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Abstract. In the late three decades, grid computing has emerged as a new field 
providing a high computing performance to solve larger scale computational 
demands. Because Directed Acyclic Graph (DAG) application scheduling in a 
distributed environment is a NP-Complete problem, meta-heuristics are intro-
duced to solve this issue. In this paper, we propose to hybridize two well-known 
heuristics. The first one is the Heterogeneous Earliest Finish Time (HEFT) heu-
ristic which determines a static scheduling for a DAG in a heterogeneous envi-
ronment. The second one is Particle Swarm Optimization (PSO) which is a sto-
chastic meta-heuristic used to solve optimization problems. This hybridization 
aims to minimize the makespan (i.e., overall competition time) of all the tasks 
within the DAG. The experimental results that have been conducted under hy-
bridization show that this approach improves the scheduling in terms of com-
pletion time compared to existing algorithms such as HEFT. 

Keywords: Grid computing, Task scheduling, Directed Acyclic Graph, Hetero-
geneous Earliest Finish Time algorithm, Particle Swarm Optimization Algo-
rithm, Makespan. 

1 Introduction 

The deployment of high-speed networks and powerful computers has involved to new 
computing paradigms. Hence, while current hardware infrastructures are distributed in 
nature such as in grid computing, the underlying applications are composed of tasks 
distributed on different nodes. In fact, a grid computing is a set of geographically 
remote resources deployed across multiple nodes allowing their computational power 
and storage space to be shared. Grid resources are heterogeneous, dynamic and owned 
by various administrative organizations under locally defined policies. Grids are used 
in a variety of scientific applications such as in astronomy, geophysics and bioinfor-



matics where a single and powerful parallel super computer [1] cannot resolve the 
large-scale application issues. 

To take advantage of the potentials of grid computing, efficient scheduling algo-
rithms are fundamentally important [2]. The task-scheduling problem refers to the 
mapping of the application tasks to a set of distributed resources or nodes. Because 
this problem is NP-Complete, various algorithms are proposed in the literature with 
different criteria in order to schedule efficiently application tasks.  

Our contribution in this paper is twofold: firstly, we propose a scheduling approach 
based on the hybridization of two scheduling algorithms like HEFT and an adapted 
DPSO, called DPSO*, for the dependent-tasks scheduling problem. Secondly, we 
undertake some measurements that show that the hybridization approach improves the 
performances in terms of makespan. Makespan is the time difference between the 
start and finish of a sequence of tasks. 

 
The remainder of this paper is organized as follows. Related works are presented in 

Section 2. Section 3 formalizes the scheduling problem. Section 4 describes the 
HEFT, our adapted DPSO* algorithms and their hybridization. Then, performance 
tests are discussed in Section 5. Finally, Section 6concludes the paper with some 
perspectives. 

2 Related works 

In [3], Casavant and Kuhl have proposed a taxonomy of scheduling algorithms for 
general-purpose parallel and distributed computing systems. Since grid computing has 
specific features, scheduling algorithms for grid computing fall into a subset of this 
taxonomy [2]. In fact, in [2], the authors classified grid scheduling algorithms depend-
ing on whether the grid scheduling algorithm is static or dynamic, distributed or cen-
tralized, cooperative or non-cooperative.  

Due to the NP-Complete property of the scheduling algorithms and the difficulty to 
prove the optimality of a given solution, researchers tried to find sub-optimal solu-
tions through heuristic approaches. When the relationship between the tasks within 
the grid application is considered, scheduling algorithms are dichotomized into inde-
pendent and dependent task scheduling. Hence, in [4], a comparison between eleven 
heuristics used to schedule independent tasks is discussed. Among these heuristics, 
we can find Opportunistic Load Balancing, Minimum Execution Time, Minimum 
Completion Time, etc. Each of them aims to assign a task to a resource with an optim-
al completion time.  

In the case of dependent task scheduling, also called workflow scheduling, a task 
precedence graph called Directed Acyclic Graph (DAG) is usually used to model the 
application scheduling. The nodes of the DAG represent the tasks and the directed 
edges represent the execution dependencies and the data communication between 
tasks [5]. There are two major types of scheduling, best-effort based and QoS con-
straint based scheduling. Supporting QoS scheduling algorithms are based on either 
deadline (time) or budget (cost) constraints and are at a very preliminary stage [6]. 



Best-effort based scheduling attempts to minimize the makespan using different ap-
proaches. These approaches can be classified into different heuristics such as list-
scheduling, clustering, duplication-based algorithms, and meta-heuristics (guided 
random search methods) approaches. 

List-scheduling heuristics are based on two steps: in the prioritizing phase, tasks 
are ordered in a list by assigning a priority for each task, while in there resource selec-
tion phase each selected task is scheduled on the resource that minimizes a predefined 
cost function [7]. Various research works have been proposed in the literature under 
this type of heuristics such as HEFT and CPOP [7], FCP [8], DCP [9], DLS [10], and 
xDCP [11]. 

While the clustering approaches (DSC [12], CASS II [13], EZ [9], CTHP [14]) as-
sign a group of inter-communicated tasks to the same cluster hence to the same re-
source, the duplication based-scheduling approaches (DSH [15], CPFD [16], TDS 
[17], BTDH [18], THAN [19]) duplicate tasks to assign them to idle-time slots within 
the resource, thus avoiding the data communication overhead. 

Besides, meta-heuristics are stochastic algorithms dedicated to solve optimization 
problems. Using meta-heuristic approach, there is no guarantee to find a global opti-
mum but it provides an approximation of this optimum in a reasonable time.  Genetic 
Algorithms (GA) [20, 21, 22, 23, 24] are examples of meta-heuristics that are widely 
used, for the good solutions they provide. To overcome the high execution time taken 
by GA, Kennedy and Eberhart introduced the Particle Swarm Optimization (PSO) 
methodology in [25]. In the context of grid computing, PSO has been used by the 
authors of [26] to schedule independent tasks by transforming the continuous values 
of particles into discrete values thanks to the Smallest Position Value (SPV) rule. In 
[27], Liu et al. designed a fuzzy scheme based on discrete PSO to solve the indepen-
dent job scheduling problem on computational grids. Izakian et al. [28] have proposed 
a version of discrete PSO for grid independent job scheduling. 

In this paper, our aim is to build an optimal scheduling algorithm by adapting the 
PSO algorithm and then by hybridizing it with HEFT heuristic, in order to schedule 
DAG tasks in the context of grid computing. In fact, according to the PSO principle, 
since the particles are initialized randomly, our idea is to inject a particular particle 
initialized thanks to HEFT algorithm that is considered as a high-quality solution, in 
order to enhance PSO technique and hence to reduce significantly the convergence 
time. Before describing this hybridization, we formalize the scheduling problem in the 
next section.  

 

3 Scheduling-Problem Formalization 

A scheduling system is generally modeled thanks to an application, a platform and a 
scheduling-performance criterion. In our case, the criterion is the makespan. In the 
next sub-sections, we formalize each part of the scheduling model. 
 



3.1 Application formalization 

Each application is modeled by a Direct Acyclic Graph G=(V, E), where V is a set 
of v vertices representing tasks Ti (1 ≤  i≤ v), and E a set of directed edges. An edge (i, 
j)∈E, corresponds to a dependence constraint (data communication) between task Ti 
and Tj. Ti is an immediate parent task of Tj, and Tj the immediate child task of Ti. A 
child task cannot be executed until all of its parent tasks are completed. A task with 
no parent tasks is called an entry task and a task with no children tasks is called an 
exit task. We assume that only one entry and one exit tasks exist in the graph.  

Data matrix, with v x v dimensions, represents the data volume exchanged between 
tasks.  

3.2 Platform formalization 

The target computing environment is made up of a set of q heterogeneous compute 
resources completely interconnected. We assume that the communication between 
compute resources is performed without contention and can be overlapped with com-
putation. We define two distinct matrices. 

Computation_time matrix, with v x q dimensions, represents the execution time of 
tasks on compute resources. Computation_timei, j is the estimated execution time of 
the task Ti on the compute resource PCj. 

The average execution time of a task Ti is: 

 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑖 =
∑ 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 _𝑡𝑖𝑚𝑒 𝑖,𝑗
𝑞
𝑗=1

𝑞
 (1) 

Transfer_rate matrix, with q x q dimensions, represents the data transfer rate 
(bandwidth) between compute resources. 

The communication time of an edge (i, j)∈E in the DAG, which is the time taken to 
transfer data from task Ti (executed on PCp) to task Tj (executed on PCk), is defined as 
in the following: 

 Communication_timei,j=
𝑑𝑎𝑡𝑎 𝑖 ,𝑗

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 _𝑟𝑎𝑡𝑒 𝑝 ,𝑘
 (2) 

When tasks Ti and Tj are executed on the same compute resource, we have  
Communication_timei,j equal to zero. Consequently, the average communication time 

of an edge (i, j) is given in formula 3. 

 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑖,𝑗=
𝑑𝑎𝑡𝑎 𝑖 ,𝑗

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 _𝑟𝑎𝑡𝑒തതതതതതതതതതതതതതതതതതതതതത (3) 

  
Where 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑟𝑎𝑡𝑒തതതതതതതതതതതതതതതതതതതത is the average of transfer rates between all the compute re-

sources. 



3.3 Makespan formalization 

To define the makespan, we use two attributes as defined in [7]: 
1. Earliest execution Start Time (EST) of a task Ti assigned to a compute re-

source PCj. EST is the earliest time during which a task Ti is started. As shown 
in the following, the EST of a task T depends not only on the end of execution 
of the parent tasks of T but also on the data communication time, except when 
T is an entry task in which case EST is equal to zero. 

 EST(TEntry,PCj)=0 (4) 

 EST(Ti, PCj)= max൛𝑎𝑣𝑎𝑖𝑙[𝑗], (𝐴𝐹𝑇(𝑇𝑚) + 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑚 ,𝑖)𝑇𝑚∈𝑝𝑟𝑒𝑑 (𝑇𝑖)
max ൟ (5) 

Where: 
-pred(Ti)  is the set of immediate parent tasks of Ti. 
-avail[j] is the earliest time at which the compute resource PCj is available to 

execute a task, and 
- AFT is the Actual Finish Time of a task as described here after. 
 

2. Earliest execution Finish Time (EFT) of a task Ti on a compute resource PCj 
corresponds to the time at which Ti ends its execution, that is, the starting time 
ESTof Ti added to its execution time. 

 EFT(Ti,PCj)= Computation_timei,j+EST(Ti,PCj). (6) 

After task Ti is actually scheduled on the compute resource PCj, Actual Start Time 
of the Ti is calculated as AST(Ti) = EST(Ti, PCj). In addition, Actual Finish Time of 
task Ti is defined as: AFT (Ti) = EFT(Ti, PCj). 
When all the DAG tasks are scheduled, the completion time of the application is 
simply the AFT of the exit task. 

 Makespan= AFT(Texit)  (7) 

The objective of any scheduling algorithm is to find an assignment of 
tasks on the compute resources, that minimizes the makespan among other criteria. 
The next section deals with our contribution that aims to hybridize two heuristics in 
order to minimize makespan when scheduling tasks in a grid computing. 

4 HEFT/DPSO* Hybridization 

Our objective in this research work is twofold: 
x First, we aim to adapt the basic DPSO [28] for the dependent tasks schedul-

ing problem. In our proposed solution (DPSO*), after their assignment, 
tasks are ordered in such a way that the dependencies constraints are satis-
fied.  



x Second, we aim to further improve the performances of our solution, i.e. the 
DPSO*, by combining it with the HEFT algorithm. 

 
Our purpose here is to adapt the DPSO algorithm so that we can minimize the 

completion time of tasks when scheduled on a grid computing. Since the particles 
used by PSO algorithm are initialized randomly, our idea is to inject a particular par-
ticle initialized thanks to HEFT algorithm that is considered as a high-quality solu-
tion, in order to reduce significantly the convergence time. Before describing our 
proposed hybridization approach, we first recall the features of HEFT and describe 
our proposed DPSO* approach.  
 
4.1 HEFT 

HEFT(Heterogeneous Earliest-Finish-Time) [7] is one of the most widespread 
scheduling-list algorithms. It determines a static scheduling of a DAG on a heteroge-
neous environment so as to minimize the makespan. As described in the following, 
HEFT has two execution steps. 
 
1. Task-prioritizing phase: HEFT uses the upward rank attribute to order the tasks 
of the DAG. It is recursively defined by: 

 ranku(Ti)=𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑖+ (𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑖,𝑗 + ranku(𝑇𝑗)𝑇𝑗∈𝑠𝑢𝑐𝑐 (𝑇𝑖)
max ) (8) 

Where succ(Ti) is the set of immediate children of task Ti. The rank is calculated start-
ing from the exit task.  

 ranku(Texit)=𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑒𝑥𝑖𝑡  (9) 

2. Compute-resource selection phase:  Tasks are mapped to the adequate compute 
resources that minimize the EFT like in the formula 6. 

 
A variant of HEFT is the Duplication based HEFT (DHEFT) [29] that is based on 
task duplication. By duplicating dependent tasks and assigning them within the 
compute resources that host their children tasks, the communication overhead is re-
duced, hence improving the makespan of the application. 
 

4.2 Adapted Discrete PSO (DPSO*) 

PSO is an adaptive population-based search method inspired by social behavior 
patterns such as bird flocking and fish schooling. It can be implemented easily to 
solve various function optimization problems. Its main advantage is its fast conver-
gence. Initially, PSO was used to solve continuous problems. However, a discrete 
binary version of PSO was introduced to solve discrete optimization problems in[30] 

To solve scheduling problems, various versions of PSO were used like fuzzy PSO 
in [27] or Discrete PSO in [28]. DPSO deals with scheduling independent jobs in the 
grid environment. Since we are interested in this variant of PSO, we propose to adapt 



it to the dependent-tasks problem then hybridize our adapted DPSO, called DPSO*, 
with HEFT. Here, we explain its principle. In fact, our DPSO* algorithm initially 
generates randomly a swarm of particles. A particle is analogous to a bird flying 
through a search space. Each particle has a position X, a velocity V, and a fitness val-
ue.   Particle’s   position   is   seen   as   a   potential   solution   to   the   problem.   Positions   are  
evaluated by a fitness function to be optimized. Also, each particle knows its best past 
position it has reached (pbest) and the best position ever reached by any particle in the 
swarm (gbest). The movement of particles is influenced by its actual position and its 
velocity.   Particle’s   velocity   represents   the   direction   and   the   magnitude   of   the   next  
movement. It is calculated by considering its actual velocity, pbest and gbest. The 
next paragraphs discuss the features that characterize DPSO* algorithm. 

Particle’s  Position. 
A particle’s position represents a potential scheduling solution. We use the direct 

representation [28] to encode the scheduling solutions. The position (solution) is a 
vector X of v elements where v is the number of jobs. The elements of the vector are 
natural numbers included in range [0, q[ where q is the number of compute resources 
in the grid. Hence, X[j] is the index of the computer resource where job j is assigned 
by the scheduler. For example, a solution of scheduling problem with 4 jobs to sche-
dule and 2 available compute resources is represented by a vector of 4 elements X=(1, 
0, 0, 1). So, jobs 1 and 4 are assigned to the compute resource indexed by 1 and jobs 2 
and 3 are assigned to compute resource indexed by 0.   

 Particle’s  Velocity. 
The velocity is a q x v matrix called V where q is the number of available compute 

resources and v the number of jobs, as expressed in the following: 
V[i, j]∈  [−𝑉𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥  ], ∀ i∈{1, 2, ..., q}  et ∀ j ∈{1, 2, ..., v} 

Initially,  position’s  vectors  and  velocity’s  matrixes  of  particles are randomly gen-
erated as stated in Section 2. 

Fitness Function. 
In general, the fitness function used to evaluate the particles is the 

makespan. Because makespan refers to the efficiency of the tasks-compute resources 
mapping, we have chosen to use it as a criterion to minimize. 

 Finess=makespan (10) 

Movement. 
The movement is realized by firstly updating the matrix velocity and then the vec-

tor position of each particle. After each particle is moved, the pbest and gbest parame-
ters must be updated by checking the performance of each particle using the fitness 
function. The movement of the particles through the search space is described by the 
following algorithm. 



Particles movement algorithm: 

 
 
w, c1 and c2 are the DPSO parameters, w is the inertia weight, c1is the coefficient of 
the self-recognition component and c2 is the coefficient of the socialcomponent,r1 
and r2 are random numbers used to maintain the diversity of the swarm. 

Dependency Constraint supported. 
To take into consideration the dependency constraints between tasks, we 

characterize each task with the following parameters: task number, EST, 
EFT, and a tag value that indicates if the task is scheduled or not. 

Before scheduling, the AST and AFT folders of each task are initially 
unknown, and all the tasks are tagged as not scheduled. Once DPSO* is 
applied, EST and EFT folders of each task are known and all the tasks are 
tagged as scheduled.  

To get the final scheduling, our approach operates according to the following steps:  
1. All the tasks are assigned to compute resources on which they will run. 

This step is similar to the basic DPSO that is suitable for independent 
tasks as described in [28]. However at this step, the order in which each 

For each particle k = 1, ..., P do 
    // Matrix velocity updating. 
    For each job j = 1, ..., n do  
       q =𝑋𝑘

𝑡 [j];  
       z =𝑝𝑏𝑒𝑠𝑡𝑘𝑡[j];  
       s = 𝑝𝑏𝑒𝑠𝑡𝑘𝑡[j]; 
       if q  ≠z  then 
         𝑉𝑘𝑡[q, j] =w.𝑉𝑘𝑡[q, j] - c1 × r1;  
         𝑉𝑘𝑡[z, j] w.𝑉𝑘𝑡[z, j] + c1 × r1;  
       end 
       if q  ≠s  then 
          𝑉𝑘𝑡[q, j] =w.𝑉𝑘𝑡[q, j] - c1 × r1;   
          𝑉𝑘𝑡[s, j] =w.𝑉𝑘𝑡[s, j] - c1 × r1; 
       end 
     end 
 
 // Vector position updating. 
    For each job j = 1, ..., n do  
     if 𝑉𝑘𝑡[φ, j] = max {𝑉𝑘𝑡[i, j]}∀i ∈ (1, 2, ..., m)then 
       𝑋𝑘

𝑡 [j]=  φ;; 
     end 
    end 
END  

 

 



task will start and finish its execution on a given compute resource is 
not known yet due to the task dependencies. Consequently, a second step is 
necessary as in the following. 

2. In this second step, the start and finish execution time of each task 
will be defined on each compute resource. To do so, the DAG must be 
traveled downwards starting from the entry task. First, because entry task 
has no parent, it is tagged as scheduled and its EST is set to 0 (see 
formula 4) and its EFT is calculated using formula 5. Second, the other 
tasks will wait until all their immediate parents are scheduled, in other terms, 
their ESTs and EFTs are calculated according respectively to the formulas 
5 and 6. 

DPSO* Algorithm.   
Before the start of the DPSO* execution some parameter values must be set. Then, 

particles are generated and initialized randomly. After that, they explore the search 
space trying to find a satisfactory solution for the problem until the maximum number 
of iteration is reached. A pseudo-code of the DPSO* algorithm is shown in the fol-
lowing. 

 
 

4.3 The HEFT/DPSO* Hybridization   

  As depicted in figure 1, after generating the initial swarm, instead of randomly initia-
lizing all the particles, in our proposed DPSO* algorithm, one particle is initialized 

Initialize PSO parameter (swarm size, max𝑖𝑡𝑒𝑟 ,w , c1, c2)  
Generate initial swarm  
Initialize particles positions and velocities randomly  
While (𝑖𝑡𝑒𝑟<𝑚𝑎𝑥𝑖𝑡𝑒𝑟) do  
   For each particle k = 1, . . ., P do  
     If Fitness (𝑋𝑘) > Fitness (𝑝𝑏𝑒𝑠𝑡𝑘) then  
                   𝑝𝑏𝑒𝑠𝑡𝑘= 𝑋𝑘;  
     end If  
     If Fitness (𝑝𝑏𝑒𝑠𝑡𝑘) > Fitness (𝑔𝑏𝑒𝑠𝑡𝑘) then  
       g𝑏𝑒𝑠𝑡=𝑝𝑏𝑒𝑠𝑡𝑘;  
     end If  
   end for  
   For each particle k = 1, . . ., P do  
     Movement of the particle k;  
   End For  
   iter =iter+1;  
End while 



with the solution given by HEFT and other particles are randomly initialized. In this 
way, this step is optimized. 

 

 
Fig.1.  Flow chart of HEFT/DPSO* Hybridization 

5 Experimental Results 

To evaluate the performance of our proposed algorithm, we have conducted some 
experiments and compared the resulting tests of our hybrid HEFT/DPSO* algorithm 



with HEFT and DPSO* algorithms regarding the makespan parameter. We have used 
a DAG generator called RandomTaskGraphGenerator to generate our DAGs that 
represent the applications to schedule.  

The grid environment that we considered here is composed of several heterogene-
ous compute resources which are connected by heterogeneous links.  

We assume that the computation time of each task on each compute resource, the 
data volume exchanged between tasks and the data transfer rate between compute 
resources are known. 

For our simulation, the platform is described within a configuration file that con-
tains the following information: the number of tasks composing each application, the 
number of compute resources of the platform and three matrices. The first is the com-
putational cost matrix  with   “Number   of   tasks   x  Number   of   compute   resources” di-
mension (line index represents the number of tasks and column index represents the 
number of compute resources). The second is the data transfer speed matrix with 
“Number  of  compute  resources  x  Number  of  compute  resources”  dimension  (line  and  
column indexes represent compute resource numbers). The value 0 means there is no 
transfer between a compute resource and another; besides the transfer speed between 
a compute resource and itself is null. The third one is the data matrix that contains the 
data  transferred  between  tasks.  This  matrix  has  “Number  of  tasks  x  Number  of  tasks”  
dimension (the line and column indexes represent   task   numbers).   The   value   ‘-1' 
means that there is no data exchanged between tasks. A value ‘0’ means that a task 
has another kind of dependence, other than data transfer, with another task. 
Concerning the positive values of the data matrix, each value corresponds to the 
volume of data transfer between the two corresponding tasks. 

Based on the configuration file, we conducted our measurements using five appli-
cations with different number of tasks on a grid environment with different number of 
available compute resources. 

Since the results of our DPSO* and our hybrid algorithm are stochastic (due to the 
DPSO behavior), we repeated each experiment 10 times and recorded the makespan 
value of the best solution obtained. For HEFT, it is executed only once since it is a 
deterministic algorithm. 

Specific parameter settings used by our hybrid HEFT/DPSO* and our DPSO*are 
described in Table 1. 

 
DPSO*parameter value 

Size of swarm 50 
Maximum iteration 1000 
Self-Recognition coefficient c1 2 

Social coefficient c2 
 

1 

Table 1.  Parameter Settings of DPSO. 

In our experiments, we measured the makespan criterion by varying the number of 
compute resources in one side, and the number of tasks in the other side. 

 



5.1 First Performance study 

We used an application of 40 tasks which we run on a grid environment with dif-
ferent number of available compute resources (2, 3, 5, 7 and 10), and we measured the 
makespan as in Table 2. 

            Table 2. Makespanscomparisonaccordingtonumberofcompteresource 

Figure 2 shows the makespan as measured for each scheduling algorithm when vary-
ing the number of compute resources. According to these measurements, we notice 
that in respect to makespan, our hybrid HEFT/DPSO* algorithm offers better results 
than DPSO* and HEFT algorithms. 
 

 
 

  Fig.2. Makespan comparison according to the number of compute resources 

5.2 Second Performance study 

To measure the makespan criterion when varying the number of tasks, we consi-
dered five applications with different number of tasks (10, 20, 40, 60 and 100) that we 
run on a grid environment with 5 available compute resources. We compared the 
results of our hybrid solution with those obtained with the following scheduling algo-
rithms: DPSO* and HEFT. Table 3 shows the values of the makespan as obtained in 
the different situations.  
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Compute re-
source  number HEFT/DPSO* DPSO* HEFT 

2 733 736 922 
3 560 580 620 
5 425 437 441 
7 383 392 399 

10 296 329 308 



 
Task 

number 
HEFT/DPSO*  DPSO* HEFT 

10 71 71 84 
20 225 228 299 
40 431 411 441 
60 446 511 654 
80 434 573 523 
100 681 849 701 

Table 3.Makespancomparisonaccordingtothenumberoftasks. 

 
Figure 3 depicts the makespan comparison between different scheduling algorithms 
when varying the number of tasks. Even when varying the number of tasks, the ma-
kespan seems to be better especially when the number of tasks is relatively important.   
 

 
 

Fig.3. Makespan comparison according to the number of tasks 

According to Figures 2 and 3, we can notice that the performances of the hybrid 
HEFT/DPSO*solution and those of the DPSO* are better than HEFT heuristic regard-
ing the makespan criterion. Moreover, in the majority of cases, the hybrid solution 
provides better makespans than the DPSO*. 
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6 Conclusion and Future Work 

In this paper, a dependent task scheduling algorithm for computational grid has been 
proposed based on hybridization of two heuristics. The first one isa list-scheduling 
heuristic which is the well-known HEFT used to schedule DAGs. The second one is 
based on a meta-heuristic called Particle Swarm Optimization (PSO). A discrete ver-
sion of PSO has been adapted to handle the scheduling of DAGs. Our objective was 
to minimize the makespan of applications that are executed on a grid environment. 
However, we plan to measure other criteria like energy consuming in our future work.  

We showed in this article that our proposed scheduling approach gives better re-
sults in term of completion time than HEFT and our DPSO*. 

At last, we aim to complete our current research work by hybridizing the DHEFT 
algorithm with a PSO technique to support the duplication of tasks in one side, and in 
the other side to measure the impact of the clustering approach that groups inter-
dependent tasks into meta-tasks by using a genetic algorithm and then by scheduling 
them using HEFT algorithm. 
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