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José Correa∗ Paul Dütting† Felix Fischer‡ Kevin Schewior§ Bruno Ziliotto¶
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Abstract

The model of streaming algorithms is motivated by the increasingly common situation in which the
sheer amount of available data limits the ways in which the data can be accessed. Streaming algorithms
are typically allowed a single pass over the data and can only store a sublinear fraction of the data at
any time. We initiate the study of classic online selection problems in a streaming model where the data
stream consists of two parts: historical data points that an algorithm can use to learn something about
the input; and data points from which a selection can be made. Both types of data points are i.i.d. draws
from an unknown distribution. We consider the two canonical objectives for online selection—maximizing
the probability of selecting the maximum and maximizing the expected value of the selection—and provide
the first performance guarantees for both these objectives in the streaming model.

1 Introduction
In an online selection problem, items arrive sequentially and have to be accepted or rejected at the time of
their arrival and thus with partial information about their value. Online selection has both a substantial
theory that goes back more than half a century [e.g., 12, 15] and a wide range of contemporary applications.
The latter can for example be found in online retail, where consumers arrive over time and items must be
priced appropriately, on online platforms for ride sharing or matching, and in advertising auctions with
dynamic reserve prices.

The most fundamental problems in online selection are the secretary problem and the prophet problem.
In both problems a decision maker is presented with a sequence of numerical values, and for each value has
to make an irreversible decision to accept or reject it. Only one value can be accepted, and a value that has
been rejected is lost forever. In the secretary problem the objective is to maximize the probability of selecting
the largest value of the entire sequence, while in the prophet problem it is to maximize the ratio between
the expected value of the selection and the expected value of the maximum. Both problems have been
studied extensively under the assumption that values are drawn independently from a known distribution,
and respective optimal performance guarantees of 0.580 [15] and 0.745 [19, 11] are known.

In practice, full knowledge of underlying distributions is of course an unrealistic assumption. Instead,
relevant information will often be available in the form of historical data, from which a distribution could
potentially be learned. Recent research has thus considered variants of the secretary and prophet problems
where values are i.i.d. draws from an unknown distribution and the decision maker has access to additional
samples from that distribution [9, 27, 10, 20]. An important additional characteristic shared by many current
applications is that the sheer amount of historical data may make it impossible or at least impractical to
refer explicitly to all such data, or indeed to store this data in perpetuity. And even in cases where complete
historical data sets are a technological possibility, laws such as the General Data Protection Regulation may
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only allow aggregate data to be stored. These restrictions motivate the study of online selection problems in
the streaming model of computation.

In the streaming model, the problem input cannot be accessed in an arbitrary way but instead arrives
sequentially as a stream [e.g., 3, 14]. Algorithms are allowed only a small number of passes over the stream
and in addition are subject to a space constraint. The amount of available space is typically assumed to be
logarithmic both in the length of the stream and the size of the domain of values in the stream. A requirement
to pass the stream of data only a small number of times, indeed to pass it only once, is of course very natural
in online selection. Restrictions on the amount of space available to store information about past data have
to our knowledge not previously been considered.

1.1 Results
We study the two canonical problems of online selection, the secretary and the prophet problem, in a streaming
model and provide the first performance guarantees for both.

For the prophet problem, we consider a specific natural class of algorithms and show that they can be
implemented with arbitrarily small loss in the streaming model. Algorithms from the class, which we term
MRS algorithms, are characterized by their use of maxima of random subsets of samples and past values as a
threshold for acceptance of the current value. They can be defined in terms of a function f such that f(i) is
the size of the subset considered at step i.

Given an MRS algorithm with performance guarantee α, we construct a streaming algorithm that uses
the same thresholds as that MRS algorithm at Oε(1) “supporting” values by constructing the random subsets
on the fly. It then continues to use each of these thresholds until the next supporting value. By carefully
choosing which values are supporting values we guarantee a notion of uniform convergence between the
streaming algorithm, which can also be viewed as a different MRS algorithm, and the original MRS algorithm.
This turns out to be enough to achieve a guarantee of α−

√
ε.

Two particular MRS algorithms were studied previously by Correa et al. [9] and by Kaplan et al. [20],
and our result translates the performance guarantees of these algorithms to the streaming model. We will,
however, determine the optimal MRS algorithm and obtain stronger guarantees. To this end we cast the
choice of the function f that determines the sizes of the random subsets as a problem of optimal control, and
solve the control problem using tools from variational calculus.

We specifically derive the optimal MRS algorithm that is not constrained by the number of samples it can
access. This algorithm achieves a performance guarantee of approximately 0.653 and can be realized with
around 1.443 · n samples, where n is the number of values. We then derive lower bounds on the performance
of MRS algorithms with access to β · n samples where β < 1.443. We conjecture these lower bounds to be
tight up to errors in the numerical approximation. Finally we analyze a variant of MRS algorithms allowed
to skip values unconditionally, and show that the optimal such algorithm is in fact optimal over the class of
all algorithms when there are at most n/(e− 1) ≈ 0.58 · n samples.

Our results for the prophet problem also apply to the model of Correa et al. [9] and Kaplan et al. [20],
which is not subject to the restrictions of streaming, and improve on the best known results for this model.

For the secretary problem, we provide an implementation of an algorithm due to Correa et al. [10] in the
streaming model. The algorithm uses as thresholds the maxima of a sliding window containing samples and
values, and it turns out that only a small number of samples and values need to be stored to determine these
thresholds. We thus translate the performance guarantee of the algorithm, which is equal to around 0.452
when the numbers of samples and values are the same, to the streaming model.

All aforementioned results apply to i.i.d. draws from an unknown distribution, which are closely related
to the concept of exchangeability.1 Indeed, De Finetti’s Theorem establishes that infinite sequences of
exchangeable random variables are mixtures of i.i.d. random variables. However, for finite sequences,
exchangeability defines a larger class. Our final result, given in the appendix, uses a maximin argument to
establish a tight bound of 1/e for the prophet inequality problem for sequences of exchangeable random
variables with a known joint distribution. This resolves a question of Hill and Kertz [18] that had been open
for quite some time.

1A sequence of random variables is exchangeable if its joint distribution is invariant under finite permutations.
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Figure 1: Visualization of the lower bound established in this paper for varying β (solid, red), and comparison
with the parametric upper bound (dashed black) and parametric lower bound (solid black) of Correa et al.
[9] as well as the lower bounds of Kaplan et al. [20] (blue) and Correa et al. [10] (violet).

1.2 Related Work
Prophets and Secretaries With and Without Samples. The classic work of Dynkin [12] establishes
a performance guarantee of 1/e for the secretary problem. The result in fact applies to values that are
chosen by an adversary, as long as they are presented in random order. Perhaps less known is a beautiful
impossibility result which shows that the guarantee of 1/e is best possible even if values are i.i.d. draws from
an unknown distribution [6, 13].

Recent work by Correa et al. [9] shows that for i.i.d. draws from an unknown distribution, the same tight
bound of 1/e also applies to the prophet problem. The impossibility result in fact applies to any algorithm
with access to o(n) samples. The situation changes with access to Ω(n) samples, and Correa et al. [9] give an
algorithm that achieves improved guarantees with β · n samples for β > 0. They also gave a lower bound for
algorithms that have access to β · n samples that is equal to 1/e for β ≤ 1/e and then increases linearly to
1− 1/e ≈ 0.632 at β = 1; and a parametric upper bound that is equal to 1+β

e for β ≤ 1/(e− 1) and equal to
−β · ln(β/(1 + β)) for β ≥ 1/(e− 1). Note that this yields an upper bound of ln(2) ≈ 0.693 at β = 1.

Kaplan et al. [20] improved the lower bound for β < 1 by proving a bound of e−e
−β

for β . 0.567 and
β · (1− ln(β)− e−β) for 0.567 . β ≤ 1. Note that this matches the previously known bound of 1− 1/e at
β = 1. Moreover, except for β = 0 this lower bound does not match the parametric upper bound of [9]. In
parallel work, Correa et al. [10] provided an improved bound of ≈ 0.635 for β = 1. The results of Kaplan
et al. [20] and Correa et al. [10] actually apply to slightly more general models than the unknown i.i.d. model,
but they do not show whether their algorithms are implementable as streaming algorithms.

Our bounds improve on the state-of-the-art approximation guarantees for all β, and also show that
these bounds are achievable in the streaming model. Specifically, Theorem 3 provides a tight answer for
β ≤ 1/(e− 1) while Theorem 1 and Theorem 2 provide improved bounds for 1/(e− 1) < β . 1.443. This
improvement is bigger for larger β. For the particularly interesting case of β = 1 Theorem 2 shows a lower
bound of 0.649. For a visualization of the various bounds see Figure 1.

Correa et al. [9] also showed that with O(n2) samples it is possible to get arbitrarily close to 0.745,
which is the best one can achieve with full knowledge of the underlying distribution. Subsequent work by
Rubinstein et al. [27] improved this result by reducing the number samples that are required for this to O(n).
Tight bounds are known also for the case of a known distribution, equal to around 0.58 for the secretary
problem [15] and around 0.745 for the prophet problem [19, 21, 1, 11]. However, all these algorithms are
based on quantiles or empirical quantiles of the distribution, and strong communication-complexity lower
bounds for quantile estimation [16] suggest that they cannot be implemented in the streaming model.
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An interesting direction for future work would be to prove a formal separation between performance guar-
antees achieveable in the streaming model, and performance guarantees achieveable without this requirement.

Relevant Problems in the Streaming Literature. Algorithms for the secretary and prophet problems
typically rely on aggregate statistics such as the median or mean of the distribution, or on more fine-grained
information such as quantiles. A classic paper by West [29] gives an efficient algorithm for updating the mean
and variance. The aforementioned paper by Guha and McGregor [16], on the other hand, gives lower bounds
for the estimation of median and quantiles.

Our implementation of MRS algorithms shares certain characteristics with reservoir sampling and its
variants [e.g., 28, 23], where the goal is to produce at any point in time a random subset of size k of the values
seen so far. We require subsets of varying size at certain points in time, as well as a better space complexity.

Algorithms from Data. We optimize over a class of algorithms that has limited information about
the problem at hand. Related problems have been considered under the umbrella of application-specific
algorithm selection and data-driven algorithm design [e.g., 17, 2, 4, 5], in particular in the context of designing
revenue-optimal auctions from samples [e.g., 7, 25].

2 Preliminaries
Denote by N the set of positive integers and let N0 = N ∪ {0}. For i ∈ N, let [i] = {1, . . . , i} and Si the set of
permutations of [i].

Online Selection Problems. We are given k samples S1, . . . , Sk and n values X1, . . . , Xn. Both samples
and values are obtained as iid draws from an unknown distribution F . The samples are presented up front,
the values are revealed one by one. Our goal is to select one of the values immediately and irrevocably when
it is revealed.

Stopping Rules. Our objective can be formalized as the search for a stopping rule that for each i ∈ [n]
decides whether to select Xi based only on S1, . . . , Sk and X1, . . . , Xi. Such a stopping rule can be expressed
as a family r of functions r1, . . . , rn, where ri : Rk+i

+ → [0, 1] for all i = 1, . . . , n. Here, for any s ∈ Rk+
and x ∈ Rn+, ri(s1 . . . , sk, x1, . . . , xi) is the probability of stopping at Xi when we have observed samples
S1 = s1 . . . , S = sk and values X1 = x1, . . . , Xi = xi and have not stopped at X1, . . . , Xi−1. The stopping
time τ of such a stopping rule r is the random variable with support {1, . . . , n}∪{∞} such that for all s ∈ Rk+
and x ∈ Rn+,

Pr [τ=i | S1=s1,..., Sk=sk, X1=x1,..., Xn=xn] = ri(s1,..., sk, x1,..., xi)
i−1∏
j=1

(
1 − rj(s1,..., sk, x1,..., xj)

)
.

Prophet and Secretary Objectives. We consider stopping rules for two different objectives. In the
prophet setting we are interested in the expected value E [Xτ ] of the variable at which a stopping rule
stops, where we use the convention that X∞ = 0, and will measure its performance relative to the expected
maximum E [max{X1, . . . , Xn}] of the random variables X1, . . . , Xn. We will say that a stopping rule
achieves approximation guarantee α, for α ≤ 1, if for any distribution E [Xτ ] ≥ αE [max{X1, . . . , Xn}]. In
the secretary setting we are interested in maximizing the probability α = Pr [Xτ = maxiXi] with which the
stopping rule stops on a maximum of the sequence of random variables.

Streaming Model. We are interested specifically in stopping rules that can be implemented as streaming
algorithms. We assume that the stream consists of the samples S1, . . . , Sk followed by the values X1, . . . , Xn.
An algorithm is allowed a single pass over the sequence, and its space complexity is required to be logarithmic
both in the length of the sequence, which will in fact be O(n), and in max{S1, . . . , Sk, X1, . . . , Xn}.
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For ease of exposition we will assume continuity of distributions in proving lower bounds and use discrete
distributions to prove upper bounds. All results can be shown to hold in general by standard arguments, to
break ties among random variables and to approximate a discrete distribution by a continuous one.

3 Prophet Objective
We start by considering the prophet objective. Let k ∈ N and consider a function f : [n] → N where
f(i) ≤ k + i− 1 for all i ∈ [n]. The maximum of random subset (MRS) algorithm based on f proceeds as
follows: given that it arrives at random variable Xi, it selects a uniformly random subset Ri = {R1

i , . . . , R
f(i)
i }

of size f(i) from the set {S1, . . . , Sk, X1, . . . , Xi−1} of k samples and the first i− 1 random variables and sets
maxRi as threshold for Xi.

3.1 Exact Analysis of MRS Algorithms
Theorem 1. Consider a sequence of n random variables X1, . . . , Xn drawn independently from an unknown
distribution. Then, as n→∞, the best MRS algorithm with an unconstrained number k of samples achieves
an approximation guarantee of α ≈ 0.6534 and requires k ≈ 1.4434 · n samples.

3.1.1 Structural Lemma

Lemma 1. Consider some MRS algorithm based on f : [n]→ N and i ∈ [n]. Conditioned on the fact that
the algorithm arrives at step i, the distribution of the set {S1, . . . , Sk, X1, . . . , Xi−1} of values seen before step
i is identical to the distribution of a set of k + i− 1 fresh samples from F .

Proof. We show the claim by induction on i, and start by observing that it clearly holds for i = 1. Now
suppose the claim holds for i = 1, . . . , i? − 1. Then, conditioned on the fact that the algorithm arrives at step
i? − 1, the set T = {S1, . . . , Sk, X1, . . . , Xi?−2} has the same distribution as the one of a set of k + i? − 2
fresh samples, so the distribution of the set T ′ = {S1, . . . , Sk, X1, . . . , Xi?−1} is the same as the one of a set
of k + i? − 1 fresh samples. We will argue that the decision of the algorithm to stop at Xi?−1 or to continue
does not depend on the realization of T ′, which implies the claim.

Since F is continuous, we may assume that all the values S1, . . . , Sk, X1, . . . , Xi?−1 are distinct, so that
each of these values can be identified with a unique rank in [k+ i?− 1]. By definition, the decision of an MRS
algorithm to stop or continue only depends on the ranks of the values R1

i?−1, . . . , R
f(i?−1)
i?−1 , Xi?−1. Since the

distribution of T , from which R1
i?−1, . . . , R

f(i?−1)
i?−1 are drawn, is that of k + i? − 1 fresh samples, and since

Xi?−1 is a fresh sample, those ranks are f(i? − 1) + 1 uniform draws without replacement from [k + i? − 1]
and thus independent of the realization of T ′.

3.1.2 Formulation as a Control Problem

Fix n ∈ N, and consider an MRS algorithm given by the function f : [n]→ N. We can construct a continuous
function g : [0, 1]→ R+ from f by setting g(i/n) := f(i)/n for all i ∈ [n] and linearly interpolating between
these values. Similarly, if we were only given a continuous function g in the first place, we could obtain f from
g by setting f(i) := dg(i/n) · ne for all i ∈ [n]. In what follows we will compute the optimal such function g
and thereby the optimal MRS algorithm for all values of n. To do so, consider the MRS algorithm A defined
by g, a sequence X1, . . . , Xn of random variables drawn i.i.d. from a distribution F , and denote the stopping
time of the MRS algorithm on this sequence by τ . Then

E [Xτ ] =

n∑
i=1

Pr [A arrives at Xi] · Pr [A accepts Xi | A arrives at Xi] · E [Xi | A accepts Xi]

=

n∑
i=1

i−1∏
j=1

(
1− 1

dg( jn ) · ne+ 1

)
1

dg( in )ne+ 1

∫ ∞
0

(
1− F dg( in )·ne+1(x)

)
dx
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=

n∑
i=1

exp
(i−1∑
j=1

ln
(

1− 1

dg( jn ) · ne+ 1

)) 1

dg( in ) · ne+ 1

∫ ∞
0

(
1− F dg( in )·ne+1(x)

)
dx

=

n∑
i=1

exp
(
−
i−1∑
j=1

( 1

dg( jn ) · ne+ 1
−O

( 1

n2

))) 1

dg( in )ne+ 1

∫ ∞
0

(
1− F dg( in )·ne+1(x)

)
dx

= e−O( 1
n )

n∑
i=1

exp
(
−
i−1∑
j=1

1

dg( jn ) · ne+ 1

) 1

dg( in )ne+ 1

∫ ∞
0

(
1− F dg( in )·ne+1(x)

)
dx,

where for the fourth equality we have used that the Laurent series of ln(1 − 1
x ) − (− 1

x ) at x = ∞ is∑∞
i=2−

x−i

i = −O( 1
x2 ). Thus, for n→∞,

E [Xτ ] =

∫ 1

0

exp

(
−
∫ y

0

1

g(z)
dz

)
· 1

g(y)
·
∫ ∞

0

(
1− F g(y)·n(x)

)
dx dy

=

∫ ∞
0

∫ 1

0

exp

(
−
∫ y

0

1

g(z)
dz

)
· 1

g(y)
·
(

1− F g(y)·n(x)
)

dy dx,

where we exchange the order of integration in the second step using Fubini’s theorem, which may be applied,
because the integrand is clearly positive.

Our goal is to find the maximum value α ∈ R+ for which E [Xτ ] ≥ α ·E [max{X1, . . . , Xn}] or, equivalently,∫ ∞
0

∫ 1

0

exp

(
−
∫ y

0

1

g(z)
dz

)
· 1

g(y)
·
(

1− F g(y)·n(x)
)

dy dx ≥
∫ ∞

0

α · (1− Fn(x)) dx. (1)

A sufficient condition for the latter is that for all a ∈ [0, 1],∫ 1

0

exp

(
−
∫ y

0

1

g(z)
dz

)
· 1

g(y)
·
(

1− ag(y)
)

dy ≥ α · (1− a), (2)

and this condition is in fact also necessary. Indeed, if (2) is violated for some α and a, then (1) is violated for
α and the cumulative distribution function F of a random variable that has value 0 with probability a and
value 1 with probability (1− a). This choice of F makes the integrand on the right-hand side of (1) greater
than the integrand on the left-hand side for all x for which the integrands are non-zero, i.e., for all x < 1,
thus violating (1).

To determine the approximation ratio of the MRS algorithm A we can thus focus on finding the maximum
value α such that (2) is satisfied for all a. Since (2) is trivially satisfied for a = 1, we are interested in the
optimum value of the control problem

P = sup
g:[0,1]→R+

inf
a∈[0,1)

{∫ 1

0

exp

(
−
∫ y

0

1

g(z)
dz

)
· 1− ag(y)

g(y) · (1− a)
dy

}

= sup
h:[0,1]→R+,
h(0)=0

inf
a∈[0,1)

{∫ 1

0

e−h(y) · h′(y) · 1− a
1

h′(y)

1− a
dy

}
, (3)

where the second equality can be seen to hold by choosing h : [0, 1]→ R+ such that h(y) =
∫ y

0
1
g(z) dz for all

y ∈ [0, 1], which implies that g(y) = 1
h′(y) .

3.1.3 Solving the Control Problem

We solve the control problem P by giving matching upper and lower bounds. For the upper bound we swap
supremum and infimum and apply the Euler–Lagrange equation to the supremum, which is now the inner
problem, to write any optimal function h in terms of a and a single parameter µ. We then guess the value of a
at which the infimum is attained and solve the remaining supremum over µ. For the lower bound we replace h
by its parametric form, guess the values of the parameters at which the supremum is attained, and solve the
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remaining infimum over a. In both cases we obtain the same value of approximately 0.6534. Inspection of the
optimal function h reveals that it is non-increasing, which implies that g(0) · n = 1

h′(0)n ≈ 1.4434 · n samples
are sufficient to implement the optimal MRS algorithm.

Upper Bound. By the max-min inequality,

P ≤ inf
a∈[0,1)

sup
h:[0,1]→R+,
h(0)=0

{∫ 1

0

e−h(y) · h′(y) · 1− a
1

h′(y)

1− a
dy

}
. (4)

Now the inner problem can be written as

sup
h:[0,1]→R+,
h(0)=0

∫ 1

0

L(y, h(y), h′(y)) dy,

where

L(y, h(y), h′(y)) = e−h(y) · h′(y) · 1− a
1

h′(y)

1− a
.

A necessary condition for optimality of h is the Euler–Lagrange equation

∂

∂h
L(y, h(y), h′(y))− d

dy

∂

∂h′
L(y, h(y), h′(y)) = 0, (5)

where

∂

∂h
L(y, h(y), h′(y)) = −e−h(y) · h′(y) · 1− a

1
h′(y)

1− a
(6)

and

d

dy

∂

∂h′
L(y, h(y), h′(y)) =− e−h(y) · h′(y) · 1− a

1
h′(y)

1− a
+ e−h(y) · ln a · a

1
h′(y) · h′′(y)

(1− a) · (h′(y))2

+ e−h(y) · (h′′(y)− (h′(y))2) · ln a · a
1

h′(y)

(1− a) · (h′(y))2

+ e−h(y) · h′(y) ·
(
− (ln(a))2a

1
h′(y)h′′(y)

(1− a)(h′(y))4
− 2 ln(a)a

1
h′(y)h′′(y)

(1− a)(h′(y))3

)
. (7)

Substitution of (6) and (7) into (5) and simplification yields that

−e−h(y) ln(a)a
1

h′(y)

1− a
− e−h(y) (ln(a))2a

1
h′(y)h′′(y)

(1− a)(h′(y))3
= 0.

Since ex > 0 for all x and 1− a > 0 for a ∈ [0, 1), an equivalent requirement is that

− h′′(y)

(h′(y))3
=

1

ln(a)

with the boundary condition h(0) = 0.
Solving this second-order nonlinear ordinary differential equation yields two classes of parametric solutions

h1(y) =
√
κ− µy −

√
κ, h′2(y) = − µ

2
√
κ− µy

, µ = −2 ln(a) ≥ 0, κ ≥ µ, and

h2(y) =
√
κ−
√
κ− µy, h′2(y) = − µ

2
√
κ− µy

, µ = −2 ln(a) ≥ 0, κ ≥ µ,

7



where only the latter guarantees that g(y) = 1/h′(y) ≥ 0.
Let µ̄ ≈ 1.9202 be the unique value such that

1− e
√
µ̄

√
µ̄

+
e
µ̄
2

√
µ̄

= 0,

and ā = e−
µ̄
2 ≈ 0.3829.

By setting h = h2 and a = ā in (4), and showing that the remaining supremum over κ is attained for κ = µ̄,
we conclude that

P ≤ e−
√
µ̄(1− e

√
µ̄ +
√
µ̄)

e−
µ̄
2 − 1

≈ 0.6534.

Lower Bound. By restricting the supremum in (3) to functions of the form h(y) =
√
µ−

√
µ · (1− y) for

some µ ∈ R+, which satisfy the boundary condition that h(0) = 0, we see that

P ≥ sup
µ∈R+

inf
a∈[0,1)

e−
√
µ

1− a
·
∫ 1

0

e
√
µ·(1−y) · µ ·

(
1− a

2
µ

√
µ·(1−y)

)
2 ·
√
µ · (1− y)

dy


= sup
µ∈R+

inf
a∈[0,1)

e−
√
µ

1− a
·

[
e
√
µ·(1−y)·(1+ 2 ln a

µ )

1 + 2 ln a
µ

− e
√
µ·(1−y)

]1

0


= sup
µ∈R+

inf
a∈[0,1)

{
e−
√
µ

1− a
·

(
1

1 + 2 ln a
µ

− 1− e
√
µ·(1+ 2 ln a

µ )

1 + 2 ln a
µ

+ e
√
µ

)}

= sup
µ∈R+

inf
b∈R+;
b/∈{0,1}

{
e−
√
µ

1− e−µb2
·
(

1

1− b
− 1− e

√
µ·(1−b)

1− b
+ e
√
µ

)}
,

where the last equality can be seen to hold by setting b = − 2 ln a
µ and a = e−

µb
2 .

By setting µ = µ̄ in the last expression and showing that the remaining infimum over b is attained for
b→ 1, we conclude that

P ≥ e−
√
µ̄(1− e

√
µ̄ +
√
µ̄)

e−
µ̄
2 − 1

,

which equals the upper bound.

The resulting optimal choice of g, given by g(y) = 1/h′(y) = 2
√
µ̄− µ̄y/µ̄, is non-increasing in y and

thus has a maximum value of g(0) = 2/
√
µ̄ ≈ 1.4434. This means that the optimal MRS algorithm can be

implemented with slightly fewer than 3n/2 samples.

3.2 MRS Algorithms with Constraints on the Number of Samples
Theorem 2. Consider a sequence of n random variables X1, . . . , Xn drawn independently from an unknown
distribution. A lower bound on the performance of MRS algorithms follows by considering MRS algorithms
that use g(y) = (β + t)

√
y−1
t−1 for some parameter t ∈ [0, 1] and minimizing (2) over a ∈ [0, 1]. For β = n this

yields an approximation ratio of α ≥ 0.6489 as n→∞.

Consider an MRS algorithm that has access to βn samples for some β < 2/
√
µ̄ ≈ 1.4434. This imposes

the constraint that g(y) ≤ β + y for all y ∈ [0, 1], and since the optimal MRS algorithm for the unconstrained
case uses more than βn samples the constraint must bind for some non-empty subset of [0, 1]. To obtain
a lower bound on the performance of the best MRS algorithm we may in fact assume that the constraint
binds on [0, t] for some t ∈ [0, 1], such that g(y) = β + y and h(y) =

∫ y
0

1/g(z) dz = ln(β + y)− ln(β) for all
y ∈ [0, t]. Proceeding as in Section 3.1.3, we can write the performance of the best MRS algorithm from the
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restricted class as a control problem

Q = sup
t∈[0,1],

h:[t,1]→R+,
h(t)=ln(β+t)

inf
a∈[0,1)


∫ t

0
β

(β+y)2 ·
(
1− aβ+y

)
dy +

∫ 1

t
e−h(y) · h′(y) ·

(
1− a

1
h′(y)

)
dy

1− a


= sup

t∈[0,1],
h:[t,1]→R+,
h(t)=ln(β+t)

inf
a∈[0,1)

{∫ t

0

β(1− aβ+y)

(β + y)2(1− a)
dy +

∫ 1

t

e−h(y) · h′(y) · 1− a
1

h′(y)

1− a
dy

}
.

Note that the objective is now a sum of two integrals. The first integral is constant with respect to h. The
second integral has the same integrand as the integral in problem P from Section 3.1.3, but it begins at t rather
than 0 and involves a function h that is subject to a different boundary condition, h(t) = ln(β + t)− ln(β)
instead of h(0) = 0. As our application of the Euler–Lagrange equation in Section 3.1.3 relied neither on
the limits of integration nor on the boundary condition we obtain the same differential equation as before,
−h′′(y)/(h′(y))3 = 1/ ln(a), but subject to the new boundary condition that h(t) = ln(β + t)− ln(β).

Since g(y) = 1/h′(y) for y ∈ (0, 1) and thus

g(y) · g′(y) =
((g(y))2)′

2
=

1

2

(
1

(h′(y))2

)′
= − h′′(y)

(h′(y))3

for y ≥ t, we can alternatively solve the first-order non-linear differential equation g(t) · g′(t) = 1/ ln(a). From
the requirement that g(y) ≥ 0 for all y we conclude that

g(y) =
√

2 ·

√
1

ln(a)
· y + κ

for some κ ≥ −1/ ln(a), and by choosing κ to satisfy the boundary condition that g(t) = β + t we obtain

g(y) =
√

2 ·

√
1

ln(a)
· y +

1

2

(
− 2

ln(a)
· t+ t2 + 2βt+ β2

)
.

In analogy to Section 3.1.3 we may derive a lower bound on the value of Q by considering the parametric
class of functions

g(y) =
√

2 ·
√
cy +

1

2
(−2ct+ t2 + 2βt+ β2),

where c ≤ 0, and we may in fact choose c = (β + t)2/(2(t− 1)) such that g(1) = 0 as before. Then

g(y) = (β + t)

√
y − 1

t− 1

and
h(y) = ln(β + t)− ln(β) +

2(y − 1)√
(y−1)(β+t)2

t−1

− 2(t− 1)√
(β + t)2

We can now substitute h into Q and solve the integrals to obtain a simpler control problem with a
supremum over t and an infimum over a. While we cannot solve this problem exactly, we may conjecture in
analogy to problem P that for the optimal choice of t the infimum over a is attained for a→ e2(t−1)/(β+1)2

.
We can then determine the value of t for which the conjectured infimum is smallest, which turns out to be
unique, and obtain a lower bound on Q and thus on the approximation guarantee of the best MRS algorithm
by substituting this value of t into the simplified control problem and solving the remaining minimization
problem over a.

Table 1 shows a selection of bounds obtained in this way for different values of β, along with the choice
of t that leads to each bound and the corresponding optimal choice of a. The lower bounds are also shown
graphically in Figure 1.
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β α ≥ t ≈ a ≈
1.4 0.653368 0.02550 0.38325
1.3 0.653280 0.08754 0.38756
1.2 0.652853 0.15519 0.39845
1.1 0.651654 0.23067 0.41942
1.0 0.648957 0.31759 0.45559
0.9 0.643563 0.42162 0.51560
0.8 0.633580 0.55160 0.61203
...

...
...

...

β α ≥ t ≈ a ≈
...

...
...

...
0.7 0.616281 0.72082 0.75831
0.6 0.588379 0.94979 0.95905
0.5 0.549306 0.99997 1.00000
0.4 0.501105 1.00000 1.00000
0.3 0.439901 1.00000 1.00000
0.2 0.358351 1.00000 1.00000
0.1 0.239789 1.00000 1.00000

Table 1: Lower bounds on the performance (w.r.t. prophet objective) of the optimal MRS algorithm with
access to β · n samples for varying values of β. The bounds arise as the minimum over a of a function in t,
and the values of t and a corresponding to each bound are alongside it.

3.3 An Optimal Algorithm for Up to Around 0.58 · n Samples
Theorem 3. Let β ≤ 1

e−1 . Consider a sequence of n random variables X1, ..., Xn drawn independently
from an unknown distribution, and assume that the decision-maker has access to bβnc samples beforehand.
Consider the following algorithm: Until stage b( 1+β

e −β)nc, do not pick anything. From stage b( 1+β
e −β)nc+1

onward, pick anything that is higher than the maximum of the observed variables (samples and proposed
variables). Then, as n→ +∞, this algorithm achieves an approximation ratio of α = 1+β

e , which matches
the upper bound in [9].

Proof. To simplify the exposition, we will pretend that 1+β
e − β and βn are integers, and thus drop the

symbols b and c. Let δ := 1+β
e − β. Let (S1, . . . , Sβn) be the set of sample variables, and (X1, ...Xn) be the

set of proposed variables, and F their cumulative distribution. Let τ be the stopping time of the algorithm,
and x ∈ R+. We are going to prove that for large n and uniformly in F ,

Pr(Xτ ≥ x) ≥
(

1 + β

e
+ o(1)

)
· Pr(max {X1, . . . , Xn} ≥ x). (8)

Then, integrating over x yields the theorem.

We have

Pr(Xτ ≥ x) =

n∑
i=δn+1

Pr({Xi ≥ x} ∩ {τ = i}),

and for i ∈ {δn+ 1, . . . , n}, Pr({Xi ≥ x} ∩ {τ = i}) is equal to

Pr([Xi ≥ max {x, S1, . . . , Sβn, X1, . . . , Xi−1}]
∩ [max {S1, . . . , Sβn, X1, . . . , Xδn} ≥ max {Xδn+1, . . . , Xi−1}])

= Pr (Xi ≥ max {x, S1, . . . , Sβn, X1, . . . , Xi−1})
· Pr(max {S1, . . . , Sβn, X1, . . . , Xδn} ≥ max {Xδn+1, . . . , Xi−1})

We have
Pr(max {S1, . . . , Sβn, X1, . . . , Xδn}) ≥ max {Xδn+1, . . . , Xi−1}) =

β + δ

β + i−1
n

,

and Pr(Xi ≥ max {x, S1, . . . , Sβn, X1, . . . , Xi−1}) is equal to

Pr(Xi ≥ x|Xi ≥ max {S1, . . . , Sβn, X1, . . . , Xi−1}) · Pr(Xi ≥ max {S1, . . . , Sβn, X1, . . . , Xi−1})
= Pr(max {S1, . . . , Sβn, X1, . . . , Xi} ≥ x) · Pr(Xi = max {S1, . . . , Sβn, X1, . . . , Xi})
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=
1− F βn+i(x)

βn+ i
.

Thus,

Pr(Xτ ≥ x) = (β + δ)
1

n

n∑
i=δn

1− F βn+i(x)

(β + i
n )(β + i−1

n )
≥

n∑
i=δn

1− F βn+i(x)(
β + i

n

)2
Set a = Fn(x), and notice that Pr(max {X1, . . . , Xn} ≥ x) = 1 − an. Hence, to prove (8), it is enough to
prove that for all a ∈ [0, 1] and large n,

(β + δ)
1

n

n∑
i=δn

1− aβ+ i
n

(β + i
n )2
≥
(

(1 + β)

e
+ o(1)

)
(1− a), (9)

where the o(1) is independent of a. Let g(t) := 1−aβ+t

(β+t)2 . There exists C > 0 such that for all t ∈ [0, 1] and
a ∈ [0, 1], |g′(t)| ≤ C(1− a). By property of the Riemann integral, it follows that for all a ∈ [0, 1] and n ≥ 1,∣∣∣∣∣(β + δ)

1

n

n∑
i=δn

1− aβ+ i
n

(β + i
n )2
− (β + δ)

∫ 1

δ

1− aβ+t

(β + t)2
dt

∣∣∣∣∣ ≤ C(1− a)

n
.

Since β + δ = 1+β
e , to prove (9), it is thus enough to prove that for all a ∈ [0, 1],∫ 1

δ

1− aβ+t

(β + t)2
dt ≥ 1− a.

The above inequality clearly holds for a = 1, and thus by the change of variables t′ = t+ β, we want to prove
that for all a ∈ [0, 1), ∫ 1+β

1+β
e

1− at

(1− a)t2
dt ≥ 1.

It is enough to prove that the above integral is decreasing in a. Indeed, its limit as a goes to 1 is 1. Define

H(a) =

∫ 1+β

1+β
e

1− at

(1− a)t2
dt.

We have

H ′(a) =

∫ 1+β

1+β
e

−(1− a)tat−1 + (1− at)
(1− a)2t2

dt

Thus, we want to prove that the function I defined by

I(a) =

∫ 1+β

1+β
e

−(1− a)tat−1 + (1− at)
t2

dt

is negative. Notice that
I(1) = 0,

thus it is enough to prove that I is increasing, which means that I ′ is positive. We have

I ′(a) = −
∫ 1+β

1+β
e

at−2(1− a)(t− 1)

t
dt.

Let

J(a) =

∫ 1+β

1+β
e

at−1(t− 1)

t
dt.

Thus, we want to prove that J is negative. For all a ∈ [0, 1) and t ∈ [ 1+β
e , 1 + β], we have at−1(t−1)

t ≤ (t−1)
t ,

and thus

J(a) ≤
∫ 1+β

1+β
e

t− 1

t
dt =

(
1− 1

e

)
(1 + β)− 1 ≤

(
1− 1

e

)(
1 +

1

e− 1

)
− 1 = 0.

This finishes the proof.
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3.4 Implementation as Streaming Algorithms
We next show how to implement MRS algorithms as streaming algorithms. To this end, consider x0 ∈ [0, 1],
ȳ ∈ R+, and any continuous decreasing function g : [0, 1]→ [0, ȳ]. The algorithm divides the x-range [0, 1]
into strips of width ε and the y-range [0, ȳ] into strips of width ε. This creates γ ≤ d1/εe + 2 · dȳ/εe + 2
intersection points with g. Let 0 = x1 ≤ x2 ≤ · · · ≤ xγ = 1 be the corresponding x-coordinates of these
intersection points.

For all i = 1, . . . , γ − 1, the algorithm uses a single threshold that is distributed like the maximum of
dg(xi) · ne fresh samples for all steps in [xi · n, xi+1 · n). We observe that the emerging algorithm can be
viewed as an MRS algorithm again. Towards this, let g̃ : [0, 1]→ [0, ȳ + ε] be the function that is equal to
g(xi) at xi and then grows linearly with slope 1 until (and not including) xi+1. We can (essentially) view the
new algorithm as the MRS algorithm based on g̃.

Lemma 2. Let j ∈ [xi · n, xi+1 · n) ∩ Z for some i ∈ {1, . . . , γ − 1}. Conditioned on arriving in step j, the
above algorithm sets a threshold for Xj that is distributed like the maximum of g̃(j/n) ·n±O(1) fresh samples.

Proof. Let j0 be the first integer in [xi ·n, xi+1 ·n). Denote the subset of values selected uniformly at random
from {S1, . . . , Sβn, X1, . . . , Xj0−1} by YS := {S′1, . . . , S′`} where ` = dg(j0/n) · ne = g̃(j0/n) · n ± O(1) by
continuity of g. By Lemma 1, this set and the set Y := {S′1, . . . , S′`, Xj0 , . . . , Xj−1} are distributed like sets
of ` and |Y | = `+ (j − j0)− 1, respectively, fresh samples. Note that |Y | = g̃(j/n) · n±O(1). It suffices to
show that, conditioned on arriving in step j0 and any such set Y , (i) the probability of arriving in step j is
independent of Y , and (ii), if the algorithm arrives in step j, the threshold it sets in step j is maxY .

Towards showing (i) and (ii), again condition on arriving in step j0 and any set Y . Note that the algorithm
arrives in step j if and only if maxY = maxYS . This implies that, throughout steps j0, . . . , j, the algorithm
sets maxY as threshold, showing (ii). Finally notice that, since both YS and Y \ YS are sets of fresh draws
from F , maxY = maxYS happens with probability independent of Y , showing (i).

Further note that our construction ensures that g(x) ≤ g̃(x) ≤ g(x) + 2ε for all x ∈ [0, 1]. See Figure 2 for
a visualization of the construction.

Lemma 3. Suppose that the MRS algorithm defined by g achieves approximation ratio α via inequality (2)
and that |g̃(x)− g(x)| ≤ 2ε for all x ∈ [0, 1], then the MRS algorithm defined by g̃ achieves approximation
ratio α−O(

√
ε).

Proof. As shown previously, g satisfies (2): For all a ∈ [0, 1],∫ 1

0

exp

(
−
∫ y

0

1

g(z)
dz

)
· 1

g(y)
·
(

1− ag(y)
)

dy ≥ α · (1− a). (10)

Moreover, to prove our claim, it is enough to show that the above equation holds, replacing g by g̃ and α by
α−O(

√
ε). Note that, as ε→ 0 and uniformly in a,

(1− a)−1

∫ 1

1−ε
exp

(
−
∫ y

0

1

g(z)
dz

)
· 1

g(y)
·
(

1− ag(y)
)

dy = O(
√
ε). (11)

Second, for y ∈ [0, 1 − ε], we have g(y) ≥ g̃(y) − 2ε ≥ g̃(y) × (1 − 2ε/g̃(y)) ≥ g̃(y)(1 − 2ε/g(1 − ε)) =
g̃(y)(1−O(

√
ε)), and thus 1/g̃(y) ≥ 1/g(y)−O(

√
ε). Hence, by equations (10) and (11), as ε tends to 0 and

uniformly in a,

(1− a)−1

∫ 1−ε

0

exp

(
−
∫ y

0

1

g̃(z)
dz

)
· 1

g̃(y)
·
(

1− ag̃(y)
)

dy ≥ α−O(
√
ε).

To obtain the above inequality, we have used in addition the fact that the left-hand side term and right-hand
side term in the integrand of equation (10) increase when one replaces g by g̃. This concludes the proof.

To implement our approach as a streaming algorithm, for each i = 0, . . . , γ, we construct the maximum of
the corresponding random subset on the fly: We count how many random positions are left to consider and
include the current position with probability proportional to that count.
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Figure 2: Visualization of the g function from Section 3.1 (bold, black), the grid with ε = 0.2 (dotted, black),
and the resulting g̃ function (green, bold).

Lemma 4. For each xi the threshold corresponding to g(xi) can be computed with a single pass over the data
and O(log n) space.

Proof. Consider the first j such that j/n ≥ xi and let q = dg(xi) ·ne. We will construct a 0/1-vector of length
k + j − 1 with exactly q many 1’s on the fly such that the positions where the bit vector is 1 correspond to a
subset of size q chosen uniformly at random without replacement from {S1, . . . , Sk, X1, . . . , Xj−1}. We can
then compute the threshold in an online fashion by remembering the maximum T of all values where we have
set the bit to 1.

We do this as follows: We remember the number s of 1’s that we still need and the number of positions t
still to come. Initially, s = q and t = k + j − 1. Then for ` = 1 to k + j − 1 we toss a biased coin that comes
up 1 with probability s/t and is 0 otherwise. If it comes up 1 we update s = s− 1 and t = t− 1, otherwise
we keep s and just set t = t− 1.

It now suffices to show that this process always yields a 0/1-vector of length k+ j− 1 with exactly q many
1’s, and that all such bit vectors are equally likely. The former follows from the fact that the probability of
seeing another 1 is set to zero once there are already q many 1’s and that once the number of remaining
positions equals the number of 1’s that are still needed the probability of seeing a 1 is set to one for all
remaining steps.

It remains to show that all 0/1-vectors of length k + j − 1 with q many 1’s are equally likely, i.e., that
the likelihood of seeing any such vector vector is 1/

(
k+j−1
q

)
. Indeed, consider an arbitrary such vector

z. Let E = {e1, e2, . . . , eq} ⊆ [k + j − 1] with e1 < e2 < · · · < eq be the indices ` where z` = 1 and let
N = {n1, . . . , nk+j−1−q} with n1 < · · · < nk+j−1−q be the indices ` where z` = 0. Then,

Pr [z] =

q∏
`=1

q − `+ 1

k + j − e`
·
k+j−1−q∏

`=1

k + j − q − `
k + j − n`

=
1(

k+j−1
q

) .
The space complexity is O(log(n)) because all the algorithm needs to store is the threshold, the remaining

number of positions, and the number of ones that are still required.

4 Secretary Objective
To get a streaming algorithm for the secretary objective with n samples, we consider the sliding-window
approach [10] that achieves a guarantee of ln(2)− ln2(2)/2 ≈ 0.453 but uses a linear amount of space: This
algorithm accepts Xj iff it exceeds max{Sj , . . . , Sn, X1, . . . , Xj−1}. To implement this algorithm in the
streaming model with ε loss in the guarantee, we remember the Oε(1) largest order statistics of all values and
their positions. We then bound the loss incurred from situations where we cannot compute the sliding-window
algorithm’s threshold from memory by ε.

Theorem 4. For β = 1 and any ε > 0, there exists an algorithm with guarantee ln(2)− ln2(2)/2− ε using a
single pass over the data and O(log n) space.
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Proof. Assume ε < 1. We describe our streaming algorithm. As we pass through the stream S1, . . . , Sn, X1, . . . , Xn,
we remember the ` ∈ Oε(1) (with ` yet to be specified) largest order statistics of the values seen up until then
as well as their positions in the stream. This can be trivially done in space Oε(log n).

To decide whether or not to accept Xj for j ∈ {1, . . . , n}, we compute the maximum of all remembered
values within {Sj , . . . , Sn, X1, . . . , Xj−1}. Note that there may be no such value; then we use the convention
that max ∅ = −∞. We accept Xj if and only if it exceeds the threshold (so we definitely accept Xj if the
threshold is −∞).

We compare the behavior of this algorithm with that of the algorithm in [10]. To do so, let j? :=
b(1− ε/2) · nc. Note that, if
(i) one of ` largest order statistics of S1, . . . , Sn, X1, . . . , Xn is among Sj? , . . . , Sn,
(ii) and j ≤ j?,

our computed threshold is equal to max{Sj , . . . , Sn, X1, . . . , Xj−1}, that is, the threshold that the algorithm
in [10] sets. The reason is that this value is either the largest order statistic of S1, . . . , Sn, X1, . . . , Xj−1 that is
in Sj? , . . . , Sn, which we remembered by (i), or it is an even larger order statistic of S1, . . . , Sn, X1, . . . , Xj−1,
which we also remembered.

Using the union bound, we bound the probability that the algorithm in [10] accepts max{X1, . . . , Xn}
but our streaming algorithm does not by ε (for an appropriate choice of `). Clearly, max{X1, . . . , Xn} = Xj

for j ≥ j? happens with probability 2ε/3 for n large enough since

lim
n→∞

(1− ε/2) · n− j?

n
= 0;

for smaller n we can afford to behave identically as the algorithm in [10] by remembering the entire stream.
So it is enough to choose ` such that the event in (i) happens with probability 1− ε/3. We note that

Pr [event in (i) does not occur] ≤ (1− ε)`

≤ exp(−ε`),

so choosing ` = 1/ε · ln(3/ε) completes the proof.
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A Tight Prophet Inequality for Exchangeable Random Variables
In this appendix we consider sequences X1, . . . , Xn of exchangeable random variables from a known joint
distribution D. A sequence of random variables is exchangeable if its joint distribution is invariant under
permutations of the sequence.

Examples of exchangeable random variables with a known joint distribution can be found in the context
of urn models: Drawing n times with replacement from an urn with any number of m known values in it
leads to a sequence X1, . . . , Xn of exchangeable random variables. In this case the random variables will
also be independently and identically distributed. If instead we draw n times without replacement from an
urn with m ≥ n known values in it, then the resulting sequence of random variables X1, . . . , Xn will still be
exchangeable, but it is no longer independently and identically distributed.

Additional examples include any sequence of i.i.d. random variables X1, . . . , Xn that are drawn from a
known distribution or, more generally, any sequence of random variables X1, . . . , Xn that is generated by
first choosing a distribution F k from a set of known probability distributions {F 1, . . . , Fm} according to a
known probability distribution G on the index set {1, . . . ,m} and then drawing n times from F k.

We consider stopping rules that sequentially observe the random variables X1, . . . , Xn, and for each i ∈ [n]
decide whether to stop at Xi based on the values of X1, . . . , Xi and the known joint distribution D. Such
a stopping rule can be expressed as a family r of functions r1, . . . , rn, where ri : Ri+ × D → [0, 1] for all
i = 1, . . . , n. Here, for any x ∈ Rn+ and D ∈ D, ri(x1, . . . , xi, D) is the probability of stopping at Xi when
we have observed the values X1 = x1, . . . , Xi = xi, have not stopped at X1, . . . , Xi−1, and when the joint
distribution is D. The stopping time τ of such a stopping rule r is thus the random variable with support
{1, . . . , n} ∪ {∞} such that for all x ∈ Rn+ and D ∈ D,

Pr [τ = i | X1 = x1, . . . , Xn = xn, D] =

(
i−1∏
j=1

(
1− rj(x1, . . . , xj , D)

))
· ri(x1, . . . , xi, D).

Theorem 5.

(a) There exists a stopping rule with stopping time τ such that for any sequence of exchangeable random
variables X1, . . . , Xn, E[Xτ ] ≥ 1

e · E[max{X1, . . . , Xn}].

(b) For any δ > 0, there exists n0 ∈ N such that for any n ≥ n0, there exists a sequence of exchangeable
random variables X1, X2, . . . , Xn such that for any stopping rule with stopping time τ , E[Xτ ] ≤(

1
e + δ

)
· E[max{X1, . . . , Xn}].

Part (a) follows by applying the optimal solution to the classic secretary problem. To obtain Part (b) we
cast the problem as a two-player zero-sum game, or equivalently as a min-max problem, where the first player
chooses an exchangeable sequence of random variables and the second player chooses a stopping rule. The
payoff that the first player seeks to minimize and the second player seeks to maximize is the expected reward
from the stopping rule minus 1/e times the expected maximum in the sequence. If we could reverse the order
of minimization and maximization, and thus turn the problem into a max-min problem, we would be looking
at a situation where player 2, the maximizer, moves first and chooses a stopping rule without knowing the
distribution of the random variables, and player 1, the minimizer, gets to choose a difficult distribution with
knowledge of the stopping rule. This max-min problem is, in fact, more difficult than the prophet inequality
problem for i.i.d. random variables from an unknown distribution recently considered by Correa et al. [9].
The construction of Correa et al., however, relies on the infinite version of Ramsey’s theorem [26], and in
particular leads to distributions with infinite support for which the order of minimization and maximization
cannot be reversed.

Minimax theorems do exist that can handle finite strategy spaces of player 2 and compact metric strategy
spaces for player 1 [e.g., 24, Proposition 1.17], and this is the case we would get if the difficult instances for
unknown i.i.d. distributions would have a support that is finite and bounded by a number that depends only
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on n. The argument sketched above could thus be rescued through a variant of the construction of Correa
et al. [9] with this property. We provide such a construction by using a finite version of Ramsey’s theorem as
given for example by Conlon et al. [8].

An interesting aspect of our argument is that the minimax theorem used in the above argument of course
requires mixed strategies. This is clearly not a problem for player 2, but for player 1 this means mixing over
stopping rules. The validity of the above argument thus requires that any mixture of stopping rules can be
implemented as a stopping rule. We will see that this readily follows from Kuhn’s celebrated theorem on
behavior strategies in extensive form games [22].

A.1 Hard Finite Instances for Unknown I.I.D. Random Variables
We first consider the setting of Correa et al. [9], where random variables are drawn independently from the
same unknown distribution and we do not have access to any additional samples. For p ∈ N, denote by Bp
the set of probability measures on [p]. We prove the following result.

Proposition 1. For all δ > 0, there exists n0 ∈ N such that for any n ≥ n0, there exists p ∈ N such that
for any stopping rule r with associated stopping time τ , there exists b ∈ Bp such that when X1, . . . , Xn are
i.i.d. random variables drawn from b,

E[Xτ ] ≤
(

1

e
+ δ

)
· E[max{X1, . . . , Xn}].

What distinguishes this result from Theorem 3.2 of Correa et al. is that the distribution b has finite
support and the cardinality of its support is independent of the stopping rule. This property will be crucial
when applying the minmax theorem in Section A.2.

The result can be obtained by modifying the central construction in the proof of Correa et al. while
keeping much of the structure of that proof intact. To make it easier to compare the two results we will
follow the original structure, and begin by recalling the definition of oblivious stopping rules.

Definition 1. Let ε > 0 and V ⊂ N.

• A stopping rule r is called (ε, i)-value-oblivious on V if, there exists a qi ∈ [0, 1] such that, for all
pairwise distinct v1, . . . , vi ∈ V with vi > max{v1, . . . , vi−1}, it holds that ri(v1, . . . , vi) ∈ [qi− ε, qi + ε).

• A stopping rule r is called ε-value-oblivious on V if, for all i ∈ [n], it is (ε, i)-value-oblivious on V .

• A stopping rule r is order-oblivious if for all j ∈ [n], all pairwise distinct v1, . . . , vj ∈ R+ and all
permutations π of [j − 1], ri(v1, . . . , vj) = ri(vπ(1), . . . , vπ(j−1), vj).

The cornerstone of our proof is the following lemma.

Lemma 5. Let ε > 0. For any n ∈ N, there exists p ∈ N such that if there exists a stopping rule with
guarantee α, then there exists a stopping rule r with guarantee α such that r is ε-value-oblivious on V , for
some finite set V ⊂ [p] with cardinality n3 + 1.

The difference to Lemma 3.4 of Correa et al. is that the set V is finite, and in addition is uniformly
bounded by an integer p that depends only on n. Consequently, instead of the infinite version of Ramsey’s
theorem used by Correa et al., we need the following finite version (see for example Conlon et al. [8]).

Lemma 6. There exists a function R : N3 → N such that for all n ≥ 1, for all complete m-hypergraph with c
colors and order larger than R(m,n, c), there exists a sub-hypergraph of order n that is monochromatic.

Proof of Lemma 5. Fix ε > 0 and set c = b(2ε)−1c. Define an integer sequence (pi)0≤i≤n by induction as
pn = n3 +1 and pi−1 = R(i, pi, c). Consider a stopping rule r with guarantee α. By Lemma 3.6 of Correa et al.
it is without loss of generality to assume that r is order-oblivious. We show by induction on j ∈ {0, 1, . . . , n}
that there exists a set Sj ⊂ S0 such that |Sj | = pj and for all i ∈ [j], r is (ε, i)-value-oblivious on Sj .

The set S0 =
{
n3s : s = 0, . . . , p0

}
satisfies the induction hypothesis for j = 0. We proceed to show it

for j > 0. First, observe that we only need to find a set Sj ⊂ Sj−1 such that |Sj | = pj and r is (ε, j)-value
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oblivious on Sj , because it follows from the induction hypothesis that for all i ∈ [j−1], r is (ε, i)-value-oblivious
on Si and thus on the subset Sj ⊂ Si.

Toward the application of Lemma 6, we construct a complete j-hypergraph H with vertex set Sj−1.
Consider any set v1, ..., vj ⊂ Sj−1 of cardinality j such that vj > max(v1, ..., vj−1). Note that there exists
a unique u ∈ {1, 2, ..., c} such that rj(v1, ..., vj) ∈ [(2u − 1)ε − ε, (2u − 1)ε + ε), and color the hyperedge
{v1, ..., vj} of H with color u. By Lemma 6, there exists a finite set Sj of vertices with cardinality pj that
induces a complete monochromatic sub-hypergraph of H. Let u be the color of this sub-hypergraph, set
q = (2u − 1)ε, and consider distinct v1, ..., vj ∈ Sj with vj > max(v1, ..., vj−1). Since the edge {v1, ..., vj}
in H has color u, rj(vπ(1), ..., vπ(j−1), vj) ∈ [q − ε, q + ε) for some permutation π of Sj−1. But since r is
order-oblivious, also rj(v1, ..., vj−1, vj) ∈ [q − ε, q + ε). So r is (ε, j)-value oblivious on Sj . This completes
the induction step.

With Lemma 5 at hand we are now ready to prove Proposition 1.

Proof of Proposition 1. Let δ > 0 and n ∈ N. Consider a stopping rule r with performance guarantee 1/e+ δ.
Set ε = 1/n2. By Lemma 5, there exists a stopping rule r with performance guarantee 1/e + δ and a set
V ⊂ [p] with cardinality n3 + 1 on which r is ε-value-oblivious. Let u be the maximum of V , and write
V = {v1, . . . , vn3 , u}. Denote by τ the stopping time of r. By construction, we have u ≥ n3 max{v1, . . . , vn3}.
The rest of the proof proceeds in the same way as the proof of Theorem 3.2 of Correa et al., and we give an
informal summary for completeness. For each i ∈ [n], let

Xi =


v1 w.p. 1

n3 · (1− 1
n2 )

...
vn3 w.p. 1

n3 · (1− 1
n2 )

u w.p. 1
n2

.

For this particular instance, the performance of any stopping rule corresponds approximately to the probability
of picking u. Let us, therefore, investigate the probability that r picks u. First note that with probability
almost one, X1, . . . , Xn are distinct. Moreover, because r is ε-value-oblivious on V , it can be changed with
an error of ε = n−2 into a stopping rule that considers only the relative ranks of the values it has seen before
making its decision. As there are only n stages, the error is insignificant.

The problem thus reduces to the classic secretary problem, for which it is known that no stopping rule
can guarantee a probability of picking the maximum that is higher than 1/e+ o(1) as n goes to infinity [13].
However, the stopping rule constructed from r considers only relative ranks and selects the maximum with
probability at least 1/e+ δ − o(1), which is a contradiction.

A.2 From Unknown I.I.D. to Exchangeable Variables: A Minimax Argument
We now use a minimax argument to convert Proposition 1, which concerns the unknown i.i.d. case, into an
upper bound (impossibility result) for exchangeable random variables with a known joint distribution. Fix
δ > 0 and let n0 and p be as in Proposition 1. Fix n ≥ n0. We need the following definitions.

Definition 2.

• A deterministic stopping rule is a sequence a = (a1, ..., an) such that ai : [p]i−1 → {0, 1}. Denote the
set of such rules by A.

• A mixed stopping rule is a distribution over A. Denote the set of such rules by P(A).

• A behavior stopping rule is a sequence r = (r1, ..., rn) such that ri : [p]i−1 → [0, 1]. Denote the set of
such rules by C.

Note that we have defined each class of stopping rule to consider only values in [p] as inputs because
we will consider random variables supported on [p]. As before, considering inputs in R would not have a
significant effect on the performance guarantee. Note further that behavior stopping rules correspond to
stopping rules as defined in Section 2. The minmax argument will require us to consider mixed stopping
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rules. We will apply Kuhn’s theorem [22] to prove that mixed stopping rules and behavior stopping rules
provide the same performance guarantee.

According to our purpose any of these stopping rules will have the two interpretations, (i) as a stopping
rule in the unknown i.i.d. problem, and (ii) as a stopping rule in the exchangeable problem with some fixed
known joint distribution D, where in the latter case we have omitted the dependence of a on D.

Recall that Bp is the set of probability distributions over [p]. Because p has been fixed and for ease of
exposition, we will henceforth write B instead of Bp. Let P(B) be the set of probability distributions over B.
For given a ∈ A and b ∈ B, define

g(a, b) = E [Xτ ]−
(

1

e
+ δ

)
· E [max{X1, . . . , Xn}] ,

where τ is the stopping time of the stopping rule a in the i.i.d. problem where X1, X2, ..., Xn are drawn from
b. We can extend g linearly to P(A)× P(B) by letting

g(x, y) =

∫
A

∫
B

g(a, b)x(da)y(db).

Let
V + = max

x∈P(A)
min
b∈B

g(x, b) and V − = min
y∈P(B)

max
a∈A

g(a, y).

Note that in the above expressions, by linearity of g with respect to x and y, minb∈B g(x, b) = miny∈P(B) g(x, y)
and maxa∈A g(a, y) = maxx∈P(A) g(x, y). The key point is that V + is related to the universal constant in the
unknown i.i.d. problem, while V − is related to the universal constant γ in the exchangeable problem.

Let us first examine V −. Let a ∈ A and y ∈ P(B), and consider the n-tuple of exchangeable random vari-
ables Y1, Y2, . . . , Yn obtained by first picking an element b ∈ B according to y and then drawing Y1, Y2, . . . , Yn
independently from b. Let τ̃ be the stopping time of the stopping rule a on Y1, Y2, ..., Yn. By linearity of
expectation,

g(a, y) = E [Xτ̃ ]−
(

1

e
+ δ

)
· E [max{Y1, . . . , Yn}] .

This implies the following result.

Proposition 2. If V − is non-positive, then γ ≤ 1
e + δ.

Proof. Assume that V − is non-positive. Then there exists y ∈ P(B) such that no deterministic stopping
rule provides a better guarantee than (1/e + δ) in the exchangeable problem with distribution y. Then
no distribution over deterministic stopping rule can provide a better guarantee by linearity of expectation,
neither can a behavior stopping rule by Kuhn’s theorem [22]. It follows that γ ≤ 1/e+ δ.

Moreover, the minimax theorem implies that V + and V − are the same.

Proposition 3. V + = V − .

Proof. The set A is finite, the set B compact metric. Moreover, for all a ∈ A, the mapping b → g(a, b)
is continuous. By the minimax theorem [24, Proposition 1.17] it follows that the mixed extension of the
normal-form game (A,B, g) has a value, i.e., that V + = V −.

To complete the proof of Theorem 5 it is thus enough to show that V+ ≤ 0. First note that by Kuhn’s
theorem [22],

V+ = max
r∈C

min
b∈B

E [Xτ ]−
(

1

e
+ δ

)
· E [max{X1, . . . , Xn}] .

By definition of p, which we have chosen as in Proposition 1, for each stopping rule in C there exists b ∈ B
such that

E [Xτ ]−
(

1

e
+ δ

)
· E [max{X1, . . . , Xn}] ≤ 0.

It follows that V+ ≤ 0, as claimed.
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