
HAL Id: hal-02920521
https://hal.science/hal-02920521

Submitted on 24 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hybrid Algorithm for DAG Application Scheduling on
Computational Grids

Lyes Bouali, Karima Oukfif, Samia Bouzefrane, Fatima Boumghar Oulebsir

To cite this version:
Lyes Bouali, Karima Oukfif, Samia Bouzefrane, Fatima Boumghar Oulebsir. A Hybrid Algorithm for
DAG Application Scheduling on Computational Grids. International Conference on Mobile, Secure
and Programmable Networking (MSPN’2015), Jun 2015, Paris, France. pp.63-77, �10.1007/978-3-319-
25744-0_6�. �hal-02920521�

https://hal.science/hal-02920521
https://hal.archives-ouvertes.fr

adfa, p. 1, 2015.
© Springer-Verlag Berlin Heidelberg 2015

A Hybrid Algorithm for DAG Application Scheduling on
Computational Grids

Lyes Bouali1, Karima Oukfif2, Samia Bouzefrane3, Fatima
Oulebsir-Boumghar4

1 LARI Lab, UMMTO, Algeria
bouali.lyes@gmail.com

2 Compute Science Department, UMMTO and LRPE Lab, USTHB, Algeria
karima.oukfif@gmail.com

3 CEDRIC Lab, CNAM
samia.bouzefrane@cnam.fr

4 LRPE Lab, USTHB, Algeria
fboumghar@usthb.dz

Abstract. In the late three decades, grid computing has emerged as a new field
providing a high computing performance to solve larger scale computational
demands. Because Directed Acyclic Graph (DAG) application scheduling in a
distributed environment is a NP-Complete problem, meta-heuristics are intro-
duced to solve this issue. In this paper, we propose to hybridize two well-known
heuristics. The first one is the Heterogeneous Earliest Finish Time (HEFT) heu-
ristic which determines a static scheduling for a DAG in a heterogeneous envi-
ronment. The second one is Particle Swarm Optimization (PSO) which is a sto-
chastic meta-heuristic used to solve optimization problems. This hybridization
aims to minimize the makespan (i.e., overall competition time) of all the tasks
within the DAG. The experimental results that have been conducted under hy-
bridization show that this approach improves the scheduling in terms of com-
pletion time compared to existing algorithms such as HEFT.

Keywords: Grid computing, Task scheduling, Directed Acyclic Graph, Hetero-
geneous Earliest Finish Time algorithm, Particle Swarm Optimization Algo-
rithm, Makespan.

1 Introduction

The deployment of high-speed networks and powerful computers has involved to new
computing paradigms. Hence, while current hardware infrastructures are distributed in
nature such as in grid computing, the underlying applications are composed of tasks
distributed on different nodes. In fact, a grid computing is a set of geographically
remote resources deployed across multiple nodes allowing their computational power
and storage space to be shared. Grid resources are heterogeneous, dynamic and owned
by various administrative organizations under locally defined policies. Grids are used
in a variety of scientific applications such as in astronomy, geophysics and bioinfor-

matics where a single and powerful parallel super computer [1] cannot resolve the
large-scale application issues.

To take advantage of the potentials of grid computing, efficient scheduling algo-
rithms are fundamentally important [2]. The task-scheduling problem refers to the
mapping of the application tasks to a set of distributed resources or nodes. Because
this problem is NP-Complete, various algorithms are proposed in the literature with
different criteria in order to schedule efficiently application tasks.

Our contribution in this paper is twofold: firstly, we propose a scheduling approach
based on the hybridization of two scheduling algorithms like HEFT and an adapted
DPSO, called DPSO*, for the dependent-tasks scheduling problem. Secondly, we
undertake some measurements that show that the hybridization approach improves the
performances in terms of makespan. Makespan is the time difference between the
start and finish of a sequence of tasks.

The remainder of this paper is organized as follows. Related works are presented in

Section 2. Section 3 formalizes the scheduling problem. Section 4 describes the
HEFT, our adapted DPSO* algorithms and their hybridization. Then, performance
tests are discussed in Section 5. Finally, Section 6concludes the paper with some
perspectives.

2 Related works

In [3], Casavant and Kuhl have proposed a taxonomy of scheduling algorithms for
general-purpose parallel and distributed computing systems. Since grid computing has
specific features, scheduling algorithms for grid computing fall into a subset of this
taxonomy [2]. In fact, in [2], the authors classified grid scheduling algorithms depend-
ing on whether the grid scheduling algorithm is static or dynamic, distributed or cen-
tralized, cooperative or non-cooperative.

Due to the NP-Complete property of the scheduling algorithms and the difficulty to
prove the optimality of a given solution, researchers tried to find sub-optimal solu-
tions through heuristic approaches. When the relationship between the tasks within
the grid application is considered, scheduling algorithms are dichotomized into inde-
pendent and dependent task scheduling. Hence, in [4], a comparison between eleven
heuristics used to schedule independent tasks is discussed. Among these heuristics,
we can find Opportunistic Load Balancing, Minimum Execution Time, Minimum
Completion Time, etc. Each of them aims to assign a task to a resource with an optim-
al completion time.

In the case of dependent task scheduling, also called workflow scheduling, a task
precedence graph called Directed Acyclic Graph (DAG) is usually used to model the
application scheduling. The nodes of the DAG represent the tasks and the directed
edges represent the execution dependencies and the data communication between
tasks [5]. There are two major types of scheduling, best-effort based and QoS con-
straint based scheduling. Supporting QoS scheduling algorithms are based on either
deadline (time) or budget (cost) constraints and are at a very preliminary stage [6].

Best-effort based scheduling attempts to minimize the makespan using different ap-
proaches. These approaches can be classified into different heuristics such as list-
scheduling, clustering, duplication-based algorithms, and meta-heuristics (guided
random search methods) approaches.

List-scheduling heuristics are based on two steps: in the prioritizing phase, tasks
are ordered in a list by assigning a priority for each task, while in there resource selec-
tion phase each selected task is scheduled on the resource that minimizes a predefined
cost function [7]. Various research works have been proposed in the literature under
this type of heuristics such as HEFT and CPOP [7], FCP [8], DCP [9], DLS [10], and
xDCP [11].

While the clustering approaches (DSC [12], CASS II [13], EZ [9], CTHP [14]) as-
sign a group of inter-communicated tasks to the same cluster hence to the same re-
source, the duplication based-scheduling approaches (DSH [15], CPFD [16], TDS
[17], BTDH [18], THAN [19]) duplicate tasks to assign them to idle-time slots within
the resource, thus avoiding the data communication overhead.

Besides, meta-heuristics are stochastic algorithms dedicated to solve optimization
problems. Using meta-heuristic approach, there is no guarantee to find a global opti-
mum but it provides an approximation of this optimum in a reasonable time. Genetic
Algorithms (GA) [20, 21, 22, 23, 24] are examples of meta-heuristics that are widely
used, for the good solutions they provide. To overcome the high execution time taken
by GA, Kennedy and Eberhart introduced the Particle Swarm Optimization (PSO)
methodology in [25]. In the context of grid computing, PSO has been used by the
authors of [26] to schedule independent tasks by transforming the continuous values
of particles into discrete values thanks to the Smallest Position Value (SPV) rule. In
[27], Liu et al. designed a fuzzy scheme based on discrete PSO to solve the indepen-
dent job scheduling problem on computational grids. Izakian et al. [28] have proposed
a version of discrete PSO for grid independent job scheduling.

In this paper, our aim is to build an optimal scheduling algorithm by adapting the
PSO algorithm and then by hybridizing it with HEFT heuristic, in order to schedule
DAG tasks in the context of grid computing. In fact, according to the PSO principle,
since the particles are initialized randomly, our idea is to inject a particular particle
initialized thanks to HEFT algorithm that is considered as a high-quality solution, in
order to enhance PSO technique and hence to reduce significantly the convergence
time. Before describing this hybridization, we formalize the scheduling problem in the
next section.

3 Scheduling-Problem Formalization

A scheduling system is generally modeled thanks to an application, a platform and a
scheduling-performance criterion. In our case, the criterion is the makespan. In the
next sub-sections, we formalize each part of the scheduling model.

3.1 Application formalization

Each application is modeled by a Direct Acyclic Graph G=(V, E), where V is a set
of v vertices representing tasks Ti (1 ≤ i≤ v), and E a set of directed edges. An edge (i,
j)∈E, corresponds to a dependence constraint (data communication) between task Ti
and Tj. Ti is an immediate parent task of Tj, and Tj the immediate child task of Ti. A
child task cannot be executed until all of its parent tasks are completed. A task with
no parent tasks is called an entry task and a task with no children tasks is called an
exit task. We assume that only one entry and one exit tasks exist in the graph.

Data matrix, with v x v dimensions, represents the data volume exchanged between
tasks.

3.2 Platform formalization

The target computing environment is made up of a set of q heterogeneous compute
resources completely interconnected. We assume that the communication between
compute resources is performed without contention and can be overlapped with com-
putation. We define two distinct matrices.

Computation_time matrix, with v x q dimensions, represents the execution time of
tasks on compute resources. Computation_timei, j is the estimated execution time of
the task Ti on the compute resource PCj.

The average execution time of a task Ti is:

 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑖 =
∑ 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 _𝑡𝑖𝑚𝑒 𝑖,𝑗
𝑞
𝑗=1

𝑞
 (1)

Transfer_rate matrix, with q x q dimensions, represents the data transfer rate
(bandwidth) between compute resources.

The communication time of an edge (i, j)∈E in the DAG, which is the time taken to
transfer data from task Ti (executed on PCp) to task Tj (executed on PCk), is defined as
in the following:

 Communication_timei,j=
𝑑𝑎𝑡𝑎 𝑖 ,𝑗

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 _𝑟𝑎𝑡𝑒 𝑝 ,𝑘
 (2)

When tasks Ti and Tj are executed on the same compute resource, we have
Communication_timei,j equal to zero. Consequently, the average communication time

of an edge (i, j) is given in formula 3.

 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑖,𝑗=
𝑑𝑎𝑡𝑎 𝑖 ,𝑗

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 _𝑟𝑎𝑡𝑒തതതതതതതതതതതതതതതതതതതതതത (3)

Where 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟_𝑟𝑎𝑡𝑒തതതതതതതതതതതതതതതതതതതത is the average of transfer rates between all the compute re-

sources.

3.3 Makespan formalization

To define the makespan, we use two attributes as defined in [7]:
1. Earliest execution Start Time (EST) of a task Ti assigned to a compute re-

source PCj. EST is the earliest time during which a task Ti is started. As shown
in the following, the EST of a task T depends not only on the end of execution
of the parent tasks of T but also on the data communication time, except when
T is an entry task in which case EST is equal to zero.

 EST(TEntry,PCj)=0 (4)

 EST(Ti, PCj)= max൛𝑎𝑣𝑎𝑖𝑙[𝑗], (𝐴𝐹𝑇(𝑇𝑚) + 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑚 ,𝑖)𝑇𝑚∈𝑝𝑟𝑒𝑑 (𝑇𝑖)
max ൟ (5)

Where:
-pred(Ti) is the set of immediate parent tasks of Ti.
-avail[j] is the earliest time at which the compute resource PCj is available to

execute a task, and
- AFT is the Actual Finish Time of a task as described here after.

2. Earliest execution Finish Time (EFT) of a task Ti on a compute resource PCj
corresponds to the time at which Ti ends its execution, that is, the starting time
ESTof Ti added to its execution time.

 EFT(Ti,PCj)= Computation_timei,j+EST(Ti,PCj). (6)

After task Ti is actually scheduled on the compute resource PCj, Actual Start Time
of the Ti is calculated as AST(Ti) = EST(Ti, PCj). In addition, Actual Finish Time of
task Ti is defined as: AFT (Ti) = EFT(Ti, PCj).
When all the DAG tasks are scheduled, the completion time of the application is
simply the AFT of the exit task.

 Makespan= AFT(Texit) (7)

The objective of any scheduling algorithm is to find an assignment of
tasks on the compute resources, that minimizes the makespan among other criteria.
The next section deals with our contribution that aims to hybridize two heuristics in
order to minimize makespan when scheduling tasks in a grid computing.

4 HEFT/DPSO* Hybridization

Our objective in this research work is twofold:
x First, we aim to adapt the basic DPSO [28] for the dependent tasks schedul-

ing problem. In our proposed solution (DPSO*), after their assignment,
tasks are ordered in such a way that the dependencies constraints are satis-
fied.

x Second, we aim to further improve the performances of our solution, i.e. the
DPSO*, by combining it with the HEFT algorithm.

Our purpose here is to adapt the DPSO algorithm so that we can minimize the

completion time of tasks when scheduled on a grid computing. Since the particles
used by PSO algorithm are initialized randomly, our idea is to inject a particular par-
ticle initialized thanks to HEFT algorithm that is considered as a high-quality solu-
tion, in order to reduce significantly the convergence time. Before describing our
proposed hybridization approach, we first recall the features of HEFT and describe
our proposed DPSO* approach.

4.1 HEFT

HEFT(Heterogeneous Earliest-Finish-Time) [7] is one of the most widespread
scheduling-list algorithms. It determines a static scheduling of a DAG on a heteroge-
neous environment so as to minimize the makespan. As described in the following,
HEFT has two execution steps.

1. Task-prioritizing phase: HEFT uses the upward rank attribute to order the tasks
of the DAG. It is recursively defined by:

 ranku(Ti)=𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑖+ (𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑖,𝑗 + ranku(𝑇𝑗)𝑇𝑗∈𝑠𝑢𝑐𝑐 (𝑇𝑖)
max) (8)

Where succ(Ti) is the set of immediate children of task Ti. The rank is calculated start-
ing from the exit task.

 ranku(Texit)=𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒𝑒𝑥𝑖𝑡 (9)

2. Compute-resource selection phase: Tasks are mapped to the adequate compute
resources that minimize the EFT like in the formula 6.

A variant of HEFT is the Duplication based HEFT (DHEFT) [29] that is based on
task duplication. By duplicating dependent tasks and assigning them within the
compute resources that host their children tasks, the communication overhead is re-
duced, hence improving the makespan of the application.

4.2 Adapted Discrete PSO (DPSO*)

PSO is an adaptive population-based search method inspired by social behavior
patterns such as bird flocking and fish schooling. It can be implemented easily to
solve various function optimization problems. Its main advantage is its fast conver-
gence. Initially, PSO was used to solve continuous problems. However, a discrete
binary version of PSO was introduced to solve discrete optimization problems in[30]

To solve scheduling problems, various versions of PSO were used like fuzzy PSO
in [27] or Discrete PSO in [28]. DPSO deals with scheduling independent jobs in the
grid environment. Since we are interested in this variant of PSO, we propose to adapt

it to the dependent-tasks problem then hybridize our adapted DPSO, called DPSO*,
with HEFT. Here, we explain its principle. In fact, our DPSO* algorithm initially
generates randomly a swarm of particles. A particle is analogous to a bird flying
through a search space. Each particle has a position X, a velocity V, and a fitness val-
ue. Particle’s position is seen as a potential solution to the problem. Positions are
evaluated by a fitness function to be optimized. Also, each particle knows its best past
position it has reached (pbest) and the best position ever reached by any particle in the
swarm (gbest). The movement of particles is influenced by its actual position and its
velocity. Particle’s velocity represents the direction and the magnitude of the next
movement. It is calculated by considering its actual velocity, pbest and gbest. The
next paragraphs discuss the features that characterize DPSO* algorithm.

Particle’s Position.
A particle’s position represents a potential scheduling solution. We use the direct

representation [28] to encode the scheduling solutions. The position (solution) is a
vector X of v elements where v is the number of jobs. The elements of the vector are
natural numbers included in range [0, q[where q is the number of compute resources
in the grid. Hence, X[j] is the index of the computer resource where job j is assigned
by the scheduler. For example, a solution of scheduling problem with 4 jobs to sche-
dule and 2 available compute resources is represented by a vector of 4 elements X=(1,
0, 0, 1). So, jobs 1 and 4 are assigned to the compute resource indexed by 1 and jobs 2
and 3 are assigned to compute resource indexed by 0.

 Particle’s Velocity.
The velocity is a q x v matrix called V where q is the number of available compute

resources and v the number of jobs, as expressed in the following:
V[i, j]∈ [−𝑉𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥], ∀ i∈{1, 2, ..., q} et ∀ j ∈{1, 2, ..., v}

Initially, position’s vectors and velocity’s matrixes of particles are randomly gen-
erated as stated in Section 2.

Fitness Function.
In general, the fitness function used to evaluate the particles is the

makespan. Because makespan refers to the efficiency of the tasks-compute resources
mapping, we have chosen to use it as a criterion to minimize.

 Finess=makespan (10)

Movement.
The movement is realized by firstly updating the matrix velocity and then the vec-

tor position of each particle. After each particle is moved, the pbest and gbest parame-
ters must be updated by checking the performance of each particle using the fitness
function. The movement of the particles through the search space is described by the
following algorithm.

Particles movement algorithm:

w, c1 and c2 are the DPSO parameters, w is the inertia weight, c1is the coefficient of
the self-recognition component and c2 is the coefficient of the socialcomponent,r1
and r2 are random numbers used to maintain the diversity of the swarm.

Dependency Constraint supported.
To take into consideration the dependency constraints between tasks, we

characterize each task with the following parameters: task number, EST,
EFT, and a tag value that indicates if the task is scheduled or not.

Before scheduling, the AST and AFT folders of each task are initially
unknown, and all the tasks are tagged as not scheduled. Once DPSO* is
applied, EST and EFT folders of each task are known and all the tasks are
tagged as scheduled.

To get the final scheduling, our approach operates according to the following steps:
1. All the tasks are assigned to compute resources on which they will run.

This step is similar to the basic DPSO that is suitable for independent
tasks as described in [28]. However at this step, the order in which each

For each particle k = 1, ..., P do
 // Matrix velocity updating.
 For each job j = 1, ..., n do
 q =𝑋𝑘

𝑡 [j];
 z =𝑝𝑏𝑒𝑠𝑡𝑘𝑡[j];
 s = 𝑝𝑏𝑒𝑠𝑡𝑘𝑡[j];
 if q ≠z then
 𝑉𝑘𝑡[q, j] =w.𝑉𝑘𝑡[q, j] - c1 × r1;
 𝑉𝑘𝑡[z, j] w.𝑉𝑘𝑡[z, j] + c1 × r1;
 end
 if q ≠s then
 𝑉𝑘𝑡[q, j] =w.𝑉𝑘𝑡[q, j] - c1 × r1;
 𝑉𝑘𝑡[s, j] =w.𝑉𝑘𝑡[s, j] - c1 × r1;
 end
 end

 // Vector position updating.
 For each job j = 1, ..., n do
 if 𝑉𝑘𝑡[φ, j] = max {𝑉𝑘𝑡[i, j]}∀i ∈ (1, 2, ..., m)then
 𝑋𝑘

𝑡 [j]= φ;;
 end
 end
END

task will start and finish its execution on a given compute resource is
not known yet due to the task dependencies. Consequently, a second step is
necessary as in the following.

2. In this second step, the start and finish execution time of each task
will be defined on each compute resource. To do so, the DAG must be
traveled downwards starting from the entry task. First, because entry task
has no parent, it is tagged as scheduled and its EST is set to 0 (see
formula 4) and its EFT is calculated using formula 5. Second, the other
tasks will wait until all their immediate parents are scheduled, in other terms,
their ESTs and EFTs are calculated according respectively to the formulas
5 and 6.

DPSO* Algorithm.
Before the start of the DPSO* execution some parameter values must be set. Then,

particles are generated and initialized randomly. After that, they explore the search
space trying to find a satisfactory solution for the problem until the maximum number
of iteration is reached. A pseudo-code of the DPSO* algorithm is shown in the fol-
lowing.

4.3 The HEFT/DPSO* Hybridization

 As depicted in figure 1, after generating the initial swarm, instead of randomly initia-
lizing all the particles, in our proposed DPSO* algorithm, one particle is initialized

Initialize PSO parameter (swarm size, max𝑖𝑡𝑒𝑟 ,w , c1, c2)
Generate initial swarm
Initialize particles positions and velocities randomly
While (𝑖𝑡𝑒𝑟<𝑚𝑎𝑥𝑖𝑡𝑒𝑟) do
 For each particle k = 1, . . ., P do
 If Fitness (𝑋𝑘) > Fitness (𝑝𝑏𝑒𝑠𝑡𝑘) then
 𝑝𝑏𝑒𝑠𝑡𝑘= 𝑋𝑘;
 end If
 If Fitness (𝑝𝑏𝑒𝑠𝑡𝑘) > Fitness (𝑔𝑏𝑒𝑠𝑡𝑘) then
 g𝑏𝑒𝑠𝑡=𝑝𝑏𝑒𝑠𝑡𝑘;
 end If
 end for
 For each particle k = 1, . . ., P do
 Movement of the particle k;
 End For
 iter =iter+1;
End while

with the solution given by HEFT and other particles are randomly initialized. In this
way, this step is optimized.

Fig.1. Flow chart of HEFT/DPSO* Hybridization

5 Experimental Results

To evaluate the performance of our proposed algorithm, we have conducted some
experiments and compared the resulting tests of our hybrid HEFT/DPSO* algorithm

with HEFT and DPSO* algorithms regarding the makespan parameter. We have used
a DAG generator called RandomTaskGraphGenerator to generate our DAGs that
represent the applications to schedule.

The grid environment that we considered here is composed of several heterogene-
ous compute resources which are connected by heterogeneous links.

We assume that the computation time of each task on each compute resource, the
data volume exchanged between tasks and the data transfer rate between compute
resources are known.

For our simulation, the platform is described within a configuration file that con-
tains the following information: the number of tasks composing each application, the
number of compute resources of the platform and three matrices. The first is the com-
putational cost matrix with “Number of tasks x Number of compute resources” di-
mension (line index represents the number of tasks and column index represents the
number of compute resources). The second is the data transfer speed matrix with
“Number of compute resources x Number of compute resources” dimension (line and
column indexes represent compute resource numbers). The value 0 means there is no
transfer between a compute resource and another; besides the transfer speed between
a compute resource and itself is null. The third one is the data matrix that contains the
data transferred between tasks. This matrix has “Number of tasks x Number of tasks”
dimension (the line and column indexes represent task numbers). The value ‘-1'
means that there is no data exchanged between tasks. A value ‘0’ means that a task
has another kind of dependence, other than data transfer, with another task.
Concerning the positive values of the data matrix, each value corresponds to the
volume of data transfer between the two corresponding tasks.

Based on the configuration file, we conducted our measurements using five appli-
cations with different number of tasks on a grid environment with different number of
available compute resources.

Since the results of our DPSO* and our hybrid algorithm are stochastic (due to the
DPSO behavior), we repeated each experiment 10 times and recorded the makespan
value of the best solution obtained. For HEFT, it is executed only once since it is a
deterministic algorithm.

Specific parameter settings used by our hybrid HEFT/DPSO* and our DPSO*are
described in Table 1.

DPSO*parameter value

Size of swarm 50
Maximum iteration 1000
Self-Recognition coefficient c1 2

Social coefficient c2

1

Table 1. Parameter Settings of DPSO.

In our experiments, we measured the makespan criterion by varying the number of
compute resources in one side, and the number of tasks in the other side.

5.1 First Performance study

We used an application of 40 tasks which we run on a grid environment with dif-
ferent number of available compute resources (2, 3, 5, 7 and 10), and we measured the
makespan as in Table 2.

 Table 2. Makespanscomparisonaccordingtonumberofcompteresource

Figure 2 shows the makespan as measured for each scheduling algorithm when vary-
ing the number of compute resources. According to these measurements, we notice
that in respect to makespan, our hybrid HEFT/DPSO* algorithm offers better results
than DPSO* and HEFT algorithms.

 Fig.2. Makespan comparison according to the number of compute resources

5.2 Second Performance study

To measure the makespan criterion when varying the number of tasks, we consi-
dered five applications with different number of tasks (10, 20, 40, 60 and 100) that we
run on a grid environment with 5 available compute resources. We compared the
results of our hybrid solution with those obtained with the following scheduling algo-
rithms: DPSO* and HEFT. Table 3 shows the values of the makespan as obtained in
the different situations.

0

200

400

600

800

1000

2 3 5 7 10

M
ak

es
p

an
 (t

im
e

u
n

it
)

Compute resources number

HEFT/DPSO*

DPSO*

HEFT

Compute re-
source number HEFT/DPSO* DPSO* HEFT

2 733 736 922
3 560 580 620
5 425 437 441
7 383 392 399

10 296 329 308

Task

number
HEFT/DPSO* DPSO* HEFT

10 71 71 84
20 225 228 299
40 431 411 441
60 446 511 654
80 434 573 523
100 681 849 701

Table 3.Makespancomparisonaccordingtothenumberoftasks.

Figure 3 depicts the makespan comparison between different scheduling algorithms
when varying the number of tasks. Even when varying the number of tasks, the ma-
kespan seems to be better especially when the number of tasks is relatively important.

Fig.3. Makespan comparison according to the number of tasks

According to Figures 2 and 3, we can notice that the performances of the hybrid
HEFT/DPSO*solution and those of the DPSO* are better than HEFT heuristic regard-
ing the makespan criterion. Moreover, in the majority of cases, the hybrid solution
provides better makespans than the DPSO*.

0
100
200
300
400
500
600
700
800
900

10 20 40 60 100

M
ak

ep
an

 (t
im

e
u

n
it

)

Tasks number

HEFT/DPSO*

DPSO*

HEFT

6 Conclusion and Future Work

In this paper, a dependent task scheduling algorithm for computational grid has been
proposed based on hybridization of two heuristics. The first one isa list-scheduling
heuristic which is the well-known HEFT used to schedule DAGs. The second one is
based on a meta-heuristic called Particle Swarm Optimization (PSO). A discrete ver-
sion of PSO has been adapted to handle the scheduling of DAGs. Our objective was
to minimize the makespan of applications that are executed on a grid environment.
However, we plan to measure other criteria like energy consuming in our future work.

We showed in this article that our proposed scheduling approach gives better re-
sults in term of completion time than HEFT and our DPSO*.

At last, we aim to complete our current research work by hybridizing the DHEFT
algorithm with a PSO technique to support the duplication of tasks in one side, and in
the other side to measure the impact of the clustering approach that groups inter-
dependent tasks into meta-tasks by using a genetic algorithm and then by scheduling
them using HEFT algorithm.

References

1. M. Cafaro, G. Aloisio: Grids, Clouds, and Virtualization.1stEdition., Spring, 2011. ISBN
978-0-85729-049-6.

2. Fangpeng Dong, Selim G. Akl: Scheduling Algorithms for Grid Computing: State of the

Art and Open Problems. In:Technical Report No. 2006-504. School of Computing,
Queen’s University, Kingston, Ontario.

3. T.Casavant, J.Kuhl: A Taxonomie of Scheduling in General-Purpose Distributed Compu-
ting Systems.In:IEEE Transactions on Software Engineering. Vol 14, No. 2 February
1988.

4. R. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. Reuther, J. Robertson, M.
Theys, B. Yao, D. Hensgen and R. Freund : A Comparison of Eleven Static Heuristics for
Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing Sys-
tems. In : J. of Parallel and DistributedComputing, vol.61, No. 6, 2001.

5. Y. K. Kwok and I. Ahmad : Static Scheduling Algorithms for Allocating Directed Task
Graphs to Multiprocessors.In : ACM Computing Surveys,31(4):406-471, 1999.

6. Jia Yu, RajkumarBuyya and KotagiriRamamohanarao :Workflow Scheduling Algorithms
for Grid Computing. In: F. Xhafa, A. Abraham (Eds.): Meta. forSched. inDistri. Comp.
Envi., SCI 146, pp. 173–214, 2008.

7. H. Topcuoglu, S. Hariri, M. Wu: Performance-Effective and Low-Complexity Task Sche-
duling for Heterogeneous Computing. In: IEEE transactions on Parallel and Distributed
Systems, Vol.13, No. 3, March 2002.

8. A.Radulescu, A. J.C. van Gemund: On the Complexity of List Scheduling Algorithms for
Distributed-Memory Systems. In : Technical Report No. 1-68340-44(1999)02, January
1999.

9. Y.-Kwok, I. Ahmad: Dynamic Critical-Path Scheduling: An Effective Technique for Allo-
cating Task Graphs to Muliprocessors. In: IEEE Transactions On Parallel And Distributed
Systems, Vol. 7, No. 5, May 1996.

10. G. C.Sih, E. A. Lee: A Compile-Time Scheduling Heuristic for Interconnection-
Constrained Heterogeneous Processor Architectures. In: IEEE TransactionsOn Parallel
And Distributed Systems. Vol. 4. No 2.February 1993.

11. T. Ma, R. Buyya: Critical-Path and Priority based Algorithms for Scheduling Workflows
withParameter Sweep Tasks on Global Grids. In: IEEE International Symposium on Com-
puter Architecture and High Performance Computing (SBAC-PAD’05), 2005.

12. T. Yang, A. Gerasoulis: DSC: Scheduling Parallel Tasks on an Unbounded Number of
Processors. In: IEEE Transactions on Parallel and Distributed Systems, Vol. 5, No. 9, Sep-
tember 1994.

13. J. Liou, M.A. Palis: An Efficient Clustering Heuristic for Scheduling DAGs on Multipro-
cessors. In:Proc. Symp. Parallel and Distributed Processing, 1996.

14. C. Boeres, J.V. Filho, V.E.F Rebello: A Cluster-based Strategy for Scheduling Task on
Heterogeneous Processors. In: IEE Symposium on Computer Architecture and High Per-
formance Computing, pp. 214-221, October 2004.

15. B. Kruatrachue, T. Lewis:Grain size determination for parallel processing. In: IEEE Sof-
mare, pp. 23-32,1988.

16. I. Ahmad, Y.-K. Kwok: A New Approach To Scheduling Parallel Programs Using Task
Duplication. In : IEEE International Conference on Parallel Processing, Vol.2,1994

17. S. Darbha, D.P. Agrawal: Optimal Scheduling Algorithm for Distributed-Memory Ma-
chines. In: IEEE Transactions On Parallel And Distributed Systems, Vol. 9, No. 1, January
1998.

18. Y.-C. Chung, S. Ranka:Application and Performance Analysis of a Compile-Time Optimi-
zation Approach for List Scheduling Algorithms on Distributed-Memory Multiprocessors.
In: Proc. Supercomputing ’, pp. 512-521, 1992.

19. R. Bajaj, D.P. Agrawal: Improving Scheduling of Tasks in a Heterogeneous Environment.
In: IEEE Transactions on parallel and Distributed Systems, Vol. 15, No. 2, 2004.

20. L. Wang, H. J. Siegel, V. P. Roychowdhury, A.A. Maciejewski:Task matching and sche-
duling in heterogeneous computing environments using a genetic-algorithm-based ap-
proach. In: Journal of Parallel and Distribute Computing, Vol. 47, No. 1, 1997.

21. V.D. Martino, M. Mililotti: Sub optimal scheduling in a grid using genetic algorithms. In:
Parallel Computing, 30:553–565, 2004.

22. Y. Gao, H. Rong, J.Z. Huang: Adaptive grid job scheduling with genetic algorithms, In:
Future Generation Computer Systems, 2, 151-161, 2005,

23. M. Aggarwal, R.D. Kent, A. Ngom: Genetic Algorithm Based Scheduler forComputational
Grids. In: Proc. of the 19th Annual International Symposium on HighPerformance Compu-
ting Systems and Applications (HPCS’05), May 2005.

24. S. Song, Y. Kwok, K. Hwang: Security-Driven Heuristics and A Fast Genetic Algorithm
for Trusted Grid Job Scheduling. In: Proc. of 19th IEEE International Parallel and Distri-
buted Processing Symposium (IPDPS'05), April 2005.

25. J. Kennedy and R. Eberhart: Particle swarm optimization. In: Proc. IEEE International
Conf. on Neural Networks (Perth, Australia), IEEE Service Center, Piscataway, NJ, 1995
(in press).

26. L. Zhang, Y. Chen, R. Sun, S. Jing, B. Yang: A Task Scheduling Algorithm Based on PSO
for Grid Computing. In: International Journal of Computational Intelligence Research,
Vol.4, No.1, 2008.

27. H. Liu, A. Abraham, A.E. Hassanien: Scheduling jobs on computational grids using a
fuzzy particle swarm optimization algorithm. In:Future Generation Computer Systems,
2010.

28. H. Izakian, B.T. Ladani, A. Abraham and V. Snasel: A discrete particle swarm optimiza-
tion approach for grid job scheduling. In: International Journal of Innovative Computing,
Information and Control, Vol.6, No.9, 2010.

29. Y. Zhang, Y. Inoguch, H. Shen: A dynamic Task Scheduling Algorithm for Grid Compu-
ting System. In :

30. J. Kennedy, R. C. Eberhart: A discrete binary version of the particle swarm algorithm. In:
IEEE International Conference on Systems, Man, and Cybernetics, vol.5, 1997.

