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ABSTRACT

This paper proposes a new macroscopic physical model of fer-
romagnetic coils used in audio circuits. To account for realistic
saturation and hysteretic phenomena, this model combines sta-
tistical physics results, measurement-driven refinements and port-
Hamiltonian formulations that guarantee passivity, thermodynamic
consistency and composability according to both electric and ther-
mal ports. As an illustration, the model is used to simulate a pas-
sive high-pass filter. Different types of audio inputs are considered
and simulations are compared to measurements.

1. INTRODUCTION

Ferromagnetism is frequent in analog audio: it is involved in trans-
ducers (dynamic microphones, loudspeakers), tape recorders, coils
and transformers. As major non-linearities arise from ferromag-
netic components (saturation, hysteresis), the need of refined mod-
els is critical to accurately simulate behaviors in circuits.

Since the 1980s, a large body of empirical models have been
proposed, among them the Jiles-Atherton model [1], the Gyrator-
Capacitor model [2, 3], or the Preisach model [4]. But very few
have a strong physical meaning [5] and those retaining some ener-
getic interpretation [6] either lose major phenomenological prop-
erties or are heavy to implement [7]. As a consequence, preserving
the model passivity (no artificial hidden sources of energy) comes
with a price — computation time.

In this paper, we propose a new nonlinear model of ferro-
magnetic coil that is physically-based, passive, modular (allowing
electric and thermal connections) and with a reduced complexity
(few state variables and parameters). As it is built on statistical
physics results on magnets, it is thermodynamically consistent. It
also inherits macroscopic characteristics (hysteresis and its condi-
tioned activation) from underlying microscopic phenomena (meta-
stability and phase transition). This lumped-element model is used
to simulate a passive high-pass filter. The circuit modeling relies
on Port-Hamiltonian Systems [8, 9] (PHS) that structurally ful-
fill the power balance. Simulations are based on numerical meth-
ods [10] that preserve this guarantee in the discrete-time domain.

The paper is structured as follows: Section 2 first presents
some short recalls on PHS. Section 3 develops a primary model
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derived from statistical physics. This model exhibits saturation
and hysteresis but does not take into account some other phenom-
ena, such as non-homogeneities, thermal fluctuations and eddy
currents. Section 4 refines the primary model with a polynomial
interpolation based on measurements of a Fasel inductor. In sec-
tion 5, the final nonlinear model is implemented to simulate a pas-
sive high-pass filter.

2. REVIEW OF PORT-HAMILTONIAN SYSTEMS

The following modeling relies on Port-Hamiltonian systems [11,
9], under a differential-algebraic formulation [10]. A dynamical
system is represented as a network of: (i) storage components of
state x and energy E (x), (ii) dissipative components described
by an efforts law w 7→ z(w) that dissipates the power Pdiss =
z (w)⊺ w ≥ 0 for all flows w, and (iii) connection ports conveying
the outgoing power Pext = u⊺y for inputs u and outputs y. The
flows f and efforts e of all the components are coupled through a
skew-symmetric interconnection matrix J = −J⊺: ẋw

y


︸ ︷︷ ︸

f

= J

∇E(x)
z(w)
u


︸ ︷︷ ︸

e

. (1)

Such systems satisfy the power balance Pstored+Pdiss+Pext = 0
where Pstored = ∇E(x)⊺ẋ denotes the stored power. Indeed,
Pstored + Pdiss + Pext = e⊺f = e⊺Je is zero since e⊺Je =
(e⊺Je)⊺ = −(e⊺Je) due to the skew-symmetry of J .

All models herein will be formulated as (1).

3. PRIOR THEORETICAL MODEL

3.1. Macroscopic model of a ferromagnetic core

This section presents a bi-stable core model rooted in the mean
field Ising model [12, 13, 14, 15, 16]. Using statistical physics,
Ising derives a macroscopic scalar state (the core magnetization)
from a microscopic representation of the core (a set of normalized
atomic magnetic moments, which can be either up or down), at a
given temperature T . For simplicity, additional assumptions are:
a homogeneous, isochoric (constant volume V ) and closed (con-
stant number of atoms N ) ferromagnetic crystal with one (local)
magnetization axis and periodic boundaries (typically, a toroidal
geometry often found in audio circuits [17]). In this section, there
is no external magnetic field (issue addressed in section 3.2).
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3.1.1. Macroscopic quantities and laws

Following [18] with our assumptions, the core internal energy is

E = Nα

(
1

2
m2 −m tanh

(
m

θ

))
, (2)

where parameter α (≈ 5 × 10−21 J for transition metals) denotes
the exchange energy between one moment and its nearest neigh-
bours [19, 20, 21], and where variables m and θ are average in-
tensive quantities (homogeneous over the body) that statistically
characterize the core configuration at a macroscopic scale:

• m ∈ [−1, 1] is the mean normalized magnetic moment:
m = ±1 if all moments are aligned in the same direction,
and m = 0 if no particular direction is favored;

• θ = T/Tc ∈ R+ is the reduced temperature relative to
the core Curie temperature Tc [22]: if θ < 1, there are
multiple equilibria m (ferromagnetism), and only m = 0
(disordered moments) otherwise (paramagnetism).

Note that the core parameters α and Tc are related through the
Boltzmann constant kb = 1.38× 10−23J.K−1 as α = kb Tc.

A measure of the number of possible microscopic states (atomic
moments) consistent with the core macroscopic configuration is
given by the entropy [23], which is found to be

S = N kb f

(
m

θ

)
with f(χ) = ln(2 coshχ)−χ tanhχ, χ ∈ R.

(3)
This statistical entropy coincides with the thermodynamic entropy
for a core in internal thermodynamic equilibrium (possibly time-
varying at macroscopic scale). This variable is extensive (propor-
tional to N ) and quantifies the macroscopic "order degree" of the
core, on which phase transitions and hysteresis depend.

In addition to E and S, a third extensive variable is introduced,
namely, the total magnetic flux of the core (of volume V )

BV = B V, (4)

where B is the magnetic flux density. For the core, B is related
to the core magnetization M = mMs through B = µ0 M where
µ0 is the vacuum magnetic permeability and Ms is the saturation
magnetization (see Table 1).

3.1.2. Choice of state and energy function

We choose to express the core energy E as a function of the state

xcore = [BV , S]⊺, (5)

so that, in (1), the flow ẋcore accounts for the time variation of ex-
tensive quantities (to balance with quantities external to the core,
or equilibrium-establishing) and, concomitantly, the effort accounts
for intensive quantities (shared with the exterior at the core in-
terface, or equilibrium-determining). Choosing extensive energy
variables over intensive co-energy variables stems from two argu-
ments. The first one is physical: except for linear, mono-variate
components, constitutive laws derived from the co-energy are not
equal to those derived from the energy, and should be handled with
care. The second is numerical: solving an ODE by integration in-
stead of differentiation is generally preferable [11].

This function is derived from (2), in which m/θ and m are
expressed with respect to S and BV using (3-4) and noting that

f is smooth, even on R and strictly monotonic1 (so invertible) on
R+. Its formula expressed w.r.t. (5) is given by (see Fig. 1),

Ecore

(
[BV , S]⊺

)
E0

=
1

2

(
BV

BVs

)2

−
∣∣∣∣BV

BVs

∣∣∣∣ tanh
(
f−1

(
S

S0

))
,

(6)
with core constants E0 = Nα, S0 = N kb and BVs = V µ0Ms.
The energy gradient (effort) is

∇Ecore = [Hcore, Tcore]
⊺, (7)

where, omitting variables in functions, the core internal magnetic
field is

∂Ecore

∂BV

=
E0

BVs

BV

BVs

− sign (BV ) tanh

(
f−1

(
S

S0

)) := Hcore

(8)
and the core temperature is

∂Ecore

∂S
=

E0

S0

∣∣∣∣BV

BVs

∣∣∣∣ / f−1

(
S

S0

)
:= Tcore. (9)

Fig. 1 shows that as S increases, the core goes from two ordered
(aligned moments) meta-stable equilibrium states to one non-ordered
(no alignment) stable equilibrium state: it exhibits a phase tran-
sition (from ferromagnetic to paramagnetic). Table 1 recaps the
physical quantities involved and their units.

Figure 1: Core energy function with respect to BV and S.

3.2. Connection to coil and external electrical ports

3.2.1. Ideal coil model

The coil is considered to be linear. Choosing BV as its state vari-
able, the coil energy is

Ecoil(BV ) =
B2

V

2µ0V
, (10)

and its derivative with respect to BV is the coil magnetic field
Hcoil(BV ) = BV /(µ0V ).

1Indeed, f ′(χ) = −χ/ cosh2 χ ≤ 0 ∀χ ∈ R+.
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Symbol Quantity S.I. units

N atoms nb. dimensionless
α nearest neighbours exchange energy kg.m2.s.−2

m norm. magnetic moment dimensionless
M magnetic moment A.m2

M magnetization A.m−1

H magnetic field A.m−1

B magnetic flux density kg.s−2.A−1

µ0 vacuum magnetic permeability kg.m.s−2.A−2

Φ magnetic flux linkage kg.m2.s−2.A−1

n coil turns nb. dimensionless
kb Boltzmann constant kg.m2.s−2.K−1

T temperature K
S entropy kg.m2.s−2.K−1

V = Al volume = section x length m3

Label
L coupled core and coil

Table 1: Physical quantities and labels.

ḂVL

HL
coil

ḂVcoil

Hcoil
core

ḂVcore

Hcore

Figure 2: Coil and core connection.

3.2.2. Coupled system

To express the coupled system L as a PHS, one needs to determine
the relations between the core and coil flows and efforts. Using the
extensivity of the total magnetic moment ML [24], one gets

ML = Mcore +Mcoil ⇔ BVL = BVcore +BVcoil , (11)

since BV = µ0M. Differentiating Eq. (11) with respect to time,
one obtains the relation between the flows:

˙BVL = ḂVcore + ḂVcoil . (12)

Conversely, the coil and core share their efforts, namely,

HL = Hcoil = Hcore. (13)

Fig. 2 represents the coupling as a series connection.
For any fixed entropy S and for all x = [BVcoil BVcore ]

⊺, we in-
troduce the function ES : x 7→ Ecore(BVcore , S) + Ecoil(BVcoil)
(total energy of the system). With these notations, the core and coil
coupling can be expressed as the constrained Dirac structure [25]ẋ0

y

 =

 . A B
−A . .
−B . .

 ∂ES
∂x
λ
u

 , (14)

with A = [1, −1]⊺, B = [0, 1]⊺, λ = ḂVcoil , u = ḂVL and
y = −HL (dots indicate zeros). This constrained Dirac structure

can be reduced to (see also [25] for more details):[
ż
y

]
=

[
. Br

−Br .

] [
∂EL
∂z
u

]
, (15)

with Ã such as Ã⊺A = 0 to eliminate the constraint, Br = Ã⊺B,
z = Ã⊺x, EL the total energy with respect to z.
Taking Ã = [1, 1]⊺, this yields Br = 1 and z = BVcoil +BVcore .
Therefore, for any given entropy S, the dynamics of the coupled
system is that of an equivalent component of state xL = [BVL , S],
energy EL(xL) and magnetic field HL = ∂EL

∂B
VL

. This equiva-

lent component energy can be computed (see [26] for a detailed
derivation) through the expression

EL(BVL , S) =
(
Ecoil ◦H−1

coil + Ecore ◦H−1
core

)
◦
(
H−1

coil +H−1
core

)−1

(BVL , S),
(16)

where the symbol ◦ stands for function composition. In practice,
all mathematical functions in this expression can be defined as
piecewise affine functions (computation of inverse efforts in par-
ticular becomes straightforward when analytical expressions are
not available, as is the case here).

3.2.3. Connection to external electrical ports

Denoting n the number of turns, l the length of the coil, A its sec-
tion, Φ the magnetic flux linkage, the magnetic field HL is related
to coil current iL through

HL =
n

l
iL, (17)

and the state BVL is related to the coil voltage vL through

ḂVL =
Φ̇

nA
V =

l

n
vL. (18)

In section 4.4, variables iL and vL will be related to external ports
u and y of Eq. (1).

3.3. Thermodynamics

In this section (only), we assume that the ferromagnetic coil is put
in a isothermal bath (i.e. the exterior is much larger than the coil
size), so that the temperature of the system TL is considered con-
stant and equal to the exterior temperature Text during a change
of state, supposedly below the Curie temperature. A convenient
and classical way to study the energetic behavior of the ferromag-
netic coil is to examine how, for all BVL , the energy EL(BVL , S)
of the component subject to a constant magnetic field H0, deviates
from the energy H0 BVL . The energy deviation of this conditioned
component, called the Gibbs free energy [27], is defined by, for all
BVL , S, and all constant-in-time H0 as

GH0(BVL , S) = EL(BVL , S)− TLS −H0 BVL . (19)

For any given S, at H0 = 0, two symmetric meta-stable equi-
librium states corresponding to GH0 minima with respect to BVL

are available (Fig. 3a, red curve). For H0 ̸= 0, the symmetry
is broken and a previously stable equilibrium state can be made
unstable. We suppose now H0 slowly controlled (so it is still con-
sidered constant during a change of state). When decreasing H0

DAFx.3
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(a) Gibbs free energy GH0 for H0 decreasing from
Hmax (green curve) to Hcoerc (solid blue curve), at
constant temperature, and trajectory of BVL

(black
curve) for a complete cycle. In the yellow area, two
local potential minima coexist but only one direction
is possible for BVL

to follow (blue arrows).

(b) Observed state BVL
during a complete cycle, re-

sulting in Barkhausen jumps (blue curve), and theo-
retical effort ∂EL

∂B
V

for BV ranging from min(BVL
)

to max(BVL
) (red curve). The area between the blue

and red curves is the energy dissipated during a cycle.

Figure 3: Gibbs free energy GH0 for decreasing values of mag-
netic field H0 (3a), and observed state BVL during a complete cy-
cle of magnetic field variations (3b).

from Hmax ≥ 0 (Fig. 3a, green curve) to −Hmax, BVL starts
from its initial equilibrium state and follows a trajectory solution of
∂GH0
∂B

VL

= 0 (Fig. 3a, black curve), until the minimum degenerates

into an inflection point at H0 = Hcoerc (Fig. 3a, solid blue curve).
Then, a Barkhausen jump occurs [27] so that BVL occupies the
remaining stable equilibrium state (Fig. 3a, intersection of solid
blue curve and left yellow area). Since EL is even with respect
to BVL for all S, GH0(BVL , S) = G−H0(−BVL , S). Therefore,
when increasing H0 from −Hmax to Hmax, the Barkhausen jump
occurs at −Hcoerc. Consequently, BVL follows a different path
depending on whether H0 decreases or increases (Fig. 3a, black
curve and arrows), hence the hysteresis (Fig. 3b) between Hcoerc

and −Hcoerc.
Thermodynamics laws show that the difference of energy before
and after the jump is irreversibly dissipated as heat. Indeed, the
first principle of thermodynamics states that the internal energy
variation dEL is the work performed on the ferromagnetic coil
δW = H0dBVL , plus the received heat δQ = TLδeS where δeS
is the variation of incoming entropy and δ denotes an inexact dif-
ferential [28]:

dEL = H0 dBVL + TLδeS. (20)

U

i

iL

iEL

rth

ith

vL

Figure 4: Voltage-controlled ferromagnetic coil with thermal dis-
sipation.

The second principle of thermodynamics states that the internal
heat TLdS is the received heat plus the heat internally produced
by irreversible phenomena TLδiS:

TLdS = TLδeS + TLδiS. (21)

Replacing TLδeS from Eq. (21) in Eq. (20) yields

dGH0 = dEL − TLdS −H0dBVL = −TLδiS, (22)

which is consistent with the assertion that the difference of energy
is entirely and irreversibly dissipated as heat.
Now, let us denote HL the observed effort law such as H0 =
HL(BVL) (definition given in appendix A). Replacing H0 with
HL, the entropy production rate δiS/dt is obtained differentiating
Eq. (22) with respect to BVL and multiplying with ḂVL :

δiS

dt
=

1

TL

(
HL(BVL)−

∂EL

∂BVL

(BVL , S)

)
ḂVL . (23)

To model the conversion between excess electro-magnetic power
and thermal power, the ideal thermal exchanger rth is introduced
(Fig. 4) so that

ithvth = TL
δiS

dt
(24)

where vth is the exchanger voltage and ith its current. Introducing
the function

Pth : xL 7→
(
HL(BVL)−

∂EL
∂B

VL

(BVL , S)

)
ḂVL , (25)

equations (23-24) allow to model the dissipation in the PHS for-
malism:

w = [vth, TL]
⊺

zPth(xL)(w) = [
Pth(xL)

vth
,−Pth(xL)

TL
]⊺ = [ith,−

δiS

dt
]⊺.

(26)

The passivity condition Pdiss ≥ 0 is fulfilled as z(w)⊺w = 0.
The complete PHS structure is given in section 4.4.

4. REFINED MODEL BASED ON MEASUREMENTS

4.1. Measurements and observations

As thermodynamically meaningful as the bi-stable model is, it
does not capture the variety of phenomena contributing to hys-
teresis, as measurements on real ferromagnetic coils reveal. To
conduct such measurements, a Fasel Red inductor (which can be
found in Cry Baby wah-wah pedals [29] for instance) in series with
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U

i

R

vR

iR

iL

vL

(a) Measurements setup (thermal
dissipation not represented). (b) Measured HL and M .

Figure 5: Measurements setup and results.

Figure 6: Core energy and coupled system equivalent energy com-
puted with piecewise affine functions.

a resistance R is driven with a sinusoidal voltage source U(t) =
U0 sin(2πf0t) with f0 = 8 Hz and U0 = 0.35 V (Fig. 5a). The
voltage vL is measured and the current iL is obtained through the
relation iL = (U − vL)/R. The number of turns is roughly n
= 150. The torus diameter d1 and the torus section diameter d2
are about respectively 10 mm and 3 mm, which yields l = πd1 =
3.14 cm, A = π(d2/2)

2 = 7.06 mm2 and V = Al = 22.2 mm3.
The magnetic field HL and state BVL are then obtained using Eq.
(17)-(18) and the relation Φ(t) =

∫ t

0
vL(τ) dτ . As the coil and

the core share the same volume V , Eq. (11)-(13) yield the rela-
tion BVL = µ0V (HL +M) from which M is obtained. These
measurements (Fig. 5b) lead to two observations.

• First, M has an order of magnitude of 6, whereas HL has
an order of magnitude of 1, as expected for soft materials
[17].

• Second, instead of the large jumps predicted by the bi-stable
model, one observes a continuous progression, which calls
for a model refinement to determine the entropy production
rate law responsible for hysteresis.

4.2. Model reduction

According to measurements, for this inductor BVcore = µ0MV ≫
BVcoil = µ0HLV and Ecore ≫ Ecoil. The influence of the coil
on the overall energy of the coupled component is negligible (Fig.
6) and we thus may use

EL(BVL , S) ≈ Ecore(BVL , S). (27)

The dynamics of the coupled system is therefore that of a driven
core alone.

4.3. Entropy production rate law

In real ferromagnetic cores, domain structure and non-homogeneities
[30] yield an energy function with not two but multiple local min-
ima. Consequently, multiple Barkhausen jumps give the effort law
the shape of a staircase. The Preisach model generates this effort
law by computing a statistical mean on a collection of bi-stable
systems such as the one presented in section 3, each one represent-
ing a domain. This averaging "damps" the large bi-stable jumps.
Here, to obtain a similar result while remaining at a macroscopic
level, the hysteresis loop is modeled using a cubic polynomial
P (χ) = p0 + p1χ+ p2χ

2 + p3χ
3 interpolating the effort ∂EL

∂B
VL

,

and an additional friction term of the form rfḂVL , rf ≥ 0, to ac-
count for thermal fluctuations [31] and eddy currents [32]. The
coefficients of P are computed through

[p0 p1 p2 p3]
⊺ = X−1Y

where, given two interpolation data points χ1 and χ2, X and Y
are defined as

X =


1 · · · χ3

1

1 · · · χ3
2

0 · · · 3χ2
1

0 · · · 3χ2
2

 ,Y =

[
∂EL
∂B

VL

(χ1) ...
∂2EL

∂B2
VL

(χ1) ...

]⊺
.

The final hysteresis loop P̃ (BVL) is thus defined by

P̃ (BVL) = δBP (δBBVL) + rfḂVL , (28)

where δB = sign(dBVL), and the entropy production rate δiS/dt
is:

δiS

dt
=

1

TL

(
P̃ (BVL)−

∂EL

∂BVL

(BVL , S)

)
ḂVL , (29)

which is the expression given in Eq. (23) where HL has been re-
placed with P̃ . For a given ferromagnetic coil, such a loop is accu-
rate in a range from saturation approach to saturation and higher,
provided that the data points are taken in that range. At lower fields
though, a Rayleigh law would be more adequate [27].

4.4. Final model

Finally, Kirchhoff laws on the equivalent circuit shown on Fig. 4,
together with Eq. (21), yield the PHS in Fig. 7 structured as in Eq.
(1), in which EL is given by Eq. (27)-(6), w and z(w) are given
by Eq. (26)-(29), u = [U, δeS/dt]⊺, y = [i,−Text].

4.5. Model identification with the Fasel inductor

The measurements are taken during an isothermal transformation,
so that, replacing S from Eq. (3) in the magnetic field, one can use
the expression

∂EL

∂BVL

=
E0

BVLs

 BVL

BVLs

− tanh

(
BVL

BVLs
θ

)
for identification. A least squares optimization between the Eq. (28)
spline model and the measurements, i.e. solving

p = argminp

∥∥ (HL − P̃p

(
BVL

))2 ∥∥2 with p = [E0, BVLs
, θ, rf ]

yields the parameters in Table 2. Figure 8 shows a good match be-
tween measurements and the estimated model.
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∇E(x) z(w) u

TL
∂EL
∂B

VL

ith − δiS
dt U δeS

dt


ẋ Ṡ . . . -1 . 1

ḂVL . . . . l
n

.
w vth . . . . 1 .

TL 1 . . . . .
y i . - l

n
-1 . . .

−Text -1 . . . . .

Figure 7: PHS of the voltage-controlled ferromagnetic coil with
thermal dissipation. Dots in the interconnection matrix indicate
zeros.

Figure 8: Measurements (red curve) and estimated spline model
(blue curve).

5. APPLICATION TO A PASSIVE HIGH-PASS FILTER

5.1. Circuit modeling

The ferromagnetic coil model is used to simulate a high-pass filter
(Fig. 9). The resistance R is linear of constitutive law vR(iR) =
RiR. Kirchhoff laws yield the PHS shown in Fig. 10.

5.2. Simulation

5.2.1. Discretization

The state vector x(t) is discretized to x[k] = x(hk) where h =
1/Fs is the sampling step, and we denote δx[k] = x[k+1]−x[k].
To preserve the passivity of the PHS in discrete time and reduce
the energy gradient sensitivity to the state indexing, we rely on the
symmetric discrete energy gradient [10]. Denoting nx the num-
ber of states, P(nx) the set of all possible permutations on the

Estimated

E0 BVLs
θ rf p̄0 p̄1 p̄2 p̄3

2.43.10−5 3.09.10−7 1.10 6.07.104 0 8.69 0 8.78

Given

µ0 kb n V z̄1 z̄2
4π.10−7 1.38.10−23 150 2.22.10−7 -1 1

Table 2: Physical parameters of the model where z̄i = zi/BVLs

and p̄i = piB
i
VLs

. The units are S.I. units given in Table 1.
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Figure 9: Passive high-pass filter.
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Figure 10: PHS of the passive high-pass filter.

nx state indexes, xπ a permutation on the state indexes and Eπ

its corresponding energy, the symmetric discrete energy gradient
∇E(x, δx) is defined component-wise by:

∇E(x, δx)i =


1

nx! δxi

∑
π∈P(nx)

△i(xπ, δxπ) δxi ̸= 0

∂E
∂xi

otherwise
(30)

where △i(x, δx) = E(x + δxi) − E(x + δxi−1) and δxi =
[δx1, ..., δxi, 0, ..., 0]

⊺. The discrete energy variation is obtained
with the chain rule:

δE[k]

h
= ∇E(x[k], δx[k])⊺

δx[k]

h
. (31)

The PHS of Fig. 10 is then approximated at sample k replacing
ẋ with δx[k]/h, ∇E(x) with ∇E(x[k], δx[k]), w with w[k], u
with u[k] and y with y[k].

5.2.2. Newton-Raphson iteration

The interconnection matrix is decomposed as J = [JstoredJdissJext]
⊺.

We denote ē(x[k], δx[k]) = [∇E(x[k], δx[k]) z(w[k]) u[k]] ⊺,
ν = δx[k] and

F : ν 7→ Jstoredē(x[k], ν)− ν/h (32)

At each sample k, δx[k] is solution of F (ν) = 0. If F ′(νi) is
invertible and given an initial value ν0 and a relative error ϵr, this
solution can be computed iteratively with the update

νi+1 = νi +∆νi (33)

where ∆νi = −
(
F ′(νi)

)−1
F (νi), until ∥∆νi∥/∥∆ν0∥ ≤ ϵr.

The state x[k+1] is then computed using x[k+1] = x[k]+δx[k].

DAFx.6
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(a) Measured and simulated currents. (b) Measured and simulated voltages.

(c) Simulated entropy flows. (d) Simulated temperature.

(e) Bass sample spectrogram. (f) Filtered bass sample spectrogram.

Figure 11: Simulation results.

Parameter Fs U0 f0 R
Value 96 kHz 0.35 V 8 Hz 100 Ω

Table 3: Simulation parameters.

5.2.3. Simulation parameters

The circuit is driven with a sinusoidal voltage whose parameters
are given in Table 3, as well as with an instrumental bass sam-
ple. The ferromagnetic coil model parameters are those indicated
in Table 2. The incoming entropy flow δeS/dt is set so that the
ferromagnetic coil temperature stays constant.

5.2.4. Results and comparison to measurements

The circuit is simulated with the non-linear coil model and a sim-
ple linear coil model (iL = ΦL/L with L = 840 mH) for compar-
ison. Simulation results on Fig. 11a-11b show a good correspon-
dence between the non-linear model and measurements. Fig. 11c-
11d show that the produced entropy is always positive and that the
coil temperature stays constant. Spectrograms of the bass sample
is shown on Fig. 11e-11f. Sound results on the bass sample can be
heard at https://github.com/JNaj/dafx20-ferromag.

6. CONCLUSION

In this paper, a physical and passive model of ferromagnetic coil
has been developed. It is explicit and maintains a reduced number
of variables and parameters.

First the core and the coil were treated separately, then their
coupling, which determines both their electrical and thermal dy-
namics, was addressed. This lead to the building of an equivalent
component, characterized by a well-established state, energy func-
tion, and entropy production rate law. A refined entropy produc-
tion law based on measurements was then proposed.

As an application, this model was used to simulate a passive
high-pass circuit. The simulations are in close agreement with
measurements, though extensive measurements (a set of different
frequencies, amplitudes, waveforms) would be required to validate
the model on a broader scale.

Besides these complementary measurements, further work aims
to assess real-time performances, and build a transformer model on
the same principle by coupling two ferromagnetic coils.

7. REFERENCES

[1] David C Jiles and David L Atherton, “Theory of ferromag-
netic hysteresis,” Journal of Magnetism and Magnetic Mate-
rials, vol. 61, no. 1-2, pp. 48–60, 1986.

[2] David C Hamill, “Gyrator-capacitor modeling: a better way
of understanding magnetic components,” in Proceedings

DAFx.7

https://github.com/JNaj/dafx20-ferromag


Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8–12, 2020

of 1994 IEEE Applied Power Electronics Conference and
Exposition-ASPEC’94. IEEE, 1994, pp. 326–332.

[3] Qianhong Chen, Ligang Xu, Xinbo Ruan, Siu Chung Wong,
and C. K. Michael Tse, “Gyrator-capacitor simulation model
of nonlinear magnetic core,” 2009 Twenty-Fourth Annual
IEEE Applied Power Electronics Conference and Exposition,
pp. 1740–1746, 2009.

[4] Giorgio Bertotti, “Dynamic generalization of the scalar
preisach model of hysteresis,” IEEE Transactions on Mag-
netics, vol. 28, no. 5, pp. 2599–2601, 1992.

[5] Sergey E Zirka, Yuriy I Moroz, Robert G Harrison, and
Krzysztof Chwastek, “On physical aspects of the Jiles-
Atherton hysteresis models,” Journal of Applied Physics,
vol. 112, no. 4, pp. 043916, 2012.

[6] Vincent François-Lavet, François Henrotte, Laurent Stainier,
Ludovic Noels, and Christophe Geuzaine, “An energy-based
variational model of ferromagnetic hysteresis for finite ele-
ment computations,” Journal of Computational and Applied
Mathematics, vol. 246, pp. 243–250, 2013.

[7] M LoBue, Vittorio Basso, Carlo Paolo Sasso, and G Bertotti,
“Entropy and entropy production in magnetic systems with
hysteresis,” Journal of Applied Physics, vol. 97, no. 10, pp.
10E513, 2005.

[8] B. M. Maschke, A. J. Van der Schaft, and P. Breedveld,
“An intrinsic Hamiltonian formulation of network dynamics:
Non-standard Poisson structures and gyrators,” Journal of
the Franklin Institute, pp. 923–966, 1992.

[9] Arjan van der Schaft, Dimitri Jeltsema, et al., “Port-
Hamiltonian systems theory: An introductory overview,”
Foundations and Trends® in Systems and Control, vol. 1, no.
2-3, pp. 173–378, 2014.

[10] Antoine Falaize and Thomas Hélie, “Passive guaranteed
simulation of analog audio circuits: A port-Hamiltonian ap-
proach,” Applied Sciences, vol. 6, no. 10, pp. 273, 2016.

[11] Vincent Duindam, Alessandro Macchelli, Stefano Strami-
gioli, and Herman Bruyninckx, Modeling and control of
complex physical systems: the port-Hamiltonian approach,
Springer Science & Business Media, 2009.

[12] Ernst Ising, “Beitrag zur theorie des ferromagnetismus,”
Zeitschrift für Physik, vol. 31, no. 1, pp. 253–258, 1925.

[13] Gordon F Newell and Elliott W Montroll, “On the theory
of the Ising model of ferromagnetism,” Reviews of Modern
Physics, vol. 25, no. 2, pp. 353, 1953.

[14] Jozef Strecka and Michal Jascur, “A brief account of the
Ising and Ising-like models: Mean-field, effective-field and
exact results,” arXiv preprint arXiv:1511.03031, 2015.

[15] Franz Utermohlen, “Mean field theory solution of the
Ising model,” https://cpb-us-w2.wpmucdn.com/
u.osu.edu/dist/3/67057/files/2018/09/
Ising_model_MFT-25b1klj.pdf.

[16] Louis Néel, “Magnetism and local molecular field,” Science,
vol. 174, no. 4013, pp. 985–992, 1971.

[17] Colonel Wm T McLyman, Transformer and inductor design
handbook, CRC press, 2016.

[18] Barry M McCoy and Tai Tsun Wu, The two-dimensional
Ising model, Courier Corporation, 2014.

[19] R Stuart and W Marshall, “Direct exchange in ferromag-
nets,” Physical Review, vol. 120, no. 2, pp. 353, 1960.

[20] Michael Ellis Fisher, “Lattice statistics in a magnetic field, I.
A two-dimensional super-exchange antiferromagnet,” Pro-
ceedings of the Royal Society of London. Series A. Mathe-
matical and Physical Sciences, vol. 254, no. 1276, pp. 66–85,
1960.

[21] Patric W Anderson and H Hasegawa, “Considerations on
double exchange,” Physical Review, vol. 100, no. 2, pp. 675,
1955.

[22] GS Rushbrooke and P Jo Wood, “On the Curie points and
high temperature susceptibilities of Heisenberg model ferro-
magnetics,” Molecular Physics, vol. 1, no. 3, pp. 257–283,
1958.

[23] Edwin T Jaynes, “On the rationale of maximum-entropy
methods,” Proceedings of the IEEE, vol. 70, no. 9, pp. 939–
952, 1982.

[24] Daniel J Amit and Yosef Verbin, Statistical physics: An in-
troductory course, World Scientific Publishing Company,
1999.

[25] AJ Van der Schaft, “Port-Hamiltonian differential-algebraic
systems,” in Surveys in Differential-Algebraic Equations I,
pp. 173–226. Springer, 2013.

[26] Judy Najnudel, Thomas Hélie, and David Roze, “Simula-
tion of the ondes Martenot ribbon-controlled oscillator using
energy-balanced modeling of nonlinear time-varying elec-
tronic components,” Journal of the Audio Engineering So-
ciety, vol. 67, no. 12, pp. 961–971, 2019.

[27] Giorgio Bertotti, Hysteresis in magnetism: for physicists,
materials scientists, and engineers, Academic press, 1998.

[28] Peter T Landsberg, Thermodynamics and statistical mechan-
ics, Courier Corporation, 2014.

[29] Antoine Falaize-Skrzek and Thomas Hélie, “Simulation of
an analog circuit of a wah pedal: a port-Hamiltonian ap-
proach,” in Audio Engineering Society Convention 135. Au-
dio Engineering Society, 2013.

[30] Charles Kittel, “Physical theory of ferromagnetic domains,”
Reviews of modern Physics, vol. 21, no. 4, pp. 541, 1949.

[31] W Brown, “Thermal fluctuation of fine ferromagnetic parti-
cles,” IEEE Transactions on Magnetics, vol. 15, no. 5, pp.
1196–1208, 1979.

[32] CD Graham Jr, “Physical origin of losses in conducting fer-
romagnetic materials,” Journal of Applied Physics, vol. 53,
no. 11, pp. 8276–8280, 1982.

A. DEFINITION OF THE BI-STABLE MODEL
OBSERVED EFFORT LAW HL

Denoting BVL0
≥ 0 such as ∂2EL

∂B2
VL

(BVL0
) = 0 (Fig. 3b, green

cross), and B̃VL0
≤ 0 such as ∂EL

∂B
VL

(B̃VL0
) = Hcoerc (Fig. 3b,

green plus), one can define HL as:

HL(BVL) =

−sign(dBVL)Hcoerc BVL ∈ [BVLinf
, BVLsup

]

∂EL
∂B

VL

otherwise
,

where [BVLinf
, BVLsup

] = [B̃VL0
, BVL0

] if dBVL ≤ 0 and [−BVL0
,−B̃VL0

]
otherwise.
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