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A POWER-BALANCED DYNAMIC MODEL OF FERROMAGNETIC COILS

This paper proposes a new macroscopic physical model of ferromagnetic coils used in audio circuits. To account for realistic saturation and hysteretic phenomena, this model combines statistical physics results, measurement-driven refinements and port-Hamiltonian formulations that guarantee passivity, thermodynamic consistency and composability according to both electric and thermal ports. As an illustration, the model is used to simulate a passive high-pass filter. Different types of audio inputs are considered and simulations are compared to measurements.

INTRODUCTION

Ferromagnetism is frequent in analog audio: it is involved in transducers (dynamic microphones, loudspeakers), tape recorders, coils and transformers. As major non-linearities arise from ferromagnetic components (saturation, hysteresis), the need of refined models is critical to accurately simulate behaviors in circuits.

Since the 1980s, a large body of empirical models have been proposed, among them the Jiles-Atherton model [START_REF] David | Theory of ferromagnetic hysteresis[END_REF], the Gyrator-Capacitor model [START_REF] David | Gyrator-capacitor modeling: a better way of understanding magnetic components[END_REF][START_REF] Chen | Gyrator-capacitor simulation model of nonlinear magnetic core[END_REF], or the Preisach model [START_REF] Bertotti | Dynamic generalization of the scalar preisach model of hysteresis[END_REF]. But very few have a strong physical meaning [START_REF] Sergey E Zirka | On physical aspects of the Jiles-Atherton hysteresis models[END_REF] and those retaining some energetic interpretation [START_REF] François-Lavet | An energy-based variational model of ferromagnetic hysteresis for finite element computations[END_REF] either lose major phenomenological properties or are heavy to implement [START_REF] Lobue | Entropy and entropy production in magnetic systems with hysteresis[END_REF]. As a consequence, preserving the model passivity (no artificial hidden sources of energy) comes with a price -computation time.

In this paper, we propose a new nonlinear model of ferromagnetic coil that is physically-based, passive, modular (allowing electric and thermal connections) and with a reduced complexity (few state variables and parameters). As it is built on statistical physics results on magnets, it is thermodynamically consistent. It also inherits macroscopic characteristics (hysteresis and its conditioned activation) from underlying microscopic phenomena (metastability and phase transition). This lumped-element model is used to simulate a passive high-pass filter. The circuit modeling relies on Port-Hamiltonian Systems [START_REF] Maschke | An intrinsic Hamiltonian formulation of network dynamics: Non-standard Poisson structures and gyrators[END_REF][START_REF] Van Der Schaft | Port-Hamiltonian systems theory: An introductory overview[END_REF] (PHS) that structurally fulfill the power balance. Simulations are based on numerical methods [START_REF] Falaize | Passive guaranteed simulation of analog audio circuits: A port-Hamiltonian approach[END_REF] that preserve this guarantee in the discrete-time domain.

The paper is structured as follows: Section 2 first presents some short recalls on PHS. Section 3 develops a primary model derived from statistical physics. This model exhibits saturation and hysteresis but does not take into account some other phenomena, such as non-homogeneities, thermal fluctuations and eddy currents. Section 4 refines the primary model with a polynomial interpolation based on measurements of a Fasel inductor. In section 5, the final nonlinear model is implemented to simulate a passive high-pass filter.

REVIEW OF PORT-HAMILTONIAN SYSTEMS

The following modeling relies on Port-Hamiltonian systems [START_REF] Duindam | Modeling and control of complex physical systems: the port-Hamiltonian approach[END_REF][START_REF] Van Der Schaft | Port-Hamiltonian systems theory: An introductory overview[END_REF], under a differential-algebraic formulation [START_REF] Falaize | Passive guaranteed simulation of analog audio circuits: A port-Hamiltonian approach[END_REF]. A dynamical system is represented as a network of: (i) storage components of state x and energy E (x), (ii) dissipative components described by an efforts law w → z(w) that dissipates the power P diss = z (w) ⊺ w ≥ 0 for all flows w, and (iii) connection ports conveying the outgoing power Pext = u ⊺ y for inputs u and outputs y. The flows f and efforts e of all the components are coupled through a skew-symmetric interconnection matrix J = -J ⊺ :

  ẋ w y   f = J   ∇E(x) z(w) u   e . (1) 
Such systems satisfy the power balance P stored +P diss +Pext = 0 where P stored = ∇E(x) ⊺ ẋ denotes the stored power. Indeed, P stored + P diss + Pext = e ⊺ f = e ⊺ Je is zero since e ⊺ J e = (e ⊺ Je) ⊺ = -(e ⊺ Je) due to the skew-symmetry of J .

All models herein will be formulated as (1).

PRIOR THEORETICAL MODEL

Macroscopic model of a ferromagnetic core

This section presents a bi-stable core model rooted in the mean field Ising model [START_REF] Ising | Beitrag zur theorie des ferromagnetismus[END_REF][START_REF] Gordon | On the theory of the Ising model of ferromagnetism[END_REF][START_REF] Strecka | A brief account of the Ising and Ising-like models: Mean-field, effective-field and exact results[END_REF][START_REF] Utermohlen | Mean field theory solution of the Ising model[END_REF][START_REF] Néel | Magnetism and local molecular field[END_REF]. Using statistical physics, Ising derives a macroscopic scalar state (the core magnetization) from a microscopic representation of the core (a set of normalized atomic magnetic moments, which can be either up or down), at a given temperature T . For simplicity, additional assumptions are: a homogeneous, isochoric (constant volume V ) and closed (constant number of atoms N ) ferromagnetic crystal with one (local) magnetization axis and periodic boundaries (typically, a toroidal geometry often found in audio circuits [START_REF] Wm | Transformer and inductor design handbook[END_REF]). In this section, there is no external magnetic field (issue addressed in section 3.2).
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Macroscopic quantities and laws

Following [START_REF] Barry | The two-dimensional Ising model[END_REF] with our assumptions, the core internal energy is

E = N α 1 2 m 2 -m tanh m θ , (2) 
where parameter α (≈ 5 × 10 -21 J for transition metals) denotes the exchange energy between one moment and its nearest neighbours [START_REF] Stuart | Direct exchange in ferromagnets[END_REF][START_REF] Michael | Lattice statistics in a magnetic field, I. A two-dimensional super-exchange antiferromagnet[END_REF][START_REF] Hasegawa | Considerations on double exchange[END_REF], and where variables m and θ are average intensive quantities (homogeneous over the body) that statistically characterize the core configuration at a macroscopic scale:

• m ∈ [-1, 1]
is the mean normalized magnetic moment: m = ±1 if all moments are aligned in the same direction, and m = 0 if no particular direction is favored;

• θ = T /Tc ∈ R+ is the reduced temperature relative to the core Curie temperature Tc [START_REF] Gs Rushbrooke | On the Curie points and high temperature susceptibilities of Heisenberg model ferromagnetics[END_REF]: if θ < 1, there are multiple equilibria m (ferromagnetism), and only m = 0 (disordered moments) otherwise (paramagnetism).

Note that the core parameters α and Tc are related through the Boltzmann constant k b = 1.38 × 10 -23 J.K -1 as α = k b Tc.

A measure of the number of possible microscopic states (atomic moments) consistent with the core macroscopic configuration is given by the entropy [START_REF] Edwin | On the rationale of maximum-entropy methods[END_REF], which is found to be

S = N k b f m θ with f (χ) = ln(2 cosh χ)-χ tanh χ, χ ∈ R.
(3) This statistical entropy coincides with the thermodynamic entropy for a core in internal thermodynamic equilibrium (possibly timevarying at macroscopic scale). This variable is extensive (proportional to N ) and quantifies the macroscopic "order degree" of the core, on which phase transitions and hysteresis depend.

In addition to E and S, a third extensive variable is introduced, namely, the total magnetic flux of the core (of volume V )

BV = B V, ( 4 
)
where B is the magnetic flux density. For the core, B is related to the core magnetization M = m Ms through B = µ0 M where µ0 is the vacuum magnetic permeability and Ms is the saturation magnetization (see Table 1).

Choice of state and energy function

We choose to express the core energy E as a function of the state

xcore = [BV , S] ⊺ , (5) 
so that, in (1), the flow ẋcore accounts for the time variation of extensive quantities (to balance with quantities external to the core, or equilibrium-establishing) and, concomitantly, the effort accounts for intensive quantities (shared with the exterior at the core interface, or equilibrium-determining). Choosing extensive energy variables over intensive co-energy variables stems from two arguments. The first one is physical: except for linear, mono-variate components, constitutive laws derived from the co-energy are not equal to those derived from the energy, and should be handled with care. The second is numerical: solving an ODE by integration instead of differentiation is generally preferable [START_REF] Duindam | Modeling and control of complex physical systems: the port-Hamiltonian approach[END_REF]. This function is derived from (2), in which m/θ and m are expressed with respect to S and BV using (3-4) and noting that f is smooth, even on R and strictly monotonic 1 (so invertible) on R + . Its formula expressed w.r.t. ( 5) is given by (see Fig. 1),

Ecore [BV , S] ⊺ E0 = 1 2 BV BV s 2 - BV BV s tanh f -1 S S0 , (6) with core constants E0 = N α, S0 = N k b and BV s = V µ0Ms. The energy gradient (effort) is ∇Ecore = [Hcore, Tcore] ⊺ , (7) 
where, omitting variables in functions, the core internal magnetic field is

∂ Ecore ∂B V = E0 BV s   BV BV s -sign (BV ) tanh f -1 S S0   := Hcore (8)
and the core temperature is

∂ Ecore ∂S = E0 S0 BV BV s / f -1 S S0 := Tcore. (9) 
Fig. 1 shows that as S increases, the core goes from two ordered (aligned moments) meta-stable equilibrium states to one non-ordered (no alignment) stable equilibrium state: it exhibits a phase transition (from ferromagnetic to paramagnetic). Table 1 recaps the physical quantities involved and their units. 

Connection to coil and external electrical ports

Ideal coil model

The coil is considered to be linear. Choosing BV as its state variable, the coil energy is

E coil (BV ) = B 2 V 2µ0V , (10) 
and its derivative with respect to BV is the coil magnetic field H coil (BV ) = BV /(µ0V ).

Symbol Quantity S.I. units

N atoms nb. dimensionless α nearest neighbours exchange energy kg.m 2 .s. -2 m norm. magnetic moment dimensionless M magnetic moment A.m 2 M magnetization A.m -1 H magnetic field A.m -1 B magnetic flux density kg.s -2 .A -1 µ0 vacuum magnetic permeability kg.m.s -2 .A -2 Φ magnetic flux linkage kg.m 2 .s -2 .A -1 n coil turns nb. dimensionless k b Boltzmann constant kg.m 2 .s -2 .K -1 T temperature K S entropy kg.m 2 .s -2 .K -1 V = Al volume = section x length m 3
Label L coupled core and coil 

Coupled system

To express the coupled system L as a PHS, one needs to determine the relations between the core and coil flows and efforts. Using the extensivity of the total magnetic moment ML [START_REF] Daniel | Statistical physics: An introductory course[END_REF], one gets

ML = Mcore + M coil ⇔ BV L = BV core + BV coil , (11) 
since BV = µ0M. Differentiating Eq. ( 11) with respect to time, one obtains the relation between the flows:

Ḃ V L = ḂVcore + ḂV coil . (12) 
Conversely, the coil and core share their efforts, namely,

HL = H coil = Hcore. (13) 
Fig. 2 represents the coupling as a series connection.

For any fixed entropy S and for all x = [BV coil BV core ] ⊺ , we introduce the function ES : x → Ecore(BV core , S) + E coil (BV coil ) (total energy of the system). With these notations, the core and coil coupling can be expressed as the constrained Dirac structure [START_REF] Van Der Schaft | Port-Hamiltonian differential-algebraic systems[END_REF] 

 ẋ 0 y   =   . A B -A . . -B . .     ∂ E S ∂x λ u   , (14) 
with

A = [1, -1] ⊺ , B = [0, 1] ⊺ , λ = ḂV coil , u = ḂV L
and y = -HL (dots indicate zeros). This constrained Dirac structure can be reduced to (see also [START_REF] Van Der Schaft | Port-Hamiltonian differential-algebraic systems[END_REF] for more details):

ż y = . Br -Br . ∂ E L ∂z u , (15) 
with à such as Ã⊺ A = 0 to eliminate the constraint, Br = Ã⊺ B, z = Ã⊺ x, EL the total energy with respect to z.

Taking à = [1, 1] ⊺ , this yields Br = 1 and z = BV coil + BV core . Therefore, for any given entropy S, the dynamics of the coupled system is that of an equivalent component of state xL = [BV L , S], energy EL(xL) and magnetic field

HL = ∂ E L ∂B V L
. This equivalent component energy can be computed (see [START_REF] Najnudel | Simulation of the ondes Martenot ribbon-controlled oscillator using energy-balanced modeling of nonlinear time-varying electronic components[END_REF] for a detailed derivation) through the expression

EL(BV L , S) = E coil • H -1 coil + Ecore • H -1 core • H -1 coil + H -1 core -1 (BV L , S), (16) 
where the symbol • stands for function composition. In practice, all mathematical functions in this expression can be defined as piecewise affine functions (computation of inverse efforts in particular becomes straightforward when analytical expressions are not available, as is the case here).

Connection to external electrical ports

Denoting n the number of turns, l the length of the coil, A its section, Φ the magnetic flux linkage, the magnetic field HL is related to coil current iL through

HL = n l iL, (17) 
and the state BV L is related to the coil voltage vL through

ḂV L = Φ nA V = l n vL. (18) 
In section 4.4, variables iL and vL will be related to external ports u and y of Eq. (1).

Thermodynamics

In this section (only), we assume that the ferromagnetic coil is put in a isothermal bath (i.e. the exterior is much larger than the coil size), so that the temperature of the system TL is considered constant and equal to the exterior temperature Text during a change of state, supposedly below the Curie temperature. A convenient and classical way to study the energetic behavior of the ferromagnetic coil is to examine how, for all BV L , the energy EL(BV L , S) of the component subject to a constant magnetic field H0, deviates from the energy H0 BV L . The energy deviation of this conditioned component, called the Gibbs free energy [START_REF] Bertotti | Hysteresis in magnetism: for physicists[END_REF], is defined by, for all BV L , S, and all constant-in-time H0 as

GH 0 (BV L , S) = EL(BV L , S) -TLS -H0 BV L . (19) 
For any given S, at H0 = 0, two symmetric meta-stable equilibrium states corresponding to GH 0 minima with respect to BV L are available (Fig. 3a, red curve). For H0 ̸ = 0, the symmetry is broken and a previously stable equilibrium state can be made unstable. We suppose now H0 slowly controlled (so it is still considered constant during a change of state). When decreasing H0 from Hmax ≥ 0 (Fig. 3a, green curve) to -Hmax, BV L starts from its initial equilibrium state and follows a trajectory solution of

∂ G H 0 ∂B V L
= 0 (Fig. 3a, black curve), until the minimum degenerates into an inflection point at H0 = Hcoerc (Fig. 3a, solid blue curve). Then, a Barkhausen jump occurs [START_REF] Bertotti | Hysteresis in magnetism: for physicists[END_REF] so that BV L occupies the remaining stable equilibrium state (Fig. 3a, intersection of solid blue curve and left yellow area). Since EL is even with respect to BV L for all S, GH 0 (BV L , S) = G-H 0 (-BV L , S). Therefore, when increasing H0 from -Hmax to Hmax, the Barkhausen jump occurs at -Hcoerc. Consequently, BV L follows a different path depending on whether H0 decreases or increases (Fig. 3a, black curve and arrows), hence the hysteresis (Fig. 3b) between Hcoerc and -Hcoerc.

Thermodynamics laws show that the difference of energy before and after the jump is irreversibly dissipated as heat. Indeed, the first principle of thermodynamics states that the internal energy variation dEL is the work performed on the ferromagnetic coil δW = H0dBV L , plus the received heat δQ = TLδeS where δeS is the variation of incoming entropy and δ denotes an inexact differential [START_REF] Peter T Landsberg | Thermodynamics and statistical mechanics[END_REF]: The second principle of thermodynamics states that the internal heat TLdS is the received heat plus the heat internally produced by irreversible phenomena TLδiS:

dEL = H0 dBV L + TLδeS. (20) 
TLdS = TLδeS + TLδiS. ( 21 
)
Replacing TLδeS from Eq. ( 21) in Eq. ( 20) yields

dGH 0 = dEL -TLdS -H0dBV L = -TLδiS, (22) 
which is consistent with the assertion that the difference of energy is entirely and irreversibly dissipated as heat. Now, let us denote HL the observed effort law such as H0 = HL(BV L ) (definition given in appendix A). Replacing H0 with HL, the entropy production rate δiS/dt is obtained differentiating Eq. ( 22) with respect to BV L and multiplying with ḂV L :

δiS dt = 1 TL HL(BV L ) - ∂ EL ∂B V L (BV L , S) ḂV L . ( 23 
)
To model the conversion between excess electro-magnetic power and thermal power, the ideal thermal exchanger r th is introduced (Fig. 4) so that

i th v th = TL δiS dt ( 24 
)
where v th is the exchanger voltage and i th its current. Introducing the function

P th : xL → HL(BV L ) -∂ E L ∂B V L (BV L , S) ḂV L , (25) 
equations [START_REF] Edwin | On the rationale of maximum-entropy methods[END_REF][START_REF] Daniel | Statistical physics: An introductory course[END_REF] allow to model the dissipation in the PHS formalism:

w = [v th , TL] ⊺ z P th (x L ) (w) = [ P th (xL) v th , - P th (xL) TL ] ⊺ = [i th , - δiS dt ] ⊺ . ( 26 
)
The passivity condition P diss ≥ 0 is fulfilled as z(w) ⊺ w = 0.

The complete PHS structure is given in section 4.4.

REFINED MODEL BASED ON MEASUREMENTS

Measurements and observations

As thermodynamically meaningful as the bi-stable model is, it does not capture the variety of phenomena contributing to hysteresis, as measurements on real ferromagnetic coils reveal. To conduct such measurements, a Fasel Red inductor (which can be found in Cry Baby wah-wah pedals [START_REF] Falaize | Simulation of an analog circuit of a wah pedal: a port-Hamiltonian approach[END_REF] for instance) in series with The magnetic field HL and state BV L are then obtained using Eq. ( 17)-( 18) and the relation Φ(t) = t 0 vL(τ ) dτ . As the coil and the core share the same volume V , Eq. ( 11)-( 13) yield the relation BV L = µ0V (HL + M ) from which M is obtained. These measurements (Fig. 5b) lead to two observations.

• First, M has an order of magnitude of 6, whereas HL has an order of magnitude of 1, as expected for soft materials [START_REF] Wm | Transformer and inductor design handbook[END_REF].

• Second, instead of the large jumps predicted by the bi-stable model, one observes a continuous progression, which calls for a model refinement to determine the entropy production rate law responsible for hysteresis.

Model reduction

According to measurements, for this inductor BV core = µ0M V ≫ BV coil = µ0HLV and Ecore ≫ E coil . The influence of the coil on the overall energy of the coupled component is negligible (Fig. 6) and we thus may use

EL(BV L , S) ≈ Ecore(BV L , S). (27) 
The dynamics of the coupled system is therefore that of a driven core alone.

Entropy production rate law

In real ferromagnetic cores, domain structure and non-homogeneities [START_REF] Kittel | Physical theory of ferromagnetic domains[END_REF] yield an energy function with not two but multiple local minima. Consequently, multiple Barkhausen jumps give the effort law the shape of a staircase. The Preisach model generates this effort law by computing a statistical mean on a collection of bi-stable systems such as the one presented in section 3, each one representing a domain. This averaging "damps" the large bi-stable jumps.

Here, to obtain a similar result while remaining at a macroscopic level, the hysteresis loop is modeled using a cubic polynomial

P (χ) = p0 + p1χ + p2χ 2 + p3χ 3 interpolating the effort ∂ E L ∂B V L
, and an additional friction term of the form r f ḂV L , r f ≥ 0, to account for thermal fluctuations [START_REF] Brown | Thermal fluctuation of fine ferromagnetic particles[END_REF] and eddy currents [START_REF] Cd | Physical origin of losses in conducting ferromagnetic materials[END_REF]. The coefficients of P are computed through

[p0 p1 p2 p3] ⊺ = X -1 Y
where, given two interpolation data points χ1 and χ2, X and Y are defined as

X =      1 • • • χ 3 1 1 • • • χ 3 2 0 • • • 3χ 2 1 0 • • • 3χ 2 2      , Y = ∂ E L ∂B V L (χ1) ... ∂ 2 E L ∂B 2 V L (χ1) ... ⊺ .
The final hysteresis loop P (BV L ) is thus defined by

P (BV L ) = δBP (δBBV L ) + r f ḂV L , (28) 
where δB = sign(dBV L ), and the entropy production rate δiS/dt is:

δiS dt = 1 TL P (BV L ) - ∂ EL ∂B V L (BV L , S) ḂV L , (29) 
which is the expression given in Eq. [START_REF] Edwin | On the rationale of maximum-entropy methods[END_REF] where HL has been replaced with P . For a given ferromagnetic coil, such a loop is accurate in a range from saturation approach to saturation and higher, provided that the data points are taken in that range. At lower fields though, a Rayleigh law would be more adequate [START_REF] Bertotti | Hysteresis in magnetism: for physicists[END_REF].

Final model

Finally, Kirchhoff laws on the equivalent circuit shown on Fig. 4, together with Eq. ( 21), yield the PHS in Fig. 7 structured as in Eq.

(1), in which EL is given by Eq. ( 27)-( 6), w and z(w) are given by Eq. ( 26)-( 29), u = [U, δeS/dt] ⊺ , y = [i, -Text].

Model identification with the Fasel inductor

The measurements are taken during an isothermal transformation, so that, replacing S from Eq. (3) in the magnetic field, one can use the expression

∂ EL ∂B V L = E0 BV Ls   BV L BV Ls -tanh BV L BV Ls θ  
for identification. A least squares optimization between the Eq. ( 28) spline model and the measurements, i.e. solving p = argmin p HL -Pp BV L 2 2 with p = [E0, BV Ls , θ, r f ] yields the parameters in Table 2. Figure 8 shows a good match between measurements and the estimated model. 

∇E(x) z(w) u TL ∂ E L ∂B V L i th -δ i S dt U δeS dt               ẋ Ṡ . . . -

APPLICATION TO A PASSIVE HIGH-PASS FILTER

Circuit modeling

The ferromagnetic coil model is used to simulate a high-pass filter (Fig. 9). The resistance R is linear of constitutive law vR(iR) = RiR. Kirchhoff laws yield the PHS shown in Fig. 10.

Simulation

Discretization

The state vector x(t) is discretized to x[k] = x(hk) where h = 1/Fs is the sampling step, and we denote δx

[k] = x[k+1]-x[k].
To preserve the passivity of the PHS in discrete time and reduce the energy gradient sensitivity to the state indexing, we rely on the symmetric discrete energy gradient [START_REF] Falaize | Passive guaranteed simulation of analog audio circuits: A port-Hamiltonian approach[END_REF]. 

∇E(x) z(w) u TL ∂ E L ∂B V L i th -δ i S dt vR U δeS dt                   ẋ Ṡ . . . -1 . . 1 ḂV L . . . . -l n l n . v th . . . . - 1 
∇E(x, δx)i =        1 nx! δxi π∈P(nx) △i(xπ, δxπ) δxi ̸ = 0 ∂ E ∂x i otherwise ( 30 
) where △i(x, δx) = E(x + δxi) -E(x + δxi-1) and δxi = [δx1, ..., δxi, 0, ..., 0] ⊺ . The discrete energy variation is obtained with the chain rule:

δE[k] h = ∇E(x[k], δx[k]) ⊺ δx[k] h . (31) 
The PHS of Fig. 10 

Newton-Raphson iteration

The interconnection matrix is decomposed as

J = [J stored J diss Jext] ⊺ . We denote ē(x[k], δx[k]) = [ ∇E(x[k], δx[k]) z(w[k]) u[k]] ⊺ , ν = δx[k] and 
F : ν → J stored ē(x[k], ν) -ν/h (32) 
At each sample k, δx[k] is solution of F (ν) = 0. If F ′ (νi) is invertible and given an initial value ν0 and a relative error ϵr, this solution can be computed iteratively with the update

νi+1 = νi + ∆ν i (33) 
where 

∆ν i = -F ′ (νi) -1 F (νi), until ∥∆ν i ∥/∥∆ν 0 ∥ ≤ ϵr. The state x[k+1] is then computed using x[k+1] = x[k]+δx[k].

Simulation parameters

The circuit is driven with a sinusoidal voltage whose parameters are given in Table 3, as well as with an instrumental bass sample. The ferromagnetic coil model parameters are those indicated in Table 2. The incoming entropy flow δeS/dt is set so that the ferromagnetic coil temperature stays constant.

Results and comparison to measurements

The circuit is simulated with the non-linear coil model and a simple linear coil model (iL = ΦL/L with L = 840 mH) for comparison. Simulation results on Fig. 11a-11b show a good correspondence between the non-linear model and measurements. Fig. 11c-11d show that the produced entropy is always positive and that the coil temperature stays constant. Spectrograms of the bass sample is shown on Fig. 11e-11f. Sound results on the bass sample can be heard at https://github.com/JNaj/dafx20-ferromag.

CONCLUSION

In this paper, a physical and passive model of ferromagnetic coil has been developed. It is explicit and maintains a reduced number of variables and parameters. First the core and the coil were treated separately, then their coupling, which determines both their electrical and thermal dynamics, was addressed. This lead to the building of an equivalent component, characterized by a well-established state, energy function, and entropy production rate law. A refined entropy production law based on measurements was then proposed.

As an application, this model was used to simulate a passive high-pass circuit. The simulations are in close agreement with measurements, though extensive measurements (a set of different frequencies, amplitudes, waveforms) would be required to validate the model on a broader scale.

Besides these complementary measurements, further work aims to assess real-time performances, and build a transformer model on the same principle by coupling two ferromagnetic coils.
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 1 Figure 1: Core energy function with respect to BV and S.

  (a) Gibbs free energy G H 0 for H 0 decreasing from Hmax (green curve) to Hcoerc (solid blue curve), at constant temperature, and trajectory of B V L (black curve) for a complete cycle. In the yellow area, two local potential minima coexist but only one direction is possible for B V L to follow (blue arrows). (b) Observed state B V L during a complete cycle, resulting in Barkhausen jumps (blue curve), and theoretical effort ∂ E L ∂B V for B V ranging from min(B V L )to max(B V L ) (red curve). The area between the blue and red curves is the energy dissipated during a cycle.

Figure 3 :

 3 Figure 3: Gibbs free energy GH 0 for decreasing values of magnetic field H0 (3a), and observed state BV L during a complete cycle of magnetic field variations (3b).

Figure 4 :

 4 Figure 4: Voltage-controlled ferromagnetic coil with thermal dissipation.
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Figure 5 :

 5 Figure 5: Measurements setup and results.

Figure 6 :

 6 Figure 6: Core energy and coupled system equivalent energy computed with piecewise affine functions.

Figure 7 :

 7 Figure 7: PHS of the voltage-controlled ferromagnetic coil with thermal dissipation. Dots in the interconnection matrix indicate zeros.

Figure 8 :

 8 Figure 8: Measurements (red curve) and estimated spline model (blue curve).

Figure 9 :

 9 Figure 9: Passive high-pass filter.

( a )

 a Measured and simulated currents. (b) Measured and simulated voltages. (c) Simulated entropy flows. (d) Simulated temperature. (e) Bass sample spectrogram. (f) Filtered bass sample spectrogram.

Figure 11 :Table 3 :

 113 Figure 11: Simulation results.

Table 1 :

 1 Physical quantities and labels.

	HL	H	coil
			ḂV coil
			ḂV L

coil core ḂVcore Hcore Figure 2: Coil and core connection.

Table 2 :

 2 Denoting nx the number of states, P(nx) the set of all possible permutations on the Physical parameters of the model where zi = zi/BV Ls and pi = piB i V

			Estimated		
	E0 2.43.10 -5 3.09.10 -7 1.10 6.07.10 4 θ r f BV Ls	p0 0	p1 8.69 0 p2 p3 8.78
				Given		
	µ0	k b	n	V	z1	z2
	4π.10 -7 1.38.10 -23 150 2.22.10 -7 -1	1

Ls . The units are S.I. units given in Table

1

.

Indeed, f ′ (χ) = -χ/ cosh

χ ≤ 0 ∀χ ∈ R + .
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A. DEFINITION OF THE BI-STABLE MODEL

OBSERVED EFFORT LAW HL

(BV L 0 ) = 0 (Fig. 3b, green cross), and

green plus), one can define HL as:

where [BV Linf , BV L sup ] = [ BV L 0 , BV L 0 ] if dBV L ≤ 0 and [-BV L 0 , -BV L 0 ] otherwise.