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Abstract 
Background: Multi-drug resistant (MDR) bacteria are a major health concern. In this 

retrospective study, a rule-based classification algorithm, MOCA-I (Multi-Objective 

Classification Algorithm for Imbalanced data) is used to identify hospitalized patients at risk 

of testing positive for multidrug-resistant (MDR) bacteria, including Methicillin-resistant 

Staphylococcus aureus (MRSA), before or during their stay. 

Methods: Applied to a data set of 48,945 hospital stays (including known cases of carriage) 

with up to 16,325 attributes per stay, MOCA-I generated alert rules for risk of carriage or 

infection. A risk score was then computed from each stay according to the triggered rules. 

Recall and precision curves were plotted. 

Results: The classification can be focused on specifically detecting high risk of having a 

positive test, or identifying large numbers of at-risk patients by modulating the risk score cut-

off level. For a risk score above 0.85, recall (sensitivity) is 62% with 69% precision 

(confidence) for MDR bacteria, recall is 58% with 88% precision for MRSA. In addition, 

MOCA-I identifies 38 and 21 cases of previously unknown MDR and MRSA respectively. 

Conclusions: MOCA-I generates medically pertinent alert rules. This classification algorithm 

can be used to detect patients with high risk of testing positive to MDR bacteria (including 

MRSA). Classification can be modulated by appropriately setting the risk score cut-off level 

to favor specific detection of small numbers of patients at very high risk or identification of 

large numbers of patients at risk. MOCA-I can thus contribute to more adapted treatments and 

preventive measures from admission, depending on the clinical setting or management 

strategy. 

  



1. Introduction  
Multi-drug resistant (MDR) bacteria, including methicillin-resistant Staphylococcus aureus 

(MRSA), are a major health concern because MDR infections are very difficult to treat and 

can have significant medical impact, potentially leading to a fatal outcome if not treated 

appropriately. It is thus crucial to limit the diffusion of MDR bacteria. In hospital, this means 

identifying patients who are carriers or infected with MDR bacteria so precautionary 

measures can be instituted [1] from admission. 

In hospital, the infection control (IC) team receives information about MDR status from many 

sources and is responsible for ensuring that colonized or infected patients receive adapted 

care. For instance, the hospital bacteriology laboratory may alert the IC team whenever a test 

sample is positive for MDR bacteria. This enables the team to identify large numbers of MDR 

patients but misses others because such tests are not always ordered. Patients who had a 

positive test before admission might also be missed. Care units complete initial screening for 

MDR and inform the IC team using alert systems that recall available data on current and 

prior history of MDR colonization or infection. 

Different expert groups have proposed specific screening rules for hospital patients, e.g. the 

alert system described for MRSA by Evans et al. [2]. Data mining techniques can also be used 

to generate alert rules automatically. There has been a large volume of work dedicated to 

medical data mining [3], including identification of patients at risk of contagious infection [4] 

or risks factors for MDR or MRSA harbouring [5–8]. In our case, we used MOCA-I (Multi-

Objective Classification Algorithm for Imbalanced data), a rule-based classification algorithm 

adapted to specificities of medical data [9]. First, MOCA-I is able to process binary or 

qualitative data (ordered or not) with more than 15,000 variables, when the previously 

presented approaches deal with a small number of variables (n≤50) [4–8]. This eliminates the 

need for data filtering and the risk of setting aside useful information. Secondly, an interesting 

feature of MOCA-I is its capacity to manage highly imbalanced data sets. According to the 

MDR 2014 report from RAISIN (French Nosocomial Infection Warning and Surveillance 

Investigation Network), the incidence density of MRSA is 0.27 per 1000 hospitalization days. 

This explains why many classical data mining algorithms fail [10]. Finally, MOCA-I is a 

white box classification algorithm, in opposition to state-of-the-art machine learning 

techniques such as Neural Networks and Random Forest. This is consistent with November 

2018 CCNE (French National Consultative Ethics Committee)’ recommendations about AI 

and health, suggesting to use AI approaches that the care team can criticize or challenge [11]. 

However new approaches started to emerge recently [12] that allows to explain the decision 

given by black-box models, that could be very useful in the future. 

The approach proposed in the present work is also novel in that it assigns a risk score to each 

patient. This score can then be used to adapt the number of patient files to investigate as a 

function of available resources and the probability of detecting MDR carriage or infection. 

The main purpose of the present work is to apply MOCA-I to a large-volume real-life data set 

in order to assess its capacity to identify patients at risk of testing positive to MDR. A 

secondary objective is to determine the medical pertinence of the alert rules and the ranking 

generated by the system. Two use cases are envisaged for the rules obtained. Retrospectively 

to identify coding errors or missed patients. Prospectively to create a questionnaire with 

relevant questions to ask incoming patients. 



2. Materials and Methods  
2.1. Data set 

2.1.1. Data set elaboration 

The data used for this retrospective study was obtained from the annual activity records of the 

750-bed Lille Catholic Hospitals (St-Philibert and St-Vincent-de-Paul hospitals, Lille - 

France) in 2013, which represents 48,945 hospital stays, all units combined. During this 

period, the IC (Infection Control) team identified 340 stays concerning patients who were 

tested positive for MDR before or during their stay, including 128 for MRSA. Our 

preliminary work focused on MRSA, which has long been used in France as a marker for 

nosocomial diseases. Seeing the promising results, we have extended to MDR requiring 

additional precautionary measures as recommended by the French Hospital Hygiene Society 

[13]: MRSA, enterobacteria BLSE, pseudomonas aeruginosa and acinetobacter baumannii. 

In all, up to 16,279 attributes were identified for each stay. However, the average number of 

recorded attributes per stay was 26.9. Possible attributes and their distribution are summarized 

in Table 1. They include ICD-10 codes [14] and risk factors widely described in the literature 

[5,6,15]. 

In addition to ICD 10 codes, the corresponding ICD hierarchy was recovered. For example, 

for a patient coded E10 – insulin-dependent diabetes, codes E10-E14 – diabetes mellitus and 

E00-E90 – endocrine, nutrition, and metabolic diseases were also attributed. We did the same 

for antibiotics with the corresponding hierarchy using ATC index1. We then added 

information relative to medical services: duration of stay in each unit and inter-unit referrals. 

Regarding antibiotics, we extracted those listed in the pharmacopeia of the corresponding 

hospital. When one of the antibiotics was mentioned for a patient using the drug’s proprietary 

name or the international non-proprietary name, or a close approximation thereof (e.g. 

amoxicilin instead of amoxicillin), it was added to the patient’s data set. If an antibiotic was 

found in a report or letter up to 6 months before the start of the stay, the number of days 

between this report and the first day of the stay was also added. Such reports were also 

searched to find elements indicating a patient’s poor nutritional status including specific 

words (undernutrition, poor nutritional status) or blood test results (albumin, CRP, pre-

albumin). 

We also used the patient’s address to identify nursing home residents. Specific terms using the 

name of specific nursing or retirement homes were taken to indicate the patient resided in a 

nursing home. The method described by Jaro-Winkler [16] to identify an address equivalent 

to a nursing home address was also applied.  

  

                                                           
1 WHO Collaborating Centre for Drug Statistics Methodology: http://www.whocc.no/atcdd/ 



Table 1. Possible attributes for each hospital stay. 

Data Number of possible attributes 

ICD-10 + ICD10 hierarchy 15,702 

For each hospital unit: number of days spent 

during stay 

81 

Inter-unit referral combinations 315 

Antibiotic mentioned in a pre-hospital 

report + antibiotic hierarchy 

87 

Antibiotic mentioned in a pre-hospital 

report during the 3 months before the stay + 

antibiotic hierarchy 

85 

Poor nutritional status 1 

Residence in a nursing home 1 

Calendar status : stay during holiday season, 

week-end, eve of public holiday,… 

7 

Total 16,279 

2.1.2. Dividing the dataset 

We followed the same protocol as Tandan et al. [17], we divided the data set into training 

data and test data to detect overfitting. Table 2 gives insights about the data set repartition. 

Two-thirds of the set, i.e. 32,192 stays included 235 stays involving known MDR patients 

of which 85 were MRSA. The other third of the data set, i.e. 16,753 stays included 105 

stays concerning MDR patients (43 MRSA patients).  

Table 2. Training and test data characteristics repartition 

Characteristics Training   Test    

  n(tra) % n(tst) % 

Total 32192   16753  

Age     

 <=21 7051 21,90% 3740 22,32% 

 22-64 14093 43,78% 7356 43,91% 

 >=65 11048 34,32% 5657 33,77% 

Carriage or infection status     

 MDR 235 0,73% 105 0,63% 

 MRSA 85 0,26% 43 0,26% 

Antibiotics     

 3 months before admission 3444 10,70% 1740 10,39% 

 During stay 3965 12,32% 2040 12,18% 

Other Informations     

 At least 1 stay >= 48 hours in 

the last 3 months 

4142 12,87% 2111 12,60% 

 Referral from nursing home 712 2,21% 339 2,02% 

 Poor nutritional status 1780 5,53% 942 5,62% 

Sex     

 Male 14632 45,45% 7581 45,25% 

 Female 17560 54,55% 9172 54,75% 

 

2.2. Rules generation and exploitation 



The process used to score risk by mining rules is illustrated in Figure 1. The process begins 

with the recording of 48,945 hospital stays, 340 of which were identified as MRSA, including 

128 for MRSA. Each stay was then enriched with the information items described in section 

2.1.1. As indicated in section 2.1.2, two-thirds of the data were used as training data to 

generate rules, one third was only used for evaluation and will be referred as test data. The 

classification algorithm – MOCA-I –produced 103 rules for predicting a risk of MDR positive 

test and 198 for MRSA. A score was attributed to each rule as a function of its performance 

level on training data (based on the F-measure corresponding to the mean recall and precision 

harmonic) [18]. Once evaluated, the rules generated were applied to both training data and 

test data. Stays that triggered at least one rule were considered at risk of a positive testing 

(407 stays for MDR and 200 for MRSA). At this step, the scoring system assigned a risk 

score to each stay as a function of the rules triggered. 

MOCA-I algorithm is stochastic: different runs could give different rules. We already 

assessed the robustness of MOCA-I in a previous work [9]. The objective here was to check if 

this robustness is maintained on a real use case. Results are therefore presented for 10 runs of 

MOCA-I.  



Figure 1. Scoring risk using existing stays and classification.  

 

 

2.3. Risk estimation 

The rules generated by MOCA-I may overlap, the mean being 6 rules triggered by stay for 

MDR carriage and 9 for MRSA carriage. When a single stay triggered several rules, a 

weighted score was generated as proposed by Zhang et al. [19]. Jaccard weighting that can be 

used to measure the degree of similarity between two rules as a function of the concerned 

populations, as suggested by Iglesia et al. [20], was applied. Thus stays triggering rules 

targeting almost the same population were assigned lower scores than stays triggering rules 

targeting different populations. 

2.4. Model Evaluation 

Several assessment criteria are used in the medical community [18] most using the number of 

true/false positives and true/false negatives. In this work, we will consider as positive a 

patient identified by MOCA-I at risk of testing positive to MDR or MRSA. The IC team 

retrospectively checked the files of patients detected by our approach. If they indicated that 

the patient was at risk of MDR or MRSA, the stay was counted as a true positive, if not the 

stay was counted as a false positive. 

Sometimes the IC team is not informed that a stay had a positive test to MDR or MRSA 

bacteria. Thus there is no way to determine with certainty the number of true negatives: the 

number of patient files to be checked would have been too large. Next, we experimentally 

determine a cut-off beyond which the gain in precision and recall is small compared to the 

number of patients identified. 

Consequently, we excluded assessment criteria based on true negatives, so specificity and 

ROC curve could not be retained. Conversely, the number of false positives could be 

determined with certainty above the cut-off value. 

Therefore, we evaluated model performance using 2 metrics. Recall is defined as the 

proportion of known cases identified by the system: true positives / (true positives + false 

negatives). Precision is defined as the proportion of cases identified by the system: true 

positives / (true positives + false positives). 

Since our approach assigns a risk score to certain stays, we can visualize the progression of 

recall and precision as a function of score. We can thus determine experimentally the cut-off 

level best suited to the detection of stays at risk. 



 

 

3. Results  
Figure 2 present respectively the recall and the precision as a function of the risk score for 

test sets, for both MDR and MRSA. Recall (respectively Precision) and the number of 

patients screened are plotted as a function the risk score. For a given score, patients above the 

cut-off level are considered at risk for MDR or MRSA. 

3.1. Recall 

Using the test data set, the yield is at best 72% recall for MDR. The plot shows that starting 

with a score slightly below 0.85, the gain in recall achieved by lowering the cut-off level is at 

best 10% despite the addition of a supplementary 100 patients screened as at risk.  

Consequently, the files of all patients whose score was ≥0.85, i.e. 380 patients (229 already 

known to the IC team and 151 new patients identified by the system), were reviewed. This 

cut-off corresponds to 62% recall with the test data. 

Recall is better for MDR than MRSA. At best, MRSA recall reaches 61%, with a 0.5 cut-off 

score. As a compromise, the files of patients with a predictive score ≥0.85, which 

corresponded to 58% MRSA recall, were reviewed. 

Figure 2. Precision (left panel) and Recall (right panel) on test (black lines for 10 runs) and 

number of identified patients (blue dashed lines for 10 runs) for hospital stays involving MDR 

(upper panel) or MRSA (lower panel). 



 

3.2. Precision 

For MDR precision is very high when the cut-off is ≥0.95, ranging from 80% to 100% with 

the test data. The lowest precision is 47%. 

For MRSA, precision declines less rapidly, by plateaus, with a first plateau at ≥90% for a 0.9 

cut-off score. A second plateau appears at 80% (cut-off score 0.7). 

3.3. Mean recall and mean precision by score cut-off 

The mean values for recall and precision are presented in Table 3 as a function of the cut-off 

scores determined from the plots in Figure 2. The number of new patients screened as at risk 

and the number of false positives are presented in the last two columns of Table 3. 

Table 3. Mean and standard deviation recall and precision for different cut-off scores, with the 

number of patients identified as at risk for MDR or MRSA. 

Risk 
Score 

cut-off 

Recall Precision Number of at risk patients identified 

training test training test Total Known New False 



positives 

MDR 

0.90 
69 

±0.89% 

62 

±0.50% 

75 

±1.54% 

71 

±1.66% 

352 

±9.8 

226 

±2.6 

35 

±1.7 

92 

±7.1 

0.85 
69 

±0.67% 

62 

±0.47% 

71 

±2.03% 

69 

±1.71% 

380 

±11.1 

228 

±2.1 

38 

±0.8 

113 

±9 

0.5 
72 

±0.20% 

67 

±1.07% 

60 

±1.08% 

59 

±1.05% 

463 

±9.4 

239 

±1.2 

39 

±0.3 

186 

±8.8 

0.2 
75 

±0.48% 

71 

±0.72% 

49 

±0.49% 

47 

±1.37% 

598 

±9.2 

251 

±1.2 

39 

±0 

308 

±8.5 

MRSA 

0.90 
70 

±1.06% 

58 

±0% 

89 

±1,26% 

88 

±0% 

116 

±3 

83 

±1.2 

20 

±0.8 

13 

±1.3 

0.85 
72 

±0.24% 

58 

±0% 

87 

±2.31% 

88 

±0% 

123 

±4.7 

86 

±1 

21 

±1.2 

16 

±2.7 

0.5 
84 

±0% 

61 

±0.99% 

69 

±2.27% 

64 

±2.44% 

184 

±6.7 

97 

±0.4 

27 

±0 

60 

±6.3 

0.25 
84 

±0.48% 

61 

±0.95% 

59 

±2.67% 

54 

±1.92% 

218 

±9.8 

97 

±0.8 

28 

±0 

93 

±9.2 

 

3.4. Alert rules 

Table 4 presents a selection of the 103 rules generated by the system for MDR and the 198 

rules generated for MRSA. The rules having a good precision or recall are presented, but also 

those containing interesting risk factors.  

Table 4. Selected rules generated by MOCA-I to detect risk of MDR and MRSA. 

Prediction Rule (as combination of factors) 
Precision Recall Precision Recall 

training test 

MDR 

U88 - Agent resistant to multiple 

antibiotics 

T80-T88 - Complications of surgical and 

medical care, not elsewhere classified 

Age > 75 

78.8% 8.6% 33,3% 0.95% 

U88 - Agent resistant to multiple 

antibiotics 

B95-B98 - Bacterial, viral and other 

infectious agents 

73.5% 38.9% 70,5% 29.5% 

B95-B98 - Bacterial, viral and other 

infectious agents  

Spent between 31 and 90 days in 

intensive care 

64.7% 4.7% 100% 4.8% 

L891 - Stage II decubitus ulcer 

Z290 - isolation 

38.9% 8.9% 25% 3.8% 

Found antibiotic of group ‘Carbapenems‘ 

(ATC J01DH)  in one medical report 

during the stay 

37.5% 10.2% 50% 11.4% 

Found antibiotic of group ‘imipenem and 

enzyme inhibitor ‘ (ATC J01DH51)  in 

one medical report during the stay 

34.1% 8% 47.4% 8.6% 

MRSA 

E43 - Unspecified severe protein-energy 

malnutrition  

J152 - Pneumonia due to staphylococcus  

U00-U99 - Codes for special purposes 

91.6% 12.9% 100% 4.7% 



J152 - Pneumonia due to staphylococcus 

U00-U99 - Codes for special purposes  

76.9% 15.6% 100% 11.6% 

U801 - Methicillin resistant agent 

Z290 – Isolation 

B95-B98 - Bacterial, viral and other 

infectious agents 

73.5% 47.6% 74.1% 46.5% 

U801 - Methicillin resistant agent  

Z290 – Isolation 

71.7% 51.6% 74.1% 46.5% 

U801 - Methicillin resistant agent 

E00-E90 - Endocrine, nutritional and 

metabolic diseases 

64.4% 43.7% 77.3% 39.5% 

 

 

4. Discussion  

These results demonstrate that with a cut-off of 0.85, MOCA-I recalls in average 62% of 

patients who have a positive test for MDR and 58% for MRSA. Moreover, it identifies 38 

other patients suspected of MDR or MRSA (21) not known to the IC team. With a high cut-

off (0.9) the screened patients are relevant since 71% (mean precision on test in Table 3) of 

the identified MDR patients had a positive test as 88% of the identified MRSA patients. 

Setting the cut-off score at 0.85 yields a new set of 380 suspected MDR patients and a new set 

of 124 suspected MRSA patients. These patients correspond to 0.78% and 0.25% of all 

hospital stays during the year under study. Lowering the cut-off gives 597 patients at risk for 

MDR (1.2% of stays) and 184 at risk for MRSA (0.38% of stays). The risk score cut-off can 

be modulated to adapt the number of suspected patients to the proposed care or prevention 

strategy being proposed. Limiting the number of suspected patients enables the 

implementation of costly measures, e.g. nasal and rectal screening or complementary contact 

precautions from admission, while awaiting laboratory results. 

The system does not appear to be particularly susceptible to overfitting, despite a very slight 

increase in MRSA recall for lower cut-off levels (<0.80). Regarding the rules generated, it 

can be seen that certain rules yield higher results with the test data than with the training data, 

which would suggest only modest overfitting. For robustness, some runs yield 5%-10% 

variation in precision depending on the cut-off level. An interesting perspective would be to 

study whether a combination of the results of several runs (5 or 10) would be more efficient. 

It seems to be easier to identify MRSA than MDR. Our hypothesis is that bacteria may be 

resistant to a common set of antibiotics yet be quite different, exhibiting different patterns of 

drug resistance.  Moreover, the pathogenic effect of MDR bacteria can be quite variable, 

inducing, unlike MRSA infection or colonization, a wide range of clinical effects. This 

produces a complex data set that complexifies rule generation. 

4.1. Identified risk factors 

Risk factors can be extracted from the rules. Most of the risk factors thus identified are 

directly related to MDR or MRSA infections, e.g. bacteria codes, resistance codes, codes 

indicating isolation. Other identified risk factors are pertinent for IC practices. For instance, if 

a patient file indicates that carbapenems were used, the IC team makes a presumption of 

MDR because these drugs are used for the treatment of MDR infections, notably due to 



extended spectrum beta-lactamase producing Enterobactericeace. Hospitalization in an 

intensive care unit for 31-90 days or the presence of a pressure sore are also recognized risk 

factors because they are observed in patients who are bedridden for long periods of time, a 

condition favouring bacterial infection and colonization [15,21]. The rules also identify 

metabolic diseases as a risk factor. These diseases group together factors such as diabetes 

mellitus for MRSA [8,15] or other factors such as poor nutritional status or obesity, for which 

we have not found a literature reference. 

Certain risk factors are related to coding practices. Several rules do not specifically contain 

the code for MRSA (ICD-10 B956) but have neighboring codes (ICD-10 B95 to B98) that 

correspond to other bacteria. MOCA-I focused more on the neighboring codes because they 

produced more pertinent results. This would suggest that the coding process is not necessarily 

straightforward for practitioners who may often choose a code for bacteria other than MRSA. 

It is also noteworthy that certain candidate risk factors are not present in the rules, e.g. use of 

antibiotics before the hospital stay, referral from a nursing home, or inter-unit referrals. For 

use of antibiotics before the stay, this might involve the data source (prior medical reports). A 

prior medical stay is found for only 10% of the patients in the full data set. After reviewing a 

sample of the data we found that the discharge report does not always mention all treatments 

delivered during the stay, especially if terminated before discharge. This attribute is thus 

probably not very useful for data mining. Regarding the other attributes selected at the 

beginning of the study such as referral from a nursing home, it could be caused by insufficient 

data for use in rules, or insufficient impact on MDR or MRSA for selection by the data 

mining algorithm. 

This work opens up interesting new perspectives. The first would be to benefit from the 

capacity of MOCA-I data mining to deal with large numbers of columns to be coupled with a 

data extraction technique applied to medical reports. With MOCA-I, it would not be necessary 

to target only a few interesting medical concepts to be extracted from medical reports as 

proposed in similar work [4] since all the concepts could be screened. An extraction tool 

could be applied to reports written in French : the work of Tvardik et al. gives interesting 

results for the detection of hospital acquired infections in medical texts [22]. Another 

perspective would be to use an algorithm such as MOSC (Multi-Objective Sequence 

Classifier) [23]. Finally, some data mining work devoted to the detection of drug adverse 

effects has shown that the models obtained are site-dependent [24]. It would thus be 

interesting to determine whether the rules generated here would be valid in another institution. 

5. Conclusions  

MOCA-I is a classification algorithm capable of detecting hospital patients at risk of testing 

positive for MDR or MRSA bacteria. Applied to the annual data issuing from 48,945 hospital 

stays in our institution, MOCA-I identified a majority of known carriers or infected plus 39 

supplementary patients for MDR 27 for MRSA. The screening rules generated by the system 

are medically pertinent. MOCA-I can be used at hospital admission to screen for additional 

patients at high risk of having a positive test for MDR, allowing the implementation of 

adapted treatments and preventive measures. 
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Summary table  
What was already know on the topic What this study added to our knowledge 

• MDR and MRSA bacteria carriage or 

infection need adapted care 

• MOCA-I is efficient for machine learning 

on medical data (imbalance, 

uncertainty, volumetry : high number of 

columns) 

• MOCA-I is also efficient in detecting 

hospitalized patients at risk to have a 

positive test to MDR bacteria or MRSA  

• Rules can be combined to obtain a 

score and rank patients according to 

their risk 

• The care team can use the score to 

adapt the number of patients to review 

in priority 
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