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Abstract

A Chen generating series, along a path and with respect to m differential forms, is a non-
commutative series on m letters and with coefficients which are holomorphic functions
over a simply connected manifold in other words a series with variable (holomorphic) co-
efficients. Such a series satisfies a first order noncommutative differential equation which
is considered, by some authors, as the universal differential equation, i.e. universality can
be seen by replacing each letter by constant matrices (resp. analytic vector fields) and then
solving a system of linear (resp. nonlinear) differential equations.

Via rational series, on noncommutative indeterminates and with coefficients in rings, and
their non-trivial combinatorial Hopf algebras, we give the first step of a noncommutative
Picard-Vessiot theory and we illustrate it with the case of linear differential equations with
singular regular singularities thanks to the universal equation previously mentioned.
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1 Introduction

Combinatorial Picard-Vessiot (PV for short) theory of bilinear systems 1 was real-
ized by Fliess and Reutenauer [29], as an application of differential algebra [42,47].
This theory allows to employ, with success, linear algebraic groups in control the-
ory (i.e. as symmetry groups of linear differential equations), for which some ques-
tions were solved thanks to the theory of Hopf algebras [11] and some combinato-
rial and effective aspects were set in [46].

Let us, for instance, consider the following nonlinear dynamical system

q̇(z) = A0(q)u0(z)+ . . .+Am(q)um(z), q(z0) = q0, y(z) = f (q(z)), (1)

where

(i) y is the output,

(ii) the vector state q = (q1, . . . ,qn) belongs to a complex analytic manifold M of
dimension n,

(iii) the observation f is defined within a fixed connected neighbourhood 2 U of
of the initial state q0.

(iv) the vector fields (Ai)i=0,...,m are defined with respect to the coordinates as fol-
lows

1 Namely - locally - linear of the states q1, . . . ,qN and linear of the inputs u0, . . . ,um [29].
2 In this introductive description the points are loosely identified with their coordinates through
some chart ϕU : U → Cn likewise, in [45], the space of analytic functions H (U) is described by
Ccv[[q1, . . . ,qn]].
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Ai =
n

∑
j=1

A
j
i (q)

∂

∂q j
,with A

j
i (q) ∈ H (U), (2)

(v) the inputs (ui)i=0,...,m, as well as their inverses (u−1
i )i=0,...,m, belong to a sub-

ring, C0, of the ring of holomorphic functions H (Ω) with neutral element
1H (Ω) over the simply connected manifold 3 Ω.

It is convenient to separate the contribution of the vector fields (Ai)i=0,...,m and
that of the differential forms (ωi)i=0,...,m, defined by the inputs ωi(z) = ui(z)dz,
through the encoding alphabet X = {xi}i=0,...,m which generates the monoid X∗

with neutral element 1X∗. Indeed, the output y can be computed by

y(z0,z) = 〈Cz0 z‖σ f|q0
〉= ∑

w∈X∗

αz
z0
(w)Y (w)[ f ]|q0

, (3)

as the pairing (under suitable convergence conditions [31,34,36,45]) between the
Chen series 4 of (ωi)i=0,...,m along the path z0  z over Ω, Cz0 z ∈ H (Ω)〈〈X〉〉
[10], and the generating series of (1), σ f|q0

∈ H (U)〈〈X〉〉 [31], defined as follows

Cz0 z := ∑
w∈X∗

αz
z0
(w)w and σ f|q0

:= ∑
w∈X∗

Y (w)[ f ]|q0
w, (4)

where, in (3)–(4), the iterated integral αz
z0
(w) and the differential operator Y (w),

are decoded, from the word w ∈ X∗, recursively as follows




αz
z0
(w) = 1H (Ω) and Y (w) = Id, for w = 1X∗,

αz
z0
(w) =

∫ z

z0

ωi(s)α
s
z0
(v) and Y (w) = Ai ◦Y (v),

for w = xiv,
xi ∈ X ,v ∈ X∗.

(5)

In this work, following this route, considering the differential ring (H (Ω),∂ )
and equipping H (Ω)〈〈X〉〉 with the derivation defined, for any S ∈H (Ω)〈〈X〉〉, by

dS = ∑
w∈X∗

(∂ 〈S | w〉)w, (6)

the Chen series satisfies the following noncommutative differential equation

dS = MS with M = u0x0 + . . .+umxm, (7)

considered by many authors as the universal differential equation [10,14,17,18,39],
i.e. universality can be seen by specialization, i.e. replacing the letters by constant
matrices (resp. analytic vector fields) obtaining linear (resp. nonlinear) differential
equations (see Remark 4.9 below) and their solutions. From the equation (7), it
follows (see, for example, [9]) that a PV theory of nonlinear systems (1) should be

3 This (usually one dimensional) manifold will be the support of the iterated integrals below.
4 By a Ree’s theorem [44], there is a primitive series Lz0 z = ∑n≥1 Ln ∈ ̂H (Ω)〈X〉 s.t. eLz0 z =
Cz0 z, meaning that Cz0 z is group-like and Ln is (homogenous of degree n ≥ 1) primitive series.
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intimately connected with (7) (remark that, due to the fact that Ω is connected, the
constants of (H (Ω)〈〈X〉〉,d) are such that

Const(H (Ω)〈〈X〉〉) = kerd = C.1H (Ω)〈〈X〉〉. (8)

It culminates with the fact that the coefficients of any suitable 5 solution is
group-like, i.e. satisfies 6 , for any u,v ∈ X∗ and xi ∈ X ,

∂ 〈S | xiu〉= ui〈S | v〉 and 〈S | u⊔⊔ v〉= 〈S | u〉〈S | v〉 (9)

and, due to the fact that Ω is simply connected, its values only depend on the end-
points and not on paths belonging to Ω. Denoting the subalgebra of (H (Ω),∂ )
generated by the family ( fi)i∈I and derivatives by C{{( fi)i∈I}} [49] (i.e. the differ-
ential algebra generated by ( fi)i∈I), it follows that [29]

spanC{〈d
lS | w〉}w∈X∗,l≥0 ⊂ spanC{{(ui)i=0,..,m}}

{〈S | w〉}w∈X∗ (10)

⊂ spanC{{(u±1
i )i=0,..,m}}

{〈S | w〉}w∈X∗ (11)

and then, in Section 4, the isomorphism between spanC{{(u±1
i )i=0,..,m}}

{αz
z0
(w)}w∈X∗

and C{{(u±1
i )i=0,..,m}}⊗C spanC{αz

z0
(w)}w∈X∗ will be examined (Theorem 4.4) via

the PV-extension related to (7) and, on the other hand, the output of (1) will be com-
puted (Theorem 4.8) by pairing the series given in (4). As example, this calculation
will be achieved according to the algebraic combinatorics of rational series, estab-
lished beforehand in Sections 2 (Theorems 2.1, 2.3) and 3 (Theorems 3.2, 3.7).

2 Combinatorial framework

In this section, coefficients are taken in a commutative ring 7 A and, unless explic-
itly stated, all tensor products will be considered over the ambient ring (or field).

2.1 Factorization in bialgebras

In section 1, the encoding alphabet X was already introduced. In particular, for
m = 1 (i.e. X = {x0,x1}), let us note that there are one-to-one correspondences

(s1, . . . ,sr) ∈ Nr
+ ↔ x

s1−1
0 x1 . . .x

sr−1
0 x1 ∈ X∗x1

πY
⇋
πX

ys1 . . .ysr
∈ Y ∗, (12)

where Y := {yk}k≥1 and πX is the conc morphism, from A〈Y 〉 to A〈X〉, mapping
yk to xk−1

0 x1. This morphism πX admits an adjoint πY for the two standard scalar

5 i.e. group-like at one - interior or frontier - point.
6 In the first identity, also called Friedrichs criterion, is involved the shuffle product (⊔⊔ ) [10,30,46].
7 although some of the properties already hold for a general commutative semiring [1].
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products 8 which has a simple combinatorial description: the restriction of πY to the
subalgebra (A1X∗ ⊕A〈Y 〉x1, .), is an isomorphism given by πY (x

k−1
0 x1) = yk (and

the kernel of the non-restricted πY is A〈X〉x0). For all matters concerning finite (X
and similar) or infinite (Y and similar) alphabets, we will use a generic model noted
X in order to state their common combinatorial features.

As an algebra the A-module A〈X 〉 is equipped with the associative unital con-
catenation and the associative commutative and unital shuffle product. The latter
being defined, for any x,y ∈ X and u,v,w ∈ X ∗, by the following recursion

w⊔⊔ 1X ∗ = 1X ∗ ⊔⊔ w = w and xu⊔⊔ yv = x(u⊔⊔ yv)+ y(xu⊔⊔ v) (13)

or, equivalently, by its dual comultiplication (which is a morphism for concatena-
tions 9 ), defined, for each letter x ∈ X , by

∆⊔⊔(x) = 1X ∗ ⊗ x+ x⊗1X ∗. (14)

Once X has been totally ordered 10 , the set of Lyndon words over X will be
denoted by L ynX . A pair of Lyndon words (l1, l2) is called the standard factor-
ization of a Lyndon l (and will be noted (l1, l2) = st(l)) if l = l1l2 and l2 is the
longest nontrivial proper right factor of l or, equivalently, its smallest such (for the
lexicographic ordering, see [43] for proofs and details). According to a theorem by
Radford, the set of Lyndon words form a pure transcendence basis of the A-shuffle
algebras (A〈X 〉,⊔⊔,1X ∗).

It is well known that the enveloping algebra U (L ieA〈X 〉) is isomorphic
to the (connected, graded and co-commutative) bialgebra 11 H⊔⊔(X ) = (A〈X 〉,
conc,1X ∗,∆⊔⊔ ,e) (the counit being here e(P) = 〈P | 1X ∗〉) and, via the pairing

A〈〈X 〉〉⊗A A〈X 〉−→A, (15)

T ⊗P−→〈T | P〉 := ∑
w∈X ∗

〈T | w〉〈P | w〉, (16)

we can, classically, endow A〈X 〉 with the graded 12 linear basis {Pw}w∈X ∗ (ex-
panded after any homogeneous basis {Pl}l∈L ynX of L ieA〈X 〉) and its graded
dual basis {Sw}w∈X ∗ (containing the pure transcendence basis {Sl}l∈L ynX of the

8 That is to say (∀p ∈ A〈X〉) (∀q ∈ A〈Y 〉) (〈πY p | q〉Y = 〈p | πX q〉X).
9 On A〈X 〉 and A〈X 〉⊗A〈X 〉, respectively.
10 For technical reasons, the orders x0 < x1 (for X) and y1 > .. .yn > yn+1 > .. . (for Y ) are usual.
11 In case A is a Q-algebra, the isomorphism U (L ieA〈X 〉)≃H⊔⊔ (X ) can also be seen as an easy
application of the CQMM theorem.
12 For X = X or = Y the corresponding monoids are equipped with length functions, for X we
consider the length of words and for Y the length is given by the weight ℓ(yi1 . . .yin) = i1 + . . .+ in.
This naturally induces a grading of A〈X 〉 and L ieA〈X 〉 in free modules of finite dimensions. For
general X , we consider the fine grading [46] i.e. the grading by all partial degrees which, as well,
induces a grading of A〈X 〉 and L ieA〈X 〉 in free modules of finite dimensions.
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A-shuffle algebra). In the case when A is a Q-algebra, we also have the following
factorization 13 of the diagonal series, i.e. [46] (here all tensor products are over A)

DX := ∑
w∈X ∗

w⊗w = ∑
w∈X ∗

Sw ⊗Pw =
ց

∏
l∈L ynX

eSl⊗Pl (17)

and (still in case A is a Q-algebra) dual bases of homogenous polynomials
{Pw}w∈X ∗ and {Sw}w∈X ∗ can be constructed recursively as follows





Px = x, Sx = x for x ∈ X ,

Pl = [Pl1,Pl2], Sl = ySl′,
for l = yl′ ∈ L ynX −X

st(l) = (l1, l2),

Pw = P
i1
l1
. . .Pik

lk
, Sw =

S
⊔⊔ i1
l1

⊔⊔ . . .⊔⊔ S
⊔⊔ ik
lk

i1! . . . ik!
,

for w = l
i1
1 . . . lik

k , with l1, . . . ,
lk ∈ L ynX , l1 > .. . > lk.

(18)

The graded dual of H⊔⊔(X ) is H ∨
⊔⊔
(X ) = (A〈X 〉,⊔⊔,1X ∗ ,∆conc,ε).

As an algebra, the module A〈Y 〉 is also equipped with the associative commu-
tative and unital quasi-shuffle product defined, for u,v,w ∈ Y ∗ and yi,y j ∈ Y , by

w 1Y ∗ = 1Y ∗ w = w, (19)
yiu y jv = yi(u y jv)+ y j(yiu v)+ yi+ j(u v). (20)

This product also can be dualized according to (yk ∈ Y )

∆ (yk) := yk ⊗1Y ∗ +1Y ∗ ⊗ yk + ∑
i+ j=k

yi ⊗ y j (21)

which is also a conc-morphism (see [28]). We then get another (connected, graded
and co-commutative) bialgebra which, in case A is a Q-algebra, is isomorphic to
the enveloping algebra of the Lie algebra of its primitive elements 14 ,

H (Y ) = (A〈Y 〉, .,1Y∗,∆ ,e)∼= U (Prim(H (Y ))), (22)

where Prim(H (Y ))= Im(π1)= spanA{π1(w)|w ∈ Y ∗} and π1 is the eulerian pro-
jector defined by [37,38]

∀w ∈ Y ∗,π1(w) = w+
(w)

∑
k=2

(−1)k−1

k
∑

u1,...,uk∈Y+

〈w | u1 . . . uk〉u1 . . .uk, (23)

and, for any w = yii . . .yik ∈ Y ∗, (w) denotes the number ii + . . .+ ik.
Now, let {Πw}w∈Y ∗ be the linear basis, expanded by decreasing Poincaré-

Birkhoff-Witt (PBW for short) after any basis {Πl}l∈L ynY of Prim(H (Y )) ho-
mogeneous in weight 15 , and let {Σw}w∈Y ∗ be its dual basis which contains the

13 Also called MSR factorization after the names of Mélançon, Schützenberger and Reutenauer.
14 Remark that, for ∆ (yk), y1 ∈Y is the only primitive letter, see (21).
15 Factorization (24) will be true in particular for the basis (25) explicitly constructed there.
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pure transcendence basis {Σl}l∈L ynY of the A-quasi-shuffle algebra. One also has
the factorization of the diagonal series DY , on H (Y ), which reads 16 [37,38,39]

DY := ∑
w∈Y ∗

w⊗w = ∑
w∈Y ∗

Σw ⊗Πw =
ց

∏
l∈L ynY

eΣl⊗Πl . (24)

We are now in the position to state the following

Theorem 2.1 ([38,39]) Let A be a Q-algebra, then the endomorphism of algebras

ϕπ1 : (A〈Y 〉,conc,1Y ∗)−→ (A〈Y 〉,conc,1Y ∗) mapping yk to π1(yk), is an automor-

phism of A〈Y 〉 realizing an isomorphism of bialgebras between H⊔⊔(Y ) and

H (Y )∼= U (Prim(H (Y ))).

In particular, it can be easily checked that the following diagram commutes

A〈Y 〉 A〈Y 〉⊗A〈Y 〉

A〈Y 〉 A〈Y 〉⊗A〈Y 〉

∆⊔⊔

ϕπ1 ϕπ1⊗ϕπ1

∆

Moreover, the bases {Πw}w∈Y ∗ and {Σw}w∈Y ∗ of U (Prim(H (Y ))) are im-

ages by ϕπ1 and by the adjoint mapping of its inverse, ϕ̌−1
π1

of {Pw}w∈Y ∗ and

{Sw}w∈Y ∗ , respectively.

Algorithmically, these dual bases of homogenous polynomials {Πw}w∈Y ∗ and
{Σw}w∈Y ∗ can be constructed directly and recursively by





Πys
= π1(ys), Σys

= ys for ys ∈ Y,

Πl = [Πl1,Πl2], Σl = ∑
(∗)

ysk1
+...+ski

i!
Σl1...ln,

for l ∈ L ynY −Y
st(l) = (l1, l2),

Πw = Πi1
l1
. . .Πik

lk
, Σw =

Σ i1
l1

. . . Σ
ik

lk

i1! . . . ik!
,

for w = l
i1
1 . . . lik

k , with l1, . . . ,
lk ∈ L ynY, l1 > .. . > lk.

(25)

In (∗), the sum is taken over all {k1, . . . ,ki} ⊂ {1, . . . ,k} and l1 ≥ . . .≥ ln such that
(ys1, . . . ,ysk

)
∗
⇐ (ysk1

, . . . ,yski
, l1, . . . , ln), where

∗
⇐ denotes the transitive closure of

the relation on standard sequences, denoted by ⇐ [7,46].

16 Again all tensor products will be taken over A. Note that this factorization holds for any en-
veloping algebra as announced in [46]. Of course, the diagonal series no longer exists and must be
replaced by the identity IdU (see [26], coda for details).
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2.2 Representative series

Representative (or rational) series are the representative functions on the free
monoid 17 [22] and their magic is that it rests on four (apparently distant) pillars:

• Separated coproduct (SC) 18 ,

• Finite orbit by shifts (FS),

• Result of a rational expression (RE),

• Linear representation (LR).

We first define what shifts, for (FS), and the Kleene star, for (RE) are, and then
state the equivalence:

Definition 2.2 Let S ∈ A〈〈X 〉〉 (resp. A〈X 〉) and P ∈ A〈X 〉 (resp. A〈〈X 〉〉).

(i) The left (resp. right) shift 19 of S by P, is P⊲S (resp. S ⊳P) defined by 20

∀w ∈ X
∗, 〈P⊲S | w〉= 〈S | wP〉 (resp. 〈S ⊳P | w〉= 〈S | Pw〉).

(ii) For any S ∈ A〈〈X 〉〉 such that 〈S | 1X ∗〉 = 0, the Kleene star of S is defined
as 21 S∗ = (1−S)−1.

(iii) In case A = K is a field, one can define also the Sweedler’s dual H ◦
⊔⊔
(X )

of H⊔⊔(X ) by S ∈ H ◦
⊔⊔
(X ) ⇐⇒ ∆conc(S) = ∑i∈I Gi ⊗Di [46], for some I

finite, {Gi}i∈I;{Di}i∈I being series (as a matter of fact, it can be shown that
they even can been choosen in H ◦

⊔⊔
(X ), see [19,39])

Theorem 2.3 ([20,22,35,46]) For S ∈ A〈〈X 〉〉, the following assertions are equiv-

alent 22

(i) The shifts {S ⊳w}w∈X ∗ (resp. {w ⊲ S}w∈X ∗) lie in a finitely generated shift-

17 These functions were considered on groups in [11,12].
18 Uniquely for fields.
19 Some schools (as Jacob one, see [40,32]) used to call this a residual. These actions are none other
than the shifts of functions of harmonic analysis.
20 They are associative, commute with each other: S ⊳ (PR) = (S ⊳P)⊳R,P⊲ (R⊲S) = (P.R)⊲S and
(P⊳ S)⊲R= P⊳ (S ⊲R) and, for x,y ∈ X ,w ∈ X ∗, x⊲ (wy) = (yw)⊳ x = δ y

x w (Kronecker delta).
21 Using one of the topologies of section 4.2 (adapted with A replacing H (Ω)), we have S∗ =

∑n≥0 Sn. We also get the fact that the space Â.X (used below) of series of degree 1, i.e. the set
{∑x∈X α(x)x}α∈AX is the closure of the A-module A.X generated by letters. In the case of a finite

alphabet however (here X = X) [22], Â.X = A.X .
22 When A is noetherian, first condition is equivalent to the fact that the module generated by
{S ⊳w}w∈X ∗ (resp. {w⊲ S}w∈X ∗ ) is finitely generated (and more precisely, in this case, by a finite
number of those shifts). Unfortunately we are not in this case here, but our ring being without zero
divisors (analytic functions), we can use the fraction field, here being realized by germs [15].
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invariant A-module 23 .

(ii) The series S belongs to the (algebraic) closure of Â.X by the operations

{conc,+,∗} (within A〈〈X 〉〉).

(iii) There is a linear representation (ν,µ,η), of rank n, for S with ν ∈ M1,n(A),
η ∈ Mn,1(A) and a morphism of monoids µ : X ∗ → Mn,n(A) such that

S = ∑
w∈X ∗

(
νµ(w)η

)
w.

A series satisfying one of the conditions of Theorem 2.3 is called rational.
The set of these series, a A-module 24 , is denoted by Arat〈〈X 〉〉 and is closed by
{conc,+,∗}. We also have

Proposition 2.4 (see also [21,40]) The module Arat〈〈X 〉〉 (resp. Arat〈〈Y 〉〉) is

closed by ⊔⊔ (resp. ). Moreover, for i = 1,2, let Ri ∈ Arat〈〈X 〉〉 and (νi,µi,ηi) be

its representation of dimension ni. Then the linear representation of 25

R∗
i is

((
0 1

)
,






µi(x)+ηiνiµi(x) 0

νiηi 0







x∈X

,


ηi

1



)
,

that of R1 +R2 is

((
ν1 ν2

)
,






µ1(x) 0

0 µ2(x)







x∈X

,


η1

η2



)
,

that of R1.R2 is

((
ν1 0

)
,






µ1(x) η1ν2µ2(x)

0 µ2(x)







x∈X

,


η1µ2η2

η2



)
,

that of R1 ⊔⊔ R2 is (ν1⊗ν2,{µ1(x)⊗ In2 + In1 ⊗µ2(x)}x∈X ,η1 ⊗η2),

that of R1 R2 is (ν1⊗ν2,{µ1(yk)⊗ In2 + In1 ⊗µ2(yk)

+ ∑
i+ j=k

µ1(yi)⊗µ2(y j)}k≥1,η1 ⊗η2).

Example 2.5 [Identity (−t2x0x1)
∗
⊔⊔(t2x0x1)

∗ = (−4t4x2
0x2

1)
∗, [34,35]]

1start 2

x0, it

x1, it

Istart II

x0, t

x1, t

(−t2x0x1)
∗ ↔ (ν2,{µ2(x0),µ2(x1)},η2) (t

2x0x1)
∗ ↔ (ν1,{µ1(x0),µ1(x1)},η1).

23 see [41].
24 In fact (we will see it) a unital A-algebra for conc and ⊔⊔ .
25 The first constructions are already treated in [21,40], only the last one is new.
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ν1 =
(

1 0
)
, µ1(x0) =


0 t

0 0


 , µ1(x1) =


0 0

t 0


 , η1 =


1

0


 ,

ν2 =
(

1 0
)
, µ2(x0) =


0 it

0 0


 , µ2(x1) =


0 0

it 0


 , η2 =


1

0


 .

(−t2x0x1)
∗
⊔⊔(t2x0x1)

∗↔ (ν,{µ(x0),µ(x1)},η)

= (ν1 ⊗ν2,{µ1(x0)⊗ In2 + In1 ⊗µ2(x0),

µ1(x1)⊗ In2 + In1 ⊗µ2(x1),η1 ⊗η2).

(1, I)start

(2, I)

(2, II)

(1, II)

x0, it

x0, t

x0, t

x1, itx1, t

x1, itx1, t

x0, it

ν =
(

1 0 0 0
)
,

µ(x0) =




0 0 t 0

0 0 0 t

0 0 0 0

0 0 0 0




+




0 it 0 0

0 0 0 0

0 0 0 it

0 0 0 0




=




0 it t 0

0 0 0 t

0 0 0 it

0 0 0 0



,

µ(x1) =




0 0 0 0

0 0 0 0

t 0 0 0

0 t 0 0




+




0 0 0 0

it 0 0 0

0 0 0 0

0 0 it 0




=




0 0 0 0

it 0 0 0

t 0 0 0

0 t it 0



,

η =




1

0

0

0



.

With the notations of Definition 2.2.(iii) and from Theorem 2.3, it follows that
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Proposition 2.6 Suppose A to be a field K. We have

(a) Assertions of Theorem 2.3 are equivalent to

(iv) There exists a finite double family of series (Gi,Di)i∈F such that 26

∆conc(S) = ∑
i∈F

Gi ⊗Di

(b) For S ∈ H ◦
⊔⊔
(X ), since A is a field then the previous identity is equivalent to

∀P,Q ∈ H⊔⊔(X ), 〈S | PQ〉= ∑
i∈I

〈Gi | P〉〈Di | Q〉.

Therefore, (Krat〈〈X 〉〉,⊔⊔,1X ∗,∆conc,e) (resp. (Krat〈〈Y 〉〉, ,1X ∗,∆conc,e)) is the

Sweedler’s dual of H⊔⊔(X ) (resp. H (Y )).

Now, let us characterize characters of (A〈X〉,conc,1X∗).

Proposition 2.7 (Kleene stars of the plane) Let R ∈ Arat〈〈X 〉〉, 〈R | 1X ∗〉 = 1A.

The following assertions are equivalent

(i) 〈R | •〉 realizes a character 27 of (A〈X〉,conc,1X∗).

(ii) There is a family of coefficients (cx)x∈X such that R = (∑x∈X cxx)∗.

(iii) The series R admits a linear representation of dimension one 28 .

Moreover, we have 29

(α0x0 +α1x1)
∗
⊔⊔(β0x0 +β1x1)

∗=((α0+β0)x0 +(α1 +β1)x1)
∗

(
∑
s≥1

asys

)∗ (
∑
s≥1

bsys

)∗

=

(
∑
s≥1

(as +bs)ys + ∑
r,s≥1

asbrys+r

)∗

,

where, for any i = 0,1 and s ≥ 1, αi,βi,as,bs ∈ C.

Example 2.8 [Identity (−t2y2)
∗ (t2y2)

∗ = (−4t4y4)
∗, [34,35]]

1start 2start 3start

y2,−t2 y2, t
2 y4,−t4

(−t2y2)
∗ ↔ (ν2,µ2(y2),η2)

= (1,−t2,1),

(t2y2)
∗ ↔ (ν1,µ1(y2),η1)

= (1, t2,1),

(−t4y4)
∗ ↔ (ν,µ(y4),η)

= (1,−t4,1).

26 See [39] for a way to obtain this finite double family of series (Gi,Di)i∈F .
27 For A = K being a field, this can be rephrased as “R is a group like element of Krat〈〈X 〉〉”.
28 The dimension is here (as in [1]) the size of the matrices.
29 In particular, (asys)

∗ (aryr)
∗ = (asys + aryr + asarys+r)

∗ and (asys)
∗ (−asys)

∗ = (−a2
s y2s)

∗.
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3 Triangularity, solvability and rationality

3.1 Syntactically exchangeable rational series

Now, we have to study a special set of series in order to work with the rational
series of this class: a series S ∈ A〈〈X 〉〉 is called syntactically exchangeable if and
only if it is constant on multi-homogeneous classes, i.e.

(∀u,v ∈ X
∗)([(∀x ∈ X )(|u|x = |v|x)]⇒〈S | u〉= 〈S | v〉). (26)

A series S ∈ A〈〈X 〉〉 is syntactically exchangeable iff it is of the following form

S = ∑
α∈N(X ),supp(α)={x1,...,xk}

sα ,x
α(x1)
1 ⊔⊔ . . .⊔⊔ x

α(xk)
k . (27)

The set of these series, a shuffle subalgebra of A〈〈X〉〉, will be denoted A
synt
exc 〈〈X 〉〉 .

When A is a field, the rational and exchangeable series are exactly those who
admit a representation with commuting matrices (at least the minimal one is such,
see Theorem 3.2 below). We will take this as a definition as, even for rings, this
property implies syntactic exchangeability.

Definition 3.1 A series S ∈ Arat〈〈X 〉〉 will be called rationally exchangeable if
it admits a representation (ν,µ,η) such that {µ(x)}x∈X is a set of commuting
matrices, the set of these series, a shuffle subalgebra of A〈〈X〉〉, will be denoted
Arat

exc〈〈X 〉〉.

Theorem 3.2 (See [24,39]) Let A
synt
exc 〈〈X 〉〉 denote the set of (syntactically) ex-

changeable series. Then

(i) In all cases, one has Arat
exc〈〈X 〉〉 ⊂ Arat〈〈X 〉〉∩A

synt
exc 〈〈X 〉〉. The equality holds

when A is a field and

Arat
exc〈〈X〉〉= Arat〈〈x0〉〉⊔⊔ Arat〈〈x1〉〉 = ⊔⊔

x∈X

Arat〈〈x〉〉,

Arat
exc〈〈Y 〉〉∩Arat

fin〈〈Y 〉〉=
⋃

k≥0

Arat〈〈y1〉〉⊔⊔ . . .⊔⊔ Arat〈〈yk〉〉( Arat
exc〈〈Y 〉〉,

where Arat
fin〈〈Y 〉〉 = ∪F⊂ f initeY Arat〈〈F〉〉, the algebra of series over finite subal-

phabets 30 .

(ii) (Kronecker’s theorem [1,51]) One has Arat〈〈x〉〉 = {P(1− xQ)−1}P,Q∈A[x] (for

x ∈X ) and if A = K is an algebraically closed field of characteristic zero one

30 The last inclusion is strict as shows the example of the following identity [6]

(ty1 + t2y2 + . . .)∗ = lim
k→+∞

(ty1 + . . .+ tkyk)
∗ = lim

k→+∞
(ty1)

∗
⊔⊔ . . .⊔⊔(tkyk)

∗ = ⊔⊔

k≥1
(tkyk)

∗

which lives in Arat
exc〈〈Y 〉〉 but not in Arat

exc〈〈Y 〉〉∩Arat
fin〈〈Y 〉〉.
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also has Krat〈〈x〉〉= spanK{(ax)∗ ⊔⊔ K〈x〉|a ∈ K}.

(iii) The rational series (∑x∈X αx x)∗ are conc-characters and any conc-

character is of this form.

(iv) Let us suppose that A is without zero divisors and let (ϕi)i∈I be a family within

ÂX which is Z-linearly independent then, the family L yn(X )⊎{ϕ∗
i }i∈I is

algebraically free over A within (Arat〈〈X 〉〉,⊔⊔,1X ∗).

(v) In particular, if A is a ring without zero divisors {x∗}x∈X (resp. {y∗}y∈Y )

are algebraically independent over (A〈X 〉,⊔⊔,1X ∗) (resp. (A〈Y 〉, ,1Y ∗))
within (Arat〈〈X 〉〉,⊔⊔,1X ∗) (resp. (Arat〈〈Y 〉〉, ,1Y∗)).

Proof.

(i) The inclusion is obvious in view of (27). For the equality, it suffices to prove
that, when A is a field, every rational and exchangeable series admits a repre-
sentation with commuting matrices. This is true of any minimal representation
as shows the computation of shifts (see [20,24,39]).

Now, if X is finite, as all matrices commute, we have

∑
w∈X ∗

µ(w)w =

(
∑

x∈X

µ(x)x

)∗

= ⊔⊔

x∈X

(µ(x)x)∗

and the result comes from the fact that R is a linear combination of matrix
elements. As regards the second equality, inclusion ⊃ is straightforward. We
remark that the union

⋃
k≥1 Arat〈〈y1〉〉⊔⊔ . . .⊔⊔ Arat〈〈yk〉〉 is directed as these alge-

bras are nested in one another. With this in view, the reverse inclusion comes
from the fact that every S ∈ Arat

fin〈〈Y 〉〉 is a series over a finite alphabet and the
result follows from the first equality.

(ii) Let A = {P(1−xQ)−1}P,Q∈A[x]. Since P(1−xQ)−1 = P(xQ)∗ then it is obvi-
ous that A ⊂ Arat〈〈x〉〉. Next, it is easy to check that A contains A〈x〉(= A[x])
and it is closed by +,conc as, for instance,

(1− xQ1)(1− xQ2) = (1− x(Q1 +Q2 − xQ1Q2)).

We also have to prove that A is closed for ∗. For this to be applied to P(1−
xQ)−1, we must suppose that P(0) = 0 (as, indeed, 〈P(1− xQ)−1 | 1x∗〉 =
P(0)) and, in this case, P = xP1. Now

( P

1− xQ

)∗
=
(

1−
P

1− xQ

)−1
=

1− xQ

1− x(Q+P1)
∈ A .

(iii) Let S = (∑x∈X αx x)∗ and note that S = 1+(∑x∈X αx,x)S. Then 〈S | 1X ∗〉=
1A and, if w = xu, we have 〈S | xu〉 = αx〈S | u〉, then by recurrence on the
length, 〈S | x1 . . .xk〉 = ∏k

i=1 αxi
which shows that S is a conc-character. For

the converse, we have Schützenberger’s reconstruction lemma which says
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that, for every series S

S = 〈S | 1X ∗〉.1A + ∑
x∈X

x.x−1S

but, if S is a conc-character, 〈S | 1X ∗〉 = 1 and x−1S = 〈S | x〉S, then the
previous expression reads

S = 1A +

(
∑

x∈X

〈S | x〉x

)
S

this last equality being equivalent to S = (∑x∈X 〈S | x〉.x)∗ proving the claim.

(iv) As (A〈X 〉,⊔⊔,1X ∗) and (A〈Y 〉, ,1Y ∗) are enveloping algebras, this prop-
erty is an application of the fact that, on an enveloping U , the characters
are linearly independent w.r.t. to the convolution algebra U ∗

∞ (see the gen-
eral construction and proof in [25] or [27]). Here, this convolution algebra
(U ∗

∞ ) contains the polynomials (is equal in case of finite X ). Now, consider
a monomial

(ϕ∗
i1
)⊔⊔ α1 . . .(ϕ∗

in
)⊔⊔ αn =

(
n

∑
k=1

αikϕik

)∗

The Z-linear independence of the monomials in (ϕi)i∈I implies that all these
monomials are linearly independent over A〈X 〉 which proves algebraic inde-
pendence of the family (ϕi)i∈I.

To end with, the fact that L yn(X )⊎{ϕ∗
i }i∈I is algebraically free comes

from Radford theorem (A〈X 〉,⊔⊔,1X ∗)≃ A[L yn(X )] and the transitivity of
polynomial algebras (see [3] ch III.2 Proposition 8).

(v) Comes directly as an application of the preceding point.
✷

Remark 3.3 (Point (ii) of Theorem 3.2 above) Kronecker’s theorem which can be
rephrased in terms of stars as Arat〈〈x〉〉= {P(xQ)∗}P,Q∈A[x] holds for every ring and
is therefore characteristic free, unlike the shuffle version requiring algebraic closure
and denominators.

3.2 Exchangeable rational series and their linear representations

As examples, one can consider the following forms (F0),(F1) and (F2) of rational
series in Arat〈〈X〉〉 [33,39]:

(F0)E1xi1 . . .E jxi j
E j+1, where xi1 , . . . ,xi j

∈ X ,E1, . . . ,E j ∈ Arat〈〈x0〉〉,

(F1)E1xi1 . . .E jxi j
E j+1, where xi1 , . . . ,xi j

∈ X ,E1, . . . ,E j ∈ Arat〈〈x1〉〉,

(F2)E1xi1 . . .E jxi j
E j+1, where xi1, . . . ,xi j

∈ X ,E1, . . . ,E j ∈ Arat
exc〈〈X〉〉.
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Using linear representations, we also have

Theorem 3.4 (Triangular sub bialgebras of (Arat〈〈X 〉〉,⊔⊔,1X∗,∆conc,e), [39])

Let ρ = (ν,µ,η) a representation of R ∈ Arat〈〈X 〉〉. Then

(i) If the matrices {µ(x)}x∈X commute between themselves and if the alphabet

is finite, every rational exchangeable series decomposes as

R =
n

∑
i=1

⊔⊔

x∈X

R
(i)
x with R

(i)
x ∈ Arat〈〈x〉〉.

(ii) If L consists of upper-triangular matrices then R ∈ Arat
exc〈〈X 〉〉⊔⊔ A〈X 〉.

(iii) For any x ∈X , letting M(x) := µ(x)x and then extending, in the obvious way,

this representation to A〈〈X 〉〉 by M(S) = ∑w∈X ∗〈S | w〉µ(w)w, we have

R = νM(X ∗)η.

Moreover, we have

(a) If {µ(x)}x∈X are upper-triangular then M(X )=D(X )+N(X ), where

D(X ) and N(X ) are diagonal and strictly upper-triangular letter ma-

trices, respectively, such that 31

M(X ∗) = ((D(X ∗)N(X ))∗D(X ∗)).

(b) We get 32 (for X = X)

M((x0 + x1)
∗) = (M(x∗1)M(x0))

∗M(x∗1) = (M(x∗0)M(x1))
∗M(x∗0)

and the modules generated by the families (F0),(F1) and (F2) are closed

by conc,⊔⊔ (and coproducts if A = K is a field). From this, it follows that

R is a linear combination of expressions in the form (F0) (resp. (F1)) if

M(x∗1)M(x0) (resp. M(x∗0)M(x1)) is strictly upper-triangular.

(c) If A is a Q-algebra then

M(X ∗) =
ց

∏
l∈L ynX

eSl µ(Pl).

Remark 3.5 (i) The point (i) of Theorem 3.4 is no longer true for an infinite
alphabet as shows the example of the series S = ∑k≥1 yk in Arat〈〈Y 〉〉.

(ii) On a general ring it can happen that R is exchangeable, ρ minimal and never-
theless L is noncommutative, as shows the case of A =Q[x, t]/t3Q[x, t] and

X = {a,b}, µ(a) = t


1 0

x 1


 , µ(b) = t


1 x

0 1


 , ν =

(
1 1

)
, η =


1

1


 .

31 by Lazard factorization [43,50].
32 idem.
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With these data, R = 2+(xt +2t)(a+b)+(x2t2+2xt2+2t2)(ab+ba) which
is an exchangeable polynomial but

µ(a)µ(b) =


 t2 xt2

xt2 x2t2 + t2


 , µ(b)µ(a) =


x2t2 + t2 xt2

xt2 t2




Now the representation is minimal because if it were of dimension 1, 1
2R

would be a conc-character, which is not the case. Otherwise, if it were of
dimension 0, R would be zero.

In order to establish Theorem 3.7 below, we will use the following

Lemma 3.6 Let (ν,τ,η) a representation of S of dimension r such that, for all

x ∈ X , (τ(x)− c(x)Ir) is strictly upper triangular, then S ∈ Krat
exc〈〈X 〉〉⊔⊔ K〈X 〉.

Proof. Let (ei)1≤i≤r be the canonical basis of K1×r. We construct the representa-
tions ρ1 = (ν,(x 7→ τ(x)− c(x)Ir),η), ρ2 = (e1,(x 7→ c(x)Ir),e

∗
1) of S1 and S2 and

remark that S1 ⊔⊔ S2 admits the representation

ρ3 = (ν ⊗ e1,((τ(x)− c(x)Ir)⊗ Ir + Ir ⊗ c(x)Ir)x∈X ,η ⊗ e∗1)

as Ir ⊗ c(x)Ir = c(x)Ir ⊗ Ir, ρ3 is, in fact, (ν ⊗ e1,(τ(x)⊗ Ir)x∈X ,η ⊗ e∗1) which
represents S, the result now comes from the fact that S1 ∈ K〈X 〉 and S2 =
(∑x∈X c(x)x)∗ ∈ Krat

exc〈〈X 〉〉. ✷

We first begin by properties essentially true over algebraically closed fields.

Theorem 3.7 (Triangular sub bialgebras of (Krat〈〈X 〉〉,⊔⊔,1X∗,∆conc,e), [39])

We suppose that K is an algebraically closed field and that ρ = (ν,µ,η) is

a linear representation of R ∈ Krat〈〈X 〉〉 of minimal dimension n, we note

L = L (µ) ⊂ Kn×n the Lie algebra generated by the matrices (µ(x))x∈X . Then

(i) L is commutative iff R ∈ Krat
exc〈〈X 〉〉,

(ii) L is nilpotent iff R ∈ Krat
exc〈〈X 〉〉⊔⊔ K〈X 〉,

(iii) L is solvable iff R is a linear combination of expressions in the form (F2).

Moreover, denoting Krat
nil 〈〈X 〉〉 (resp. Krat

sol〈〈X 〉〉), the set of rational series such

that L (µ) is nilpotent (resp. solvable), we get a tower of sub Hopf algebras of the

Sweedler’s dual, Krat
nil 〈〈X 〉〉 ⊂ Krat

sol〈〈X 〉〉 ⊂ H ◦
⊔⊔
(X ).

Proof.

(i) Let us remark that, for x,y ∈ X , p,s ∈ X ∗, we have 〈R | pxys〉 = 〈R | pyxs〉
which is due to the commutation of matrices. Conversely, since ρ is minimal
then there is Pi,Qi ∈ K〈X 〉, i = 1...n such that (see [1,20,48])
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∀u ∈ X
∗, µ(u) = (〈Pi ⊲R⊳Qi | u〉)1≤i, j≤n = (〈R | QiuPi〉)1≤i, j≤n.

Now, for x,y ∈ X , we have

µ(xy) = (〈R | QixyPi〉)1≤i, j≤n
∗
= (〈R | QiyxPi〉)1≤i, j≤n = µ(yx)

equality
∗
= being due to exchangeability.

(ii) Let us consider Kn as the space of the representation of L given by µ . Let
Kn =

⊕m
j=1Vj be a decomposition of Kn into indecomposable L -modules

(see [16], Theorem 1.3.19 where it is done for ch(K) = 0, or [5] Chapter VII
§1 Propopsition 9 for arbitrary characteristic), we know that each Vj is a L -
module and that the action of L is triangularizable with constant diagonals
inside each sector Vj. Thus, it is an invertible matrix P ∈ GL(n,K) such that

∀x ∈ X , Pµ(x)P−1 = blockdiag(T1,T2 . . . ,Tk) =




T1 0 0 . . . 0

0 T2 0 . . . 0
...

. . . . . . . . .
...

0 0 . . . 0 Tk




where the Tj are upper triangular matrices with scalar diagonal i.e. is of the
form Tj(x) = λ (x)I +N(x) where N(x) is strictly upper-triangular 33 . Set d j

to be the dimension of Tj (so that n = ∑m
j=1 d j), partitioning νP−1 = ν ′ (resp.

Pη = η ′) with these dimensions we get blocks so that each (ν ′
j,Tj,η

′
j) is the

representation of a series R j and R = ∑m
j=1 R j. It suffices then to prove that,

for all j, R j ∈ Krat
exc〈〈X 〉〉⊔⊔ K〈X 〉. This is a consequence of Lemma 3.6.

Conversely, if ρi = (νi,τi,ηi), i = 1,2, are two representations then [τ1(x)⊗
Ir + Ir ⊗ τ2(x),τ1(y)⊗ Ir + Ir ⊗ τ2(y)] = [τ1(x),τ1(y)]⊗ Ir + Ir ⊗ [τ2(x),τ2(y)]
and a similar formula holds for m-fold brackets (Dynkin combs), so that if
L (τi)’s are nilpotent, the Lie algebra L (τ1 ⊗ Ir + Ir ⊗ τ2) is also nilpotent.
The point here comes from the fact that series in Krat

exc〈〈X 〉〉 as well as in
K〈X 〉 admit nilpotent representations, so, let (α,τ,β ) such a representation
and (α ′,τ ′,β ′) its minimal quotient (obtained by minimization, see [1]), then
L (τ ′) is nilpotent as a quotient of L (τ). Now two minimal representations
being isomorphic, L (µ) is isomorphic to L (τ) and then it is nilpotent.

(iii) As L is solvable and K algebraically closed, using Lie’s theorem, we can
find a conjugate form of ρ = (ν,µ,η) such that the matrices µ(x) are upper-
triangular. Since this form also represents R, letting D(X ) (resp. N(X )) be

33 Even, as K is infinite, there is a global linear form on L , λlin such that, for all g ∈ L , PgP−1 −
λlin(g)I is strictly upper-triangular.
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the diagonal (rep. strictly upper-triangular) letter matrice such that M(X ) =
D(X )+N(X ) then

R = νM(X ∗)η = ν(D(X ∗)N(X ))∗D(X ∗)η.

Since D(X ∗)N(X ) being nilpotent of order n then (D(X ∗)N(X ))∗ =

∑n
j=0(D(X ∗)N(X )) j. Hence, letting S be the vector space generated by

forms of type (F2) which is closed by concatenation, we have D(X ∗)N(X )∈
S n×n and then (D(X ∗)N(X ))∗ ∈ S n×n. Finally, R = νM(X ∗)η ∈ S

which is the claim.
Conversely, as sums and quotients of solvable representations are solvable

is suffices to show that a single form of type F2 admits a solvable representa-
tion and end by quotient and isomorphism as in (ii). From Proposition (2.4),
we get the fact that, if Ri admit solvable representations so does R1R2, then
the claim follows from the fact that, firstly, single letters admit solvable (even
nilpotent) representations and secondly series of ⊔⊔{Krat〈〈x〉〉}x∈X admit solv-
able representations. Finally, we choose (or construct) a solvable representa-
tion of R, call it (α,τ,β ) and (α ′,τ ′,β ′) its minimal quotient, then L (τ ′)
is solvable as a quotient of L (τ). Now two minimal representations being
isomorphic, L (µ) is isomorphic to L (τ), hence solvable.

Moreover and ff.] Comes from the computation of the coproduct by inser-
tion of identity ∑n

i=1 e∗i ei.
✷

Remark 3.8 For an example of series S with solvable representation but such that
S /∈ Krat

exc〈〈X 〉〉⊔⊔ K〈X 〉. One can take X = {a,b} and S = a∗b(−a)∗.

To end this section (of combinatorial framework), for a need of the proof of
Theorem 4.8 below, let us extent the pairing (15) as follows

A〈〈X 〉〉⊗A〈〈X 〉〉−→A, (28)

T ⊗S−→〈T‖S〉 := ∑
w∈X ∗

〈T | w〉〈S | w〉. (29)

Here, the family ∑w∈X ∗ 〈T | w〉〈S | w〉 is summable, for a topology on A. Its sum
is denoted by 〈T‖S〉 and the set of these series S is denoted by Domword(T ). This
proof will also use

Lemma 3.9 For any without zero divisors ring A, let R ∈ Arat〈〈X 〉〉 of linear rep-

resentation (ν,µ,η) of dimension n. Then any family {R ⊳Pi}i=1...m>n is linearly

dependent, i.e. there is {αi}i=1...m in A, not all zero, such that ∑m
I=1 αi(R⊳Pi) = 0.
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4 Towards a noncommutative Picard-Vessiot theory

Let (A ,d) be a commutative associative differential ring (ker(d) = k being a field),
C0 be a differential subring of A (d(C0) ⊂ C0) which is an integral domain con-
taining the field of constants and C{{(gi)i∈I}} be the differential subalgebra of A

generated by (gi)i∈I, i.e. the k-algebra generated by gi’s and their derivatives [49].

4.1 Noncommutative differential equations

Let us consider the following differential equation, with homogeneous series of
degree 1 as multiplier (a polynomial in the case of finite alphabet).

dS = MS; 〈S | 1〉= 1,where M = ∑
x∈X

uxx ∈ C0〈〈X 〉〉 (30)

Example 4.1 [Drinfel’d equation] X = {x0,x1} and Ω = C\ (]−∞,0]∪ [1,+∞[).

(KZ3) dS = (x0ux0 + x1ux1)S with ux0(z) = z−1,ux1(z) = (1− z)−1.

This equation, with asymptotic initial conditions, was introduced in [17,18] and a
complete study was presented in [39] (solutions and special values).

Example 4.2 Y = {yi}i≥1 and Ω = {z ∈ C | |z |< 1}.

dS =

(
∑
i≥1

yiuyi

)
S with uyi

(z) = ∂ℓi(z).

where, denoting γ the Euler’s constant and ζ (s) the Riemann zeta function,

ℓ1(z) := γz− ∑
k≥2

ζ (k)
(−z)k

k
and for r ≥ 2, ℓr(z) :=− ∑

k≥1

ζ (kr)
(−zr)k

k
.

This equation was introduced in [9] to study the independence of a family of eule-
rian functions.

Let us also recall the following useful result for proving Theorem 4.8 bellow.

Proposition 4.3 ([34,35,37]) Let S ∈ A 〈〈X 〉〉 be solution of (30). Then S satis-

fies the differential equations dlS = QlS, for l ≥ 0, where Ql ∈ C{{(ui)i≥0}}〈X 〉
satisfying the recursion Q0 = 1 and Ql = Ql−1M+dQl−1.

More explicitly, Ql can be computed as follows (suming over words w =
xi1 . . .xil and derivation multi-indices r = (r1, . . . ,rl) of degree degr =|w |= l and

of weight wgt r = l + r1 + . . .+ rl)

Ql = ∑
wgt r=l

w∈X degr

degr

∏
l=1

(
∑l

j=1 r j + j−1
rl

)
τr(w) and





τr(w) = τr1(xi1) . . .τrl
(xil ) =

(∂ r1
z uxi1

)xi1 . . .(∂
rl
z uxil

)xil .
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Theorem 4.4 Suppose that the C-commutative ring A is without zero divisors and

equipped with a differential operator ∂ such that C= ker∂ .

Let S ∈ A 〈〈X 〉〉 be a group-like solution of (30), in the following form

S = 1X ∗ + ∑
w∈X ∗X

〈S | w〉w = 1X ∗ + ∑
w∈X ∗X

〈S | Sw〉Pw =
ց

∏
l∈L ynX

e〈S|Sl〉Pl .

Then

(i) If H ∈ A 〈〈X 〉〉 is another group-like solution of (30) then there exists C ∈
L ieA 〈〈X 〉〉 such that S = HeC (and conversely).

(ii) The following assertions are equivalent

(a) {〈S | w〉}w∈X ∗ is C0-linearly independent,

(b) {〈S | l〉}l∈L ynX is C0-algebraically independent,

(c) {〈S | x〉}x∈X is C0-algebraically independent,

(d) {〈S | x〉}x∈X ∪{1X ∗} is C0-linearly independent,

(e) The family {ux}x∈X is such that, for f ∈ Frac(C0) and (cx)x∈X ∈ C(X ),

∑
x∈X

cxux = ∂ f =⇒ (∀x ∈ X )(cx = 0).

(f) The family (ux)x∈X is free over C and ∂Frac(C0)∩spanC{ux}x∈X = {0}.

Proof. [Sketch] The first item has been treated in [35]. The second is a group-like
version of the abstract form of Theorem 1 of [15]. It goes as follows

• due to the fact that A is without zero divisors, we have the following embeddings
C0 ⊂ Frac(C0) ⊂ Frac(A), Frac(A) is a differential field, and its derivation can
still be denoted by ∂ as it induces the previous one on A ,

• the same holds for A 〈〈X 〉〉 ⊂ Frac(A)〈〈X 〉〉 and d

• therefore, equation (30) can be transported in Frac(A)〈〈X 〉〉 and M satisfies the
same condition as previously.

• Equivalence between a-d comes from the fact that C0 is without zero divisors and
then, by denominator chasing, linear independances w.r.t C0 and Frac(C0) are
equivalent. In particular, supposing condition d, the family {〈S | x〉}x∈X ∪{1X ∗}

(basic triangle) is Frac(C0)-linearly independent which imply, by the Theorem 1
of [15], condition e,

• still by Theorem 1 of [15], e is equivalent to f, implying that {〈S | w〉}w∈X ∗ is
Frac(C0)-linearly independent which induces C0-linear independence (i.e. a).

✷

Now, let us go back to notations of Section 1 and equip the differential rings of
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(i) analytical functions over a simply connected domain Ω, (H (Ω),∂ ), with the
topology of compact convergence (CC),

(ii) formal series over X and with coefficients in H (Ω), (H (Ω)〈〈X 〉〉,d), with
the ultrametric distance defined by 34 δ (S,T ) = 2−ϖ(S−T ).

Let us also consider again the Chen series of the differential forms (ωi)i≥1 defined
by the inputs ωi = uxi

dz along a path z0 z on Ω. By (17), it follows that

Cz0 z = ∑
w∈X ∗

αz
z0
(w)w = (αz

z0
⊗ Id)DX =

ց

∏
l∈L ynX

e
αz

z0
(Sl)Pl . (31)

This series satifies (30) and is obtained as limit, for the topology of (discrete) point-
wise convergence, of Picard iteration process initialized at 〈Cz0 z | 1X ∗〉= 1H (Ω).

Let us illustrate Theorem 4.4, with simple examples, for which C0 contains
C{{(u±1

x )x∈X }} = C[u±1
x ,∂ iux]i≥1,x∈X ⊂ A = (H (Ω),∂ ). In these examples,

we use

Proposition 4.5 ([33]) For X = {x}, since xn = x⊔⊔ n/n! then

αz
z0
(xn) =

(αz
z0
(x))n

n!
,C0 z = ∑

n≥0

αz
z0
(xn)xn = e

αz
z0
(x)x,αz

0(x
∗) = e

αz
z0
(x).

Example 4.6 Let us consider two positive cases over X = {x}.

(i) Ω = C,ux(z) = 1Ω,C0 = C. Since αz
0(x

n) = zn/n! then, by Proposition 4.5,

C0 z = ezx and dC0 z = xC0 z.

Moreover, αz
0(x) = z which is transcendent over C0 and {αz

0(x
n)}n≥0 is C0-

free. Now, let f ∈ C0 then ∂ = 0. Hence, if ∂ f = cux then c = 0.

(ii) Ω = C\]−∞,0],ux(z) = z−1,C0 = C[z±1]⊂C(z). Since αz
1(x

n) = logn(z)/n!
then, by Proposition 4.5,

C1 z = zx and dC1 z = z−1xC1 z.

Moreover, αz
1(x) = log(z) which is transcendent over C(z) then over C0 and

{αz
1(x

n)}n≥0 is C0-free. Now, let f ∈ C0 then ∂ f ∈ spanC{z−n}n∈Z,n6=1.
Hence, if ∂ f = cux then c = 0.

Example 4.7 Let us consider two negative cases over X = {x}.

(i) Ω = C,ux(z) = ez,C0 = C[e±z]. Since αz
0(x

n) = (ez −1)n/n! then, by Propo-
sition 4.5,

C0 z = e(e
z−1)x and dC0 z = ezxC0 z.

34 ∀S ∈ H (Ω)〈〈X 〉〉, if S = 0 then ϖ(S) =−∞ else minw∈supp(S){|w | or (w)} [1].
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Moreover, αz
0(x) = ez −1 which is not transcendent over C0 and {αz

0(x
n)}n≥0

is not C0-free. If f (z) = cez ∈ C0 (c 6= 0) then ∂ f (z) = cez = cux(z).

(ii) Ω =C\]−∞,0],ux(z) = za,a ∈C\Q,C0 =C{{z,z±a}}= spanC{zka+l}k,l∈Z.
Since αz

0(x
n) = (a+1)−nzn(a+1)/n! then, by Proposition 4.5,

C0 z = e(a+1)−1z(a+1)x and dC0 z = zaxC0 z.

Moreover, αz
0(x) = za+1/(a + 1) which is not transcendent over C0 and

{αz
0(x

n)}n≥0 is not C0-free. If f (z) = cza+1/(a + 1) ∈ C0 (c 6= 0) then
∂ f (z) = cza = cux(z).

4.2 First step of a noncommutative Picard-Vessiot theory

Let us recall that the vector space of solutions of (30) is a free (C〈〈X 〉〉-right)
module of dimension one 35 generated by Cz0 z [35]. Hence, by Lemma 4.4, we
have common traits with the ordinary case of first order differential equations,

(i) the differential Galois group of (30) + group-like is the Hausdorff group
{eC}C∈L ieC.1

H (Ω)
〈〈X 〉〉 (group of characters of H⊔⊔(X )).

(ii) the PV extension related to (30) is C 〈〈X 〉〉(Cz0 z), where C ⊂ A =
(H (Ω),∂ ) such that Const(C 〈〈X 〉〉) = kerd = C.1H (Ω)〈〈X 〉〉.

Theorem 4.8 ([34,35,37]) Let R ∈C.1rat
H (Ω)〈〈X 〉〉. Then, for any path z0 z over

Ω, we have 36 R ∈ Domword(Cz0 z) and the output of (1) can be computed by

y(z0,z) = αz
z0
(R) = ∑

w∈X ∗

(νµ(w)η)αz
z0
(w) = 〈Cz0 z‖R〉.

Now, let N be the least integer n such that y satisfies a (non-trivial) differential

equation of order N (with coefficents in C ), the family {∂y}0≤k≤N−1 is C -linearly

independent, i.e.

(an∂ N + . . .+a1∂ +a0)y = 0,with aN, . . . ,a0 ∈ C .

and, from what precedes, we have N ≤ n = rk(R).

Proof. Due to this strong convergence condition, we have

(i) for any T ∈H (Ω)〈〈X 〉〉 and P ∈H (Ω)〈X 〉,S ∈ Domword(T ), we have S ∈
Domword(PT ),S ⊳P ∈ Domword(T ) and 〈PT‖S〉= 〈T‖S ⊳P〉,

35 In fact, we will see that it is the C〈〈X 〉〉-right module Cz0 z.C.1H (Ω)〈〈X 〉〉.
36 Once (z,z0) is fixed on Ω, Domword(Cz0 z) is the subset of A〈〈X 〉〉 of series R such that
∑n≥0 αz

z0
(Rn) is convergent for the standard topology, where Rn = ∑|w=n|〈R | w〉w is a homogeneous

component (we need to check that this series is convergent via majoration morphisms [34,35,37]).
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(ii) from the continuity of ∂ , for any T ∈ H (Ω)〈〈X 〉〉 and S ∈ Domword(T ), we
have ∂ (〈T‖S〉) = 〈dT‖S〉+ 〈T‖dS〉.

Now, let (ν,µ,η) be a representation of R ∈ C.1rat
H (Ω)〈〈X 〉〉 of rank n. Let us

see that the family (〈Cz0 z | w〉〈R | w〉)w∈X ∗ is summable in H (Ω). Indeed, since
the matrix norm is multiplicative then, for any w ∈ X ∗ and B1 > 0, we have 37

‖µ(w)‖ ≤ B
|w|
1 and |νµ(w)η |≤ k1‖ν‖r‖µ(w)‖‖η‖c.

The Chen series Cz0 z is exponentially bounded from above 38 , i.e. for all compact
κ ⊂ Ω, there is k2,B2 > 0 such that 39 [34,35,37]

∀w ∈ X
∗, ‖〈Cz0 z | w〉‖κ ≤ k2B

|w|
2 /|w |!.

Hence, choosing a compact κ ⊂ Ω, we obtain

∑
w∈X ∗

‖〈Cz0 z | w〉〈R | w〉‖κ ≤ ∑
w∈X ∗

‖〈Cz0 z | w〉‖κ | 〈R‖w〉 |

≤ ∑
w∈X ∗

k2
B
|w|
2

|w |!
(k1‖ν‖rB

|w|
1 ‖η‖c)<+∞.

Since y = y(z0,z) = αz
z0
(R) and ∂ is continuous for (CC) then, by Proposition 4.3,

∂ ly(z0,z) = 〈dlCz0 z‖R〉 and for l ≤ n,dlCz0 z = Ql(z)Cz0 z

and then [34,35,37]

∂ ly(z0,z) = 〈Ql(z)Cz0 z‖R〉= 〈Cz0 z‖R⊳Ql(z)〉.

By Lemma 3.9, there is {ak}k=0,..,n in C , not all zero, such that ∑n
k=0 ak(R⊳Qk) = 0

yielding the expected result. This linear independence holds in any module what-
ever the ring. ✷

Remark 4.9 (i) The rational series in Theorem 4.8 is the generating series of the
first order linear differential system, ∂q=(u0µ(x0)+ . . .+umµ(xm))q,y= νq,
initialized at y(z0) = η . From [30], y(z) = αz

z0
(R). The Nth-order differential

equation in Theorem 4.8 is then the result, obtained by eliminating the states
{qi}i=0,..,m in this system.

(ii) The converse process is also possible thanks to the compagnion form.

(iii) Analogue results for nonlinear equations can be found in [34,35,37].

37 We choose a matrix norm (i.e. multiplicative) on Cn×n, denoted ‖M‖, and two norms ‖ν‖r,‖η‖c

on C1×n,Cn×1, respectively, and there is classically k1 > 0 such that |ν.M.η |≤ k1‖ν‖r‖M‖‖η‖c.
38 In the references the bounding is finer and adapted as well to infinite alphabet.
39 For any f ∈ H (Ω), we denote ‖ f‖κ := sups∈κ | f (s) |.
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5 Conclusion

In this work, we gave a first step to construct a Picard-Vessiot theory for a class
of noncommutative differential equations satisfied by the Chen series Cz0 z over
the alphabet X = {xi}i≥0 (along paths z0  z belonging to a simply connected
manifold Ω and with respect to the differential forms (uidz)i≥0):

(i) The coefficients of these noncommutative generating series belong to the dif-
ferential ring C{{(ui)i≥0}}{〈Cz0 z | w〉}w∈X ∗ which is closed by integration
with respect to (uidz)i≥0.

(ii) The Picard-Vessiot extension of these noncommutative differential equations
is the module Cz0 zC1H (Ω) and the Haussdorf group {eC}C∈L ieC〈〈X 〉〉 plays
the rôle of differential Galois group associated with this extension.

(iii) These differential equations were considered as universal differential equa-
tions [10,14,17,18,39], i.e. the universality can be seen by replacing each
letter by constant matrices (resp. analytic vector field, given in (2)) and then
solving a system of linear (resp. nonlinear) differential equations, given in (1).

(iv) These solutions are obtained as a pairing between the series Cz0 z and the
generating series of finite Hankel (resp. Lie-Hankel) rank [31,29,30,45], for
linear (resp. nonlinear) differential equations explaned by Remark 4.9

(v) Via rational series (on noncommutative indeterminates and with coefficients
in rings) [1,46] and their non-trivial combinatorial Hopf algebras (Theorems
2.1, 2.3, 3.2, 3.4 and 3.7), we illustrated this theory, still under construction,
with the case of linear differential equations with singular regular singularities
(Theorem 4.8) thanks to the equation satisfied by the Chen generating series.

This practical study allowed also to treat the noncommutative generating series
of multiindexed polylogarithms and harmonic sums and as well as those of their
special values (polyzetas). In particular, we proved the existence of well defined
infinite sums of these polylogarithms and harmonic sums [9] in order to describe
solutions of differential equations (Theorem 4.8).
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