis approach (Broenniman et al.,
2012). For example, meaningful niche divergencetddcoe confounded with geographic
distance because the environmental data used @iespdistribution models are often
spatially correlated (McCormack et al., 2010). @dr@ss this, Broennimann et al. (2012)
developed a mathematical approach that can desspbeies niches in a Principal
Component Analyses delimited by the environmergabdions of the study area (PCA-
env). This promising tool for conservation and ngamaent, allows the evaluation of
species niche similarity and serves as a usefuptament to habitat suitability models
(e.g. Aguirre-Gutiérrez et al., 2015; Zhu et al1@).

The exploitation of deep-sea resources is incrgasiorldwide and there is an
urgent need to have an adequate knowledge of tblgcof CWC to ensure that
appropriate management strategies are applied Nlato et al., 2006; Davies et al.,
2007). For instance, bottom trawling representamnireat to CWC (Fossa et al., 2002;
Buhl-Mortensen et al., 2016; Buhl-Mortensen, 2013). and gas offshore activities
could potentially impact CWC (reviewed in Cordesakt 2016) and, particularly, the
2010 accidental Deepwater Horizon oil spill in Gelf of Mexico have showed negative
effects on CWC also at Z2n away from the spill site (Fisher et al., 20143 @&ven 7
years after (Girard and Fisher, 2018). Furthermateep-sea mining of massive
polymetallic sulfates deposits and cobalt-rich deranganese crusts may potentially

negatively affect some CWC communities in the rieare (Miller et al., 2018).

Three out of six main scleractinian reef-formingesps, i.e.L. pertusa S.
variabilis, M. oculatg together withE. rostratg are known to coexist along the Brazilian
continental slope (Castro et al., 2006; Kitaha@@72 Pires et al., 2007; Cavalcanti et al.,
2017). With a coastline of 7,491 km, Brazil accauior a large proportion of the South

American continental margin. This is an extensiveaawhere fisheries, oil and gas
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exploration are important and ongoing activitieeep-sea fisheries in the South-eastern
Brazilian EEZ (Exclusive Economic Zone) have bestineated to have swept the
available area more than once from 2003 to 201t @Ra@l., 2016). In addition, fishing
intensity has increased, particularly in the cacetital slope, from 2000 onwards, due to
government policies that stimulated foreign trawler occupy deep areas (Perez et al.,
2009). Furthermore, the oil and gas production im@seased during recent years.
Approximately 70% of Brazilian oil production ocsurwithin deep-sea basins
(Bernardino and Sumida, 2017). Despite the mageitadd potential environmental
impacts, there are few studies analysing the immdcthese activiies on CWC

communities within this region (e.g. Kitahara, 20B@rt et al., 2016).

In this study, we evaluated the habitat suitabdistribution and niche of several
CWC species along the Brazilian continental mamyna slope. We aimed to better
understand differences in CWC potential distributamd corresponding environmental
niches. We compared the Octocorallia Subclass alastinia Order and then focused
on several scleractinian species. Six species lefastinians were studied in order to
compare their niche and potential distributiongespnting diverse types of CWC VMEs.
Four reef-forming specids. pertusa M. oculata S. variabilisandE. rostrataand two
non-reef-forming coralsCladocora debilisMilne Edwards and Haime, 184and
DeltocyathusMilne Edwards & Haime, 1848. The former type ofape represents reef
presence or possible reef-habitat formations aeddtter type represents possible coral
fields, beingC. debilisa colonial species arigkeltocyathuspp. a solitary cup-coral genus.
The results presented here are a fundamental stelpetter understanding CWC
distribution and their possible sensitivity to eowimental changes both natural and

human-induced within the Brazilian continental niargnd slope.
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METHODS
Study area

The present study focused on the Brazilian contalenargin and slope, but also
included international waters to 25° W (Figure ITdje Brazilian continental margin was
divided into four areas from north to south baseaintheir oceanographic and biological
characteristics (after the REVIZEE program - Biianilproject on Living Resources in
the Exclusive Economic Zone, Anon. 2006, www.mme.lgdrevizee) as follows: (1)
The North Brazil Shelf including the Amazonia, redter referred as the "North Area";
(2) the tropical north-eastern Brazil area, inahgdiSdo Pedro and S&o Paulo and
Fernando de Noronha archipelagos and Rocas Atdiea'§North-eastern Area"; (3) the
Eastern Brazil and Trindade and Martin Vaz Islaasithe "Central Area "; and (4) the
warm temperate South-eastern Brazilian area asSbeth Area ", including the Rio
Grande Rise (Figure 1 b).

Species data

A database was compiled using all available CW¢€bnas in the Brazilian
continental margin from three sources: (1) recandsvailable databases, including the
Ocean Biogeographic Information System (OBIS) ahd REVIZEE program; (2)
records from specific literature sources, and (@)df observations using remotely
operated vehicles in Campos Basin (Cavalcanti .et2@17) (Table 1, Supplemental
material). Octocorallia records were mainly frore torth and Central Brazilian areas
and principally from 30 to 150 m depth, i.e. mesmphhabitats. In order to exclude
zooxanthellate corals, we used only records detbyaer 50 m (Cairns, 2007). To model
habitat suitability of each taxon, all records welitered to provide only one record per
analysis cell (ca. 1 kfh (Table 1, Figure 1 b). We selected mostly pulgiisispecies
records to ensure a good taxonomic classificati@pecies level. Furthermore, records
from other sources were used at taxonomic levdidrighan genera to avoid possible

identification errors.

Environmental data
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A total of 34 environmental variables were usedntodel species habitat
suitability (after Davies and Guinotte, 2011). Thewre classified in seven broad
categories (after Yesson et al., 2012): carboratables (CARB), bathymetric variables
(BATH), hydrodynamic variables (HYDRO), productivivariables (PROD), oxygen
variables (OXY), chemical variables (CHEM), and parature variable (TEMP) (Table
2). These categories were selected based on kialognowledge or single-factor
analysis (Yesson et al., 2012). After subset thi&alkes into top-level categories, only a
single variable per category was selected by ergafpecies distribution models for each
variable on its own, calculating the validationaartender the curve (AUC , see below)
and retaining the most important variable pergag for the final analysis (Phillips et
al., 2009).

Maxent model predictions

Maxent version 3.3.3k (Phillips et al., 2006) waedito model habitat suitability.
Presence records were randomly divided in two gapeae with 70% of records to train
the model and one with the remaining 30% to tedtiegmodels. Models were run with
the default parameters of Maxent i.e., convergémashold of 1, a maximum of 500
iterations, and a regularization multiplier of helimportance of each variable on each
final model was assessed using a Jackknifing proeePhillips et al., 2009). This
procedure compares the contribution of each variabtween two models, one without
the variable and a second including it, therebgmeining how much new information
the variable contributes to a model and how mudbsswhen that variable is omitted.
Final model predictions were presented as mapsisgoavpredicted continuous habitat
suitability value. In order to contrast predictidnem different taxonomic groups, these
outputs were converted into binary values (0 = iiable, 1 = suitable) based on the
maximum sum of sensitivity plus specificity testebhold (Jiménez-Valverde and Lobo,
2007; Liu et al., 2013). This representation alldwe identify potentially suitable areas

for multiple taxon as potential areas of hotspatat-water coral diversity.

Species niche comparisons
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In order to describe and compare the environmentakes, we have represented
the species niche in a multivariate space, meadiediche overlap and tested their
similarity and equivalence. The spatial niche otedy each species was represented
by an environmental principal component analysiCAReNv) approach (after
Broennimann et al., 2012) using the seven most itapbenvironmental variables for
each taxon (see environmental data session forvér@bles selection). Despite
differences between Octocorallia and Scleractirebanate structures (calcite vs
aragonite, respectively), a unique environmentateps needed to compare their species
niche. Then, whilst not biologically relevant foctcorallia, aragonite saturation state
(AST), which was highly correlated with the Calctturation state (CST) (r > 0.9), was
used to construct the PCA-env.

Species occurrences were disaggregated with anmmidistance equal to the
grid resolution (ca. 1 km) to reduce sampling bietse environmental space, delimited
by the axes, was set to 100 x 100 cells. These welte used to generate a ‘smoothed’
Kernel density of the filtered occurrences, as vesllof the available environmental
conditions (in the focal areas, Figure 1). The paricy of the environment by the entity
was calculated in each cell (Broennimann et alL220Niche overlap was estimated using
Schoener'sD metric, which ranges from 0 (no overlap) to 1 (ptete overlap)
(Schoener, 1970). This metric is used to test nsimdarity and equivalence, comparing
the observed value and the probability distribution of overlaglues resulted from
simulated species occurrence distributions (Waeteal., 2008). The application of a
smoother kernel to standardize species densifiesed moving from the geographical
space to the multivariate environmental space, ngakhe analysis independent of
sampling effort and environmental space resolutignoennimann et al., 2012).

Similarity and equivalence tests are used to etaliidhe environmental niches
of two species are more similar than expected bycd and if both species have the same
use of the niche space, respectively (Warren ¢2808). The similarity test for each
species pair (a and b) consisted of two reciprooaiparisons. The observBdvalue is
compared with the probability distribution of oagrlvalues created from simulations of
random points in the background area. Then, tHewealap is compared with the overlap
between randomly distributed species in the ar@aésn of species presence points and
with “background” being the studied area). Wheregsivalence test consisted in the

comparison of the observed value and the probability distribution of overlaplues
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from simulated species distribution randomly crddt®em the real presence points of
both species (Warren et al., 2008). Since the speltave broad regional and global
distributions, high dispersal capacity is expecthds, the background area represented
a variety of ecological space that they could camas suggested by Barve et al. (2011).
The tests were based on 100 iterations. All théyaaa were done in R (R Development
Core Team, 2010) with the “ecospat” package (Browann et al., 2016).

Niche density center and niche breadth were cdkdléo determine how the
niches differed, considering the two main principainponents. The former indicates the
optimal environmental conditions for the speciekilevthe latter described the capacity
of a species to tolerate deviations from the opti®@aller values indicated that the
species occupies a more restricted or specialimd nand larger values that the species
has a wider environmental niche. Niche densityarents calculated as the mean of the
Kernel's density value calculated from 10000 rangaints inside of the environmental
niche space of each taxon. Niche breadth was dstihas the proportion of the available
environmental conditions delimited by the axes (X000 cells) that were estimated as
occupied in the PCA-env, i.e., the percentage aiflavle conditions inhabited by the
species (represented as percentage). To bettesssspamiche center position differences,
the change from Scleractinia niche center to tleeifip species was represented with an

arrow in the representation of its environmentahagiplot.
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RESULTS

Occupied environmental conditions

The environmental conditions occupied by Octodiarand Scleractinia were
mostly in waters saturated with calcite and aragor@spectively (i.eQ > 1), although
there were some Scleractinia occurrences foundagoaite-depleted waters (Fig 2a).
Octocorallia and Scleractinia were mainly presandepth shallower than 1250 m (Fig
2b). Octocorallia occurrences were found acrog®adorange of current velocities from
0 to 0.20 m 3, whereas Scleractinia were found at sites witbaitks lower than 0.1 m
s (Fig 2c). Both, Octocorallia and Scleractinia wkrend in sites with POC that ranged
from 0 to 50 gC Gy m? y! and in a range of dissolved oxygen conditions irang
between 4 and 5.5-mi'] and silicate < 50pumot?l (Fig 2d, e and f, respectively).
Octocorallia occupied a wider temperature range (80 °C), while Scleractinia

occupied waters less than 25 °C (Fig 2g).

The individual scleractinian species had slighfedénces between thenk.
rostrata M. oculata L. pertusaand S. variabiliswere restricted to current velocities
lower than 0.5m-$(Fig 2j) and, together witl. debiliswere limited to sites with POC
lower than 20 g &g m? y! (Fig 2k); C. debilisandDeltocyathusspp. were found in a
smaller range of dissolved oxygen conditions, betwé.5- and 5.5-mH (Fig 2l), and
were found in waters with silicate concentration&6& pmol + (Figure 2m and n,
respectively).L. pertusaandS. variabilis that were mainly restricted to < 2@nol I*
(Fig 2m):S. variabilishad the narrowest temperature range, with mostraeces in a

maximum of 10 °C (Fig 2n).

Variable selection and contribution

Variables with the highest AUC from each categomravselected for model
construction, with the exception of aragonite saion state (AST), which was selected
for Scleractinia and each scleractinian speciéiseggshave aragonitic skeletons. Variables
selected for final models of Octocorallia and Smt¢éinia were the same, with the
exception of the carbonate variable (Table 3). Vdmgables that most contributed to the
final model for Octocorallia were calcite saturatistate (CST), dissolved oxygen and
temperature, whereas for Scleractinia were AST tldemd temperature (Table 4).

Variables selected for specific modelsD#ltocyathusspp, E. rostrata, M. oculatand
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L. pertusawere AST, depth, current velocity, POC, dissoh@dgen, silicate and
temperature (Table 3). Whereas @rdebilisoxygen utilization was selected instead of
dissolved oxygen and f@. variabilissalinity in place of silicate (Table 3). The final
models demonstrated differences in the three vagabat contributed most. debilis
Deltocyathusspp.,E. rostrata L. pertusaandM. oculataall showed that AST, depth and
temperature were the best contributors for theseigp, whilst depth, POC and salinity

were best fofs variabilis (Table 4).

Model performance and habitat suitable area

Octocorallia and Scleractinia models performed weith AUC of 0.9681 and
0.9551 from test data, respectively. The distrinutdf suitable habitat for Octocorallia
encompassed along the entire Brazilian continentatgin, including the Vitéria-
Trindade seamount chain and Rio Grande Rise (B59Y) (Fig 3). Whereas the habitat
suitability distribution of Scleractinia was momstricted to the Central and South area
of Brazil, between 20°S 37°W and 30°S 50°W, inahgdthe Rio Grande Rise (Fig 3,
ESM Fig 1 and 2, respectively). Both, Scleractiared Octocorallia demonstrated an
overlap in suitable habitat within the Central éwluth region, as well as in the Rio
Grande Rise (Fig 3).

The scleractinian species-level models also exubitacceptable model
performance (Test-AUC:C. debilis,0.9857; Deltocyathusspp, 0.9412;E. rostrata,
0.997;L. pertusa,0.9902;M. oculata,0.975;S. variabilis,0.9935). BothC. debilisand
Deltocyathusspp., demonstrated suitable habitat around théhSand Central areas,
between 20°S 40°W and 42°S 23°W, covering a greater of continental slope, in terms
of bathymetric extent, than reef-forming specieig (§; ESM Fig 3 and 4). The reef-
forming specied.. pertusaand M. oculatawere concentrated around the Northeast,
Central and South area (ESM Fig 5 and 6), wiilstostrataand S. variabiliswere
restricted to the Central and South area, espgdfal Vitéria-Trindade seamount chain
and Campos and Santos Basins (i.e., between 20Y8 40d 42°S 23°W) (Fig 3 B and
ESM Fig 7 and 8). Most scleractinian species oppda in predicted suitable habitat in
some regions of the Northeast area (Fig 3 b, iigritie Central area (in Vitoria-Trindade
chain) (Fig 3 b, iii); the South area (Fig 3 b, iahd the Rio Grande rise (Fig 3 b, v).
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Ecological species niche comparison

Environmental niches of Scleractinia and Octodiaralere determined mainly by
temperature, depth, CST, POC and regional fluxdnatrrent velocity) on the principal
component 1 (PC1) and by dissolved oxygen andas#ion the second principal
component (PC2). These two components explaine@ca% and 18.5%, respectively,
of the environmental conditions occupied (Fig 43atocorals had a wider environmental
niche than Scleractinia, mainly along the PC1, doge 30% and 16% of the
environmental conditions of the region, respecyii@lig 4 a and 4 b). The center of
density of niches were highly differentiated betwéeth groups reflecting the low niche

overlap between Octocorallia and Scleractibia.28) (Table 5).

The environmental niche of Scleractinia presethtedsubcenters; corresponding
to reef-forming and non-reef-forming species (Fi9)4 The non-reef-forming species,
i.e. C. debilisandDeltocyathusspp., had their density center displaced to thendieft
indicating that their niches were determined byhkigtemperature, POC, current
velocity, AST and dissolved oxygen, as well as Iskadr depths and lower silicate
concentration (Fig 4 d and e). Both species hagnmironmental niche that covered the
8% of the environmental conditions available inrtbgion. Reef-forming species had the
niche density center displaced to the top-rightnshg opposite patterns to non-reef-
forming species (Fig 4 f to i). The environmentaihe of E. rostrata L. pertusa M.
oculataandS. variabiliscovered 4%, 8%, 7% and 5% of the environmentatlitioms
available in the region, respectively. The similaniche hypothesis was accepted for
most pairs of scleractinian species in both dicextj except foE. rostratacompared to
C. debilis Deltocyathusspp. toL. pertusa and forM. oculatato S. variabilis in both
directions (Table 5). The niche equivalence hypsithevas rejected for all Scleractinia

species.
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DISCUSSION

In this study, we developed habitat suitabilitystdbution models built
specifically for the main CWC taxa found along Brazilian continental margin. These
results represent significant improvement over ijpiegmodel predictions for this region,
which were derived from global scale predictions.(Davies et al., 2008; 2011; Yesson
et al., 2012). This improvement is largely deteminby the new region-specific
compilation of occurrence records and also thetcocison of a regional scale model,
which has a higher capability to identify specifiche features as result of the use of a
more focused range of background environmental itond (Vierod et al., 2014). In
addition, widely distributed species could exhieigional or local niche differences for
a variety of evolutionary and non-evolutionary @as (Pianka, 1988; Lesica and
Allendorf, 1995; Leibold et al., 2019) that are rmaptured in larger scale models.
Representing regional ecological and environmdetatlures allows for a stronger local
predictive power (Osborne and Suarez-Seoane, 200hhy and Lovett-Doust, 2007).
This approach can thus greatly enhance the undeéistaof CWC habitat suitability
within the Brazilian continental margin and alslmakd for an evaluation of the overlap

between the CWCs found within the region.

We observed geographical overlap in the predictedalde habitat for
Octocorallia and Scleractinia, as well as betweelividual scleractinian species in the
Campos Basin, Santos Basin, Vitéria-Trindade cHaio,Grande rise and Pelotas Basin
(South area). As CWCs constitute high biodiversiapitats in the deep (Henry and
Roberts, 2017), we suggest that these areas may dygecial interest, particularly for
biodiversity conservation. This reinforces previatadies that highlight the regional
importance of the Vitéria-Trindade chain as a piyoairea for conservation (Meirelles et
al., 2015; Pinheiro et al., 2015) and addressekttkeof information about the deep-sea
biodiversity in the region. In the Southern area &io Grande Rise, however, the
substantial overlap in Octocorallia and Scleraatihiabitat suitability needs to be
validated given there are no published presenards®f octocorals from the Southern
area, and there are no CWC records from the Rioder&ise. This highlights the need
of surveys in these regions, particularly in Ricafte rise, which could be a site for
future mineral extraction of cobalt crusts, whiclild impact coral communities and their

associated biodiversity if they are found there.



371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394

395
396
397
398
399
400
401
402
403

Suitable habitat for Octocorallia covered a broaditudinal range that
encompassed nearly the entire Brazilian continentaigin, with large areas of highly
suitable habitat in the Central, North and Northeasas. In the North area (Amazon
Basin), there was high predicted suitability fort@orallia in the mesophotic region,
which agrees with the many occurrence records (eqpately 75%) that were between
50-150 m depth. Their distribution around this oeghas been recently corroborated by
the observation of several important communitiesr@@iro et al., 2015; Moura et al.,
2016). Even though there are no published recdrdstocorals in the South area and the
Rio Grande Rise, where our models have shown paligrguitable conditions (Fig 2),
several unpublished records from these areas taliolar results (M.V. Kitahara and
P.Y.G. Sumida pers. obs.). The wide distributio®ofocorallia was related with a wide
environmental niche breadth, which covered 30% h## available environmental
conditions of the Brazilian continental margin, gesting that they may be more common

than previously thought.

In contrast, Scleractinia had a far narrower lalsitiitability distribution, mainly
along the Central and South areas of the Brazikantinental margin, and a lower habitat
suitability around the North-east. The deep sethéise three areas is dominated by the
presence of Antarctic Intermediate Water (AIW) (88ih et al., 2007), which has been
found to be associated with several scleractinp@tigs in this region between 550-1200
m depth (Viana et al., 1998; Sumida et al., 2004n#es et al., 2009). The broader habitat
suitability distribution of Octocorallia compareal $cleractinia can be translated into a
potentially higher tolerance to physical-chemicahditions in the environment by
Octocorallia (e.g. mesophotic corals at shallowegths), which generally allows for a

wider geographic distribution (Slatyer et al., 2013

Substrate is a fundamental factor for the settléeroEI€WC and its availability
strongly control their colonization. Neverthelegg availability of this information is
generally limited, particularly for big areas ag thntire Brazilian continental margin.
Therefore, the realized distribution of corals cblog far smaller in area than the potential
one we are presenting here (Guinotte and Davidsl; Znderson et al., 2016). CWC that
settle in hard-bottom substrate are likely moreriegted than soft-bottom substrate
colonizing species. Then, the larger morphologizaiiety of octocorals, which can
present a peduncle for anchoring in mud and samt® dennatulacea), a basal disk for

fixation in hard substrates, or a basal rootlikecpsses to anchor in sediment substrates



404
405
406
407
408
409
410
411
412
413

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

(Bayer, 1961), may allow then to inhabit both stdisttypes. Contrary to Octocorallia,
most scleractinians are restricted to hard-sulestoat some species, such as the cup coral
Deltocyathugyenus inhabit soft substrates. For instance, ocitg have been observed
colonizing shells and rock fragments due to thecstyeof common hard substrates in the
Amazon Basin (Cordeiro et al., 2015). Whereas & sbutheastern area (in Campos
basin), the occurrence of diverse Octocorallia gsaadicated the presence of both hard
and soft habitats along the continental slope (fesuet al., 2009). Arantes et al. (2009)
observed co-occurrence of octocorals of both tyfpgubstrates and scleractinians in the
middle slope, which corroborates the observed aperi their suitable distribution (Fig

3 a-i).

CST, depth, and temperature accounted for the &igtentributions to corals
suitability predictions and agree with findings rfroprevious studies about CWC
distributions (Davies et al, 2008; Dullo et al. 080 Tittensor et al., 2009; Davies and
Guinotte, 2011). CST and AST have been found tettmng predictors in many CWC
species distribution models, mainly at global ssg@avies et al., 2008; Tittensor et al.,
2009; Davies and Guinotte, 2011; Yesson et al.2p@td in some specific regions, such
as the Pacific Ocean (Anderson et al., 2016). Pl main food source for many cold-
water coral species (Kiriakoulakis et al., 2004920 but in this study it was an important
predictor only forS. variabilis POC concentration was relatively low in many area
where corals were found, as has been observedhier segions, such as in the
Northwestern Pacific (Guinotte and Davies, 2014gvéitheless, these low values
observed here could be due to the fact that POCcalaslated as an annual mean and
would underrepresent important seasonal pulsesnBtance, increases in POC resulting
from down-welling events or water movements duaternal waves are important for
some coral species, such laspertusa(Davies et al., 2009; Purser et al., 2010; van
Oevelen et al., 2016). Silicate environmental cthods have been indicated to have a
negative relationship with. pertusaglobal distribution (Davies et al., 2008), andrarsg
negative correlation with coral species richnesgdeially within the north-east Pacific)
(Reyes Bonilla and Cruz Pifidén, 2002). Low silicad@centration is associated with low
primary productivity waters (Longhurst and PauB81T). Here, silicate was an important
factor to predict species suitability distributi@ilicate was related with depth and could

be an indicator of productivity along the Braziliaantinental margin that particularly
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differentiated the more productive conditions inked by Octocorallia compared with

Scleractinia.

There were clear differences in environmental nichthe scleractinian species
investigated in this study. Reef-forming speciesen®und in conditions with higher
silicate and depth but in a lower dissolved oxygencentration range (a minimum of 4.5
ml I'Y), AST, POC, temperature and regional flow condii@ompared with non-reef-
forming species. Non-reef-forming species nichesevassociated to a larger range of
silicate conditions, regional flow and POC condigqFig. 2 and 4). These results suggest
that non-reef-forming species are not limited byiemmental conditions as the studied
reef-forming species within the Brazilian contiredmhargin. This is corroborated by their
wide distribution in the neighbor Colombian Cariaheegion between 10-153m and 70-

520m, respectively (Santodomingo et al., 2013).

Based on the niche conservation theory ecologichles are thought to be more
similar between close-related taxa (reviewed iniWiand Grahan, 2005). Within both
groups, reef forming and non-reef-forming specidsgre were significant niche
similarities and differences that were not relatgith their phylogenetic proximity. For
instance E. rostrataand M. oculataare two reef-forming species that present similar
environmental niches and belong to different claafeScleractinia, i.e., the “Complex”
and “Robust” clades, respectively (Stolarski et20.11). On the other hané, rostrata
and Deltocyathusspp., a reef-forming and non-reef-forming speciespectively, are
from the “Complex” clade but presented a non-simglavironmental niche. This suggests
that the differentiation between reef-forming awodmeef-forming species could imply a
divergence in the environmental niche, which islijiindependent from the evolutionary
divergence of “Complex” and “Robust” clades. Theedsity of niche relationships
observed between the studied scleractinian spewigéh, no pattern related with
evolutionary relationships, reflects the complexd goorly understood evolution of

Scleractinia.

L. pertusaM. oculataandS. variabilisandE. rostrataare widely considered the
main reef-forming species in the central and s&rtzilian areas (Kitahara et al., 2009,
Cavalcanti et al.,, 2017). In this study, we obsérifeat E. rostratahad a predicted
distribution that overlapped withl. oculataandS. variabilisin the South and Central
area of Brazil, with all having significantly sirail niche. This corroborates their role of

reef-forming species in Brazilian waters. It is onfant to highlight thaE. rostratg as
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well asS. variabilis had a restricted environmental niche (due tohitteamore restricted
range of temperature, depth, POC, AST and regifiug). Thus, E. rostrataand S.
variabilis niches were quite different to the other speciekas, showing a non-similar
niche withL. pertusaandC. debilis and withM. oculata, respectively. Despite their
restricted niche at regional scale, both specieskaown to be particularly abundant in
Campos basin (Cavalcanti et al., 2017)rostrataandS. variabilisare more abundant
in the South-west Pacific Ocean, and are infredquentiserved in the North Atlantic
(Davies and Guinotte, 2011; Roberts et al., 2006).

As discussed for Scleractinia and Octocoralia, sates habitat type may
determine the real distribution, inside the presticpotential distribution areas of the
scleractinian species. All reef-forming speciesetbgr with the non-reef-forming.
debilis inhabit hard-bottom substrate, wherd2sltocyathusspp. inhabit soft-bottom
substrate. For instand®, italicusandDeltocyathussp., solitary species with unattached
bases, were registered in both mid and lower slo@ampos basin (Arantes et al., 2009).
These cup corals can also create large dense,faddsbserved in La Foneca canyon by
Desmophyllum diantu@®yma et al., 2019; Lastras et al., 2019), prawhard substrata
and increasing local biodiversity. This indicatbattdiverse kind of VME are likely
distributed along the Brazilian continental mardparticularly in the central and south

areas, were a high number of species share habitability (Fig 2 b - ii and iv).

Species niche properties as niche breadth areaitwilg of species sensitivity
(Kotiaho et al., 2005; Thuiller et al., 2005) anehgrally, species with a restricted or
smaller niche, have been shown to be more sengiithe loss of habitat caused by
disturbances such as those produced by climategeh@ng., fish: Munday, 2004; birds:
Seaone and Carrascal, 2008). Given EhabstrataandS. variabilishad smaller niches
than other species in this study, they may be tbst sensitive species to variations in
environmental conditions. Conversely, those spewids a wider environmental niche,
such a<C. debilis Deltocyathusspp.,L. pertusaandM. oculatamay be less sensitive to
environmental changes. Despite this assumption, es@mecies could be overly
susceptible to changes in one particular environahéactor. For instancé&;. debilisis
likely to be more sensitive to changes in the disgboxygen and silicate concentration
than to other factors studied (Fig 4d). Specifaddgical traits, such as acclimatization or
adaptive capacity will also influence the specesponse to environmental changes. For

example,L. pertusahas a higher acclimatization capacity to lowergerature tham.
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oculata(Naumann et al., 2014). Howevé, oculatafossils indicate a wider tolerance
to changes in environmental conditions thapertusain the Gulf of Cadiz (Wienberg et
al., 2009). Specific experimental research of oigyas inhabiting different regions are
fundamental to understanding their ecological nigitg/siology and additional sources
of uncertainty that might influence their survivainder future environmental

disturbances.

Approach limitations

Whilst habitat suitability modeling has been widalsed to determine the
potential distribution of deep-sea species (e.gin@te et al., 2010; Davies and Guinotte,
2011; Tracey et al., 2011; Yesson et al., 2012xetlare still limitations that should be
considered during the modeling approach (Vieral.e2014, Anderson et al., 2016). For
example, a regularly spaced sampling regime thadrsahe entirety of the environmental
conditions observed in the region of interest ipaniant (Hirzel and Guisan, 2002).
Independent species presence and/or absence datnian important aid for model
validation (Anderson et al., 2016). However, deea-surveys with this characteristic are
extremely limited due to high cost and significkgjistical restrictions such as access to
both ship-time and high-quality sampling equipmenhese limitations lead to a
disproportionate effect on sampling quality in samgions, particularly in areas such as
the South Atlantic Ocean, where many countries hastricted access to ocean-going
research vessels. In this study, the focus on tikeation of new region-specific
occurrences that were not present within intermafiodatasets led to substantial
improvements in the quality and utility of predarts in this region. Nevertheless, future
surveys must be carried out in order to validagepiesent predictions, principally in the

North and Northeast areas for scleractinian artdaerSouth area to octocorals.

It is essential to note that this study only pnésesuitable areas, which are
statistically likely to contain species presencased upon the environmental data used
in the models. There will be other variables ortdeg that were not included in the
analysis which could influence these predictionshsas substrate availability and type.
Hard substrate presence is highly variable overlisspatial scales and is a strong
constraining variable that limits the distributiai many coral species (Davies and
Guinotte, 2011; Tracey et al., 2011; Guinotte aadiBs, 2014; Mackay et al., 2014). For
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example, suitable predicted areas for reef-fornspgcies in the flat tops of some
seamounts in the South Pacific, were dominatedibyg,san unsuitable substrate for most
stony coral species settlement (Anderson et all6ROFurthermore, the SRTM30
bathymetry data have shown to overestimate suitatda for some deep-sea corals
(Marshall, 2011; Ross et al., 2015), particulariyrégions were local bathymetric data
does not exist (Anderson et al., 2016). Betterllsoaveys and the collection of high-
resolution bathymetric data will improve bathymetepresentation. This may provide a
representation of sea-bed physiographical featafamportance for the presence of
corals and provide the potential for the elucidatiof substrate type, which will
substantially improve regional and local habitatahility models (e.g., Howell et al.,
2011; Rengstorf et al., 2013; 2014; Garcia-Alegral.e 2014; Georgian et al., 2014).

Conclusions

The information presented in this study represtredirst regional scale habitat
suitability modelling effort for CWCs along the Bian margin. This study represents
a fundamental step in better understanding theillision of Brazilian CWCs and
provides essential information to guide future syssand conservations plans in the
region. For instance, future surveys must be cend describe the presence of both,
octocorals and scleractinians corals, to validagepredictions, mainly where suitability
is observed with no presence records. Based ugoardas of predicted suitable habitats
for CWC, we highlight the importance of managenm@ans that combine the oil and gas
exploration areas with conservation and mitigatioh potential impacts to these
communities in Campos Basin, Santos Basin, Vitdriadade chain, Rio Grande rise
and Pelotas Basin (South area). Particularly, the ®&rande Rise area must be
characterized in terms of biodiversity compositisimce it contains cobalt crusts and a
possible future extraction of minerals could impaotal communities that may be
currently unknown. The broader habitat suitabititstribution of Octocorallia compared
to Scleractinia is related to a broader environ@leniche breadth, likely due to the
variety of physiological adaptations of this groNjen-reef-forming scleractinian species
were less restricted by environmental conditiorfg&@mvcompared to reef-forming species,
allowing then to potentially inhabit a broader aoéahe Brazilian continental margin.
Most reef-forming species presented similar but equivalent ecological niche,

indicating that management planning, conservatiborte and cruise planning should
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consider the species individual environmental nenents to be more efficient. For
instance, priority consideration may need to bewitoS. variabilisandE. rostratasince

they had smaller niche breadth and may be moretisen® changes in the environment.
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FIGURES AND TABLES

Figure 1. (a) Overview of the study area localization. (b)eTBrazilian continental
margin with the CWC presence points of Octocoradlia Scleractinia (light blue and
light grey, respectively), in the focal areas usethe present study. The boundaries of

the Brazilian EEZ along the Brazilian coast are@spnted by the grey line.

Figure 2. Kernel density curves of the environmental condiioccupied by corals from
the Brazilian continental margin. Octocoralliattéd line) and Scleractinia (continuous
line) are shown to the left of the figure, a@thdocora debilis(black dotted line),
Deltocyathusspp. (yellow dotted line)Enallopsammia rostratgred line), Lophelia
pertusa(dark green line)Madrepora oculata(grey line), andSolenosmilia variabilis
(blue line), to the right. Carbonate condition es@nt aragonite saturation sty for

Scleractinia and scleractinian species, and cadeitigration state for Octocorallia.

Figure 3. Potential distribution areas and the overlap betwthe different taxa. A)
Octocorallia (light blue) and Scleractinia groufu@) with their overlapped area (marine
blue). Main overlapping areas: Central area, Rian@e rise, South area; B) Scleractinian
species Cladocora debilis Deltocyathus spp., Enallopsammia rostrata Lophelia
pertusa Madrepora oculataandSolenosmilia variabilisoverlap, showed as the number
of species potentially distributed in the same aang the Brazilian continental margin.
Areas with higher number of species potentiallyriisted there: north of the Northeast
score in front of the Rio Grande do Norte stajeeaist slope of the Northeast area in front
of Bahia state, Central area, including the marginsubmersed islands of the Vitoria-
Trindade chain, South area, from Cape of Sdo Tan31 S in Rio Grande do Sul state,
and Rio Grande rise, in Southwestern Atlantic imi¢ional waters. Potential distribution

areas are represented with the maximum sensiplity specificity test threshold.

Figure 4. Ecological niche of the cold-water coral specieslistd in the environmental
space produced by the principal component analysethod and the variables
contribution for loading their two principal companmts (PC) (c). The results represent
the niche of the species in the two main axes ohbéng different environmental
condition. The grey to black shading representgtliecell Kernel density of the species
occurrences, black being the highest density. Dhgdines represent the 50% of the

available environmental conditions in the Brazil@mtinental margin, and the solid line
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represent the 100%ed arrows connect density center of the speca®rio the density
center of Scleractinia and illustrate their diffeces. In (c),POC in abbreviation for

particulate organic carbon and AST, aragonite a#itur state.
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Table 1. Number of occurrence records of azooxanthellatalsdrom the Brazilian
continental margin and slope, including historicedords from published sources (see
references in supplementary Table 1) and new stiei@n records from Cavalcanti et

al. (2017), and the filtered total number of resofaith one record for analysis cell) that
were used to model habitat suitability.

Historical Total
Taxonomic group New records records used
records i
in models

Order Scleractinia 396 1147 259
Subclass Octocorallia 151 60
Species
Cladocora debilis 57 54
Deltocyathusspp. 36 33
Enallopsammia rostrata 8 222 33
Lophelia pertusa 77 342 75
Madrepora oculata 21 97 29

Solenosmilia variabilis 26 486 72




Table 2. Environmental variables used to the variablescsele divided in seven
categories: carbonate variables (CARB), bathymetitables (BATH), hydrodynamic
variables (HYDRO), productivity variables (PRODXygen variables (OXY), chemical
variables (CHEM), and temperature (TEMP).

VARIABLE NAME REFERENCE UNIT
Aragonite  saturation arag_orr Orr et al. (2005) Q ARAG
CARB state
Aragonite  saturation arag_stein Steinacher et alQ arac
state (2009)
Calcite saturation state  cal_orr Orretal. (2005) Q-cac
Calcite saturation sta  cal_steil Steinache et Qcac
al.(2009)
Aspect aspect Jenness (2013) degrees
Aspect- Eastness eastness Wilson et al. (2007) -
Aspect- Northness northeness Wilson et al. (2007) -
Curvature - Plan plancurve Jenness (2013) -
Curvature - Profile profilecurve  Jenness (2013) -
BATH Curvature - Tangential  tangcurv Jenness (2013) -
Roughness roughness Wilson et al. (2007) -
Rugosity rugosity Jenness (2013) -
Slope slope Jenness (2013) degrees
Bathymetry srtm30 Becker et al. (2009) m
Terrain  Ruggednesstpi Wilson et al. (2007) -
Index
Topographic Position tri Wilson et al. (2007) -
Index
HYDRO Current velocity regfl Carton et al. (2005) s
Vertical current verfl Carton et al. (2005) mts
velocity
Seasonal variation lutzs Lutzs et al. (2007) -
index
Primary  productivity modismax NASA Ocean Color g Chy?!
PROD (maximum)
Primary productivity modismean  NASA Ocean Color g C’ryt
(mean)
Primary  productivity modismin NASA Ocean Color  gi@?y*
(minimun)
Particulate Organic poc Lutz et al. (2007) Odg M2 y*
carbon
Primary  Productivity vgpmean Behrenfeld &gCmly?
(Vertically generalised Falkowski (1997)
productivity model)
OXY Apparent oxygen oaxu Garcia et al. (2006) mobO
utilisation
Percent oxygen poxs Garcia et al. (2006) %0
saturation
Dissolved oxygen disso2 Garcia et al. (2006) il
CHEM Nitrate nit Garcia et al. (2006) upmol I*
Phosphate phos Garcia et al. (2006) pmol I
Salinity sal Boyer et al. (2005) PSS
Silicate sil Garcia et al. (2006) pmol I'*
TEMP Temperature temp Boyer et al. (2005) °C




Table 3. Test AUC values for Maxent model of OctocorallradeéScleractinia taxa and

for six scleractinian species in the Brazilian coemtal margin, based in a single variable.

A value close to 0.5 indicates a model no betten t random prediction, values greater

than this and closer to 1 indicate models with dveprredictive power. A value of 1

indicates a theoretically perfect model. Valuebaid indicate the main variable of each

categorical group and which were selected to rerfittal models with the exception of

arag_orr which was used to Scleractinia and trexadiinian species due their ecological

importance (See section 2.2. Variables selectidrcantribution) Category and variable

name abbreviations are presented in Table 2.

VARIABLE SCTITEEAAC O?AT_(EI'CA\OR DEBIL gﬁstogg; ROSTR PERTU OCUL  VARIAB
1S ATA SA ATA ILIS
arag_orr 0.9525 09248 09671 0.953 09612 09624 009586 0.9604
cArp | @rag_stein 0.9562 00233 09691 09234 009588 09427 0.9757 0.9135
cal_orr 0.9579 09269 009663 09524 009648 0.9634 0.9637 0.9736
cal_stein 0.9567 09206 09697  0.9255 0.9642 09487 09763 0.9256
Srtm30 0.9664 09311 09737  0.9659 0.9913 09877 09951 0.9885
roughness 0.5204 05195  0.475 0.6183 06258 05883 05  0.6505
rugosity 0.5518 06296 05243 06131 03548 05759 0.3915 0.6288
slope 0.599 07215 04622 05222 07734 07702 0.8024 0.756
BATH | TPI 0.7852 05012  0.7461 0.782 0.8196 0.7119 0.9248  0.8564
TRI 0.7088 0483 06351 05874 07472 0.6516 0.8489 0.7573
aspect 0.7332 04834 06824  0.7362 07748 06292 0.8729 0.744
eastness 04767 05079 04937  0.5686 0431 06141 05  0.6238
northeness 0.5467 06074 05552  0.6484 04031 05142 05  0.5696
plancurve 0.602 07327  0.4447 05135 0763 07649 0.8147 0.7787
longcurve 0.7057 07277 04079 05455 07977 0.7677 0.8069 0.7629
tangcurve 0.5981 07435 04055 05352 07673 0.7676 0.8106 0.7608
AY | regfl 0.8705 09231 09187  0.7648 09422 08762 0.9566 0.8705
verfl 0.7004 0.6403 0.33 0.2592 0743 02374 07354 05
lutzs 0.8487 07848 0.947 0.9316 0.9044 08349 09645 0.7948
modismax 0.8086 08456 09491  0.7766 09128 0.8689 0.9669 0.8357
PROD | modismean 0.8351 08334  0.9498  0.8157 0.9265 0.9004 09779 0.8681
modismin 0.8086 08456 09491  0.7766 09128 0.8689 0.9669 0.8357
POC 0.9369 08621  0.9662  0.9555 0.9878 09727 09931 0.978
vgpmean 0.8439 0809 009544  0.8389 0.9449 0.8847 0.9706 0.8819
aoxu 0.8195 08954 09126  0.677 06107 0.7846 06575 0.6625
OXY | disso2 0.8913 0.939 0.8654  0.8969 0.9083 09375 0.9671 0.9477
pOXS 0.7796 08992  0.894 0.6299 05998 0.7486 0.4196 0.7295
dic_stein 0.8889 09214 09345  0.7986 08179 07632 009426 0.6993
nit 0.8281 08829  0.8761 07474 05964 0.8172 0.6385 0.6625




phos 0.8442 0.9249  0.8669 0.8148 0.6673 0.868 0.6667 0.7377
sal 0.8962 0.0082  0.8425 0.6082 0.784  0.8779 0.54010.9445
sil 0.9145 0.9273  0.9422 0.8868 0.9312 0.9158 0.97820.8753
TEMP temy 0.9618 0.9309 _ 0.9678 0.953 0.9855 0.9825 0.9951 0.9776

CHEM




Table 4. Test AUC values for Scleractinia, Octocorallia amd different scleractinian
species models, based in a single variable modélieg corresponding to the three most
significant variables for each taxon are in boldri&ble name abbreviations are presented

in Table 2.
Scleractinia  Octocorallia C'. . L. M. .S' - E. Deltocyathus
debilis pertusa oculata  variabilis rostrata spp.
AUC
calc-orr 0.€403
arag-orr 0.9457 0.9694 0.9565 0.9543 0.9671 0.9403 0.9683
srtm30 0.9518 0.9492 0.9784 0.9882 0.9812 0.9877 0.9493 0.9595
regfl 0.8812 0.8234 0.9223 0.8743 0.916 0.8874 0.8234 0.6203
POC 0.9214 0.8326 0.9685 0.9335 0.8644 0.9748 0.8326 0.9434
diso2 0.8941 0.9206 0.934 0.8869 0.9431 0.9206 0.8913
aoxu 0.8877
sil 0.8864 0.8639 0.9358 0.9088 0.9527 0.8639 0.9484
sal 0.9905
temp 0.9424 0.9281 0.9698 0.98 0.9761 0.969 0.9281 0.9635




Table 5. Niche comparison for cold water corals in the Bi@z continental margin.
Niche overlap values SchoenddgSchoener, 1970; Broennimann et al., 2012) and the
significance of similarity and equivalence tests giving for each pair-wise comparison

(ns: not significant). The higher overlap valuprissented in bold and the lowest in italics.

Niche Niche

Taxon Overlap  similarit equj\il\l/(;rI]gnce
(%)) y
a b a—band
b-a
C. debilis Deltocyathus 0.89 Similar Different
spp.
E. rostrata 0.01 ns Different
L. pertusa 0.72 Similar Different
M. oculata 0.32 Similar Different
S. variabilis 0.008 Similar Different
Deltocyathus E. rostrata 0.04 ns Different
spp.
L. pertusa 0.80 Similar Different
M. oculata 0.40 Similar Different
S. variabilis 0.035 Similar Different
E. rostrata L. pertusa 0.21 ns Different
M. oculata 0.48 Similar Different
S. variabilis 0.77 Similar Different
L. pertusa M. oculata 0.57 Similar Different
S. variabilis 0.20 Similar Different
M. oculata S. variabilis 0.41 ns Different
Octocorallia Scleractinia 0.28 ns Different
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Figure 1. Habitat suitability prediction for Octocorallia in the soudésivAtlantic Ocean. The
legend indicates the habitat suitability index from 0 &5 the maximum suitable pixels.
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Figure 2. Habitat suitability prediction for Scleractinia in the Brazilieontinental margin. The
legend indicates the habitat suitability index from 0 &s the maximum suitable pixels.
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Figure 3. Habitat suitability prediction fo€ladocora debilisn the Brazilian continental margin.
The legend indicates the habitat suitability index frota @ as the maximum suitable pixels
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Figure 4. Habitat suitability prediction foDeltocyathusspp. in the Brazilian continental
margin. The legend indicates the habitat suitgbitidex from O to 1 as the maximum
suitable pixels.
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Figure 5. Habitat suitability prediction fokophelia pertusan the Brazilian continental margin.
The legend indicates the habitat suitability index frota @ as the maximum suitable pixels.
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Figure 6. Habitat suitability prediction foMadrepora oculatain the Brazilian continental
margin. The legend indicates the habitat suitability indemfO to 1 as the maximum suitable
pixels.
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Figure 7. Habitat suitability prediction foEnallopsammia rostratén the Brazilian continental
margin. The legend indicates the habitat suitability indemfO to 1 as the maximum suitable
pixels.
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Figure 8. Habitat suitability prediction foSolenosmilia variabilisn the Brazilian continental
margin. The legend indicates the habitat suitability indemfO to 1 as the maximum suitable
pixels.




