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ABSTRACT

This paper is concerned with the conception of methods tailored
for the numerical simulation of power-balanced systems that are
well-posed but implicitly described. The motivation is threefold:
some electronic components (such as the ideal diode) can only
be implicitly described, arbitrary connection of components can
lead to implicit topological constraints, finally stable discretization
schemes also lead to implicit algebraic equations.

In this paper we start from the representation of circuits using a
power-balanced Kirchhoff-Dirac structure, electronic components
are described by a local state that is observed through a pair of
power-conjugated algebro-differential operators (V, I) to yield the
branch voltages and currents, the arc length is used to parametrize
switching and non-Lipschitz components, and a power balanced
functional time-discretization is proposed. Finally, the method is
illustrated on two simple but non-trivial examples.

1. INTRODUCTION

Network analysis of circuits and expression of Kirchhoff laws, nat-
urally leads to implicit differential algebraic equations (DAE). In-
deed in the most general form, the branch equations are not de-
scribed by functions but by relations (in the voltage-current plane
for algebraic components, voltage-charge for capacitor, current-
flux for inductors . . . ). One of the most general approach is the
Sparse Tableau analysis [1] which involves both the nodes and
branch variables.

In the study of power-balanced systems, and more generally in
the field of geometrical numerical integration, one is not only con-
cerned with the quantitative accuracy of numerical simulations, but
also with the qualitative preservation of structural invariants dur-
ing discretization [2]. It has been shown that the symplectic struc-
ture of Hamiltonian systems, responsible for energy preservation,
can be generalized to open systems with algebraic constraints by
the notion of a Dirac structure [3] [4]. It can even be extended
to infinite-dimensional systems such as partial differential equa-
tions using a Stokes-Dirac [5] structure. It has been shown in [6]
(see also [7] [8]) that Kirchhoff laws generates a Kirchhoff-Dirac
structure. Recent work [9] also study the properties and numeri-
cal discretization of Port-Hamiltonian DAE systems in descriptor
form.

Usually, when possible, DAE are reduced to ordinary differ-
ential equations (ODE) or semi-explicit index-1 DAE [10] [8] for
which a rich literature of results from system theory and numerical
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analysis is available to study stability, conservation laws, attraction
points, existence and uniqueness of solutions . . .

In these reduction processes, a choice has to be made regard-
ing the variables the system is solved for. Choosing the node volt-
ages leads to the Nodal Analysis (NA) method. But it is not suf-
ficient to represent all systems, adding some branch currents leads
to the popular Modified Nodal Analysis (MNA) [11]. The impor-
tance of state variable choices for computable numerical simula-
tions can be found in [12]. Similar issues are addressed for wave
digital filters in [13]. A procedure to guide these choices is the
Sequential Causality Assignment Procedure (SCAP) in the bond-
graph literature [14]. In the case of switching-circuits, such as
those containing ideal diodes or discontinuous laws (see [15]) an
approach is to solve for different variables according to the switch-
ing state of the system, but the number of such states becomes
exponential in the number of switching components.

Since after time discretization, one is left with an algebraic
system of (nonlinear) equations which has to be solved by an it-
erative scheme anyway, the goal of this article, is to propose a
structure-preserving power-balanced numerical method capable of
dealing with the implicit nature of the network equations.

Section 2 recalls how any electronic circuit can be represented
by a Kirchhoff-Dirac structure, uniquely determined by the cir-
cuit’s incidence matrix. Section 3 describes how to parametrize
the (possibly implicit) relation imposed by any circuit component.
Power-conjugated voltages and currents (v, i) are obtained by the
application of a pair of nonlinear algebro-differential operators
(V, I) to a parameter x which stands for the component’s local
state. In Section 4 arc-length and pseudo arc-length parameteriza-
tions1 are proposed to overcome computational causality problems
that arise in switching components and reduce numerical stiffness
caused by high Lipschitz constants. In Section 5 a power-balanced
and structure preserving time-discretization is presented using a
functional framework. This leads to a nonlinear system of alge-
braic equations which is solved using Newton iteration. Finally
two tests circuits are studied in Section 6, a stiff switching diode
clipper and a conservative (nonlinear) LCLC circuit with an im-
plicit topological constraint.

2. KIRCHHOFF-DIRAC STRUCTURES FOR CIRCUIT
GRAPHS

From a circuit theory perspective, a Dirac structure is simply a
multi-port that doesn’t generate or dissipate power i.e.

P = 〈i |v〉 = 0.

Considering components and their interconnections separately, be-
cause of Kirchhoff laws, the multi-port connecting all components

1Curvilinear coordinates for multi-ports are possible but not addressed.
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Figure 1: Dirac structure example with edges E = {A,B,C,D},
nodesN = {0, 1, 2} and chosen spanning tree T = {A,C}.

(the PCB) is necessarily a Dirac structure. To formalize it for cir-
cuits, we borrow and slightly adapt the notations from [6] [5] [9].

2.1. Circuit Graphs

A directed circuit graph G(N , E) is defined by a set of n nodes
N = {η1, . . . , ηn} and a set E = {ε1, . . . , εm} of m directed
edges (links, branches) with no self-loops. Edges are ordered pairs
of nodes εi = (ηi,0, ηi,1). Over each node (k = 0) and edge (k =
1)2, using the receiver convention for both, we define conjugated
current and voltages

(ik,vk) ∈ Ik × Vk =: Bk, k ∈ {0, 1} (1)

where V0 ∼ Rn, V1 ∼ Rm are the spaces of voltages over the
nodes N (resp. the edges E) and I0 = V∗0 , I1 = V∗1 the dual
spaces of functionals V0 → R, V1 → R. The spaces B0 and B1

are respectively the spaces of bonds corresponding to the nodes
and edges such that power is given by the duality pairings

〈ik |vk〉Bk := iTkvk, k ∈ {0, 1}. (2)

Note that since the spaces are finite-dimensional, one can identify
each space with its dual V0 ∼ I0 = Rn, V1 ∼ I0 = Rm.

Furthermore, the directed graph is uniquely specified by its
(reduced) co-incidence matrix D given by

D = [dij ]m×n , di,j =


1 εi,1 = ηj

−1 εi,0 = ηj

0 otherwise
. (3)

Kirchhoff Current (KCL) and Voltage laws (KVL) 3 can be ex-
pressed with an elegant duality (see [16] p.710) using the incidence
and coincidence matrices by

v1 = Dv0, i0 = −DTi1 = 0. (4)

i.e. we have the following diagram.

v0 ∈ V0 v1 ∈ V1

i0 ∈ I0 i1 ∈ I1

D

〈· | ·〉B0 〈· | ·〉B1

−DT

(5)

2This notation is convenient to make the link with automated circuit to
Bond-graph algorithms [14]: 0-junctions (shared voltage, parallel connec-
tion) for nodes and 1-junctions for branches (shared current, serial con-
nection) see Figures 5 and 6 for examples. It is also a mnemonic to re-
member that lumped circuit equations arise from the spatial discretization
of electro-magnetic 1-forms for branches and 0-forms for nodes.

3The minus sign in front of i0 comes from the consistent use of the
receiver convention for both nodes and branches: the sum of edge currents
i0 entering each node has to be zero.

2.2. Kirchhoff-Dirac structure

Written in matrix form, one obtains the canonical Kirchhoff-Dirac
structure D (with a structure very similar to the ones obtained for
partial differential equations (PDE) [17] [5])

D :

 i0

v1

 =

0 −DT

D 0

v0

i1

 , i0 = 0. (6)

i.e. Kirchhoff Current Laws can be interpreted as zero boundary
conditions on the node currents, and the co-incidence matrix D as
a (lumped) differential operator. Left multiplying by [v0 i1], the
duality products and skew-symmetry leads to the power balance

P = 〈i0 |v0〉+ 〈i1 |v1〉 =
[
v0 i1

]0 −DT

D 0

v0

i1

 = 0.

Furthermore since we have conservation of charge i0 = 0 on the
nodesN , this yields the Tellegen theorem over the edges4 E

〈i1 |v1〉 =
∑
ε∈E

〈iε | vε〉 = 0.

We also remark that the node voltages v0 can be interpreted as
Lagrange multipliers parametrizing the sub-manifold defined by
the linear constraints i0 = 0.

2.3. (Reduced) Hybrid Dirac structure

Whereas MNA solves the system for node voltages and branch
currents, in Hybrid Analysis [16] and skew-gradient DAE [7] [8],
the node voltages are eliminated. First a spanning tree T is cho-
sen, this yields a partition of the branch currents and voltages into
tree (vT , iT ) and link variables (vL, iL). Partitioning equations
according to the spanning tree, Kirchhoff laws (4) are rewritten asvT

vL

 =

DT

DL

v0,
[
DT
T DT

L

]iT
iL

 = 0. (7)

From graph theory, having a spanning tree ensures that the matrix
DT ∈ Rn×n is invertible. So we can eliminate the node volt-
ages v0 using v0 = D−1

T vT . This yields a reduced Hybrid Dirac
structure specified by its link-cutset matrix C = (DLD

−1
T )T

D :

 iT
vL

 =

 0 −C
CT 0

vT
iL

 . (8)

Traditionally, the spanning tree is chosen to be a proper tree
(i.e. containing all current-driven branches: Voltages Sources, Ca-
pacitors, . . . ) such that vT is current-driven by iT (i.e. computable
from iT ). However topological constraints such as in example 6.2
may prevent a proper tree to be found. Since the proposed method
is fully-implicit by nature, it does not have such a requirement.
Either the Kirchhoff-Dirac structure or any reduced Hybrid Dirac
structure can be used for simulation.

For a formal definition of Dirac structures in the broader con-
text of multi-physical networks, pleaser refer to [6] and references
therein. A generic example of a Dirac structure and its graph, em-
phasizing the node-edge incidence structure, is shown on Figure 1.
Detailed case-study are shown on Figures 5 and 6 and studied in
Section 6.

4Indeed (see [16] p. 30) any two of KCL, KVL and Tellegen theorem
implies the third one.
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3. ALGEBRO-DIFFERENTIAL PARAMETRIZATION OF
COMPONENT LAWS

From now on, for functional discretization purpose, we adopt a
Hilbert space viewpoint, and lift Dirac structures over time steps.
Consider a time interval Ω ⊂ R, the branch voltage and current
spaces are lifted to the dual Hilbert spaces I1 ∼ V1 ⊆ L2(Ω)m

(L2 being a pivot space) equipped with the inner (duality) product

〈u |v〉 :=
1

|Ω|

∫
Ω

u(t)Tv(t) dt. (9)

We assume that branch equations can be parametrized locally
by a state x ∈ X1 ⊆ L2(Ω)m, nonlinear differential-algebraic
operators I1 : X1 → I1,V1 : X1 → V1 and a law

F : X1 −→ B1 := I1 × V1

x 7−→ (I1(x),V1(x))
. (10)

Likewise the KCL node boundary conditions (4) can be parametrized
by the vector of node voltages λ ∈ X0 ⊆ L2(Ω)n and the linear
constraint

B : X0 −→ B0 := I0 × V0

λ 7−→ (I0,V0)(λ) = (0,λ)
. (11)

Composing (6) with (10) (11) we obtain the fully implicit algebro-
differential formulation of a Port-Hamiltonian system (PHS)

Σ =

(I0,V0, I1,V1)(x,λ) ∈ B1 × B0;

N(x) = 0, ∀(x,λ) ∈ X1 ×X0

 (12)

defined by the operator N : X0 ×X1 → L2(Ω)m+n

N(x,λ) =

 0

V1(x)

−
0 −DT

D 0

 λ

I1(x)

 . (13)

For the reduced Hybrid Dirac structure one gets

Σ =
{

(IT ,VT , IC ,VC)(x) ∈ B1|N(x) = 0, ∀x ∈ X1

}
(14)

with the algebro-differential operator N : X1 → L2(Ω)m

N(x) =

IT (x)

VC(x)

−
 0 −C
CT 0

VT (x)

IC(x)

 . (15)

We note that for differential components, the state space is
given by the Sobolev space X ⊆ H1(Ω) ⊂ L2(Ω) defined by

X =

{
x ∈ L2(Ω)

∣∣∣∣∣ ẋ ∈ L2(Ω); x(t) = x0 +

∫ t

0

ẋ(s) ds

}
,

(16)
whereas for algebraic components, no additional smoothness is
implied so X ∼ L2(Ω).

The differential-algebraic operators corresponding to common
electronic components are summarized in Table 1 and the case of
implicitly parametrized algebraic components is now further de-
tailed in Section 4.

4. (PSEUDO) ARC-LENGTH PARAMETRIZATION

We study here implicit arc-length and pseudo arc-length parame-
terizations of algebraic components whose laws cannot be repre-
sented as functions of either current or voltage (or such that un-
bounded Lipschitz constants may cause numerical problems dur-
ing simulations). As an example we consider the cases of the ideal
diode, a nonlinear resistor and the Shockley diode.

4.1. The ideal diode

An ideal diode law is determined by the set (see [15])

RD =

(v, i) ∈ R2

∣∣∣∣∣∣
{
v = 0 i ∈ R+,

i = 0 v ∈ R−.

 (17)

It has the numerical disadvantage of being alternatively voltage
and current controlled. In the hybrid formulation, computational
causality assignment [14] would imply that a different Dirac struc-
ture such as (8) should be used according to the current state of the
circuit. Furthermore, when the number of switching components
grows, the number of switch configurations of the circuit grows
exponentially. A solution around this problem is to consider the
parametrization RD : λ 7→ (VD(λ), ID(λ)) with arc-length

λ(v, i) =

{
i/I0 v = 0, i ∈ R+

v/V0 i = 0, v ∈ R−
, (18)

for arbitrarily chosen positive reference current and voltages I0, V0.
Inverting the relation, one obtains the algebraic operators

VD(λ) = V0 min(λ, 0), ID(λ) = I0 max(λ, 0). (19)

with V ′D(λ) = V0 · 1R−(λ), and I ′D(λ) = I0 · 1R+(λ), where
1A(λ) denotes the indicator function of a set A.

Differential x V (x) I(x) H(x)

Capacitor q q/C q̇ q2/2C

Inductor φ φ̇ φ/L φ2/2L

Nonlinear Capacitor q ∇H(q) q̇ H(q)

Nonlinear Inductor φ φ̇ ∇H(φ) H(φ)

Algebraic x V (x) I(x) P (x)

Resistor i Ri i Ri2

Conductor v v Gv Gv2

Nonlinear Resistor i z(i) i i · z(i)
Nonlinear Conductor v v z(v) v · z(v)

Voltage source i V i V · i
Current source v v I I · v

Table 1: Differential and Algebraic components. H (energy),
P (power), q (charge), φ (flux), z (non linear function).
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4.2. A Hard Clipping resistor

We now consider the case of a hard clipping resistor (it will be
used in example 6.1) whose (v, i) graph is described by the set

RD =

(v, i) ∈ R2;


i ∈ R− \ {0} v ∈ {−1}
i ∈ {0} v ∈ (−1, 1)

i ∈ R+ \ {0} v ∈ {1}

 . (20)

We parametrize it continuously using (see Figure 4 page 8)

RD =
{

(v, i) ∈ R2; (v, i) = (V (λ), I(λ)), ∀λ ∈ R
}
(21)

with the voltage and current operators

V (λ) = V0 clip[−1,1](λ), (22)

I(λ) = I0
(
min(0, λ+ 1) + max(0, λ− 1)

)
. (23)

For arbitarily chosen positive reference voltage and currents V0, I0.

4.3. The Shockley diode

We finally consider the Shockley diode model 5.

I(v) = IS

(
exp

(
v

VT

)
− 1

)
, (24)

where IS is the saturation current, VT = kbT/qe the thermal
voltage, with temperature T , Boltzmann constant kb and electron
charge qe. It is C∞-continuous, but not globally Lipschitz.

For a chosen reference resistanceR0, the true arc-length of the
graph (v,R0I(v)) is determined by dλ2 = (1 + (R0I

′(v))2) dv2

but it is not practical to manipulate. Instead, introducing the diode
cutoff point (V0, I0) as the point of unit slope

R0I
′(V0) = 1, I0 = I(V0), (25)

where V0 = VT ln
(

VT
R0IS

)
, I0 = VT /R0 − IS . Remarking that

for v � V0, dλ ≈ dv and for v � V0, dλ ≈ R0I
′(v) dv, one

can introduce the C0 pseudo arc-length differential

dλ̃(v) =

{
dv v < V0

R0I
′(v) dv v ≥ V0

. (26)

Integrating λ̃(v) :=
∫ v

0
dλ̃ one obtains the C1 pseudo-arclength

λ̃(v) =

{
v v < V0

V0 +R0(I(v)− I0), v ≥ V0.
(27)

Inverting the relation leads to the algebraic operators

VD(λ) =


λ λ < V0,

VT ln

(
1 +

I0 + (λ− V0)/R0

IS

)
λ ≥ V0,

(28)

ID(λ) =


I(λ) λ < V0,

I0 +
λ− V0

R0
λ ≥ V0

. (29)

5Anti-parallel Shockley diodes will be simulated in example 6.1

such that by construction, Lipschitz constants are unitary (this prop-
erty is key to deal with convergence and numerical stiffness)

LV = sup
λ

∣∣∣V ′D∣∣∣ = 1, LI = sup
λ

∣∣∣R0I
′
D

∣∣∣ = 1. (30)

5. FUNCTIONAL DISCRETIZATION AND NUMERICAL
SOLVER

We now use the functional framework presented in Section 3 to
discretize the system with a finite number of parameters per time
step, (see the reference [18] for the representation of non band-
limited signals having a finite rate of innovation).

Our time discretisation scheme can be interpreted as an exten-
sion of (spectral) time-finite elements methods [19] to DAE. It is
based on the following theorem which proves that a weak PHS is
preserved over the chosen approximation subspace.

Theorem 5.1 (Weak PHS). Let Ω be a time step, x ∈ X ⊆
L2(Ω)m a functional state, two operators b : X → L2(Ω)m,
a : X → L2(Ω)m and a skew-symmetric matrix J defining the
PHS operator

N(x) = b(x)− Ja(x) = 0, J = −J∗. (31)

Let P : L2(Ω) → R(P ) ⊆ L2(Ω)m be a projector (P 2 = P )
satisfying the skew-adjoint commutation PJ = JP ∗, for the L2

inner product (9), then the projected operator

P ◦N(x) = 0 (32)

defines a weak PHS which preserves the power balance.〈
a(x)

∣∣P ∣∣ b(x)
〉

= 0. (33)

Proof. Using (32), taking the inner product with a(x), and using
the fact that 1) P 2 = P (idempotence), 2) we have the commuta-
tion PJ = JP ∗ and 3) PJP ∗ is skew-adjoint, we obtain〈

a(x)
∣∣P ∣∣N(x)

〉
= 0

⇐⇒
〈
a(x)

∣∣P ∣∣ b(x)
〉

=
〈
a(x)

∣∣PJ
∣∣a(x)

〉
1
=
〈
a(x)

∣∣∣P 2J
∣∣∣a(x)

〉
2
=
〈
a(x)

∣∣PJP ∗
∣∣a(x)

〉 3
= 0.

Remark (Energy conservation). As an immediate consequence,
for a conservative Hamiltonian system given by the operator

N(x) =
dx

dt
− J∇H(x) = 0, J = −JT . (34)

discretized such that ẋ = PJ∇H(x), then the Hamiltonian en-
ergy H is preserved over a time-step Ω = (t0, t1),

H(x(t1))−H(x(t0)) = 0. (35)

Indeed, let b = d
dt

and a = ∇H , from the gradient theorem and
using the same arguments as the previous proof, it follows that

H(x(t1))−H(x(t0)) =
〈
∇H(x)

∣∣ ẋ〉
=
〈
∇H(x)

∣∣PJP ∗
∣∣∇H(x)

〉
= 0.
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5.1. Piecewise constant and affine polynomial spaces

In this article we will restrict ourselves to constant and affine poly-
nomial spaces P0, P1 for which we have exact closed-form expres-
sion of the projected operators. (Higher-order polynomial spaces
require the use of approximate quadratures rules [2] [9]). Results
are exposed without proof except when the proof is not available
elsewhere (see [8]).

Consider a unit time step Ω = (0, 1), for the normalized time
variable τ ∈ (0, 1) and two orthogonal polynomials

`0(τ) = 1, `1(τ) = τ − 1

2
.

The operator PK : L2(Ω) → PK(Ω) ⊂ L2(Ω), K ∈ {0, 1}
defined by

(PK u)(τ) =

K∑
i=0

`i(τ)
〈`i |u〉
〈`i | `i〉

(36)

is an orthogonal projector. i.e. PK is self-adjoint (PK = P ∗K ) and
idempotent (P 2

K = PK ). For notational simplicity, we define the
following notation. Let A : L2(Ω) → L2(Ω) be an operator, the
projected operator ĀK : L2(Ω)→ PK(Ω) is defined by

ĀK := PK ◦A, Ā := Ā0. (37)

By extension, for a vectorized projector P := PK ⊗ In, it yields
the projected PHS operator

N(x) := P ◦N(x) (38)

Because of the tensor product construction, we also have the com-
mutation PJ = JP = JP ∗ such that P satisfies Theorem 5.1.

For numerical computations, it is necessary to compute the
polynomial coefficients of the image of a trajectory through a non-
linear function. This is possible thanks to the following property

Property 5.1 (Projected function). Let f : R → R be a semi-
continuous function with known antiderivative F and a function

x(τ) = `0(τ)x̄+ `1(τ)δx ∈ P1(Ω), (39)

parametrized by its mean and variation Θ = (x̄, δx) ∈ R2

Then the projected function P1 ◦ f ◦ x has the projection co-
efficients f : R2 → R2 defined by

f i := 〈`i | f ◦ x〉 /‖`i‖2 . (40)

They are given in closed form by

f0(Θ) =


F (x̄+ δx

2
)− F (x̄− δx

2
)

δx
δx 6= 0

f(x̄+) + f(x̄−)

2
δx = 0

(41)

f1(Θ) =


12

δx

(
F (x1) + F (x0)

2
− F0(Θ)

)
δx 6= 0

0 δx = 0

(42)

where x1 = x̄+ δx/2, x0 = x̄− δx/2.

Proof. See Appendix A.

Note that for a scalar (or separable) potential F , using f =
∇F , and x̄ = (x0 + x1)/2, δx = x1 − x0 in property 5.1 yields
the Average Discrete Gradient from [8] (this is also an instance of
anti-derivative anti-aliasing)

∇F (x0, x1) := f0(Θ). (43)

Additional results for linear gradients are given in appendix B.

5.2. Newton iteration

For each time step Ω, let Θ denote the unknown parameters of a
local state xΘ ∈ (PK(Ω))m we look for a zero N(Θ?) = 0 of

N(Θ) :=
[〈
`i
∣∣N(xΘ)

〉
/‖`i‖2

]
i=0...K

(44)

using Newton iteration (line search is not used in this paper)

Θκ+1 = Θκ + ∆Θκ, ∆Θκ = −N′(Θκ)−1N(Θκ). (45)

A detailed convergence analysis for the general case is out of the
scope this paper and is left for future work. Please refer to [20] for
more details. When N is only semi-smooth which is the case of
the ideal and hard clipping diodes, special care should be taken to
ensure convergence using semi-smooth Newton methods [21].

It should be noted that in piecewise constant spaces (k = 0),
algebraic constraints simplifies to V(s) = V (s), I(s) = I(s), and
one can compute the Jacobian from the derivative V ′, I ′. For affine
trajectories (k = 1) one should use the results from properties 5.1
and the following property from [8] to compute the coefficients
and the Jacobian.

Property 5.2. Given a potential F ∈ C2(R,R), and its discrete
gradient ∇F (x0, x1) defined in Equation (43), the derivative of
the discrete gradient with respect to x1 is

∂∇F
∂x1

=


∇F (x1)−∇F (x0, x1)

x1 − x0
x0 6= x1

1

2

∂2F

∂x2
(x0) x0 = x1

. (46)

6. EXAMPLES

6.1. Diode Clipper

We consider the diode clipper circuit shown in Figure 5. This cir-
cuit which is dissipatively stiff because of the diode unbounded
Lipschitz constant is commonly used to benchmark numerical schemes.
In this paper the nonlinear resistor D is considered abstract and
will be substituted by anti-parallel Shockley and hard clipping diode
models from Section 4.

Over each time step it is parametrized by the vector of Leg-
endre coefficients Θ = (iS , iC ,vR,xD) ∈ (RK+1)4, for K ∈
{0, 1} and the functional statexΘ = [iS , iC , vR, xD]T ∈ (PK(Ω))4

such that each element v ∈ PK(Ω) is of the form v(t0 + hτ) =∑K
n=0 `n(τ)v[n]. The projected Dirac structure (where 1 is the

identity on RK+1) is then given by the operator

N =


iS

iC

vR

VD(xD)

−

. . −1 0

. . 1 −1
1 −1 . .

0 1 . .




VS

VC(iC)

IR(vR)

ID(xD)

 . (47)

Results are shown on Figure 2 for an input vS = V sin(2πf0t)
with high input gain V = 104, fundamental frequency f0 = 500
Hz, R = 1 kΩ , C = 10µF, IS = 100 fA, R0 = 0.1Ω, sampling
frequency fs = 96 kHz. Anti-parallel Shockley diodes with arc
length converge on average in 2 iterations and 4 times reduction
of the worst-case iteration count (Newton tolerance εr = 10−5),
Hard clipping diodes exhibit convergence in one iteration most of
the time (2 when switching) even for εr = 10−10.
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Figure 2: Diode clipper: anti-parallel Shockley diodes (top) with
V = 104 to emphasize Newton iteration differences, Hard clipping
diodes (bottom) V = 102 to see dynamic and saturation.

6.2. LCLC circuit

We study here an LCLC circuit (shown on Figure 6) chosen to
demonstrate the proposed method when the circuit is conservative,
nonlinear and contains topological constraints (parallel capacitors,
serial inductors . . . ). Here the circuit contains two inductors with
the implicit topological constraint iL1 = iL2 .

In traditional solvers, such constraints usually needs to be de-
tected and eliminated before proceeding to simulation. A possi-
ble approach is the use of equivalent macro components (see [22]
[23]). In contrast, the proposed approach doesn’t require such a
preprocessing step, and keeps the modularity and sparsity of the
component-based description. To demonstrate energy conserva-
tion, the capacitor C2 is chosen first with a linear law VC2(q) =
q/C2 and an hardening nonlinearity VC2(q) = Vα sinh( q

C2Vα
)

with Vα = 1/30 (V).
Using the vector of Legendre coefficients as unknown Θ =

(iC1 ,vL1 , iC2 ,vL2), we have the projected Dirac structure oper-
ator

N =


iC1

IL1(vL1)

iC2

vL2

−

. . . 1

. . . 1

. . . 1

−1 −1 −1 .




VC1(iC1)

vL1

VC2(iC2)

IL2(vL2)

 (48)

Simulation results are shown for the implicit and nonlinear
LCLC circuit on Figure 3 for fs = 88.2 kHz, C1 = 20µF, C2 =
100µF, L1 = 1mH, L2 = 100µH, zero initial conditions and
vC1(0) = 1V. We observe that both the algebraic constraint iL1 =
iL2 and the conservation of total energy H are respected. Conver-
gence is reached in 1 iteration for the linear case and between 1 and
2 iterations for the nonlinear one (relative tolerance εr = 10−5).

0.0 0.5 1.0 1.5 2.0

0

1

(V
) vC1

vC2

0.0 0.5 1.0 1.5 2.0
100

0
100

(m
A)

iL1

iL2

0.0 0.5 1.0 1.5 2.0
t (ms)

0

10

En
er

gy
 (

J)

H

0.0 0.5 1.0 1.5 2.0
0

1

(V
) vC1

vC2

0.0 0.5 1.0 1.5 2.0
100

0

100

(m
A) iL1

iL2

0.0 0.5 1.0 1.5 2.0
t (ms)

0

10

En
er

gy
 (

J)

H

0.0 0.5 1.0 1.5 2.0
1

2

ite
ra

tio
ns

Figure 3: Conservative LCLC circuit: Linear (top) and Nonlinear
(bottom). Notice the periodicity change and conserved energy.

7. CONCLUSIONS

A new power-balanced, fully implicit component oriented method
has been presented with a functional time-discretization. Its main
strengths (not necessarily unique to this method) are: a) it retains
the topological sparsity and modularity of the network based de-
scription, b) it is power-balanced and energy-conserving (includ-
ing nonlinear components), c) it can deal with implicit topological
constraints (capacitor loops, inductor cutsets) without the need of
manual substitution of equivalent components, d) it can deal with
implicit components including switching components, e) it uses
finite-dimensional subspace projection as a unifying discretization
tool common to ODE, PDE and DAE. f) Newton iteration con-
verges faster using arc-length description of algebraic components
with unbounded Lipschitz constants,

Regarding perspectives, a detailed convergence study of the
Newton iteration is needed (such as the one in [24]), but has been
postponed for future work. Using different and higher order func-
tional approximation spaces is also an obvious perspective pro-
vided the projections can be computed exactly and efficiently. In
particular, from a generalized sampling theory viewpoint, it would
be interesting to perform a comparative analysis of implementation
cost and convergence rate (to the true solution) between functional
projection and oversampling.
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A. PROOF OF PROPERTY 5.1

The proof of Equation (41) is available in [8] and is not reproduced
here. To prove its extension to semi-continuous functions, using
left and right Taylor series expansion one finds

lim
δx→0

f0(x) = lim
δx→0

F (x̄+ δx
2

)− F (x̄− δx
2

)

δx

= lim
δx→0

f(x̄+ δx
2

) δx
2

+ f(x̄− δx
2

) δx
2

+O(|δx|2)

δx

=
f(x̄+) + f(x̄−)

2
.

For the second coefficient, one finds‖`1‖2 = 1/12 and using inte-
gration by parts, one gets the recursive relation

f1(x) =

∫ 1

0

`1(τ)f(x(τ)) dτ =
1

δx

∫ 1

0

`1(τ) (F ◦ x)′ (τ) dτ

=
1

δx

([
`1(τ)(F ◦ x)(τ)

]1
0
−
∫ 1

0

(F ◦ x) (τ) dτ

)

=
1

δx

(
F (x1) + F (x0)

2
− F0(x)

)
.

Finally, when δx = 0, one finds

f1(x) =

∫ 1

0

`1(τ)f(x̄) dτ = f(x̄)

∫ 1

0

`1(τ) dτ = 0.

B. LINEAR DIFFERENTIAL COMPONENTS

When ∇H(x) = Wx with state ẋ(τ) ∈ P1 and coefficients ẋ
expressed in the orthonormal Legendre basis {Li}, the projected
gradient is

∇H(x0, ẋ) = W ⊗
([

x0
0

]
+ h

[
1/2 −

√
3/6√

3/6 0

]
ẋ

)
.

For ẋ(τ) ∈ P0 it reduces to the midpoint integration rule

∇H(x0, ẋ) = W

(
x0 +

h

2
ẋ

)
.
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Figure 4: (Pseudo) Arc-length parametrization of hard clipping resistor and anti-parallel Shockley diodes.
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Figure 5: Diode Clipper circuit: From the schematic (a) Kirchhoff laws immediately yield the bond-graph (b) which can be reduced to the
bond-graph c). Using the Graph incidence matrix d), one obtains the Kirchhoff-Dirac structure e). Elimination of the node voltages yields
the reduced Dirac structure f).
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Figure 6: Conservative LCLC circuit (a single cell of a transmission line). There is an apparent computational causality conflict shown
in red on subfigure f): the loop current can either be controlled by L1 or L2 but not by both. The circuit has thus an implicit constraint
IL1(φ1) = IL2(φ2). The inductor L1 is said to have a differential causality since vL1 = φ̇1, whereas C1, C2, L2 are said to have an
integral causality.
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