
HAL Id: hal-02920555
https://hal.science/hal-02920555

Submitted on 24 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Realistic Deployment of Named Data Networking in
the Internet of Things

Amar Abane, Mehammed Daoui, Samia Bouzefrane, Soumya Banerjee, Paul
Mühlethaler

To cite this version:
Amar Abane, Mehammed Daoui, Samia Bouzefrane, Soumya Banerjee, Paul Mühlethaler. A Realistic
Deployment of Named Data Networking in the Internet of Things. Journal of Cyber Security and
Mobility, 2020, 9 (1), �10.13052/jcsm2245-1439.911�. �hal-02920555�

https://hal.science/hal-02920555
https://hal.archives-ouvertes.fr


A Realistic Deployment of Named Data Networking in the
Internet of Things

Amar Abane1,2, Mehammed Daoui1, Samia Bouzefrane2, Soumya Banerjee2, and
Paul Muhlethaler3

1LARI Lab. University Mouloud Mammeri of Tizi-Ouzou, Algeria
2CEDRIC Lab. Conservatoire National des Arts et Métiers, Paris, France

3Inria EVA, Paris, France

Abstract
IP has been designed for Internet decades ago to connect computers and share expen-

sive resources such as tape drives and printers. Nowadays, Internet of Things and other
emerging applications use Internet to fetch and exchange content such as monitoring
data and movies. This content-centric use of Internet highlights the limitations of the
IP architecture. IETF Working Groups spend significant efforts to adapt the traditional
IP stack to IoT systems, but the shortcomings of IP remain difficult to hide. In this
context, the recently emerged Named Data Networking (NDN) architecture promises a
better support of IoT systems and future Internet applications. This paper describes a
realistic IoT architecture based on NDN. In practice, an integration of NDN in IoT devices
over low-power wireless technologies is designed, deployed and evaluated considering a
Smart Farming application scenario. This work aims to show that NDN is more suitable
than IP for IoT systems, by giving another look at IP-based solutions for the IoT such
as 6LoWPAN. For that, we design a simple packet compression scheme and a lightweight
forwarding strategy that is compliant with the NDN vision while managing constrained
devices. Evaluation result demonstrate the flexibility of NDN to support IoT environments.

Keywords: IoT, ICN, NDN, IEEE 802.15.4, Smart Agriculture, Wireless Mesh Networks.

1 Introduction
The Internet of Things (IoT) uses the interconnection of billions of small computing

devices, called “Things”, to provide access to services and information all over the world.
This has been made possible by the democratization of smartphones, and more importantly
by the affordability of resource-constrained data acquisition devices and corresponding
wireless communication technologies.

In practice, IoT devices are powered by battery, have tens to thousands of MHz
CPU and tens to thousands of Kb memory. These resource-limited devices communicate
with user applications over the Internet through gateways. The global communication
is achieved through the IP protocol suite and the device-gateway communication is
based on low-power and lossy wireless technologies such as IEEE 802.15.4 [12] and IEEE
802.15.1 [11]. However, the IP protocol suite has been designed decades ago for a completely
different purpose, and IoT features now highlight the limitations of IP [28]. For example,
security is still focused on communication channels when the data itself need to be secured.

River Journal, 1–27.
c© 2019 River Publishers. All rights reserved.



2 Abane et al.

Moreover, IoT systems need efficient support for resource naming and discovery, which is
not easy to deploy with IP in constrained infrastructures.

Since the IoT became a reality, IETF Working Groups have spent significant efforts to
adapt the traditional TCP/IP stack to IoT systems (see Section 2). While IP adaptations
for the IoT might be seen as cutting corners, the recently emerged Named Data Net-
working (NDN) architecture promises a better support of IoT systems and future Internet
applications. NDN is an Information Centric Networking (ICN) protocol in which the
first-class entity is the content. Networking operations are performed on content names,
and hosts (without logical addresses) request named-content directly to the network. This
principle brings native features such as a communication without establishing end-to-
end connections nor name-to-address resolution. Moreover, no consumer-provider path or
session needs to be maintained, providing a native support of multicast communication
and connection disruption resulting from mobility.

However, it is quite challenging to take advantage of NDN features in current IoT
solutions, without waiting for years the evolution of the global Internet architecture. The
main reason is that fundamental modifications have to be brought to the current IP-
based networking equipment and applications since the NDN paradigm operates on content
names rather than host addresses. Furthermore, as long as IP solutions work for current
applications, convince IP-enthusiasts and industrials on the benefits of NDN is still difficult.
Fortunately, in recent years, many studies investigated the suitability of NDN for the
IoT, making NDN more and more powerful [2, 5, 27]. With all this motivating work, real
deployments of NDN can be envisioned. Although NDN is not ready for worldwide IoT
deployments, we believe that real-world designs will enrich NDN experiments and help to
figure out what is needed to make NDN a reality.

This paper describes a realistic deployment of an IoT architecture that enables NDN in
constrained devices over low-power wireless technologies, commonly referred to as low-end
IoT. Therefore, an NDN-IoT architecture is designed, deployed and evaluated. The moti-
vation behind integrating NDN in low-end IoT is that low-end IoT is still in a development
stage even with IP, which gives an opportunity to make NDN an important component of
incoming IoT solutions.

We based our design on a realistic Smart Farming scenario. The concept of realistic
in this context includes the following aspects. First, it aims to use NDN in the current
Internet infrastructure. That is, scenarios that can not be deployed now are not considered.
Second, realistic means using NDN to design solutions for current popular equipment such
as prototyping boards. Third, the objective of a realistic solution is to provide a viable
NDN-IoT solution that must be easy-to-use, low-cost, simple and lightweight.

The considered Smart Farming application is a cow monitoring system that uses sensors
(e.g. movement, temperature, microphone.) to monitor health, fertility and activity of
every cow individually. The devices are generally installed with a collar on cows. The data
may be published from various places within the farm: inside, in the field, or in the milking
parlor for example. The collected data can be visualized on the farmer’s smartphone or
stored/analyzed on its computer. The data may also be analyzed (e.g., with Machine
Learning) to detect whether a cow is sick, or to forecast cows’ activities such as heat
periods to make accurate breeding decisions.

Our contributions can be summarized in two aspects. First, we show that NDN is more
suitable than IP to support IoT applications. To achieve that, a detailed discussion on IP
limitations and shortcomings is presented, followed by the design and deployment of a
pragmatic NDN-IoT architecture that shows the simplicity of NDN compared to IP. The
second contribution is a lightweight forwarding strategy that allows devices to retrieve
content over the wireless network without a need for logical addresses nor route discovery.



A Realistic Deployment of NDN for the IoT 3

The rest of this paper is organized as follows. Section 2 discusses the main IP efforts to
support IoT challenges and their drawbacks. Section 3 gives an overview of NDN commu-
nication mechanisms in wired and wireless networks, and the main NDN entities: packets,
data structures, etc. Section 4 discusses the possible deployment approaches of NDN with
current networking equipment. Section 5 describes our architecture with its components
and mechanisms. Section 6 provides details on our prototype design and implementation.
Section 7 reports on multiple types of measurements and simulations conducted to evaluate
our architecture, and Section 8 concludes this work with a discussion.

2 From IP to NDN
The emergence of the IoT puts IP networking to the test and highlights the mismatch

between IP’s host-centric paradigm and current application needs. Studying the IP-based
solutions to support IoT applications tells much about the limitations of traditional net-
working. Although these solutions made IoT accessible to users, they resulted in extensions
to TCP/IP protocols and the appearance of various other protocols acting like middleware
between application, network and link layers.

For example, IPv6 uses a fixed length header of 40 bytes to improve packet processing
speed, and assumes a minimum MTU of 1280 bytes to avoid fragmentation. This is
reasonable for traditional networks, but the constraints of IoT are not considered at all.
To cope up with this issue, 6LoWPAN [18] has been introduced as an adaptation layer
between network and link layers to enable IPv6 networking over IEEE 802.15.4. This layer
includes the mechanisms needed to support small MTUs such as header compression and
packet fragmentation. Header compression is used for IPv6 and UDP headers to reduce
their size in the majority of the transmitted packets, providing more space for application
data. Packet fragmentation consists on splitting a standard IPv6 packet (i.e., 1280 bytes)
into multiple link-layer frames (i.e., 127 bytes). Although these two operations enable IPv6
in low-power wireless networks such as IEEE 802.15.4, they bring additional overhead and
processing, and consume more memory which is already rare in IoT devices.

For another example, most of IP solutions provide IoT features at the application
layer using the REST (REpresentational State Transfer) architecture [19] similarly to Web
services. To enable REST in IoT systems, the IETF CoRE WG defined the Constrained
Application Protocol (CoAP) standard [29]. CoAP can be seen as a lighter version of the
HTTP protocol. It is a data transfer protocol that provides a REST communication over
UDP for constrained environments. Implementing such important features (i.e., CoAP) at
application level indicates that the TCP/IP stack has reached its limit to support the new
requirements.

Furthermore, requirements such as content discovery, secured caching, mobility and
multicast communications make the task even more complicated for IP networking.

To sum up, IETF is doing considerable efforts to design protocols for constrained envi-
ronments based on IP. The Constrained RESTful Environments (CoRE) group proposes
CoAP to allow IoT devices exchange data as in the Web, and OSCORE for securing data
objects at application level. The 6LoWPAN-WG is handling the adaptation of IPv6 over
low-power low-rate networks such as IEEE 802.15.4. The ROLL WG is developing routing
strategies and self-configurable mechanisms in low power networks and work closely with
6LoWPAN-WG. IETF has standardized RPL; a routing protocol for wireless constrained
networks. The Light-Weight Implementation Guidance (LWIG) working group is helping
to build minimal and interoperable IP-capable devices for constrained environments. The
Thing-2-Thing Research Group (T2TRG) focuses on issues that may influence standard-
ization processes in the IETF, to form the real IoT in which constrained devices can
communicate with each other and with the global Internet.



4 Abane et al.

Table 1: IP-based solutions for IoT vs. NDN features

IoT requirements IP-based efforts NDN native features
Resource naming DNS, URI Named content

Application data security Object-based security Self-secured packets
Request-response model CoAP, REST Consumer driven model

Small MTU 6LoWPAN No fixed packet size
Caching At application layer In-network caching

Content dissemination/discovery Multicast, CoRA-RD Broadcast/multicast friendly

However, by looking at the solutions globally proposed to provide a viable IoT over
TCP/IP, we observe that the most important functionalities are implemented in the ap-
plication layer, using REST as a common architecture for communication. Therefore, the
heart of the current IP-based IoT architecture is the application layer with REST instead
of the network layer with IP as it is supposed to be. This happens because the host-based
IP model can not support IoT requirements by itself; it needs a more rich and flexible
architecture (e.g. REST) to provide caching, resource discovery and efficient security.

Even though current solutions (i.e., implemented in application-layer) may hide IP
limitations to the final users of the IoT, the mismatch between the application-layer
solutions and the actual TCP/IP architecture is a reality, in particular for the developers,
and often causes performance degradation and interoperability issues.

One can easily imagine what will happen if we move the functionalities provided by the
current IP-based IoT stack from the application layer to the network layer. In addition
of being completely feasible, this can be more efficient, will reduce complexity in the
application layer and greatly simplify application development. The obtained stack is then
pretty close to the NDN architecture. To show that, Table 1 summarizes the main IP-based
solutions for IoT compared to the main NDN native features that will be presented below.
We observe that solutions which currently make IoT over IP feasible correspond exactly
to the NDN features, except that they are provided by the core network in NDN.

3 Overview of Named Data Networking
Unlike the host-centric IP networking, NDN operates with URI-like names. To give a

simple idea of NDN, we can imagine it as the HTTP’s request-response model running at
network layer. With the difference that NDN supports this communication model through
packets carrying names as the main information, and all the networking operations (i.e.,
routing, forwarding, etc.) operate on names, not on binary network addresses.

Each NDN request is a packet called Interest, and can fetch one packet called Data.
In the remaining if this document, “Interest” and “Data” starting with capital letter refer
to the NDN Interest and Data packets respectively, a “consumer” is an application that
issues Interests to request content while a “producer” is the application that creates and
sends Data packets.

In NDN, every piece of content is identified by a unique name which applications use
to request and retrieve data. Content names are independent from host location, which
means that a content keeps the same name everywhere; at the content producer, caches
and consumers. This feature is combined with self-secured contents to provide reusable
packets and enable in-network caching, since a packet is independent from its source and
destination hosts. By considering data names instead of host addresses, NDN retrieves
content regardless of where it is located or how it is transported.



A Realistic Deployment of NDN for the IoT 5

3.1 Naming and Packets
Another dissimilarity between NDN and IP is that NDN packets are encoded in the TLV

(Type-Length-Value) format [31]. TLV encoding represents an NDN packet as a collection
of sub-TLVs, without an explicit packet header. A TLV block consists on a sequence of
bytes starting with a predefined number (Type), followed by its Length and its Value.
Both Interest and Data contain a Name and may carry additional information according
to the defined fields. Although Interest and Data packets have default and optional fields
respectively (see Figure 1) , they do not have predefined packet size or field sizes.

A content is identified using a hierarchical name that contains a sequence of name
components [24]. Each packet must contain a Name element. Name is represented by a
2-level nested TLV. The outer TLV indicates the complete Name element through the
TLV-type (7). For example, the name ”/cowHealth/farm/cow/21/temp” may identify
the temperature value related to the cow with Id. 21 within the farm. With hierar-
chically structured names, the same data type related to another cow can be named
”/cowHealth/farm/cow/25/temp”.

Figure 2 illustrates a TLV representation of an Interest. The Interest is identified by
the type value: 0x05, the Name by 0x07, a Name-component by 0x08 and the Nonce by
0x0a.

Figure 1: Interest and Data fields

Figure 2: Interest TLV encoding example

3.2 Communication process
Each NDN node requires two data structures to process packets: Forwarding Informa-

tion Base (FIB) and Pending Interest Table (PIT). Optionally, a Content Store (CS) can
be used to store Data packets and provide in-network caching. The roles of these data
structures are the following:



6 Abane et al.

• The PIT maintains an entry for every forwarded Interest until its corresponding Data
is received or until the entry lifetime is expired. A typical PIT entry contains the
Interest, its incoming interface(s), the interface(s) to which it has been forwarded and
a timer for Interest timeout. PIT entries are used to keep trace of Interests in order
to forward the Data packet to the corresponding consumer(s). The PIT is also used
to aggregate Interests requesting the same content to avoid redundancy.
• The native in-network caching is managed using the CS. After retrieving a Data

packet, an NDN forwarder may store a copy of that packet in the CS before forwarding
it to the next hop. Like any other caching data structure, CS is managed with caching
placement and replacement policies such as LRU.
• The FIB contains information about the reachability of the content. A FIB entry

associates a name-prefix to the interface(s) from which the content can be retrieved.
The FIB is populated by routing protocols and is checked every time a node needs to
forward an Interest.

The processing steps of Interest and Data packets at a node are depicted in Figure 3
and a typical NDN communication operates as follows:

1. The consumer application (e.g., on farmer’s laptop) requests data by sending an
Interest carrying the name of the data (e.g. /cowHealth/farm/area/1/cow/21/temp).

2. Upon receiving an Interest, a forwarder first checks if matching Data already exists
in its CS. If the corresponding Data is found, it is sent back as a response without
forwarding the Interest any further. When no matching data is found in the CS, the
forwarder checks the PIT if an Interest for the same content is already waiting; if so,
the new Interest is not forwarded and only the originating interface is added to the
existing PIT entry. The Interest is forwarded only if no corresponding Data is found
in the CS and no similar Interest is already in the PIT. In this case, the Interest is
forwarded according to the longest prefix match (LPM) against the FIB entries. For
example, if the possible matching in the FIB are /cowHealth, /cowHealth/farm and
/cowHealth/farm/area/1, the longest one is chosen. After that, the forwarder creates
a PIT entry for the Interest and forwards it through the corresponding interface. If no
matching is found, either the Interest is flooded to all outgoing interfaces or deleted,
according to the forwarding strategy.

3. When the Interest reaches the content producer (e.g., the sensor) or an intermediate
cache node, the Data packet containing the content is sent back. The Data packet
follows the reverse path of the Interest; following the matching PIT entry on every
forwarder. That is, all interested consumers (i.e., which issued an Interest) will receive
a copy of that Data. After forwarding a Data, a forwarder discards the PIT entry and
stores the recent Data packet in its CS. If a node receives a Data packet without a
matching entry in the PIT, the Data is considered unsolicited and is dropped.

In wireless networks the packet processing is the same, but the forwarding decision
may be slightly different than in wired networks. The main reason is that a wireless
radio corresponds to only one network interface; thus, a forwarder cannot distinguish
between different next-hops using network interfaces. Using addresses (e.g., MAC) to
forward packets reduces the data dissemination potential of NDN and limits its benefits
in mobile wireless networks. Moreover, mapping names to addresses requires transmission
overhead to discover and maintain routes, and consumes more memory to maintain the
FIB. That is, using broadcast communications is the most simple and efficient forwarding
mechanism in NDN wireless networks.

In the following, we introduce Controlled Flooding (CF) , a simple broadcast-based
forwarding strategy for NDN over wireless networks. To keep the benefits of flood-



A Realistic Deployment of NDN for the IoT 7

Figure 3: Interest and Data processing inside a node

ing/broadcast while reducing overhead and redundancy, CF nodes exploit broadcast to
overhear communications and possibly avoid forwarding some packets. To do so, every
(potential) forwarder defers its packet transmission with a random delay during which it
keeps listening on the shared wireless medium. While waiting, if the forwarder overhears a
packet (i.e., Interest or Data) with the same name, it cancels its transmission. In practice,
Interest and Data transmissions are deferred for ∆I and ∆D periods of time respectively.
Both ∆I and ∆D are computed based on an interval, defer window (dw), from which an
integer value is randomly chosen to generate the waiting delays as follows [3]:

∆D = rand[0, dw]×DeferSlotT ime (1)

∆I = (dw + rand[0, dw])×DeferSlotT ime (2)
where DeferSlotT ime is a short period of time.
Here, ∆I and ∆D are selected in disjoint intervals with ∆I > ∆D to give higher priority

to Data packet transmissions and avoid useless Interest broadcasts. During the ∆I waiting
time, a potential forwarder listens to the channel: if it overhears the same Interest or the
requested Data, it cancels its own transmission.

4 NDN Deployment: Possible Approaches
Conceptually, a clean-slate NDN deployment requires network entities to support rout-

ing and packet processing based on names, and implement some forwarding strategies
and security procedures. In addition, more storage is needed for caching and stateful
forwarding [15].

More generally, NDN can be deployed as an overlay on top of IP, can replace IP as a
native network protocol over the link layer (e.g., NDN over Ethernet), or IP and NDN can
coexist in the same network. The first approach, the overlay, is easy to deploy and creates
a uniform content-centric layer. It is realistic and the NDN testbed [23] is an example of
such approach. However, this solution creates complexity and overhead for the underlying
network protocol, and IP-based applications must switch to NDN in order to use the net-
work. Moreover, the overlay approach considers NDN as a transport/application protocol
for IP, and thus does not provide a coexistence between the two network protocols (i.e.,



8 Abane et al.

IP and NDN). More importantly, implementing both NDN and IP stacks is not feasible
with IoT constrained devices that can barely support the current IP stack. The second
approach, deploying NDN as a native network protocol, works only for environments that
do not need to communicate with global IP networks, such as isolated vehicular networks
or local networks. Hence, we consider it as unrealistic. The third and last approach is to
make IP and NDN coexist within the global network. This approach may either use NDN
at the core and keep IP at the edge of the network (NDN-core), or deploy NDN at the
edge and keep IP networking at the core (NDN-edge).

With NDN-core, IP applications do not need to be changed at all, but a global deploy-
ment of NDN as a native network protocol is currently not feasible as mentioned before.
As an exceptional example, the POINT project [33] had to work with ISPs to deploy a
real-world prototype in which an ICN architecture is used at the core of the network. The
prototype then introduces ICN in the core network without changing the rest (i.e., the
edge) of the Internet.

With NDN-edge, the core network keeps running IP, while applications and devices
run native NDN. This solution is easy to deploy and does not required deep changes in
the infrastructure. Moreover, it provides a progressive integration of NDN.

In both NDN-core and NDN-edge, the coexistence of IP and NDN can be achieved by
using peripheral nodes such as gateways to translate between NDN names and IP protocol
stack information. For example, Cisco’s hICN [20] encodes names as IPv6 addresses to
allow hICN packets to be processed by both ICN-based and IP-based routers, and Zhang
et. al. [32] proposed a dual-stack scheme for NDN switches and IP switches to coexist in
local area networks.

At application level, when NDN and IP stacks have to coexist together, NDN and IP
applications require completely different mechanisms. As the purpose is to take the most of
NDN while providing feasible solutions, we report on two possible translation approaches
between NDN and IP as described in [15]:
• The first solution is to provide a translation between TCP/IP or UDP/IP and NDN.

The advantage of this approach is the support of various application protocols with
the same transport-level translation. However, as network and transport layers in the
IP stack have limited expressiveness, some NDN features will not be exploited. For
example, translating a TCP packet into an NDN packet may use information from
TCP/IP headers to generate NDN names. That is, the name will be associated to the
specific TCP connection. This provides benefits such as caching within the same TCP
connection (e.g., efficient re-transmission of lost packets), but cannot support caching
across different TCP connections (e.g., multicast to different consumers). Moreover,
data-centric security of NDN will be limited as names are still related to hosts and
connections.
• The other approach consists on translating between application-level protocols such

as HTTP to NDN. Application-level information is much more expressive and data-
oriented than network and transport information. Thus, NDN names generated from
HTTP headers will be more meaningful regardless of hosts and connections. This
allows this approach to take much more NDN benefits than the previous one.

Furthermore, to avoid translation, a hybrid deployment can be adopted combining
NDN-edge with NDN-overlay approaches to achieve the maximum possible integration of
NDN. This combination is realistic since devices at network edge implement only NDN
and equipment at core network have enough resources to support NDN over IP with
an additional overhead. The NDN-IoT architecture we propose is based on such hybrid
solution and is discussed below.

Integration approaches discussed above are summarized in Figure 4.



A Realistic Deployment of NDN for the IoT 9

Figure 4: NDN integration approaches

5 Proposed NDN-IoT Deployment
This section describes the realistic NDN architecture we envision for the IoT Smart

Farming application. After a study of the integration possibilities, we chose the NDN-edge
approach combined with an NDN over UDP/IP in the core network. Our motivation is
explained below, followed by an overview of the wireless technologies applicable in the IoT
and our choice. The architecture, its components and mechanisms are described afterwards.

5.1 Deployment Approach
When applied to the IoT, the NDN-edge integration corresponds to the deployment of

NDN in low-end IoT. In other words, NDN is used where the content is produced and/or
consumed. On the one side, IoT devices run native NDN applications over a wireless link-
layer technology. On the other side, using NDN over IP-based transport protocols such as
UDP allows applications on computers and smartphones to communicate with IoT devices
via NDN.

In addition to be completely feasible in the current Internet infrastructure, this ap-
proach takes advantage of all NDN features such as naming content, data-centric security,
and caching. Moreover, as IoT design is at its early stage, particularly at low-end IoT, this
approach is a reasonable starting point to create NDN-capable devices together with NDN
native applications without waste of time. In addition, integrating NDN from the edge of
the network supports a progressive and incremental integration. Experience learned from
local deployments will lead to a stronger NDN architecture and various possibilities can
be envisioned for the long term.

Furthermore, most IoT applications rely on Internet to reach cloud servers. However,
there are cases when Internet connectivity is not available but local network connectivity
exists, such as in some smart agriculture scenarios. Typically, IP applications stop working
without global connectivity, but applications in NDN deployments would be able to work
as long as connectivity exists. They can discover names and exchange data between two
locally connected devices without going through the Cloud.



10 Abane et al.

5.2 Wireless Technology
The IEEE 802 Standard is a set of networking standards for both wired and wireless

networks. The most known wireless specifications include 802.11 [13] (e.g., WiFi), 802.15.4
[12] (e.g., ZigBee) and 802.15.1 [11] (e.g., Bluetooth).

Although communication solutions for IoT do not generally require a large bandwidth,
they need an efficient power management plan, a low cost of production and must support
a large number of nodes in a simple way. That is, IoT wireless technologies are typically
focused on low power consumption, large number of nodes and (relatively) long range
communication. Many physical and link-layer specifications provide such a compromise.
For example, Bluetooth Low Energy (BLE) and IEEE 802.15.4 are designed for wireless
personal area networks (WPANs) and allow satisfactory data rate with low-power con-
sumption and reasonable complexity. Other communication specifications are available for
specialized networks such as WAVE [14] for VANETs and 3G/4G for very long distances.
More recently, new wireless technologies explicitly designed for IoT have appeared such as
Sigfox [30] and LoRa [16]. However, these recent technologies still expensive for customers
in comparison to IEEE 802.15.4 and BLE. Among these wireless technologies, Bluetooth
Low Energy (BLE) and IEEE 802.15.4 appear to offer a satisfactory compromise between
range, power consumption and cost. Both are considered as low-power low-rate technologies
and are currently dominating in IoT systems. BLE and IEEE 802.15.4 operate in the 2.4
GHz ISM spectrum, but have their own modulation scheme, bit rate, channel map and
channel spacing, and upper layers [21]. We chose to consider the IEEE 802.15.4 for its
stack and configuration simplicity, and for the flexibility it provides in terms of network
topology.

5.3 Architecture
The first benefit of the NDN integration in low-end IoT is to make end-devices an

integral part of the NDN network, whether they are producers or consumers. In addition
to send Interest and Data packets over IEEE 802.15.4 frames, an efficient integration should
consider packet transformation at the intersection between the wireless local network and
the backbone, to accommodate constrained devices.

As we target a realistic deployment, our architecture follows common IoT solutions as
despicted in Figure 5. The gateway and the end-devices communicate with NDN over IEEE
802.15.4, while the gateway and applications communicate with NDN over UDP/IP. We
assume that each end-device is a source of data and thus a content producer. The gateway
forwards Interests issued from user applications, whereupon end-devices can reply with
Data packets that they produced or stored in their caches. Each end-device generates data
under a specific prefix-name obtained altogether with required security materials (e.g.,
signature keys, certificates) through a pairing process. Each end-device uses a different
content name, but a common prefix is shared between end-devices and the gateway within
the local network. A Wireless Local Area Network (WLAN) is formed by a gateway and
a set of end-devices. Each WLAN is accessible via the gateway under a Common Prefix
(CP). In summary, architecture components are the following:

1. End-devices (EDs): Wireless nodes running NDN protocol and communicating
through IEEE 802.15.4 transceivers.

2. Gateway: Physical node that allows NDN applications to reach EDs from the Interent.

3. Local Manager (LM): Its role is to manage device identities, access control, etc. Thus,
it handles a pairing process for EDs, an authentication server, etc. LM is a software
component typically included in the gateway.



A Realistic Deployment of NDN for the IoT 11

4. WLAN: A gateway, including the LM and a set of EDs form a wireless local network
accessible via a common prefix (CP).

Figure 5: NDN-802.15.4 architecture

Figure 6 depicts the NDN protocol stack with IEEE 802.15.4 integration, a simplified
OSI model and the 6LoWPAN stack.

Figure 6: NDN-802.15.4, OSI model and 6LoWPAN stack

To provide a better support of NDN over IEEE 802.15.4, we exploit the flexibility of
NDN to fit better with IoT devices constraints such as small MTU, limited memory and
CPU. The proposed operations are implemented in the EDs and the gateway and described
below.

5.4 Stateless Packet Compression
Interest packets issued by applications can rapidly become large, due to long content

names and additional fields. The corresponding Data will be even larger due to content
and signatures. However, we observe that requested content can be retrieved from EDs
without sending all fields of an Interest. Missing fields can be computed based on predefined
configurations, packets specification and previously shared information. Similarly, Data
packets produced by EDs can be sent with missing fields that will be completed by the



12 Abane et al.

Table 2: Packet fields classification

Class Fields Treatment
STATIC (part of) Name, NameComponent Not transmitted

INFERRED SignatureType, KeyLocator Not transmitted

DEFAULT VALUE ContentType, FreshnessPeriod, HopLimit
InterestLifetime, MustBeFresh, CanBePrefix Not transmitted when default value

VARIABLE Nonce, Content, SignatureValue, Parameters Always transmitted
UNSUPPORTED Rest of the fields (e.g. ForwardingHint). Not transmitted

gateway. To exploit this feature, we designed a stateless packet compression scheme to
reduce overhead in the WLAN and avoid packet fragmentation.

The reasons of choosing a stateless compression are multiple. First, as the information
compressed in NDN packets mainly consists on names and characters, even a simple
compression scheme will significantly reduce packet sizes. That is, a context is not required
to achieve an efficient compression ratio. Second, stateless compression does not require
additional memory and overhead to operate and is simple to implement in constrained
devices. Third, from an implementation point of view, a stateless compression process
consists on omitting/updating certain bytes when sending the packet. Thus, the sender
does not need to maintain the two states of the packet (i.e. compressed and decompressed)
like in IP. Similarly, the receiver decompresses the packet by adding/updating certain
bytes.

Based on the same principle as for IP header compression, we adopt a packet fields
classification according to which the packets are compressed. The field classification is
summarized in Table 2 and the description of the classes is the following:
• Static: fields shared by EDs and the gateway/LM in the local wireless network. For

example, CP is a part of content Name shared by all WLAN nodes. Such fields are
never sent between the gateway and EDs, either in Interest or in Data packets.
• Inferred: fields that are not exactly the same for the gateway/LM and all the EDs, but

they can be calculated using WLAN shared configuration and conventions (e.g. trust
conventions). For instance, we assume that common information has been shared
between the gateway and EDs through a pairing process. When such information
exists, related fields are not transmitted.
• Default value: fields with a default value defined in the NDN specification. That is,

these fields are not transmitted when they have the default value, but are transmitted
otherwise. For example, ContentType in a Data packet is not transmitted when the
packet contains application data.
• Variable: fields that can not be inferred and are not common to WLAN entities. Thus,

they must always be transmitted.
• Unsupported: fields that EDs and/or the WLAN do not support because their process-

ing is too complex for constrained devices. They are never transmitted. This class is
intended to support packet fields restrictions for the wireless forwarding mechanisms.
When no explicit restriction is defined, these fields are transmitted.

5.5 Lightweight Wireless Forwarding Strategy
5.5.1 Design Guidelines

Given the limited resources and capacity offered by EDs, we consider the following
guidelines and requirements for a lightweight forwarding strategy:

1. Rely on a minimal state to process packets without maintaining explicit routes.



A Realistic Deployment of NDN for the IoT 13

2. Avoid reverting to a random Interest flooding phase in order to provide accurate
forwarding decisions while reducing collision risks, network congestion and overhead.

3. Avoid node identification or addressing and use only broadcast communications to
correctly fit the NDN vision.

4. Avoid additional data structures to preserve the lightweight aspect of the NDN stack
and allow more space to caching.

5. Distribute decisions and computation tasks over the network, and minimize complex-
ity.

Based on these guidelines designe, we designed a forwarding strategy, called Reinforcement-
based Lightweight Forwarding (R-LF) strategy and detailed below.

5.5.2 Approach and Assumptions
Routing and forwarding operations are significantly different in NDN and IP. In IP,

only the routing operation is smart in the sense that different routing protocols can be
envisioned. The forwarding operation always consists in finding the longest match available
in the routing table and sending the packet to the corresponding next hop. In NDN how-
ever, in addition to the routing operation that can be smart as in IP, multiple approaches
are possible to handle packet forwarding with more or less additional information and with
or without caching.

Our proposed strategy does not use an explicit routing phase to gather or update
forwarding information. R-LF operates according to the following steps: (i) the nodes
overhear Data packets and learn a cost value by reinforcement, (ii) the nodes decide to
forward an Interest with a delay according to their cost-based eligibility, (iii) the nodes
update their cost from the result, which can be an Interest timeout or a received Data
packet.

The following describes the R-LF approach followed with the mathematical formaliza-
tion.

5.5.3 General Description
To forward packets, a node traditionally decides in terms of what the next hop is, which

can be considered as a spatial forwarding decision. However, as NDN forwarding is based
on content names and R-LF uses only broadcast directly on top on the MAC layer, a node
decides in terms of when it should forward the Interest; i.e., how long it should wait before
forwarding. Such a process can be seen as a temporal forwarding decision. This approach
has been explored before and consists in ensuring that the more eligible node will forward
the Interest first [17].

To describe the forwarding approach, the following assumptions are made:
• Interest and Data packets carry the cost value of the sending node, denoted as C-field.
• Interest flooding with random delays similar to CF are used when the first Interest is

issued for an unknown content.
• Nodes are able to overhear Interest and Data packets related to other communications.
R-LF operates according to two phases: (i) a reinforcement learning that consists in

maintaining a cost value for each available content prefix, (ii) an adjustment of the waiting
delay based on the neighborhood activity.

The first learning phase starts after a source node receives a randomly flooded Interest,
and acts as follows (see Figure 7 steps 1 and 2): (i) the source node responds with a
Data packet carrying the initial cost, (ii) the first forwarder on the source-consumer path
computes its cost with a reinforcement technique, replaces the C-field with the value



14 Abane et al.

Figure 7: Common forwarding situations with R-LF

obtained, and forwards back the Data packet, (iii) each node on the path follows the same
procedure until the Data packet reaches the consumer, (iv) in the vicinity of the path,
the nodes that overhear the Data packet can perform a passive cost update to learn their
eligibility relative to the data source.

The random flooding phase is then over, and the first learning phase is set up. Each node
updates the cost related to the corresponding prefix-name after retrieving (or overhearing)
a Data packet with a smaller cost. Let us refer to this phase as the reinforcement phase.

To describe the forwarding process, we define the delay to wait before forwarding an
Interest as Φ(a). The formal definition of Φ(a) will be detailed later. The forwarding
decision in a relay node consists in finding the appropriate value of a that gives a correct
delay to wait. Since a is calculated in two steps, let a = ∆ + θ, with ∆ and θ as explained
in the following.

Let Cx(p) and Cy(p) be the current cost for prefix p at nodes x and y respectively.
Whenever node x receives an Interest issued (or forwarded) by node y, it computes the
value ∆ = Cy(p)−Cx(p). Here, ∆ quantifies the global eligibility of node x to forward the
Interest. If ∆ ≥ 0 then node x can potentially forward the Interest.

The value of θ is locally computed by the forwarder based on its neighborhood activity
to refine ∆ before calculating the delay time. Let us refer to this phase as the Delta
adjustment phase.

After computing a, the Interest forwarding is delayed for Φ(a) units of time. During
the delay-listening time, if node x detects that a forwarder z is transmitting a packet with
the same name, it deduces that z is more eligible to handle the Interest and cancels its
pending transmission (see Figure 7 step 3).

With the delta adjustment, the random-delayed forwarding is used only when the prefix
is unknown by the forwarder (x) and is reset by the sender (y). Thus, even after an Interest
timeout in x and y, the value of θ can be used in most cases to distinguish nodes eligibility
(see Figure 7 step 4).

The next subsection provides the mathematical details.



A Realistic Deployment of NDN for the IoT 15

5.5.4 Details and Mathematical Formalism
Reinforcement phase: The cost value at node x is updated according to Equation 3:

Cx(p) = (1− α)Cx(p) + α (r + minCy(p)) (3)

In this equation used in Q-learning and Q-routing [6], α is the learning rate, r is the
reward, Cx(p) is the cost at node x for the prefix p, and minCy(p) is the smallest cost
heard by node x from node y.

Assuming the hop-count as a metric, the reward is always equal to 1, and the cost of
each node increases as the distance to the content source increases. The cost at the content
source is 0.

The cost values reflect the distance to the content source and are used to decide on a
forwarder’s eligibility. Moreover, the approximate nature of the update formula produces
a large number of possible cost values over the network, which helps to avoid obtaining
the same waiting delay for different nodes.

Since the nodes remember only the smallest heard cost, a node may have an obsolete
estimation of its cost value. To avoid that, after an Interest timeout, a node resets its cost
value (i.e. Cx(p)) to 0 and the smallest heard cost (i.e. minCy(p)) to the maximum cost ∆̂,
in order to accept cost updates. Note that in Interest packets, a cost value of 0 indicates
that the sender has reset its cost or it has no information about the content prefix. Thus,
it does not interfere with the 0 cost value of a Data packet which actually means that the
packet has been sent by the producer. The estimation of ∆̂ is presented further.

When caching is enabled, the cost carried in a cached Data packet may introduce
uncertainty in the reinforcement calculus, especially when a relay node has cached only
few chunks of the requested content. To overcome this, when a cached Data is returned
by a relay node, the cost carried in that Data is the highest expected value (i.e., ∆̂). This
way, cached Data packets do not lead to a reinforcement update at other nodes, since
cached Data packets may not carry accurate cost information.

Delta adjustment: The adjustment serves two purposes: it refines ∆ to deal with
local uncertainty in real time and allows each node to handle multiple content prefixes
simultaneously. In fact, using only ∆ to compute delays, even if it is accurate, does not
allow different content names cohabitation to be supported.

To compute θ, let Na be the neighborhood activity rate for all data names. From the
perspective of a node, Na can be computed by Na = Du/Id, where Du is the number
of unsolicited received Data and Id is the number of non-forwarded Interests (dropped
Interests).

Then, θ may be simply defined as

θ = Th−Na (4)

where Th ≤ 1 is the activity threshold above which the waiting time should be
increased.

For simplicity, but without losing accuracy, Na is kept between 0 and 1. Thus, if Th is
lower than 1 (e.g. 75%), θ can be negative. In this case, the value of ∆ is reduced, which
will increase the waiting time. When no statistic is available, Na = Th.

Delay function: After defining the appropriate value of a, the delay time is computed
with a function that is inversely proportional to the value of a. Such a function can be
intuitively defined by:

Φ(a) = M

ea/2 +m (5)

This function ensures that when two nodes can both forward an Interest, the node with
the highest value of a will delay its transmission for a shorter time than the node with



16 Abane et al.

the lowest value, as depicted in Figure 8. In addition, m forces the forwarder to wait for
a minimum time to let the transmission of the corresponding Data packet if any, while M
controls the upper-bound of the calculated delays.

Figure 8: Delay function example

The importance of Φ is capital and a parameter calibration is needed to have an efficient
distribution of waiting times.

We can observe that lima→∞ Φ(a) = m. Therefore, we need to ensure that Φ(â) > m,
where â is an estimation of the highest value of a.

According to Equation 4, θ ≤ Th. Given that the lowest cost value that can be
computed by a node is close to 0, we can deduce the highest gap between two cost values
as being the highest cost value in the network.

To estimate the highest reinforcement value expected in a network, we use the following
Q-learning update property:

Cx(p) ≤ ε+ Cy(p)⇒ C ′
x(p) ≤ ε+ Cy(p) (6)

where C ′
x(p) is the updated value of Cx(p) and Cy(p) is the min overheard cost.

This property is proven in [26] using the Q-learning update properties and initial
conditions.

Given that NDN packets do not loop by design and considering a grid topology of
n nodes, we assume that the average distance between two nodes should not exceed

√
n

hops. Then, we use Equation 6 to recursively estimate the maximum expected value of ∆
as ∆̂ = (

√
n+ 1). Then, we deduce an estimation of â to set the parameters of Φ(a).

The forwarding decision process for a node x with a cost of Cx(p), receiving an Interest
from node y with a cost of Cy(p) for a prefix p is summarized in Algorithm 1.

6 Prototype Design and Implementation
The prototype design considers current IoT equipment available for common users.

First, Arduino single-board microcontrollers are a typical example of constrained devices
to create EDs; with a low-power, slow-speed CPU and a few kilobytes of RAM and Flash.
When deploying IoT applications in environments such as agricultural fields, it is common
to use sensors and actuators running on such constrained equipment [4]. These devices are
intended to support the NDN stack and run a producer application that basically creates,
names and signs Data packets, and processes Interests received from the gateway. Second,



A Realistic Deployment of NDN for the IoT 17

Function ProcessInterest
Data: Interest packet
begin

if p is unknown then
if Cy(p) == 0 then

Broadcast with random delay
else

Drop Interest (node not eligible)
end

else
if Cy(p) == 0 then

∆ = ∆̂− Cx

else
∆ = Cy − Cx

end
if ∆ ≥ 0 then

θ = Th−Na

a = ∆ + θ
Broadcast with Φ(a) delay

else
Drop Interest (node not eligible)

end
end

end
Algorithm 1: Interest forwarding process

the gateway has typically more CPU and memory resources than EDs. It also has more
power as it is commonly plugged to a constant source of energy. The class of equipment
we use as gateways is represented by Raspberry-Pi single-board computers. Raspberry-Pi
hardware is widely used for prototyping and making IoT low-cost applications for testing
and developing Proofs-of-Concepts and embedded systems. The wireless communications
are achieved using XBee radio modules [25].

6.1 Gateway
The gateway includes the LM and supports NDN communications over IEEE 802.15.4

with a process (called NDN-15.4) that we design to work next to the NDN forwarding
module (i.e., NFD [1]). Figure 9 depicts the software and hardware components involved
in the gateway after integrating NDN over IEEE 802.15.4.

The NDN-15.4 process manages sending Interests and getting Data, and receiving
Interests and sending Data. That is, the gateway is able either to receive Interests from
EDs, forward them to the backbone and get the Data back, or to forward Interests from the
backbone to EDs and get Data packets back. As the forwarding strategy is based on broad-
cast only, the NDN-15.4 process uses the broadcast address to send packets. In practice,
the NDN-15.4 process intercepts Interests with a certain prefix p (e.g., /cowHealth/farm)
and sends them over the wireless link. This prefix has to be set in order to forward all
Interests with names starting with p to the IEEE 802.15.4 WLAN. To achieve that, the
NDN-15.4 process registers the prefix p to NFD, which creates a FIB entry to bind p
to the NDN-15.4 process. Then, NFD acts in a normal way; upon receiving an Interest
with a name-prefix p, it forwards it to the NDN-15.4 process. When the corresponding
Data comes back to the gateway, it is forwarded to the appropriate application or next



18 Abane et al.

Figure 9: Architecture of the gateway

Table 3: Typical FIB at the gateway

Prefix Face Cost
/cowHealth/farm NDN-15.4 process 0 (local)

hop according to the PIT. Table 3 gives the typical FIB at the gateway, and Figure 10
represents the NDN-15.4 process in pseudo-code.

The stateless packet compression scheme described before is implemented in the NDN-
15.4 process. The NDN-15.4 process is implemented in Python using the PyNDN2 library
[10]. The library that handles IEEE 802.15.4 frames is also implemented in Python.

6.2 End-devices
A lightweight version of the NDN protocol stack is available on Arduino thanks to

the ndn-cpp Lite library [22]. This library supports encoding and decoding TLV packets,
and includes cryptographic algorithms such as HMAC and ECSDA. We extended ndn-cpp
Lite with a simple IEEE 802.15.4 communication library that handles XBee modules to
send and receive NDN packets over IEEE 802.15.4 frames, in the same way as the gateway
does. Figure 11 depicts the architecture of an ED including software modules and libraries.
Figure 12 shows an actual picture of an ED prototype.

6.3 Consumer Application
To collect data, an NDN consumer application runs on a computer or laptop and peri-

odically issues Interests which are forwarded by the gateway to the WLAN. Depending on
the purpose of the monitoring, the application can display data on a map, on a dashboard,
or simply store it. Applications are developed in Python using the NDN library PyNDN2.

7 Deployment and Evaluation
The cow health monitoring system deployment consists on one WLAN with one gate-

way and four EDs. A consumer application runs on a laptop connected to the gateway on
the local network (LAN) and periodically sends Interests to collect data.



A Realistic Deployment of NDN for the IoT 19

/* callback for incoming Interest from the backbone */
function onInterest(interest) :

frameBuffer = encodeAndCompress(interest)
ieee802154.broadcast(frameBuffer)

/* callback for incoming Data from the backbone */
function onData(data) :

frameBuffer = encodeAndCompress(data)
ieee802154.broadcast(frameBuffer)

function main() :
/* to receive Interests from the backbone */
backboneFace = Face()
prefix = "/farm"
backboneFace.registerPrefix(prefix, onInterest)

/* connect to the 802.15.4 radio */
ieee802154 = Ieee802154()

while True:
/* process incoming packets from the backbone */
backboneFace.processEvents()

/* process incoming packets from the WLAN */
frame = ieee802154.wait_read_frame(0.01)
if frame :

if frame.isData() :
data = decodeAndDecompress(frame)
backboneFace.put(data)

else if frame.isInterest() :
interest = decodeAndDecompress(frame)
backboneFace.issue(interest)

Figure 10: NDN-15.4 process

The WLAN is identified by the common prefix CP = /cowHelath/farm/area/1. Each
ED serves content under a name /cowHelath/farm/area/1/cow/<cowID>/temp, formed
by the CP, a cow ID, and data type which is temperature in our case. Here, <cowID> is
a 1-byte number that identifies each cow.

A 32-byte HMAC signature is used to secure Data packets. The secret keys are directly
hard-coded in EDs and the monitoring application since key management is beyond the
scope of this work. However, the security support descibed in [34] can be deployed as well.

An Interest packet issued by the consumer (i.e., uncompressed) carries the Name, a
Nonce, a MustBeFresh indicator to accept only fresh data, and has a lifetime with the
default (i.e., 4 seconds).

In the uncompressed Data packet created by the ED, the Name contains an additional
component that represents the timestamp of the data collection. The Data name obtained
is then /cowHelath/farm/area/1/cow/<cowID>/temp/<timestamp>. Each Data packet
has a 4-byte content that contains the measured temperature. In MetaInfo field, a 1-byte
ContentType indicates that the packet carries raw content, followed by a 2-byte Fresh-



20 Abane et al.

Figure 11: Architecture of the ED

Figure 12: Picture of an ED

nessPeriod field. Finally, the Signature TLV component contains a 1-byte SignatureType
and a 16-byte KeyLocator.

A typical Interest-Data exchange operates as follows. The Interest issued by the applica-
tion is forwarded to the gateway over UDP/IP. Then, the gateway compresses it and sends
it over the IEEE 802.15.4 link. After the wireless forwarding process, the corresponding
ED responds to the Interest by a signed Data with the corresponding content. Finally, the
gateway decompresses the Data packet and forwards it toward the consumer application.



A Realistic Deployment of NDN for the IoT 21

Table 4: NDN-802.15.4 and 6LoWPAN features comparison

Feature NDN-802.15.4 6LoWPAN
Fragmentation Yes Yes

Packet structure Flexible packet format Fixed packet format
Compression Stateless packet compression Stateful header compression

Mobility Simple adaptations Additional protocols
NEMO, AdapterMIPv6, etc.

Security Native data-centric security MAC and TLS security

Four types of evaluation are reported in the following: (i) a features comparison between
our NDN-IoT architecture and 6LoWPAN, with a discussion on the feasibility of NDN-IoT
in terms of implementation and security, (ii) a theoretical evaluation of the gain achieved
with the packet compression scheme, (iii) results on code size and communication delays
measured in our deployment, (iv) a simulation evaluation of the R-LF forwarding strategy
compared to CF in a local-scale deployment.

7.1 Features and Feasibility
The proposed packet compression does not always require decompression. Indeed, the

gateway and EDs perform different (de)compression operations. When an ED receives a
compressed Interest, it does not need to calculate all the missing fields to generate the Data
or to forward the Interest. Furthermore, if the decompression is required, each field can be
extracted separately with TLV encoding. When a Data packet reaches the gateway, it is
decompressed by adding/updating the needed bytes, and then forwarded to the backbone.

Using the data-centric security of NDN, the data related to each cow is signed directly
when it is collected by the corresponding ED. Hence, every cow has a unique identity (not
an address) in the network system. This identity is securely bound to its data at network
level.

Moreover, data authenticity is not compromised by packet compression. When each
ED signs its Data, the original (i.e., uncompressed) Data packet is signed before the
compression. At the gateway, the decompression process adds the exact bytes needed to
make the signature verification correct. This way, if the gateway is partially compromised
but the security information is safe, the decompressed packet will contain errors, and this
will be detected by the consumer. When the Data signature is delegated to the gateway,
the Data packet is signed by the gateway after decompression.

As an empirical evaluation, we report in Table 4 an overall comparison between NDN-
IoT and 6LoWPAN features.

7.2 Theoretical Performance
Figure 13 depicts a comparison between initial (i.e., uncompressed) Interest and Data

packets and their compressed versions. The Data packet represented here does not include
the signature, which is about 32 bytes in both initial and compressed Data. Considering
the packet structures in the deployment described above, the size of the Interest is reduced
from 57 bytes to 24 bytes. Similarly, the Data packet size is reduced from 93 bytes to 34
bytes.

Note that the most part of the compression gain is achieved by reducing name size
in the packets. That is, when CP becomes longer such as in large scale deployments, the
compression gain will increase. Moreover, this compression gain comes at the cost of only
few microseconds of delay, as no complex processing or context storage is required.



22 Abane et al.

Figure 13: Compression improvement

7.3 Prototype Measurements
Table 5 reports on memory and processing time required by the NDN stack imple-

mentation in EDs considering both Arduino UNO (16 Mhz MCU) and DUE (84 Mhz
MCU).

The forwarding process delay with R-LF for the first Interest (i.e., unknown prefix
name) is approximately 145µs on Arduino UNO and 55µs on Arduino DUE. Subsequent
Interests forwarding (i.e., known prefix name) takes about 50µs on Arduino UNO with
5 entries in the FIB, and 10µs on Arduino DUE considering 10 FIB entries. This delay
difference between first and subsequent forwarding is mainly due to the random number
generation which is used in R-LF for only the first Interest forwarding. With R-LF,
a FIB entry update after receiving a Data packet consists on a reinforcement learning
computation and takes 70µs on Arduino UNO and 18µs on Arduino DUE. The measured
values show the simplicity of forwarding decisions in the R-LF strategy.

Concerning memory space required by the implementation, only 28% of flash memory
and 50% of RAM are needed in the Arduino UNO. The implementation on the Arduino
DUE occupies 6% of the total memory. The evaluated implementation includes the three
NDN data structures, the communication over IEEE 802.15.4 including packet compression
scheme and the R-LF strategy. Although these values increase when adding NDN packet
definition and security algorithms, the leeway is still large for such components.

As an empirical comparison, some open source implementations of the IPv6 stack over
IEEE 802.15.4 on Arduino (Mega) take about 12% storage and 45% RAM, while our NDN
stack occupies about 3% storage and 12% RAM on an Arduino Mega board.

Table 6 reports on the one-hop Round Trip Time (RTT) measured at the gateway to
send an Interest and get the corresponding Data using Arduino DUE devices, and the
Compression Delay (CD) added to the communication due to packet compression.

In comparison, the measured RTT is below 6LoWPAN performance usually reported
(e.g 9 to 25 ms) [8, 9]. However, 6LoWPAN packets are not signed and additional layers
are required to support data naming, while the measured RTT includes Data creation and
signature, and Interest-Data (de)compression. Moreover, we recall that our implementation
is a prototype that can be improved.

The compression delay (CD) does not exceed 6µs as it only consists on adding/skipping
bytes while transmitting a packet.



A Realistic Deployment of NDN for the IoT 23

Table 5: Memory and processing measurements

Operation Arduino UNO Arduino DUE
First Interest forwarding 145µs 55µs

Subsequent Interest forwarding 50µs 10µs
Data forwarding 50µs 10µs
Reinforcement 70µs 18µs

Required memory 28% (Flash)
50% (RAM) 6% (Total)

Table 6: Communication measurements at the gateway

Operation Measure
Round-Trip Time 72ms

Compression Delay 6µs

7.4 Wireless Forwarding Performance
To evaluate the R-LF strategy from a networking perspective, we consider a

scenario that reflects our smart agriculture deployment in a larger scale. The net-
work topology consists of 16 nodes (EDs) organized in a grid of 180m x 180m.
Each of the 16 nodes produces 100 different contents under a specific name prefix:
/cowHealth/farm/area/1/cow/<cowID>. A randomly placed consumer represents the
gateway and continuously requests content by issuing Interests. The content requested in
our scenario can be considered as Web content which usually follows Zipf distribution [7].
The requested content item is chosen as follows. One of the 16 possible contents (i.e.,
EDs) is chosen according to the Zipf distribution with α = 1.3, then one content item is
uniformly chosen among the 100 available items.

Figure 14 gives an example of the simulated topology, and Table 7 reports the relevant
simulation parameters.

Figure 14: Simulated topology



24 Abane et al.

Table 7: Simulation parameters

Parameter Value
Data packet size 34 B

Interest packet size 24 B
Interest send interval 1 s

Max Interest re-transmissions (at the gateway) 1
Cache size 20 packets

Cache replacement LRU
Data freshness 60 s

Wireless bit-rate 250 Kbps
Wireless MAC protocol 802.15.4 CSMA
Communication range 35 m

We evaluated the R-LF strategy compared to CF-127 and CF-255, which correspond
to the CF strategy with dw = 127 and 255 respectively (see Section 3). Preliminary
simulations are used to set the best R-LF parameters as α = 0.85, M = 5.0, N = 3.5,
∆̂ = 9, and th = 0.75.

The following metrics are measured:
• The total number of successfully transmitted frames to measure the generated

overhead.
• The mean round-trip time (RTT) for an Interest-Data exchange measured at the

gateway.
• The Interest satisfaction rate at the consumer (i.e., gateway) to check the accuracy

of the forwarding decisions.
• The mean delay time at link-layer (i.e. back-off) spent by a node before getting access

to the medium to transmit a frame.
These metrics have been chosen for the following reasons. First, they are related to

the objective of our forwarding strategy to take advantage of broadcast without suffering
from its inconvenient. That is, the number of transmitted frames over the network indi-
cates if the broadcast effect is attenuated, the RTT ensures that waiting delays are not
too high, and the Interest satisfaction rate measures the data delivery efficiency of each
approach. Moreover, the back-off time indicate how much the strategy reduces medium
access contention. Second, the four metrics mutually impact one another and it is difficult
to optimize the four at the same time. Third, evaluation of forwarding strategies in related
work usually measure these metrics or equivalent ones.

In all the simulations, the reported results correspond to the average values obtained
with 7 random executions. Results are reported in Figure 15.

We observe that the three strategies (i.e., R-LF, CF-127 and CD-255) achieve the same
Interest satisfaction rate which is slightly close to 100%. However, this Interest satisfaction
rate does not come at the same cost for all the approaches as discussed below.

The results show that the total number of frames transmitted by R-LF is significantly
lower than CF-127 and CF-255. Given that both CF and R-LF use only broadcast, this
indicates that forwarding decisions with R-LF are gratly improved. Moreover, as only
request and response packets exist in R-LF and CF, the low number of transmitted frames
indicates that R-LF is able to choose the best paths to retrieve content, which is not
guaranteed when the forwarding relies on Interest flooding with random delays for example.
Notice that reducing the overhead is one of the design goals of R-LF.

R-LF outperforms CF in terms of RTT even though both strategies use waiting delays
to forward packets. That is, the superiority of R-LF mainly results from the accuracy of



A Realistic Deployment of NDN for the IoT 25

the waiting delays used to forward Interests. Furthermore, as Interest forwarding decisions
are more accurate, forwarders do not need to defer Data packet transmissions.

Moreover, the accuracy of forwarding decisions with R-LF greatly impacts the con-
tention access on the wireless medium. This is clearly shown by the reduced back-off time
measured with R-LF compared to CF.

Figure 15: R-LF evaluation results

8 Discussion and Conclusion
We investigated in this paper how to take advantage of NDN for the IoT in a simple

and feasible solution. To that purpose, a realistic NDN-IoT architecture has been designed
and realized considering the IEEE 802.15.4 wireless technology. After identifying the in-
tegration of NDN in the low-end IoT as the most realistic approach, the main integration
issues have been discussed, and some mechanisms have been proposed. The proposed
mechanisms show the flexibility of NDN to support low rate lossy technologies such as
the IEEE 802.15.4. The NDN-IoT architecture proposed aims to shape a novel and strong
NDN-IoT duo.

Moreover, lightweight NDN forwarding in wireless networks with broadcast has been
investigated. The objective through the forwarding approach proposed is to show that
broadcast can be used successfully in constrained networks, while ensuring reduced over-
head and accurate forwarding decisions. For that, we designed R-LF; a forwarding strategy
based only on content names and broadcast without any host identification. R-LF is a
reactive forwarding strategy that does not require additional communication to main-
tain forwarding information. Results obtained show that R-LF is able to provide efficient
data retrieval using exclusively the content-centric paradigm of NDN, without any host
identification such as logical or link-layer addresses.

The deployment evaluation provides some preliminary measurements and empiri-
cal comparison with IP-based solutions. For example, the deployment may show the
lightweight and simplicity of NDN implementations for IoT.



26 Abane et al.

Overall, the main limitation we may identify in this work is the lack of direct per-
formance comparisons between NDN and IP. Although it could be useful, this can be
explained by several reasons. First, we greatly rely on the discussions about IP limitations
and NDN native features to show the superiority of NDN, which is indisputable in many
aspects such as security, native caching and simplicity. Second, when comparing IP and
NDN in a given scenario, the fairness of the configurations is frequently questioning, for
example when enabling caching.

References
[1] Alexander Afanasyev, Junxiao Shi, Beichuan Zhang, and NFD Team. ”NFD developer’s guide”.

Technical Report NDN-0021, NDN, February 2015.
[2] Marica Amadeo, Claudia Campolo, Antonio Iera, and Antonella Molinaro. ”named data networking for

iot: an architectural perspective”. Conference on European Networks and Communications (EuCNC),
pages 1–5, June 2014.

[3] Marica Amadeo, Claudia Campolo, and Antonella Molinaro. Forwarding strategies in named data
wireless ad hoc networks: Design and evaluation. Journal of Network and Computer Applications,
50(Supplement C):148 – 158, 2015.

[4] Andrei Klubnikin. IoT Agriculture: How to Build Smart Greenhouse?
[5] Emmanuel Baccelli, Christian Mehlis, Oliver Hahm, Thomas C. Schmidt, and Matthias Wählisch.

Information centric networking in the iot: Experiments with ndn in the wild. In Proceedings of the 1st
ACM Conference on Information-Centric Networking, ACM-ICN ’14, pages 77–86, New York, NY,
USA, 2014. ACM.

[6] Justin A. Boyan and Michael L. Littman. Packet routing in dynamically changing networks: A
reinforcement learning approach. In Proceedings of the 6th International Conference on Neural
Information Processing Systems, NIPS’93, pages 671–678, San Francisco, CA, USA, 1993. Morgan
Kaufmann Publishers Inc.

[7] L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker. Web caching and zipf-like distributions:
evidence and implications. In IEEE INFOCOM ’99. Conference on Computer Communications. Pro-
ceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies.
The Future is Now (Cat. No.99CH36320), volume 1, pages 126–134 vol.1, March 1999.

[8] Brendan Cody-Kenny, David Guerin, Desmond Ennis, Ricardo Simon Carbajo, Meriel Huggard, and
Ciaran Mc Goldrick. Performance evaluation of the 6lowpan protocol on micaz and telosb motes. In
Proceedings of the 4th ACM Workshop on Performance Monitoring and Measurement of Heterogeneous
Wireless and Wired Networks, PM2HW2N ’09, pages 25–30, New York, NY, USA, 2009. ACM.

[9] G. Gardasevic, S. Mijovic, A. Stajkic, and C. Buratti. On the performance of 6lowpan through
experimentation. In 2015 International Wireless Communications and Mobile Computing Conference
(IWCMC), pages 696–701, Aug 2015.

[10] Github. ”NDN client library with TLV wire format support in native Python”.
[11] IEEE. Ieee standard for information technology– local and metropolitan area networks– specific

requirements– part 15.1a: Wireless medium access control (mac) and physical layer (phy) specifications
for wireless personal area networks (wpan). IEEE Std 802.15.1-2005 (Revision of IEEE Std 802.15.1-
2002), pages 1–700, June 2005.

[12] IEEE. Ieee standard for local and metropolitan area networks–part 15.4: Low-rate wireless personal
area networks (lr-wpans). IEEE Std 802.15.4-2011 (Revision of IEEE Std 802.15.4-2006), pages 1–314,
Sep. 2011.

[13] IEEE. Ieee standard for information technology—telecommunications and information exchange be-
tween systems local and metropolitan area networks—specific requirements - part 11: Wireless lan
medium access control (mac) and physical layer (phy) specifications. IEEE Std 802.11-2016 (Revision
of IEEE Std 802.11-2012), pages 1–3534, Dec 2016.

[14] IEEE. Ieee draft trial-use standard for wireless access in vehicular environments (wave) - resource
manager. IEEE Std P1609.1/D17, Jul 2006, pages 1–66, April 2019.

[15] Teng Liang, Ju Pan, and Beichuan Zhang. Ndnizing existing applications: Research issues and
experiences. In 5th ACM Conference onInformation-Centric Networking (ICN ’18), September 2018.

[16] LoRa Alliance. ”website LoRa Alliance”.
[17] Meisel Michael, Pappas Vasileios, and Zhang Lixia. Listen first, broadcast later: Topology-agnostic

forwarding under high dynamics. In Annual conference of international technology alliance in network
and information science, 2010.



A Realistic Deployment of NDN for the IoT 27

[18] Gabriel Montenegro, Jonathan Hui, David Culler, and Nandakishore Kushalnagar. Transmission of
IPv6 Packets over IEEE 802.15.4 Networks. RFC 4944, September 2007.

[19] John Mueller. ”Understanding SOAP and REST Basics And Differences”, 2013.
[20] Luca Muscariello, Giovanna Carofiglio, Jordan Auge, and Michele Papalini. Hybrid Information-

Centric Networking. Internet-Draft draft-muscariello-intarea-hicn-01, Internet Engineering Task Force,
December 2018. Work in Progress.

[21] PrithviRaj Narendra, Simon Duquennoy, and Thiemo Voigt. Ble and ieee 802.15.4 in the iot: Eval-
uation and interoperability considerations. In Benny Mandler, Johann Marquez-Barja, Miguel Elias
Mitre Campista, Dagmar Cagáňová, Hakima Chaouchi, Sherali Zeadally, Mohamad Badra, Stefano
Giordano, Maria Fazio, Andrey Somov, and Radu-Laurentiu Vieriu, editors, Internet of Things. IoT
Infrastructures, pages 427–438, Cham, 2016. Springer International Publishing.

[22] NDN. NDN Common Client Libraries (NDN-CCL) Documentation.
[23] NDN. NDN Testbed status page.
[24] NDN Project Team. ”NDN technical memo: Naming conventions”. Technical Report NDN-0022, NDN,

July 2014.
[25] Python. ”pyserial 2.7”.
[26] Shailesh Kumar. Confidence-based dual reinforcement q-routing: an on-line adaptive network routing

algorithm. Master’s thesis, The University of Texas at Austin, 1998.
[27] Wentao Shang, Adeola Bannisy, Teng Liangz, Zhehao Wangx, Yingdi Yu, Alexander Afanasyev, Jeff

Thompsonx, Jeff Burkex, Beichuan Zhangz, and Lixia Zhang. Named Data Networking of Things
(Invited paper). In The 1st IEEE Intl. Conf. on Internet-of-Things Design and Implementation,
Berlin, Germany, April 2016.

[28] Wentao Shang, Yingdi Yu, Ralph Droms, and Lixia Zhang. Challenges in IoT networking via TCP/IP
architecture. Technical Report NDN-0038, NDN, February 2016.

[29] Zach Shelby, Klaus Hartke, and Carsten Bormann. The Constrained Application Protocol (CoAP).
RFC 7252, June 2014.

[30] Sigfox. ”website Sigfox”.
[31] NDN Team. ”NDN Packet Format Specification”.
[32] H. Wu, J. Shi, Y. Wang, Y. Wang, G. Zhang, Y. Wang, B. Liu, and B. Zhang. On incremental

deployment of named data networking in local area networks. In 2017 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS), pages 82–94, May 2017.

[33] George Xylomenos, Yannis Thomas, Xenofon Vasilakos, Michael Georgiades, Alexander Phinikarides,
Ioannis Doumanis, Stuart Porter, Dirk Trossen, Sebastian Robitzsch, Martin J. Reed, Mays F. Al-
Naday, George Petropoulos, Konstantinos V. Katsaros, Maria-Evgenia Xezonaki, and Janne Riihijärvi.
IP over ICN goes live. CoRR, abs/1804.07511, 2018.

[34] Z. Zhang, Y. Yu, H. Zhang, E. Newberry, S. Mastorakis, Y. Li, A. Afanasyev, and L. Zhang. An
overview of security support in named data networking. IEEE Communications Magazine, 56(11):62–
68, November 2018.


